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The solar Ha images acquired by the Goode Solar Telescope (GST) at the Big Bear Solar Observatory
(BBSO) are superimposed by interference fringes. These fringes degrade the image quality and seriously
affect later research that uses these data. To remove the interference fringes in He images, this paper
proposed a method combining stationary wavelet deep convolutional neural network (SWT-CNN) and
image pyramid. First, the image pyramid was used to downsample the fringe image, which sped up the
neural network training speed. Then, SWT-CNN used the difference between fringe image and fringe-
free image to remove the interference fringe. Finally, the image size was recovered by the Laplacian
pyramid. The experimental results show that our method can effectively remove the interference
fringes in Ho images and preserve the solar structure.

© 2023 Elsevier B.V. All rights reserved.

1. Introduction

Ho images are important for astronomers because they can be
used to observe optical flares, among other things. The solar Ho
images obtained by the GST contain interference fringes due to
the observation equipment. These He images were taken by The
Visible Imaging Spectrometer (VIS) of GST. VIS is based on a single
Fabry-Pérot etalon. The light of the Fabry-Perot interferometer
is very monochromatic and easily forms interference fringes be-
tween the membranes of the camera. These interference fringes
will show up when seeing is not good. Fig. 1 shows an He image
with interference fringes. There are two kinds of stripes in the
image, one is a horizontal stripe, which is a fixed pattern noise
caused by CMOS. Another type of fringe that is at a 30 deg from
the horizontal line is the interference fringe. At present, there are
many effective methods to remove the fixed mode noise, but the
method to remove the interference fringe is lacking. Interference
fringes seriously affect the later research that uses these data.
Therefore, many researchers have begun to study the removal of
interference fringes in astronomical images.

He et al. (2014) removed the stripe noise in He images by
adaptive wavelet transform (AWT) and Gaussian low-pass filter-
ing. Gaussian low-pass filtering only removes the high-frequency
noise, not the low-frequency noise, and makes the image too
smooth while removing the fringe noise. Zheng et al. (2016) pro-
posed a method based on least squares support vector machine to
remove streaks from Ho images of the Huairou Solar Observatory.
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Fig. 1. An Ho image with interference fringes that was obtained on 2014 August
13 at 17:52:01 UT.

Wang et al. (2016) used frequency-domain filtering and spatial-
domain filtering to extract interference fringes in NVST data. SVM,
frequency-domain filtering and spatial-domain filtering had the
same deficiency as Gaussian low-pass filtering. Cai et al. (2018)
and Liu et al. (2020) applied principal component analysis (PCA)
in the spatial and frequency domains to remove interference
fringes in NVST data, respectively. The NVST fringe belongs to
the high-frequency part, while the GST fringe not only has the
low-frequency part but also the high-frequency part. PCA cannot
effectively separate the fringes and solar structure information. Li
et al. (2019) proposed a method for removing interference fringes
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Fig. 2. Schematic diagram of image pyramid. The He image is downsampled twice, and the image size becomes a quarter of the original size. And there is no

obvious fringe structure in the Laplacian image.

in NVST images based on multiscale decomposition and adaptive
partitioning. The interference fringes in the GST data are almost
all over the image. The adaptive segmentation method is not very
useful, and Gaussian filtering does not perform well in fringe
removing. “Fringes Flat Field” (Liu et al., 2021) is not applicable
to speckle reconstruction images. Deep learning methods are also
used to remove interference fringes in astronomical images. Li
(2021) improved DnCNN and applied it to remove interference
fringes in NVST data. DnCNN is not effective in removing high-
intensity interference fringes, and the solar structure information
retention performance is not good. Inspired by transform domain
neural networks in image denoising (Gao et al., 2018; Guan et al,,
2019; Liu et al., 2022; Kim et al., 2022) and image pyramid (Adel-
son et al., 1983; Burt and Adelson, 1983) in image processing,
we proposed a method combining image pyramid and SWT-
CNN. The image pyramid is used to sped up the training speed
of the neural network, and the SWT-CNN uses the difference
between the fringe image and fringe-free image in the frequency
domain to remove the interference fringes while retaining the
solar structure information.

This paper is organized as follows: in Section 2, we introduce
the GST observation data; Section 3 introduces the techniques
used in this paper; In Section 4 we introduce the dataset and
the network structure; the experimental results are analyzed in
Section 5; and Section 6 concludes the paper’s work.

2. Observation

GST operates the Broadband Filter Imager (BFI), Visible Imag-
ing Spectrometer (VIS), and Near Infrared Imaging Spectropo-
larimeter (NIRIS). The Ho data were taken with the NST Visible
Imaging Spectrometer (VIS). VIS is based on a single Fabry-Pérot
etalon that produces a narrow 0.08 A bandpass over a 75“x64”
FOV. This tunable filter operates within a 5500-7000 A range and
the image scale is 0.029"/pixel at Hx 6563 A line.

The data used in this paper are He images acquired by BBSO.
The fringe images were observed on August 13, 2014, with a total
of 1794 images. The fringe-free images are from the period of
October 2 to November 6, 2014, with a total of 5000 images.

3. Theory
3.1. Image pyramid

Image pyramid is a group of subimages of the same image with
different resolutions, which is generated by continuously down-
sampling the original image, that is, generating low-resolution
images from high-resolution images (Adelson et al., 1983; Burt
and Adelson, 1983). There are two types of image pyramids,
namely Gaussian pyramid and Laplacian pyramid. The process of
the image pyramid algorithm is shown in Fig. 2. The Gaussian
pyramid is obtained by smoothing the image once and then
downsampling the smoothed image to obtain an image that is
half the size of the original image. The process is repeated to
obtain a smaller image. The image information lost in the down-
sampling process constitutes the Laplacian pyramid. The use of
Laplacian pyramid can reduce the loss of image information when
the image is downsampled and then upsampled to recover the
image. We added the image pyramid to SWT-CNN to sped up
the neural network training speed. We downsample the image
twice to reduce the image size without causing loss of fringe
structure in the downsampling process. Each time the data was
subsampled, the training time was reduced to a quarter of the
original time. If the data is downsampled three times, distinct
fringe structures appear in the image of the Laplace pyramid.
Subsampling twice can effectively accelerate the training speed
of the neural network, but will not significantly affect the effect
of removing fringe.

3.2. Stationary wavelet transform

Stationary wavelet transform (Nason and Silverman, 1995) is
an improvement of discrete wavelet transform (DWT). In discrete
wavelet transform, the image must be downsampled. However,
SWT does not require downsampling, and the size of the decom-
posed wavelet coefficient is the same as that of the original image,
which can effectively avoid the Gibbs phenomenon caused by
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Fig. 3. Schematic diagram of stationary wavelet decomposition. SWT can separate the interference fringe from the solar structure information, so as to reduce the

loss when removing the interference fringe.

downsampling. In addition, to remove the interference fringes,
the image needs to go through a deep level of wavelet decom-
position. If the image is downsampled many times, the wavelet
coefficient image will become very small, and it is difficult to
distinguish the noise from the image part, which is not con-
ducive to removing the fringes. The stationary wavelet transform
decomposition formula is as follows:

Gk = Zn hgzj (Tl — 2’() Ci—1.n
die =Y, h1? (n—2k)ydj_1

ho = <§01,07 (Po,k)
hy = (lﬁl,o, l%,k)

where ¢ is the low-frequency coefficient, d; is the high-fre-
quency coefficient, hng and hIzJ represent the insertion of 2 — 1
zeros between the two points hy and hy, respectively, ¢ is the
scale function and v is the wavelet function, () represents the
inner product.

The SWT decomposition process is shown in Fig. 3. Single-level
decomposition of an image into four coefficient images (A, H, V,
and D) of the same size as the original image, where A, H, V, and D
represent the low-frequency coefficients and the high-frequency
coefficients in the horizontal, vertical, and diagonal directions,
respectively. The low-frequency coefficients are used in the next
level of decomposition.

In this paper, we perform 5-level decomposition on the down-
sampled fringe image, and 15 high-frequency coefficients and
1 low-frequency coefficient are obtained. The 5-level decompo-
sition can effectively separate the fringes from the solar struc-
ture information. Less level decomposition will fail to separate
these parts, and more level will waste time. Most of the fringes
exist in the high-frequency vertical and horizontal coefficients,
and a small part exists in the low-frequency coefficients and
high-frequency diagonal coefficient. Therefore, in this paper, the
wavelet coefficient is used as the input of neural network to re-
move the interference fringe and reduce the loss of solar structure
information.

(1)

4. Network architecture
4.1. Data description

Deep learning methods require fringe-free images correspond-
ing to fringe images, but they are difficult to obtain. Therefore,

we adopt the method of superimposing the interference template
on the fringe-free images to generate image pairs. We use these
images as our dataset. We have 4000 pairs of images used as the
training set and 1000 pairs for testing.

The fringe image size is 2160 x 2560, after rotation, it is
2432 x 2560. If the original image is not rotated, there will be
obvious fringes in the horizontal, vertical and diagonal coefficient
images after SWT decomposition. After rotation, the fringes will
be concentrated in the horizontal and vertical coefficient images,
while the diagonal coefficient images with only a small part of
the data will have less obvious fringes. Since the Angle of the
interference fringes in the Halpha image is almost constant, each
image is rotated at the same Angle. The rotation Angle is manually
selected. It is easier to extract interference fringe from rotating
image.

We obtain the interference fringe template by stationary
wavelet transform (SWT), band-stop filtering and Gaussian low-
pass filtering. We perform 7-level SWT decomposition on the
image. Most of the data have a relatively obvious fringe structure
in the high-frequency vertical and horizontal coefficients of level
4, 5, and 6. Only a small portion of the data has less notice-
able fringe in the high-frequency diagonal and low-frequency
coefficients. We remove the interference fringes in the wavelet
coefficients by band-stop filtering and Gaussian filtering. The
parameters of filters are obtained by manually selecting the fringe
region to obtain its spectrum and debugging. The fringes in the
high frequency vertical coefficients are removed by means of
Gaussian low-pass filtering and Butterworth band-stop filtering
on the row data. The high frequency horizontal coefficient and
the diagonal coefficient remove the fringes by the same method,
but the horizontal coefficient is band-stop filtering for the col-
umn data, and the diagonal coefficient is band-stop filtering for
the whole image. The low frequency coefficient is removed by
Gaussian low-pass filtering. Then, we reconstruct the image by
inverse stationary wavelet transform (ISWT). Finally, we take the
residual of the fringe image and the reconstructed image as the
fringe template. Fig. 4 shows the fringe template extraction result.
We extracted 75 interference fringe templates by this method
(The more templates the better, but due to time constraints
we only got 75 samples. The time interval of the template is
roughly the same across the 1794 stripe images because of some
corrupted data, the time interval is different.). In addition, there
are differences in the intensity of the interference fringe in each
Ho image. By multiplying the intensity of the interference fringe
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Fig. 4. (a) An Ho image with interference fringes that was obtained on 2014
August 13 at 17:52:01 UT. (b) The fringe sample obtained from (a). (c) An Ho
image without interference fringes that was obtained on 2014 October 2 at
21:57:37. (d) Image of c¢ superimposed with b.

template by 0.5, 1, 1.5, 2 and 2.5, we expanded the number of
templates, and finally obtained 375 interference fringe templates.

4.2. Network architecture

The architecture of our network is shown in Fig. 5. Our method
contains five steps: Gaussian pyramid, stationary wavelet trans-
form, wavelet coefficient prediction, inverse stationary wavelet
transform and Laplacian pyramid. The fringe image is first down-
sampled twice by a Gaussian pyramid. Then, the downsampled
image is decomposed by stationary wavelet five levels to obtain
wavelet coefficients. Then, the low-frequency coefficient of layer
5, the high-frequency vertical coefficients of layer 2, 3, 4 and
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5, the high-frequency horizontal coefficients for each layer and
the high-frequency diagonal coefficients of layer 2 and 3 are
used as the input of the neural network. In addition, the residual
learning strategy is used for model training. The residual obtained
by subtracting the wavelet coefficients of the striated image and
the nonstriated image was used as the learning target. After
training, the model can indirectly learn the mapping relationship
from fringe wavelet coefficients to fringe-free wavelet coefficients
to remove interference fringes. Figs. 6 and 7 show the wavelet
coefficients of the input and output of the neural network respec-
tively. The prediction wavelet coefficients of network output are
used to reconstruct the image by ISWT. Finally, the image size is
recovered by Laplacian pyramid.

Our network model has 11 convolutional layers. All convo-
lution kernel sizes are set to 5 x 5 and stride is set to 1. We
pad zeros to ensure that the output of each layer has the same
size. The number of kernels in the first 10 convolutional layers
is set to 128. The number of kernels in the last convolutional
layer is set to 12 to reconstruct the wavelet coefficients. The first
layer is followed by a rectified linear unit (ReLU). Layers 2 to 10
are followed by batch normalization (BN) layers in addition to a
rectified linear unit. Two bypass connection modules are set in
the network, between layers 2 and 6 and between layers 6 and
10. In addition, the proposed model maps the wavelet coefficients
of the fringe image to the residual wavelet coefficients of the
fringe image and the fringe-free image through residual learning.
Residual learning can reduce the difficulty of network learning
features, and can solve the problem of gradient disappearance
and gradient explosion to a certain extent (He et al., 2016). Our
model takes the mean square error (MSE) of the network output
wavelet coefficients and the residual wavelet coefficients as the
loss function. The formula is as follows:

MSE (xi, yi) = (X — y1)? (2)

where ¥x; is the strip-free image and y; is the model output image.

We use the adaptive moment estimation (ADAM) optimization
method to minimize the loss function. The initial learning rate
was 1 x 1072 and then gradually attenuated until the 50th epoch
with a learning rate of 1 x 10™4, The network was trained for 50
epochs. We have 4000 pairs of images used as the training set.
We used a single Nvidia RTX 3090 (24 GB) to train the network.
The whole training phase takes about 44 h.
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Fig. 5. Network structure. Our network consists of three parts: image pyramid, SWT and CNN.
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Fig. 6. The wavelet coefficients of the neural network input. Obvious fringe
structure can be seen in the wavelet coefficient images.

Fig. 7. The wavelet coefficients of the neural network output. Most of the fringes
have been removed.

5. Experiments

5.1. Experiment with simulation data

We adopt the simulation data as test set to evaluate the
performance of the de-fringe method and compare it with AWT,
Gaussian high-pass filtering (GHPF) and DnCNN (He et al., 2014;
Wang et al, 2016; Li, 2021). To objectively evaluate the re-
moval effect of interference fringes, the peak signal-to-noise ratio
(PSNR), mean absolute value (MAV) and multi-scale structural
similarity (MS-SSIM, Wang et al. (2003)) are used to quantita-
tively describe the processing results of each algorithm. MS-SSIM
is a modified version of SSIM. The performance of MS-SSIM is
more stable and closer to the results of subjective evaluation.
MAV, MS-SSIM is calculated as follows:

1 L .
MAV = ;; ly (. J) — f G, )l 3)
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Fig. 8. PSNR, MS-SSIM and MAV comparison of different algorithm results.
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where M, N are the width and height of the image, f (i, j) is the
predicted value of the model and y (i, j) is the true value of the
sample, 11, is the average of x, o2 is the variance of y, Oyy is the
covariance of x and y, K; = 0.01, K; = 0.03, M is the number of
scales. In this paper, M =5, a1 = 1 = y1 = 0.0448, oy = 8, =
V2 = 02856, 03 = ,33 = Y3 = 03001, 0y = ,34 = V4 = 0.2363
and O = ﬁ5 = Y5 = 0.1333.

Fig. 8 shows the PSNR, MAV and MS-SSIM calculation results
of the above methods, where the numbers after PSNR and MS-
SSIM represent three different sets of data. The PSNR, MAV and
MS-SSIM of our method and DnCNN are significantly higher than
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Fig. 9. Results of different methods on simulation data. (a) A fringe-free image, (b) the image obtained by superimposing the interference template on (a), (c) result

of AWT, (d) result of GHPF, (e) result of DnCNN, and (f) our result.

Table 1
Evaluation results.
DnCNN Ours
Time 15,447 s 3145 s
PSNR 33.60 33.42
MS-SSIM 0.9588 0.9660
MAV 280 261
Table 2
Evaluation results of downsampled images.
DnCNN Ours
PSNR 36.00 38.89
MS-SSIM 0.9688 0.9779
MAV 267 244

those of AWT and GHPF. Our method also has better results
than DnCNN. Fig. 9 illustrates the visual effects of the different
methods. GHPF cannot remove the fringes and blurs the image.
Although AWT can remove fringes, it will cause serious blurring
of the image. DnCNN can remove most of the fringes, but some
of them cannot be removed. Our method removes almost all the
fringes and effectively preserves the solar structure.

In addition, the mean PSNR, MAV and MS-SSIM of DnCNN
and our method on the whole test set and the time of model
training for one epoch are shown in Table 1. The training speed
of our model is significantly improved compared with DnCNN.
The results of MAV and MS-SSIM were better than DnCNN. The
results of PSNR is slightly lower than DnCNN. We also down-
sampled when using DnCNN, and the whole training phase takes
about 10 days without sampling. Therefore, we also evaluated the
downsampled images to compare the performance of SWT-CNN
and DnCNN, and the results are shown in Table 2. Our method
gives better results.

5.2. Validations on real fringe images

We further verify the effectiveness of the proposed method
with Ho images with interference fringes obtained by GST. Since
the methods of He and Wang were less effective, we only com-
pared our method and DnCNN. The results are shown in Fig. 10.

d

Fig. 10. Results of different methods on real fringe image. (a) The He image
obtained by GST on 2014 August 13 at 16:59:05 UT, (b) the result of Li’s method,
(c) our result. (d) The residual of a and b. (e) The residual of a and c.

We obtain similar results on real data and simulated data. The
result of DnCNN has more obvious interference fringe than ours.
Therefore, our proposed method can truly and effectively remove
the interference fringes in the Ho image. In addition, it can also
be seen from Fig. 10 that (d) has more obvious solar structure
information than (e). This means that our method can better pre-
serve the solar structure information. Two other sets of results are
shown in Figs. 10 and 11. In Fig. 10, there are fewer interference
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Fig. 11. Results of different methods on real fringe image. (a) The He image
obtained by GST on 2014 August 13 at 17:39:07 UT, (b) the result of Li’s method,
(c) our result. (d) The residual of a and b. (e) The residual of a and c.

fringes in our results, but the advantage is not obvious, but it
can be seen from the residual plot that the DnCNN results have a
very obvious solar structure. As can be seen from Fig. 11, neither
DnCNN nor our method can remove high-intensity interference
fringes well (see Fig. 12).

6. Conclusions

To solve the problem of interference fringes in Ha images
from the GST, this paper proposes a method that combines image
pyramid and SWT-CNN model. The image pyramid accelerated
network training speed, SWT-CNN utilizes the difference between
interference fringe and solar structure in the frequency domain to
remove interference fringes and retain solar structure informa-
tion. The experimental results show that our proposed method
can effectively remove the interference fringes in Ha images and
preserve the solar structure. Reliable results are obtained both
visually and quantitatively.

There are still some deficiencies in this paper. For the data
with high fringe intensity, the fringe removal effect of our method
is limited, which can remove most of the fringe, but the result still
has relatively obvious fringe. While rotating the image makes it
easier to remove streaks, it is also a limitation. In addition, the
method of extracting the interference fringe template needs to
be improved. As can be seen from Fig. 4(b), the fringe template
we extracted contains obvious solar structure information, which
leads to the removal of part of the solar structure as fringes in the
learning process of CNN. At the same time, the number of stripe
templates needs to be increased. The selection of parameters in
the methods used in this paper is based on experience, so they
are not optimal. Those limitations can be addressed on follow-up
studies.

Fig. 12. Results of different methods on real fringe image. (a) The Ha image
obtained by GST on 2014 August 13 at 17:54:05 UT, (b) the result of Li’s method,
(c) our result. (d) The residual of a and b. (e) The residual of a and c.
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