

1

1 **Distributed acoustic sensing recordings of low-**

2 **frequency whale calls and ship noises offshore**

3 **central Oregon**

4 William S. D. Wilcock,^{1,1a} Shima Abadi,^{1,1b} and Brad Lipovsky²

5 ¹*School of Oceanography, University of Washington, Seattle, WA, 98195*

6 wilcock@uw.edu abadi@uw.edu

7 ²*Department of Earth and Space Sciences, University of Washington, Seattle,*

8 *WA, 98195* tpl7@uw.edu

9

10 Distributed acoustic sensing (DAS) is an optical technique that can measure strain
11 changes along an optical fiber to distances of ~100 km with a spatial sensitivity of
12 tens of meters. In November 2021, 4-days of DAS data was collected offshore on
13 two cables of the Ocean Observatories Initiative Regional Cabled Array that
14 extend offshore central Oregon. Numerous 20 Hz fin whale calls, northeast
15 Pacific blue whale A and B calls, and ship noises were recorded. This data is
16 publicly available to support studies to understand the frequency and spatial
17 sensitivity of submarine DAS for low-frequency acoustic monitoring.

18

19 Keywords: Distributed Acoustic Sensing, Whale Vocalizations, Ship Noise, Fin
20 Whale, Blue Whale, Submarine Cable

2 ^{1a} Author to whom correspondence should be addressed.

3 ^{1b} Also at: School of STEM, Division of Engineering and Mathematics, University of Washington,
4 Bothell

5

6

21 1. **Introduction**

22 Low frequency sound within the oceans is generated by a wide number
23 of physical, biological, and anthropogenic sources (Wilcock et al., 2014).

24 These include the wind interacting with the sea-surface, the deformation of sea
25 ice and icebergs, earthquakes, volcanic activity, baleen whale and fish
26 vocalizations, ship propellers and machinery, seismic airguns and pile driving.

27 Passive acoustic monitoring of the ocean soundscape is thus a useful tool to
28 study a variety of processes and to understand the impacts of anthropogenic
29 activities and changing climate on the ocean environment (Duarte et al., 2021).

30 Since sustained hydro-acoustic observations are challenging and expensive to
31 obtain offshore, there is strong motivation to explore new technologies that
32 might enhance our ability to record and characterize sounds within the oceans.

33 Distributed acoustic sensing (DAS) is a relatively new observational
34 technique that interrogates an optical fiber with repeated laser pulses and
35 applies interferometry to the Rayleigh backscattered light to measure changes
36 in strain along the fiber (Hartog, 2017). The method can work to distances of
37 up to ~100 km and has a spatial resolution of meters and a broad frequency
38 sensitivity. A DAS fiber optic cable behaves similarly to a long line of closely
39 spaced single-axis broadband seismometers oriented in the direction of the
40 fiber, although DAS measures the spatial derivative of ground velocity (i.e.,
41 rate of change of strain) rather than ground velocity (Hartog, 2017).

42

43 The spatial resolution of DAS measurements is termed the gauge length
44 and is controlled by both the duration of the laser pulse and length of time over
45 which each interferometric measurement is averaged. DAS data is commonly
46 collected with a channel spacing that is much smaller than the gauge length.
47 Increasing the gauge length decreases spatial resolution and the sensitivity to
48 short wavelength strain signals but improves the signal to noise of the
49 measurement and thus allows measurements to greater distance from which the
50 backscattered light is more attenuated. The temporal resolution is limited by
51 the two-way travel time of light along the fiber because there should be no
52 more than one light pulse in the fiber at once. For example, for a 100 km long
53 fiber, the maximum laser interrogation rate is \sim 1000 Hz. If the sampling rate is
54 at least a factor of 2 lower than the maximum laser interrogation rate, then
55 successive interrogations can be combined to increase signal to noise.

56 Within industry, DAS has been used for a decade to collect vertical
57 seismic profiles in boreholes (Mateeva et al., 2014). Within academia, DAS is
58 now widely used for a variety of geophysical applications including earthquake
59 studies, seismic imaging and glacier deformation, and it also has application in
60 urban areas for anthropogenic noise sources (Zhan et al., 2019; Lindsey and
61 Martin, 2021). On land, DAS observations can often take advantage of the
62 extensive network of dark fibers that have been laid in urban areas and along
63 transportation corridors to provide growth capacity for telecommunications. In
64 the oceans, DAS experiments are more challenging because submarine
65 telecommunications cables do not generally include dark fibers. Spare fibers
66 in the nearshore portions of cables would be relatively cheap to add but they

67 are of no use for telecommunications without the expensive optical repeaters
68 that are necessary to transmit signals more than ~300 km.

69 In 2019, three studies documented the utility of submarine DAS for
70 recording earthquakes and oceanographic signals using data from short tests of
71 on the research infrastructure of the MARS cabled observatory in Monterey
72 Bay (Lindsey et al., 2019), the MEUST deep sea cabled observatory in the
73 Mediterranean off France (Sladen et al., 2019) and a cable in the North Sea off
74 Belgium (Williams et al., 2019). This pioneering work has spurred a rapid
75 growth in interest in submarine DAS including its applications to acoustics.

76 Rivet et al. (2021) showed that DAS could be used to track a tanker
77 passing over the MEUST cable at water depths of both 85 m and 2000 m.
78 Matsumoto et al. (2021) compared DAS and hydrophone recordings of airgun
79 signatures using cable extending offshore Japan to >3000 m water depth. They
80 found both systems were sensitive to airgun signals from 0.1 to tens of Hz
81 although the DAS had lower signal to noise above a few Hz. A comparison of
82 airgun recording between DAS on cable at 100-400 m depth and a towed
83 hydrophone streamer in a shallow Fjord in Norway (Taweesintananon et al.,
84 2021) showed similar noise levels on both systems. Working with the same
85 data set, Bouffaut et al. (2022) present DAS recordings of baleen whales at
86 frequencies up to nearly 100 Hz and demonstrated tracking for animals
87 swimming near the cable.

88 In this paper, we present an overview of a 4-day public-domain
89 submarine DAS experiment that was conducted on two cables extending
90 offshore central Oregon (section 2), demonstrate the capabilities of DAS to

91 recording hydro-acoustic signals (section 3) from fin whale calls (section 3.1),
92 blue whale calls (section 3.2) and ship noises (section 3.3) and discuss the
93 preliminary results and opportunities for future research with these acoustic
94 signals (section 4).

95 2. OOI DAS Experiment

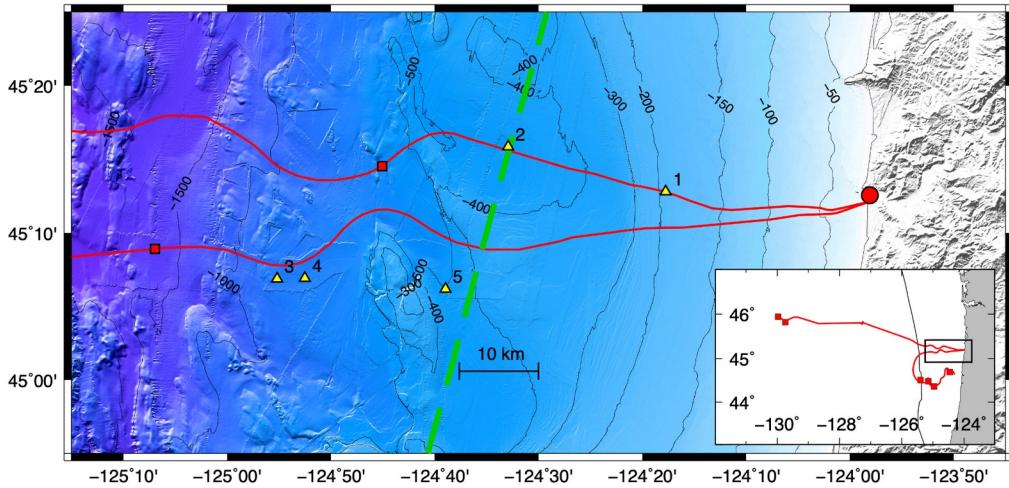
96 The Ocean Observatories Initiative Regional Cabled Array (Figure 1,
97 inset) operates two submarine cables that land at Pacific City, Oregon (Smith et
98 al., 2018). The northern cable runs ~500 km west to Axial Seamount while the
99 southern cable extends ~150 km offshore onto the Juan de Fuca plate before
100 wrapping around to the south and east onto the continental slope and shelf off
101 Newport, Oregon. Both cables include a single twisted pair of optical fibers
102 that support 10 Gbps ethernet to primary nodes on the trunk cables that connect
103 via secondary cables and junction boxes to suites of sensors on the seafloor and
104 on moorings.

105 From November 1-5, 2021, a scheduled shutdown of the RCA for
106 maintenance provided an opportunity for a 4-day community fiber sensing
107 experiment to interrogate the fibers in each cable extending out to the first
108 optical repeaters, which are located at 1600 m depth 95 km along the south
109 cable and at 600 m depth 65 km along the north cable (Figure 1). These
110 nearshore sections of the cables are buried to a nominal depth of 1.5 m depth
111 below the seafloor. On the south cable DAS data was collected on both fibers
112 using an Optasense QuantX interrogator and a Silixa IDASv3 system. On the
113 north cable DAS data was collected on one fiber with a second Optasense

114 QuantX interrogator while a Silixa ULTIMA SM distributed temperature
 115 sensor was deployed on the other fiber. The data has a total volume of 26 TB
 116 and can be accessed through a data repository hosted by the University of
 117 Washington along with information about the experiment configuration and
 118 data format (<https://oceanobservatories.org/pi-instrument/rapid-a-community-test-of-distributed-acoustic-sensing-on-the-ocean-observatories-initiative-regional-cabled-array/>).
 120

121 Table 1 summarizes the DAS recording parameters. Although there
 122 were some intervals of recording at sample rates up to 1000 Hz and with gauge
 123 lengths down to 3 m, most of the data were collected with a sample rate of 200
 124 Hz and gauge length of 30-50 m. These parameters were selected to ensure
 125 sufficient signal to noise to record to near the distal ends of the fibers.

126


127 TABLE 1. Summary of recording parameters for the OOI RCA DAS
 128 experiment. For each of the 3 DAS interrogators the table identifies the fiber
 129 used, the length of fiber interrogated, the channel spacing, the gauge length and
 130 the sampling frequency with the parameters only listed when they change.

	Optasense - north cable	Optasense - south cable	Silixa - south cable
Nov 1 (2-6 hours)	Testing various configurations	Testing various configurations	Testing on receive fiber of north cable
Nov 1-2	Transmit fiber 65.2 km 2 m channel spacing 30 m gauge length	Transmit Fiber 95 km 2 m channel spacing 50 m gauge length	Receive Fiber 80.6 km 2 m channel spacing 30 m gauge

	1000 Hz sampling	200 Hz sampling	length 200 Hz sampling
Nov 2-3	500 Hz sampling		40.4 km 1 m channel spacing 10 m gauge length
Nov 3-4	50 m gauge length 200 Hz sampling		19.7 km 3 m gauge length 1000 Hz
Nov 4-5			
Nov 5 (3 hours)	Receive fiber	Receive fiber	Transmit fiber 80.5 km 2 m channel spacing 30 m gauge length 200 Hz

131

132

133

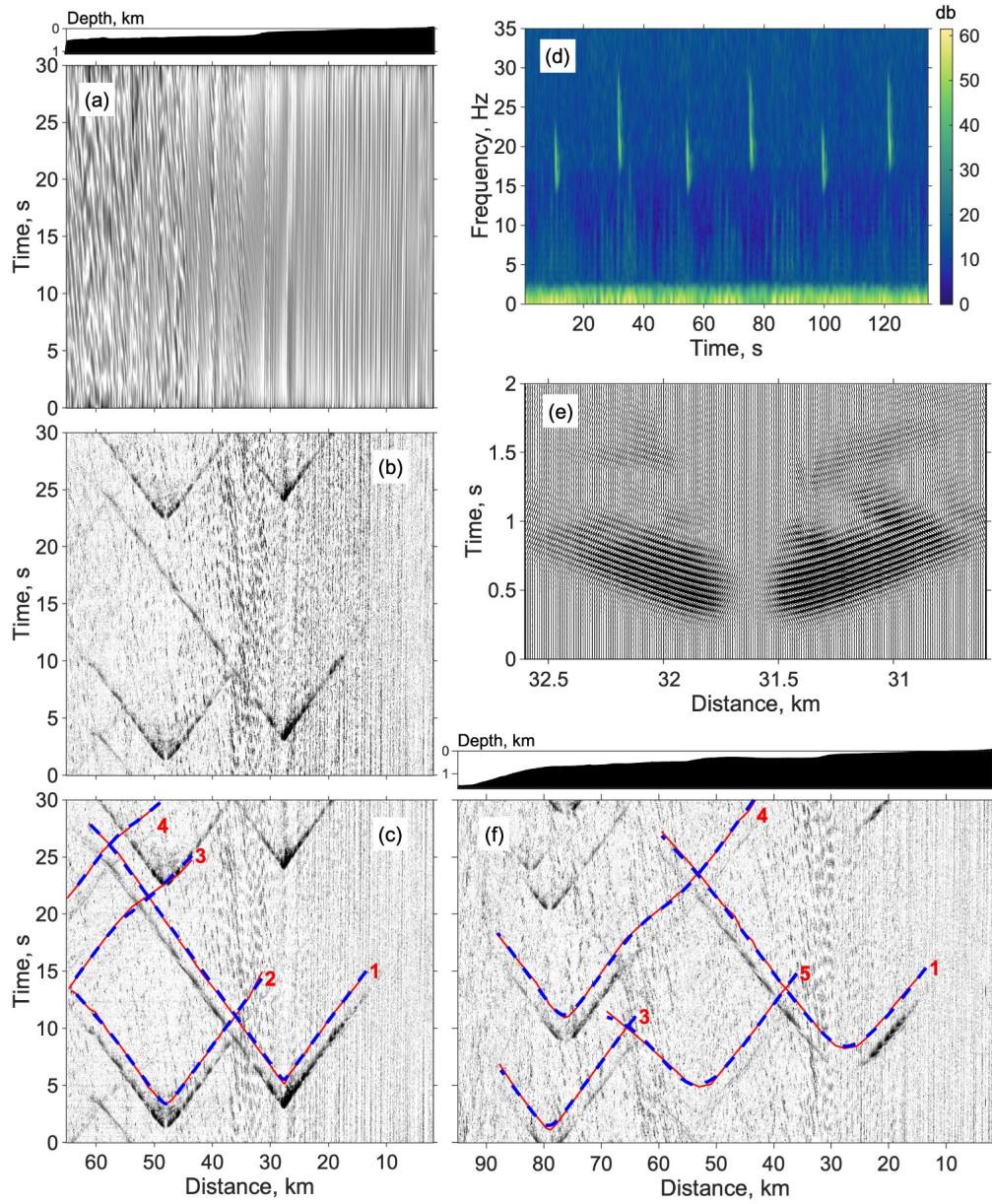
134 Fig. 1. Bathymetric map showing the nearshore portion of the two OOI RCA
 135 cables as red lines, the shore station as a red circle and the first optical
 136 repeaters as red squares. Also shown are the fin whale call locations obtained

137 by time difference of arrival for the data shown in Fig. 2c, f (numbered yellow
138 triangles) and the northward track of the cargo ship for which data is shown in
139 Fig 4 (bold green dashed line). Contours are labeled in meters and are unevenly
140 spaced (50 m to 200 m depth, 100 m to 500 m depth and 500 m at larger
141 depths). The inset map shows the geometry of the complete RCA cable with
142 primary nodes on the cable as red squares, the area of the main figure as a
143 black box and the base of the continental slope as a faint black line.

144

145 3. Results

146 The unfiltered DAS data (Fig. 2a) is dominated by the long period
147 signals from ocean surface waves (primary microseisms) in shallow water and
148 secondary microseisms in deeper water (Sladen et al., 2019; Williams et al.,
149 2019) but acoustic signals are readily apparent when the records are filtered
150 above \sim 10 Hz (Fig. 2b). Acoustic signals can be further enhanced by applying
151 an f - k filter to remove signals propagating along the cable at less than the speed
152 of sound (Fig. 2c)

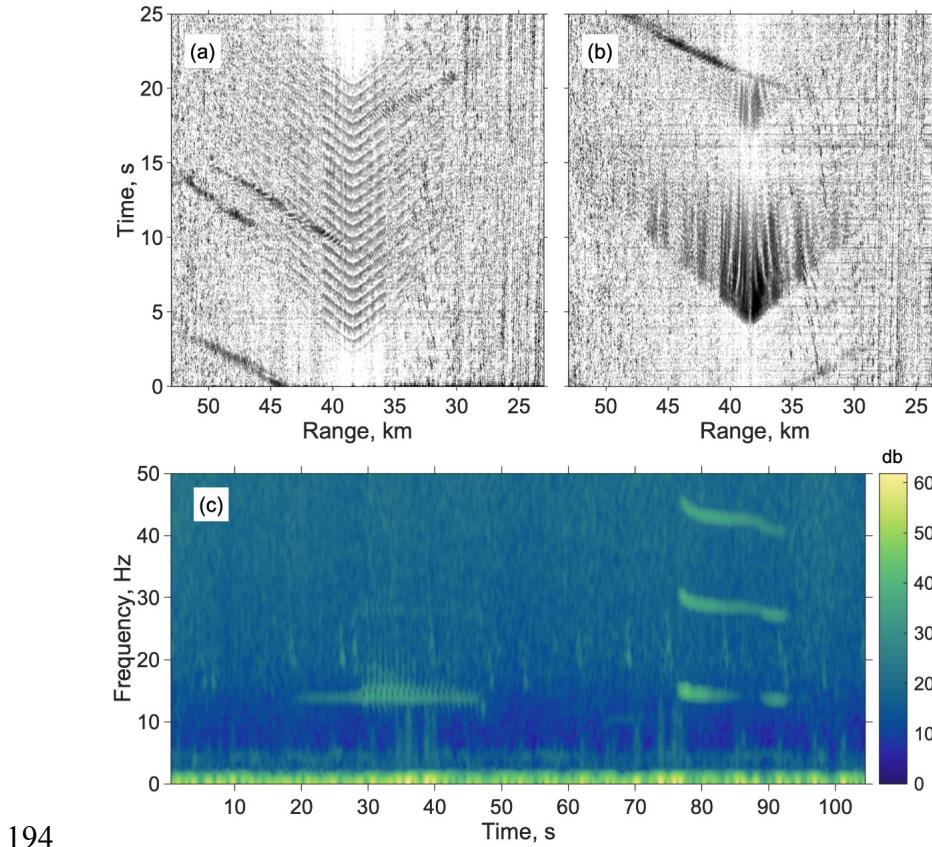

153 2.1. *Fin whale vocalizations*

154 The experiment occurred during the breeding season for fin whales and
155 songs of the stereotypical 1-s-long 20-Hz fin whale chirp are recorded
156 throughout. Fin whale calls are observed everywhere along the cables except
157 within about 10 km of the coast. Individual calls are observed out to distances
158 of tens of kilometers, forming a characteristic V-shape in the record sections
159 (Fig 2b-c, f). Spectrograms show that DAS records frequency content of calls

160 with most songs characterized by a doublet pattern of alternating lower and
161 higher frequency notes (Fig. 2d) that now dominates songs in the northeast
162 Pacific (Wierathumeller et al., 2017). The recorded amplitudes are low at the
163 location on the cable closest to the whale (Fig. 2e), as would be expected for a
164 measurement that is sensitive to strain along rather than across the cable.

165 The fin whale calls can be located using time difference of arrival.

166 Figures 2c, f show an example where vocalizations from 5 whales can be
167 located at distances that range from 25 km to 75 km offshore and within no
168 more than a few kilometers of one cable (Fig. 1).


169

170 Fig. 2. Example of fin whale recordings (a) Record section beginning at 04-
 171 Nov-2021 02:00:27 UT, showing 30 s of unfiltered data recorded by the
 172 Optasense interrogator on the north cable. Distance from the interrogator is
 173 plotted on the horizontal axis and time is plotted on the vertical axis with the
 174 amplitude envelope shown by logarithmically scaled shading after normalizing
 175 each trace to its median amplitude. (b) As for (a) except after the application

176 of a 15-27 Hz bandpass filter. Fin whale arrivals are visible as dark shaded “V”
177 shapes with the apex marking the location on the cable closest to the whale.
178 (c) As for (b) but with a f - k filter to remove all energy with an apparent
179 velocity along the cable less than 1.4 km/s. Manual picks of the fin whale
180 arrivals (red solid line) and model times (bold blue dashed line) for a uniform
181 velocity of 1.48 km/s are shown offset 2 s from the fin whale calls and are
182 numbered to indicate the corresponding whale location in Fig. 1. (d)
183 Spectrogram beginning at 02-Nov-2021 18:15:40 UT, for the Silixa
184 interrogator on the south cable, averaged over 100 channels, showing 6 notes
185 in a fin whale doublet song. (e) Record section beginning at 02-Nov-2021
186 18:16:54 UT, for the Silixa interrogator showing channels within ~1 km of the
187 closest point to a fin whale call. (f) As for (c) but for the Optasense interrogator
188 on the south cable.

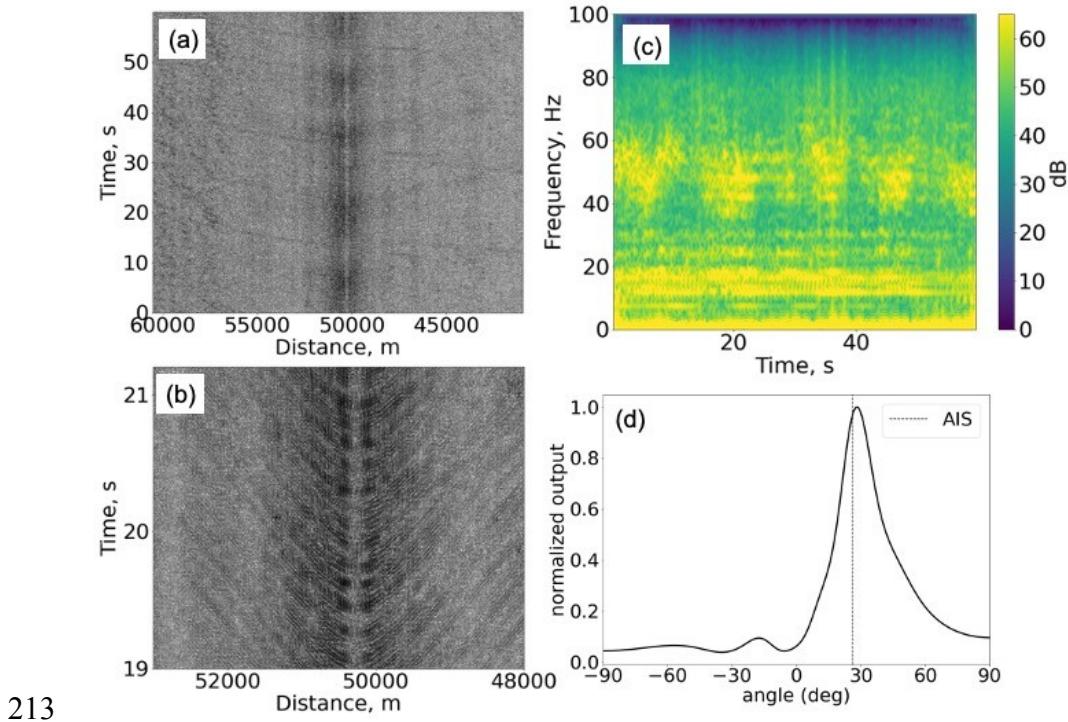
189.2. *Blue whale vocalizations*

190 The calls of the Northeast Pacific blue whale were much less common
191 during the experiment, but several sequences of the A and B calls are observed
192 (Fig. 3) with the first 3 harmonics of the B call well recorded. In contrast to fin
193 whales, blue whale calls are only recorded out to distances of ~10 km.

194

195 Fig. 3. Example of Northeast Pacific blue whale recordings on the Silixa
 196 interrogator on the south cable. (a) Record section beginning at 02-Nov-2021
 197 10:36:09 UT, showing an example of an A call with the closest location on the
 198 cable at a distance of 38 km. The A call is overlain by several higher
 199 amplitude fin whale calls. The data have been filtered with a 10.5-18 Hz
 200 bandpass filter and an f - k filter to remove energy propagating along the cable at
 201 less than 1.4 km/s. (b) As for a but showing a B call with record section
 202 beginning at 02-Nov-2021 10:33:36 UT. Frequency filtering has removed all
 203 but the first harmonic. (c) Spectrogram beginning at 02-Nov-2021 10:32:24
 204 UT, averaged over 100 channels, showing an A call followed by a B call.

205


38

39

12

206.3. Ship Recordings

207 Figure 4 shows an example of ship noise recorded by the Optasense
 208 interrogator on both north and south cables. Using the Automatic Identification
 209 System (AIS) data, this ship was determined to be a cargo ship of length 180 m
 210 that passes above the cable with an approximate speed of 13.2 knots. The data
 211 have been filtered with a 10-90 Hz bandpass filter and an f - k filter to remove
 212 energy propagating along the cable at less than 1.4 km/s.

213 Fig. 4. Example of ship sound recording beginning at 03-Nov-2021 01:57:31
 214 UT, traveling at 13.2 knots over both cables recorded by the Optasense
 215 interrogator with a sample rate of 200 Hz and gauge length of 50 m (a) Record
 216 section showing 60 s of a cargo ship sound with the closest location on the
 217 south cable at a distance of 50 km. (b) Record section showing channels within
 218 21 s.

219 ~5 km of the closest point to the ship. (c) Spectrogram averaged over 100
220 channels, showing acoustic energy between 10-60 Hz. (d) Plane-wave
221 beamformer output for the signal shown in (a) using a sub-array of the fiber
222 optic cable consisting of 150 channels starting at 49.7 km. The estimated
223 bearing is in agreement with the bearing calculated from the AIS data.

224

225 Compared to fin whale and blue whale calls, ship noises are recorded
226 over a shorter distance (~5 km). The multipath interferences are noticeable in
227 Fig. 4b which could be affected by the ship's motion over the cable, varying
228 coupling of the fiber, different bathymetry along the cable, and fiber curvature.
229 Similar to Fig. 2e, the recorded amplitudes are low at the location on the cable
230 closest to the ship (at a distance of 50 km) which is due to the cable sensitivity
231 to strain along rather than across the cable.

232 Plane-wave beamforming (Jensen et al., 1994) is used to calculate the
233 bearing of the vessel relative to a 150-channel sub-array between 49.7-50 km.
234 The beamforming output is maximum at 29.6 degree which is consistent with
235 the bearing of 26 degree calculated using the ship location from the AIS data.

236 3. Discussion

237 The OOI community DAS experiment confirms earlier work which
238 shows that buried submarine telecommunication cables can record low
239 frequency acoustic signals. Numerous fin whale calls, blue whale calls, and
240 ship noises were recorded to distances of up to ~40km, 10 km and 5 km,
241 respectively.

242 An important question is why these detection distances differ. Studies
243 suggest that the source levels for fin and blue whales are similar. Average
244 values of 186 (Watkins et al., 1987), 189 (Wierathmueller et al., 2013) and 171
245 dB re 1 μ Pa at 1 m (Charif et al. 2002) have been reported for fin whales in the
246 northeast Pacific, with the last estimate likely 10-15 dB lower due to the
247 methodology (Wierathmueller et al., 2013). For the B call of the northeast
248 Pacific blue whale, reported values are 180 dB (Thode et al., 2000) and 186 dB
249 re 1 μ Pa at 1 m (McDonald et al., 2001). While the uncertainties in these
250 estimates are consistent with fin whale calls being somewhat louder, such an
251 explanation for the difference in the maximum detection distance in the DAS
252 data, would be inconsistent with work using ocean bottom seismometers and
253 hydrophones where blue whale B calls are detected to larger ranges (e.g.,
254 Wilcock and Hilmo, 2022).

255 The differences may be related to the frequency sensitivity of the DAS
256 data. First, the optical fiber within an armored buried submarine cable may
257 couple better to acoustical strain at lower frequencies. Second, DAS
258 observations average strain changes over the gauge length and when this length
259 approaches or exceeds the signal wavelength, the summed strain change
260 measurements will experience aliasing, reducing the recorded amplitude. The
261 blue whale B call has a significant amount of energy in higher order harmonics
262 and particularly the 3rd harmonic at 40-45 Hz (Thode et al., 2000). The 35 m
263 wavelength of the 3rd harmonic is similar to the 30-50 m gauge length so that at
264 larger distances, when the call is propagating sub parallel to the cable it may be
265 poorly recorded.

266 The reported source levels of commercial ships vary from 177-188 dB
267 re 1 μ Pa at 1 m (McKenna et al., 2012; MacGillivray and de Jong, 2021) which
268 suggests that ships have similar or slightly lower source levels than fin and
269 blue whales. However, ships radiate acoustic energy in a broad frequency
270 range that can go as high as 1000 Hz with most ships having significant energy
271 to \geq 100 Hz. (McKenna et al., 2012). The ship noises recorded in the OOI
272 DAS experiment do not show acoustic energy above 60 Hz which again would
273 be consistent with reduced sensitivity at higher frequencies as an explanation
274 for the lower detection range.

275 Another potential explanation for differences in detection range could
276 be the depth of the source. Ship propellers are located close to the surface
277 while studies with acoustical tags show that fin and blue whales vocalize at
278 depths of up to a few tens of meters (Oleson et al., 2007; Stimpert et al., 2015;
279 Lewis et al., 2018). With warming ocean surface temperature, the mode
280 excitation depths move deeper than the typical ship source depths and this can
281 cause a reduction in the ship noise band spectral level (Dahl et al, 2021).
282 Additional work is needed to understand the impact of speed of sound profile
283 on the detection range of different sound source recordings on DAS.

284 The DAS sensitivity, as expected, is strongly directional with the
285 recorded amplitudes of both whales (Fig. 2c) and ships (Fig. 4d) very low at
286 the position of closest approach where the propagation direction is
287 perpendicular to the cable. This effect is understood to be due to the cable-
288 longitudinal strain rates being insensitive to plane acoustic waves at normal

289 incidence. It also appears from the fin localizations that whales are only clearly
290 detected on both cables which are spaced ~10 km apart, when the curvature of
291 the cables results in the call propagating sub-parallel to both cables (e.g.,
292 locations 3 and 4 in Fig. 1 and the corresponding detections in Fig. 2c, f).

293 The OOI DAS experiment recorded tens of thousands of fin whale
294 calls, which provide a remarkable data set both to investigate the directional
295 and depth dependent acoustic sensitivity of DAS near 20 Hz and characterize
296 the spatial distribution, depth of calling and behavior of vocalizing fin whales
297 offshore central Oregon. One of the challenges of DAS is determining
298 accurately the location of each channel, given uncertainties in the path of the
299 fiber and the speed of light in the fiber. A joint inversion for the location of fin
300 whale calls and DAS channels would serve as an analog to the tap tests used to
301 locate fibers on land (Lindsey and Martin, 2021). The fin whale calls can also
302 be exploited to study low frequency sound propagation with water column
303 velocity structure potential including this as an unknown in inversions.
304 Finally, beamforming approaches should be used to explore whether the DAS
305 data can be used to detect fin whales at azimuths and ranges where they are not
306 apparent in the filtered plots.

307 The acoustic signals from ships and whales recorded by the OOI DAS
308 experiment with gauge lengths of 3, 10, 30 and 50 m (Table 1) can be used to
309 understand frequency sensitivity of DAS at lower frequencies and its
310 dependence on gauge length. Such work should motivate future experiments
311 that deploy hydrophones near cables to ground truth recordings and that

312 explore the utility of DAS to detect high-amplitude higher-frequency signals
313 such as those from humpback or sperm whales.

314 DAS generates large data sets; extrapolating the OOI DAS experiment
315 to continuous recordings would generate O~2 PB/year of data. To give a sense
316 of scale, six months of data at this rate is about the size of the entire
317 Incorporated Research Institutions for Seismology Data Management Center
318 archive as of April 2022 (<https://ds.iris.edu/data/distribution/>). Managing such
319 data volumes will require a variety of approaches. Further work is required to
320 determine optimal channel spacing and to determine whether the 2m channel
321 spacing used in the OOI experiment is justified by its scientific utility. Other
322 approaches could involve a return to the triggered data acquisition paradigm
323 common with seismic data before about the year 2000. A modern approach to
324 triggered acquisition could leverage smart, potentially machine learning-based
325 algorithms run in an edge-computing topology so as to only record signals of
326 interest at high spatial and temporal sampling rates, while still defaulting to a
327 lower rate data that would enable studies of the ambient field. Both lossy and
328 lossless real-time data compression should be considered, and recent results
329 have shown promise in this topic (Dong et al., 2022). The public domain OOI
330 DAS data provides a resource to support the development of such approaches

331 **Acknowledgments**

332 We thank the technical staff of the OOI RCA and field data acquisition
333 team for their work to collect the OOI DAS data set. The data collection was
334 supported by the National Science Foundation under grant OCE-2141047.

335 **References and links**

336 Charif, R. A., Mellinger, D. K., Dunsmore, K. J., Fristrup, K. M., and Clark, C.
337 W. (2002). “Estimated source levels of fin whale (*Balaenoptera*
338 *physalus*) vocalizations: Adjustments for surface interference,” Mar.
339 Mamm. Sci. 18(1), 81-98.

340 Dahl, P. H., Dall'Osto, D. R., and Harrington, M. J. (2021) “Trends in low-
341 frequency underwater noise off the Oregon coast and impacts of
342 COVID-19 pandemic,” J. Acoust. Soc. Am. 149, 4073-4077.

343 Dong, B., Popescu, A., Tribaldos, V. R., Byna, S., Ajo-Franklin, J., and Wu, K.
344 (2022). “Real-time and post-hoc compression for data from Distributed
345 Acoustic Sensing,” Comput. Geosci. 166, 105181.

346 Duarte, C. M., Chapuis, L., Collin, S. P., Costa, D. P., Devassy, R. P.,
347 Eguiluz, V. M., ... and Juanes, F. (2021). “The soundscape of the
348 anthropocene ocean,” Science 371(6529), eaba4658.

349 Hartog, A. H. (2017). “An introduction to distributed optical fibre sensors,”
350 (CRC press. Boca Raton, Florida), 472 pp.

351 Jensen, F., Kuperman, W., Porter, M., and Schmidt, H. (1994).
352 “Computational Ocean Acoustics” (American Institute of Physics, New
353 York), 634 pp.

354 Lewis, L. A., Calambokidis, J., Stimpert, A. K., Fahlbusch, J., Friedlaender,
355 A. S., McKenna, M. F., ... and Širović, A. (2018). "Context-dependent
356 variability in blue whale acoustic behaviour," Royal Soc. open Sci.
357 5(8), 180241.

358 Lindsey, N. J., and Martin, E. R. (2021). "Fiber-optic seismology," Ann. Rev.
359 Earth Planet. Sci. 49, 309-336.

360 Lindsey, N. J., Dawe, T. C., and Ajo-Franklin, J. B. (2019). "Illuminating
361 seafloor faults and ocean dynamics with dark fiber distributed acoustic
362 sensing," Science 366(6469), 1103-1107.

363 McDonald, M. A., Calambokidis, J., Teranishi, A. M., and Hildebrand, J. A.
364 (2001). "The acoustic calls of blue whales off California with gender
365 data," J. Acoust. Soc. Am. 109(4), 1728-1735.

366 MacGillivray, A. and de Jong, C. (2021). "A reference spectrum model for
367 estimating source levels of marine shipping based on automated
368 identification system data," J. Mar. Sci. Eng. 9(4), 369.

369 Mateeva, A., Lopez, J., Potters, H., Mestayer, J., Cox, B., Kiyashchenko,
370 D., ... and Detomo, R. (2014). "Distributed acoustic sensing for
371 reservoir monitoring with vertical seismic profiling," Geophys.
372 Prospect. 62(4), 679-692.

373 Matsumoto, H., Araki, E., Kimura, T., Fujie, G., Shiraishi, K., Tonegawa,
374 T., ... and Karrenbach, M. (2021). "Detection of hydroacoustic signals
375 on a fiber-optic submarine cable," Sci. Rep. 11(1), 1-12.

376 McKenna, M. F., Ross, D., Wiggins, S. M., Hildebrand, J. A. **(2012)**.
377 “Underwater radiated noise from modern commercial ships,” *J. Acoust.*
378 *Soc. Am.* 131(1), 92-103.

379 Oleson, E. M., Calambokidis, J., Burgess, W. C., McDonald, M. A., LeDuc,
380 C. A., and Hildebrand, J. A. **(2007)**. “Behavioral context of call
381 production by eastern North Pacific blue whales”, *Mar. Ecol. Prog. 330*,
382 269-284.

383 Rivet, D., de Cacqueray, B., Sladen, A., Roques, A., and Calbris, G. **(2021)**.
384 “Preliminary assessment of ship detection and trajectory evaluation
385 using distributed acoustic sensing on an optical fiber telecom cable,” *J.*
386 *Acoust. Soc. Am.* 149(4), 2615-2627.

387 Sladen, A., Rivet, D., Ampuero, J. P., De Barros, L., Hello, Y., Calbris, G.,
388 and Lamare, P. (2019). “Distributed sensing of earthquakes and ocean-
389 solid Earth interactions on seafloor telecom cables,” *Nat. Commun.*
390 10(1), 1-8.

391 Smith, L. M., Barth, J. A., Kelley, D. S., Plueddemann, A., Rodero, I., Ulses,
392 G. A., ... and Weller, R. **(2018)**. “The ocean observatories initiative,”
393 *Oceanogr.* 31(1), 16-35.

394 Stimpert, A. K., DeRuiter, S. L., Falcone, E. A., Joseph, J., Douglas, A. B.,
395 Moretti, D. J., ... and Goldbogen, J. A. **(2015)**. “Sound production and
396 associated behavior of tagged fin whales (*Balaenoptera physalus*) in the
397 Southern California Bight,” *Anim. Biotelemetry* 3(1), 1-12.

398 Taweesintananon, K., Landrø, M., Brenne, J. K., and Haukanes, A. **(2021)**.
399 “Distributed acoustic sensing for near-surface imaging using submarine

400 telecommunication cable: A case study in the Trondheimsfjord,
401 Norway," *Geophys.* 86(5), B303-B320.

402 Thode, A. M., D'Spain, G. L., and Kuperman, W. A. (2000). "Matched-field
403 processing, geoacoustic inversion, and source signature recovery of
404 blue whale vocalizations," *J. Acoust. Soc. Am.* 107(3), 1286-1300.

405 Watkins, W. A., Tyack, P., Moore, K. E., and Bird, J. E. (1987). "The 20-20 Hz
406 signals of finback whales (*Balaenoptera physalus*)," *J. Acoust. Soc.
407 Am.* 82(6), 1901-1912.

408 Weirathmueller, M. J., Wilcock, W. S. D., and Soule, D. C. (2013). "Source
409 levels of fin whale 20 Hz pulses measured in the Northeast Pacific
410 Ocean," *J. Acoust. Soc. Am.* 133(2), 741-749.

411 Weirathmueller, M. J., Stafford, K. M., Wilcock, W. S., Hilmo, R. S., Dziak,
412 R. P., and Tréhu, A. M. (2017). "Spatial and temporal trends in fin
413 whale vocalizations recorded in the NE Pacific Ocean between 2003-
414 2013," *PLoS One* 12(10), e0186127.

415 Wilcock, W. S. D., Stafford, K. M., Andrew, R. K., and Odom, R. I. (2014).
416 "Sounds in the ocean at 1-100 Hz," *Ann. Rev. Mar. Sci.* 6(1), 117-140.

417 Wilcock, W. S. D., and Hilmo, R. S. (2021). "A method for tracking blue
418 whales (*Balaenoptera musculus*) with a widely spaced network of ocean
419 bottom seismometers," *PLoS One* 16(12), e0260273.

420 Williams, E. F., Fernández-Ruiz, M. R., Magalhaes, R., Vanthillo, R., Zhan,
421 Z., González-Herráez, M., and Martins, H. F. (2019). "Distributed
422 sensing of microseisms and teleseisms with submarine dark fibers,"
423 *Nat. Commun.* 10(1), 1-11.

424 Zhan, Z. (2019). "Distributed Acoustic Sensing Turns Fiber- Optic Cables
425 into Sensitive Seismic Antennas," *Seismol. Res. Lett.* 91, 1–15.