Computational Materials Science 199 (2021) 110716

ELSEVIER

Contents lists available at ScienceDirect
Computational Materials Science

journal homepage: www.elsevier.com/locate/commatsci

COMPUTATIONAL
/A

Check for

The influence of defects on the elastic response of lattice structures |t

resulting from additive manufacturing

Panwei Jiang °, Edward C. De Meter ”, Saurabh Basu""

@ Department of Materials Science and Engineering, Pennsylvania State University, State College 16802, Pennsylvania, USA
Y Harold and Inge Marcus Department of Industrial and Manufacturing Engineering, Pennsylvania State University, University Park 16802, Pennsylvania, USA

ARTICLE INFO ABSTRACT

Keywords:

Additive manufacturing
Lattice structure
Manufacturing defect
Gibson-Ashby model
Finite element method
Bayesian inferencing

Stiffness prediction for additively manufactured (AM) lattices is necessary for lightweight components design.
For a given lattice structure, the Gibson and Ashby (GA) model can predict relative stiffness as a function of its
relative density. However, volumetric porosity and surface roughness defects that are commonplace in AM
lattices depreciate the quality of prediction made by the GA model. This is because such defects complicate the
elastic behavior of lattice structures. In this work, a modified GA model is proposed that accounts for these
defects. A Bayesian inferencing framework is constructed to delineate the influence of spatial distributions of

these defects on resulting mechanical response. Principal component analysis (PCA) is used to identify differ-
ences between elastic strain fields (€11, €22, and €13) resulting from perfect and defective lattices. The insights
obtained can provide a viable approach to predict the mechanical response of as-received AM lattices that are
often defective, and thereby enable systematic approaches for their design.

1. Introduction

Complex lattice structures with high strength-to-weight ratios that
could not be produced via traditional routes can now be fabricated by
additive manufacturing (AM). The circumvention of several design for
manufacturing issues via AM has spurred rapid innovation aimed to-
wards highly beneficial functional behavior in these structures. How-
ever, layer-by-layer fabrication in AM naturally results in volumetric
porosity and surface roughness defects [1-8] that can compromise the
performance of these structures. This shortcoming can be mitigated by
post-processing involving hot-isostatic pressing (HIP), e.g., for eradi-
cating volumetric defects, and super-finishing, e.g., for eradicating
surface roughness. Unfortunately, both of these families of post-
processing steps are only partially efficient, wherein a certain fraction
of defects can be expected to be present in high-performance lattice
structures resulting from AM [9-11]. This is of serious concern, espe-
cially in thin-walled structures where even small densities of defects can
rapidly compromise performance. Recent efforts have attempted to
create methodologies using advanced numerical simulations [12,13],
and machine learning algorithms [14,15] that attempt to accelerate
computational predictions of the influence of the aforementioned de-
fects. The overarching goal of these efforts is to carefully permit
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acceptable defect densities without risking premature failure. The
fundamental influence of micro-scale defects on macro-scale lattice
structures is however not well understood. The traditional approach
towards modeling the mechanics of lattice structures involves the use of
the Gibson-Ashby equation in which the relative modulus of the struc-

ture ';;:— is formulated as a function of its relative density% as [8]:

E _ c(&) @
E; Py

Here, E* is the elastic modulus of the lattice structure, which is a
function of its geometry and the elastic modulus E; of its parent material.
The bulk density of the parent material is given by p,. The term p" is the
volumetric density of the structure. This is a design variable that can be
characterized using geometrical details of the structure prior to
manufacturing, thereby facilitating systematic light-weighting of me-
chanical parts. Finally, n, C are structure specific coefficients that
characterize its mechanics in the absence of any defects. The original
model which was rooted in the elastic mechanics of beam elements
[16-18] has been applied with exceptional success in predicting the
mechanics of many families of lattice structures [19]. However, this
model is not equipped to directly encapsulate the influence of uncon-
trolled micro-scale defects that originate during manufacturing such as
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the porosity and surface roughness defects of AM [20].

In this work, the authors attempt to delineate fundamental linkages
between volumetric porosity and surface roughness defects, and the
resulting performance of lattice structures. The overarching goal of this
work is to create a simple approach that can provide a first order pre-
diction of this influence. In this regard, the present work can be highly
impactful as a simple tool that can be used for designing complex lattice
structures while accounting for defects which are expected during
fabrication in a given manufacturing platform.

Towards this end, the effects of volumetric porosity and surface
roughness defects on the mechanical response of 2.5D body centered
cubic lattice structures is studied. In the first step, the mechanical
response of a single 1 x 1 unit cell is studied numerically. Here,
controlled numerical tests are performed to evaluate the exclusive in-
fluence of porosity and surface roughness defects. Subsequently, the
combined effects of these defects on mechanical response is analyzed.
This unit cell is shown in Fig. 1 and has a Maxwell number [4] M =
ss—2n, + 3 =6-2x 5+ 3 = -1, where s;, n, refer to number of
struts, and nodes in the structure, respectively. A Maxwell number M <
0 encourages bending dominant behavior in individual struts of the
lattice structure upon application of compressive boundary conditions
[19]. This naturally promotes instabilities in the mechanical response,
especially when thin strut walls are used. The GA model predicts the
mechanical response of defect-free bending dominant structures with
n = 2 (Ref. Eq. (1)) [4,16]. In this regard, deviations of the mechanical
response of the unit cell with respect to predictions made by the GA
model due to the presence of manufacturing defects will provide a
platform to delineate their influence.

tanent =| :
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2. Methods
2.1. Finite element framework

The Abaqus-Python interface was used to set up the plane stress finite
element model. 2.5D lattice structures like the one shown in Fig. 1 were
generated by specifying length [ = 4 mm, distance d; = 2.6 mm be-
tween two inclined struts, thickness t;,.; = 0.4 mm of the shell (e.g., top
and bottom layer), and thickness ty, of the struts. Table 1 summarizes
these thickness parameters. Isotropic elastic material properties of

Table 1

Summary of lattice structure parameters.
Set Strut type tstrue porosity a tmin /tmax
# (mm)
1 Smooth 0.1-1.0 - 1
2 Porosity defect- uniform 0.3 0.0511-0.1957 -
3 Porosity defect- uniform 0.4 0.0482-0.1125 -
4 Porosity defect- uniform 0.7 0.0283-0.1208 -
5 Porosity defect- uniform 1 0.0259-0.0791 -
6 Porosity defect- surface 0.3 0.0340-0.1957 -
7 Porosity defect- surface 0.4 0.0289-0.1286 -
8 Porosity defect- surface 0.7 0.0264-0.1075 -

9 Porosity defect- surface 1 0.0314-0.0791 -

10 Roughnenss defect 0.3 - 0.5789-0.9868

11 Roughnenss defect 0.4 - 0.6667-0.9900

12 Roughnenss defect 0.7 - 0.7949-0.9943

13 Roughness, uniform 0.4 0.0482-0.1608  0.9608
porosity

14 Roughness, uniform 0.4 0.0482-0.1672 0.8519
porosity

Fig. 1. (a) Lattice structure with no porosity and
roughness on struts featuring parameters tgp =
04mm, [y = 4mm, d; = 2.6 mm, tyy, = 0.7 mm.
Boundary conditions are shown on bottom and top
edges. (b) An instance of the lattice structure shown in
Fig. 1(a) with 6% volumetric porosity defects that are
uniformly distributed in the load bearing struts. (c) An
analogue of the lattice shown in (b) but with defects
concentrated near the surface of the struts. (d) The
lattice structure in Fig. la instilled with sinusoidal
surface roughness featuring amplitude a = 28 um,
and wavelength 1 = 108 ym.
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Inconel 718 were used in the model, viz. Young’s modulus E = 212 GPa,
and Poisson’s ratio v = 0.294 [21]. The boundary conditions are shown
in Fig. 1a. The bottom surface was fixed, and the top surface was com-
pressed by 0.048 mm along y direction corresponding to a globally
imposed compressive strain of 0.01. The global seed size for meshing
was set at 4 um. Circular porosity and sinusoidal surface roughness de-
fects were implanted onto the inclined load bearing struts of the struc-
tures. The pores were generated by sampling radii uniformly from the
range 20 ym — 60 ym. Subsequently, their center positions were
sampled in 2 different ways such that they were: (i) uniformly distrib-
uted within the thickness of the strut, and (ii) distributed within a band
of thickness 0.2ty in the vicinity of the surface of the strut. These
modalities were sampled to delineate the effect of changes in distribu-
tions of spatial locations of defects on mechanical response. The nu-
merical implementation of this specimen generation step involved fixing
the number of porosity defects and then sampling their diameters and
spatial locations. Subsequently, the densities of defects in the parent
Zidi where A; is the area of the ith

Agrat’
defect, and Ay is the total area of the 4 inclined load bearing struts
(Ref. Fig. 1). In this implementation, the number of pores varied be-
tween 15, e.g. for strut parameter ty,, = 0.3 mm, to 70, e.g., for strut
parameter ty,, = 1 mm. This resulted in volumetric porosity ranges
between a = 0.02 — 0.2 for various instances of numerical struts stud-
ied here, as summarized in Table 1. Fig. 1b shows an instance of the strut
featuring parameter tyy, = 0.7 mm and a uniformly distributed volu-
metric porosity of a = 0.06. Fig. 1c shows an instance of a strut of equal
thickness, e.g., tym: = 0.7 mm, but with a porosity of a = 0.06 distrib-
uted in the vicinity of the surface. Surface roughness defects were
implanted onto the strut faces as sinusoidal waves of the form:

material were characterized as a =

y= asin(Zﬂ%) 2)

, where a is the amplitude of the sine wave, 1 is its wavelength, and y
represents the deviation from the mean, i.e. smooth strut wall. Such a
wave profile corresponds to a surface roughness measure of R, = 24,
Fig. 1d shows a lattice structure with parameter ty,, = 0.7 mm with
sinusoidal surface roughness featuring parameters a = 28 ym, 1 =
108 um, corresponding to R, ~ 17.8 um. Since the deviation of the
surfaces with respect to their means does not produce an effective vol-
ume change, numerical surface roughness experiments were parame-
terized in this study as gl"—f‘:, with the numerator and the denominator

corresponding to the minimum and maximum thickness of a rough strut.
In a lattice structure featuring a sinusoidal roughness profile as give in
4,

s : torue—2a
Eq. (2), this parameter approximates to s o 1 7&7‘;, when a<<tgy;.

The deformation of these lattices was simulated using the Abaqus-
implicit compiler. Multiple instances of every lattice structure were
studied, as summarized in Table 1. Following the simulations, various
parameters including reaction force vs. displacement curve, and strain
field components were extracted. The reaction force was converted to

relative elasticity modulus (e.g., parameter g— in Eq. (1)). Dataset 1 was
utilized for calibrating the GA model that would be applicable to our
2.5D BCC structures. Dataset 2-9, and 10-12, were utilized for delin-
eting the effect of porosity, and roughness defects, respectively. Subse-
quently, the deformation of more complex lattice structures under the
simultaneous influence of both porosity and surface roughness defects
was also studied, e.g., those summarized as datasets 13-14 in Table 1.

2.2. Principal component analysis

Principal component analysis (PCA) was used to delineate the dif-
ferences between strain fields expressed by various numerical strut
specimens. PCA can enable classification of mechanical response data-
sets based on their salient characteristics that are influenced by defects
in the parent lattice structure. The primary purpose of this PCA was to
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demonstrate that porosity and surface roughness defects fundamentally
alter the mechanical response of lattice structures, which then merits
alterations to the GA model for their encapsulation. Towards this end,
strain fields expressed by various lattice structures, e.g. 2-5 (uniform
defects), and 10-12 (roughness defects) in Table 1 when subject to the
same boundary conditions were used as a metric of their mechanical
response. It was realized that a direct analysis of strain fields for this
purpose can produce erroneous insights as the strain field itself is sen-
sitive to the exact configuration of defects. To mitigate this, PCA was
performed on the Fourier representation of the auto-correlation func-
tion, separately on the three independent components of the strain field,
Viz. €11, €29, €12. The auto-correlation function is defined as:

f,j,jf(Z) = /Ei/(f)eﬁ(f+2)d£ 3
Q

Here, Q refers to the domain of the these strain field components.
This calculation is facilitated using the Fourier transform as [22]:

T (fyi) = 7 (€5) F (e5) )

where .7 refers to the Fourier transform, and .7 is its conjugate. The
auto-correlation of a field is often used to characterize its self similarity,
and its Fourier representation eliminates phase information from it, thus
making it rotationally invariant. It is hypothesized that this represen-
tation of a strain field captures the influence of defects in the parent
material in a form that is insensitive to ‘minor’ defect-microstructure
changes. The implementation of the PCA involved setting of the afore-
mentioned domains as rectangular windows centrally located within
load bearing struts of 1 x 1 dimensional lattice structures as shown in
Fig. 2. The width of these rectangular domains was 0.2 mm. A collection
of 64, 44 domains were extracted from lattice structures featuring
porosity, and roughness defects, respectively. The analysis was done
separately for specimens exhibiting porosity and those exhibiting
roughness. This involved obtaining a set of uncorrelated variables with
ordered variance (from max to min) through PCA of parameters .7 (fj;),
with §j = 11, 22, 12, respectively. The principal components of the
parameter .7 (f;) were obtained as the eigen vectors V of the covariance
S of the matrix [J”/‘n_] (ﬁjij)*s?n_z (fljij)k-"]ng (ﬁ'jij)*.uf/?n,z (flﬂ])x] of the zero
centered parameters .7, n.s(ijijf = 7 (fiij) —[7 (fis)] corresponding to
the aforementioned s = 64, 44 samples in their columnar forms, where

n denotes the dimensionality of the strain query windows shown in
Fig. 2. [23].

3. Results and discussions
3.1. Calibration of Gibson-Ashby model for 2.5D BCC lattice structure

The mechanics of defect-free 1 x 1 dimensional unit cells were
characterized by creating these structures in Abaqus using its Python
interface, and simulating their elastic deformation to a global
compressive strain of 0.01. For creating these lattices, structure pa-
rameters g € {0.1,0.2,---1 mm} were used. Subsequently, the force
vs. displacement curves were extracted from these simulations, which

were then converted to relative moduli %S These relative moduli were

then plotted with respect to corresponding relative densities %, that were
characterized as the area fractions of the boxes enclosing the lattice

structure that are occupied by strut material, i.e. - = % Here,
2 .

% is the relative density of the inclined load bearing strut, which is a

s

function of the strut thickness ty,, and ’% is the relative density of the
two horizontal, e.g. bottom and top shell walls (Ref. Fig. 1) and is con-
stant (‘% = 0.167) throughout this work. Fig. 3 shows results of this

exercise. By fixing the coefficient n = 2, the mechanical behavior of the
BCC family of lattice structures was characterized via the GA model
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EE, EE22 EE, EE22
(Avg: 75%) (Avg: 75%)
+6.141e-03 +5.774e-03
+4.989e-03 +4.621e-03
+3.837e-03 +3.468e-03
+2.685e-03 +2.316e-03
+1.533e-03 +1.163e-03
+3.807e-04 +1.026e-05
-7.713e-04 -1.142e-03
-1.923e-03 -2.295e-03
-3.075e-03 -3.448e-03
-4.227e-03 -4.601e-03
-5.379e-03 -5.753e-03
-6.531e-03 -6.906e-03
-7.684e-03 -8.059¢-03
(a) (b)
Fig. 2. Query window to extract (a) EE22 (ep3) in lattice with ty, = 0.3 mm , (b) EE22 (ey2) in lattice with tyn, = 0.7 mm .
featuring uniformly distributed porosity defects at fractions of a = 0,
30 T I T T T T T 0.0450, and 0.0965, respectively. Compared with the defect free lattice
- = ~Gibson-Ashby model 2 structure seen in Fig. 4a, the defective structures in Figs. 4b, ¢ exhibit a
" Re-fitted Glbsc?n-Ashby model P complex stress field. To quantify the degradation of stiffness due to the
k4 . . . . .
257 EEMrosuits with:smootustiuls 1 presence of porosity defects, their relative moduli were characterized as

N
o

Relative modulus (%)
= >

20 25 30 35 40 45 50 55

Relative density (%)

Fig. 3. Variation of numerically simulated relative elastic moduli % with

respect to relative density ‘;—".

using coefficients C = 0.912. This is shown using the green dashed line
in Fig. 3, which clearly exhibits deviations with respect to the plane
stress BCC lattice structure studied here. Nonetheless, a re-fitted GA
model with coefficients C = 1.334, n = 2.763 as shown using the or-
ange curve is able to capture the behavior of the defect free BCC lattice.
It is noteworthy that the GA exponent of our plane-stress BCC lattice
structure, e.g., n = 2.763, falls in close vicinity of the 3D BCC lattice
structure, e.g., n = 2.84, as documented in Ref. [24].

3.2. The effect of porosity defects on mechanical response of lattice
structures

The effect of porosity defects on the mechanical response of lattice
structures was characterized by implanting numerical voids into struts
followed by numerical simulation of their deformation. Subsequently,
force vs. displacement profiles were extracted from these simulations. In
turn, these were converted to relative moduli fs_ Figs. 4a—c show the von-
Mises stress fields of a lattice with struts of thickness tg = 0.4 mm,

functions of their process induced relative densities which are formu-

lated as: ”p—“’) = %, where a is the density of the numerically

simulated process induced defects. This enables a comparison between a
defect free lattice structure, e.g., that featuring the a priori designed

relative density %L = ”L;H”M with another defective lattice featuring

relative density % = ‘M. Figs. 4d-g illustrate this analysis for

lattice structures featuring tyn, = 0.3 mm,0.4 mm,0.7 mm,1 mm, these

featuring designed relative density parameters %1 = 0.2890, 0.3290,

0.4430,0.5480, respectively.
With respect to their defect-free counterparts, the struts featuring

defects exhibited degradation of their mechanical response g— at

remarkably larger rates than an a priori designed decrease in strut
thickness would produce, e.g., that is encapsulated in the GA model (ref
Eq. (1)). For instance, a relative decline of ~ 48%, 35.4%, 30.1%,

23.2% was seen in the relative moduli % for A/;,; = 3.2% resulting from

porosity defects, compared with defect free counterparts that exhibited
smaller levels of decline 21%, 15.4%, 20.4%, 12.8% from a pure
reduction in strut thickness, respectively. Although a monotonic change
in the rate of this decline was not observed as a function of the respective
strut thicknesses, it is evident from these observations that characteris-
tics of the decline were influenced by the mechanics of the original
defect-free strut. This observation is formulated phenomenologically as
an influence of the defect fraction a on the ratio  between observed

n
mechanical response % and that predicted by the GA model C(%) as:

ap_

o= Kp (©)]
g_*

where, ff=—= 6)
@y

Here, « is a fitting coefficient that encapsulates the influence of the
mechanics of the parent defect-free strut. Taking the integral of the Eq.
(6) and upon rearranging, we get:

ﬁ — C’ ek (7)
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——Re-fitted Gibson-Ashby model with porosity term
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Fig. 4. Stress field of lattice with strut thickness of 0.4 mm and porosity of: (a) a = 0, (b) @ = 0.045 and (c) @ = 0.0965 on the struts. Fitting for lattice structure with
different porosity ranges from a = 0.0259 —0.1957, and with strut thickness of (d) 0.3 mm, (e) 0.4 mm, (f) 0.7 mm, and (g) 1 mm.

The integral constant C' naturally resolves to C = 1. This is because
in the absence of porosity defects in strut, i.e. « = 0, the stiffness of the

lattice should be equal to predictions obtained from GA model, viz. fz— =

n
C(‘[’T) , i.e. f =1 whereby C = 1. This then suggests a more general

form of GA model that incorporates the effect of porosity defects:

—=cEye™ (8

Results of this analyses are shown in Fig. 4d-g on the respective blue
curves that show good fit, e.g., R > 0.93 with numerically simulated
values. Here, fit parameters were found to be x = 2.215,1.288,1.226,

Table 2

Fitted Coefficients for Modified Gibson-Ashby Law that Incorporates Effects of Uniformly Distributed Porosity Defects.
Set # Strut type tsgrye (Mm) a C n K R?
1 Smooth struts 0.1-1.0 / 1.334 2.763 / 0.9997
2 Porous struts- uniform 0.3 0.0511-0.1957 1.334 2.763 2.215 0.9826
3 Porous struts- uniform 0.4 0.0482-0.1125 1.334 2.763 1.288 0.9376
4 Porous struts- uniform 0.7 0.0283-0.1208 1.334 2.763 1.226 0.9737
5 Porous struts- uniform 1 0.0259-0.0791 1.334 2.763 1.412 0.9438
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1.412, for tgy, = 0.3 mm, 0.4 mm, 0.7 mm, 1 mm, respectively. These
are listed in Table 2. The mechanistic underpinnings of discrepancies in
the parameter « with respect to strut thickness of their parent lattices tyy,,
are pursued here via principal component analysis. Towards this, strain
fields €11, €12, €25 Were extracted from central sections of struts featuring
spatially uniform defect distributions, e.g., rows 1-5 in Table 1 and
converted to their Fourier space amplitudes as described in Section 2.2.

120
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This was done separately for left leaning and right leaning struts, and
results of these analyses are shown in Fig. 5. It is seen that PC1 readily
distinguishes between €;;, and €5, strain fields obtained from lattices
with defect-free struts as clearly observable separations in their
respective projections with this component. Herein, €;; strain fields of
defect-free lattices with larger strut thickness, e.g. tyn, = 1 mm,
expressed comparatively smaller projections on the first principal

120 1
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component axis as opposed to those obtained from thinner struts, e.g.
tue = 0.3 mm, that exhibited larger projections. An opposite effect was
seen for strain field e,,, where defect-free lattices with smaller strut
thickness, e.g. tyn: = 0.3 mm, expressed comparatively smaller pro-
jections on the first principal component axis, and larger struts, e.g.,
tywe = 1 mm expressed comparatively larger projections. Separation was
also seen in analogous PCA of €, strain field components, albeit one that
could not be distinguished monotonically with respect to its projections
on first or second principal component. Strain fields obtained from lat-
tice structures with defective porous struts exhibited key deviations with
respect to their defect-free counterparts. The separation between their
projections and their corresponding defect-free analogues was obvious.
However, the defective lattice structures were found to be clustered
closer together in the space spanned by the first and second principal
axes. Further, the defective lattice structures exhibited an anticipated
spread corresponding to various defect configurations tested here.
Within this cluster though, the defective lattice structures were found to
be subtly separated from each other. It is noteworthy that these patterns
are similar across left leaning and right leaning struts despite obvious
differences between their defect configurations. These discrepancies are
rationalized on the basis of the influence of free surfaces where traction
vectors must resolve to n.c = 0 for maintaining local force equilibrium.

Herein, lattice structures with porosity defects comprise significant free
surface area, e.g., that existing in their inner walls, which can suffi-
ciently distort the strain fields and leave a signature on their auto-
correlation functions. These phenomena are expected to be magnified
in lattices featuring smallest strut thicknesses or largest surface to vol-
ume ratios which is expected to translate to larger values of « (Ref. Eq.
(6)) in these structures. This is also seen from our examination of nu-
merical results, e.g., ko3 mm = 2.215 > ko4 mm(= 1.288), ko7 mm(=
1.226), 51 mn(= 1.412).

From the arguments in the previous paragraph, it can be inferred that
the mechanical behavior of the lattice structures that feature porosity
defects is affected not just by the porosity fraction a, but also by the
location of the defects. This conjecture is based on evidence presented in
Fig. 4a that shows the von-Mises stress field in a perfect unit cell that is
subject to elastic compressive deformation. Due to the bending domi-
nated nature of this lattice, the struts exhibit larger von-Mises stresses
close to their surfaces. Herein, the presence of a high density of porosity
defects in such locations can alter the relative elastic response as well as
the general mechanical response [25-30] of the parent strut, in com-
parison with what an equivalent density of uniformly distributed defects
such as that shown in Figs. 4b, ¢ would manifest. We note that an
ensemble of such instances that feature high densities of defects close to
the surface presents an additional source of variability in our model
given in Eq. (8) that was calibrated using instances that featured uni-
formly distributed defects. To quantify this variability, we formulate a
Bayesian inferencing framework that can model the response exhibited
by our simulated instances probabilistically. Bayesian inferencing in-
volves the use of the Bayes’ theorem to estimate the distribution P(H|E,
...,En) of a model parameter, e.g., H, given a certain number of simu-
lated or empirically characterized data points, e.g., E, ..., E;. This is
formulated as:

P(E\, ...,E,|H)P(H)

P(HIE,, ..., A

E,) = 9

, where P(H) is the prior probability mass or density function of the
model parameter H, P(Ei, ..., Eq|H) is the probability of observing the
data points E1,...,E,, given the model parameter is H, and P(Es, ..., E,) is
the probability of observing data points E, ...,E,, i.e.

P(E1,...,Eq) = [4P(E1, ...,Eq|H) dG(H), where Q is the domain of H,
G being its cumulative distribution function. The term P(E, ..., E,|H) is
also referred to as the likelihood ¥ (H|Eq, ..., Ep). This formulation is
iteratively implemented, wherein the posterior distribution of the pre-
vious iteration, i.e. P(H|E1,...,E, 1) is used as the prior for the forth-
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coming iteration, i.e. P(H) and updated as prescribed in Eq. (9) in light of
newly available evidence E,. By deploying a new data point in every
iteration, the distribution of the model parameter H is iteratively
updated till a pre-defined convergence criterion is met. The Bayesian
inferencing methodology summarized in the previous paragraph was
implemented for our datasets by setting the model parameter H as «
which is the random variable (RV) of interest (Ref. Eq. (8)). Based on this
parameterization the observations referred to as E; in Eq. (9), wherei €
{1, ..., n}, correspond to the RV Ega- the predicted relative elastic
modulus, which is a function of RVs «, and porosity fraction a (Ref. Eq.
(8)). This enables us to formulate the likelihood function as Gaussian, i.

e, Z(x|Eca) = P(Ega = EFEM\K)«exp< - 7@6";,}15{5“)2). Here, 2 —
C(’%)"e”‘“, and h = 1.066g~ /> is the standard error given standard de-
viation of observed data ¢, and the number of samples g [31,32]. With
this notion, the Bayesian inferencing framework that attempts to
encapsulate the behavior of our material system comprising defective
lattice structures is given by:
P(Ega = Eppm|x)P(x)

P(K‘EGA = EFEM) = P(EGA — EFEM) 10)

The first step towards the numerical implementation of this frame-
work involved calibration with respect to specimens in which porosity
defects were uniformly distributed. This was done individually for the 4
different strut thicknesses of the BCC lattice studied in the present work.
Herein, a non-informative prior, i.e. uniform distribution was assigned
to the RV « in each of these cases. These distributions were centered
about their nominally observed values given in Table 2, i.e. x € (1.715,
2.715),(0.788,1.788), (0.726,1.726), (0.912,1.912), for tm = 0.3 mm,
0.4 mm, 0.7 mm, 1 mm, respectively. These prior distributions were
multiplied with respective Likelihood functions #'(x|Ega) in an ele-
mentwise manner and the result was normalized, thus providing the
posterior distribution, e.g. LHS in Eq. (10). The values of the parameter a
that were used for constructing these likelihood functions are shown in
Figs. 4d-g for tyn, = 0.3 mm,0.4 mm, 0.7 mm,1 mm, respectively. The
aforementioned posterior distribution served as prior distributions for
their next iterations, respectively. In every step, the most likely point
estimate of the RV « was extracted from the corresponding posterior
distribution. Using this estimate, the goodness of fit of the model in Eq.
(8) was calculated with respect to the simulated behavior of all nu-
merical specimens that featured the same strut thickness and comprised
a uniform distribution of defects. The iterations were terminated after
12-15 steps. In each case, a goodness of fit R? > 0.93 was obtained at the
end of these iterations. Fig. 6 shows the implementation of our Bayesian
inferencing model as applied to lattice structures with uniformly
distributed porosity defects. Starting with a uniform prior distribution,
this approach was able to provide a most likely point estimate of
parameter « at the end of iterations that closely matched its nominal
counterparts, e.g., those obtained using least square error based
regression. For instance, the probabilistically inferred values of this
parameter were k = 2.210, 1.280, 1.217, 1.412, compared with nom-
inal values, which were x = 2.215, 1.288, 1.226, 1.412, for ty, =
0.3 mm, 0.4 mm, 0.7 mm, 1 mm, respectively. Herein, an important
pattern in the convergence of the posterior distributions of « for different
values of t, is immediately obvious, that a larger number of simulated
observations produces a point estimate of x that matches the nominally
produced counterpart with greater probability. A conservatively large
number, e.g., > 500, of simulations was not pursued in the present work
that would allow the estimation of the standard deviation of x from its
inferred distribution. Nonetheless, we still report the variability in the
simulated behavior of defective lattice structures as the standard devi-
ation of the posterior distribution of « that is inferred after 12-15 iter-
ations, viz. 6~ 0.24, 0.18, 0.22, 0.13. This suggests an inferred
effective variability of 2~ 0.11, 0.14, 0.18, 0.13, for ty = 0.3 mm,
0.4 mm,0.7 mm,1 mm, respectively. A 20% change in parameter «, e.g.,
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Fig. 6. Variability analysis for lattice structures featuring uniformly distributed defects. Strut thicknesses tyr, in the figures correspond to: (a) 0.3 mm, (b) 0.4 mm,
() 0.7 mm, (d) 1 mm. The subfigures on the left hand side show the inferred distribution of parameter « in the last 5 iterations. The horizontal line shows the uniform
prior distribution. The vertical line corresponds to the nominal value of  given in Table 2. The subfigures on the right hand side show goodness of fits R? of the most
likely point estimates of parameter x inferred and their convergence to the nominal x shown using horizontal line, at various stages o.f the iteration.

for tyn, = 0.7 mm albeit likely in one instance of a lattice structure with
probability P(k > p, . o7 mm +0) ~ 0.45 rapidly decays to background
noise levels, e.g. P(N® 1k > iy, 07 mm + 6) =TS 1 P(ki > . 07 mm +
6) = 0.45° ~ 8 x 107, In this regard, such an occurrence is highly
unlikely until it is driven by a fundamental change in the behavior of the
parent lattice structure such as a reduction in its thickness or change in
its geometry. Such a change may also be instigated by an input change in

the spatial arrangement of the defects. To test the influence of the spatial
arrangement of defects on mechanical response, lattice structures with
high density of defects close to surfaces were generated numerically.
Defect densities within a similar range as shown in Fig. 4d-g were used.
Herein, the spatial location of these defects was confined within a band
of thickness 0.2ty in the vicinity of the respective surface. Note, this
arrangement of defects enables us to make comparisons between such
lattice structures and their counterparts of equal strut thickness ty;,, but
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which comprise spatially uniform defect distributions. Such comparison
would be complicated if defects were strictly confined within a band of
absolute specified thickness, wherein the fractional thickness of this
band, e.g., ft,,,, would be different across every structure studied here.
Towards this end, the fraction f = 0.2 was arbitrarily chosen. The
objective of the present research is to formulate a framework that can
delineate the changes to mechanical response resulting from probabi-
listic changes to spatial distributions of defects. We show in the forth-
coming paragraphs that we are able to achieve this objective.
Nonetheless, the authors intend to extend this research to understand
the influence of different fractional band thicknesses in the future. The
mechanical response of lattice structures with high density of defects
close to the surface was numerically simulated with a protocol that
mirrored the one used for their spatially uniform counterparts (cf. Sec-
tion 2.1). Subsequently, this simulated data was compiled using an
approach discussed in Section 3.2. Lattices with surface defects exhibi-
ted nominal values of parameter x that were moderately different for
tye = 0.3 mm, and considerably different for ty,, = 0.4 mm, 0.7 mm,
1 mm, with respect to their spatially uniform counterparts. For
instance, xk = 2.134, 1.623, 1.016, 1.092 for surface defects (summa-
rized in Table 3), in comparison with « = 2.215, 1.288, 1.226, 1.412
for spatially uniform defects. These correspond to relative differences of

8, 0.04, 0.26, 0.17, 0.23 for tyw = 0.3 mm, 0.4 mm, 0.7 mm,

Kuniform

1 mm, respectively. These values provided adequate goodness of fits
R%2 ~0.96, 0.97, 0.96, 0.94, respectively, with respect to numerically
simulated mechanical responses. However, a consistent pattern between
parameter « for surface and uniform defect distributions was not found
suggesting a complex interaction between the defects and the sur-
rounding stress field within the structure. This data was used to establish
another Bayesian inferencing framework, with the objective of
analyzing the resulting standard deviation of parameter x. For this
framework, a non-informative, e.g., uniform prior distribution wasalso
used for parameter . Fig. 7 shows the results of this analysis, illustrating
similar convergence characteristics with the spatially uniform counter-
parts. These characteristics include the general trend, that a larger
number of observed data points resulted in most likely point estimates of
x that became progressively closer to their nominal counterparts with
greater probability. At the end of 12-15 iterations, these most likely
points estimates were x = 2.145, 1.623, 1.019, 1.097, for ty,, =
0.3 mm,0.4 mm,0.7 mm,1 mm, near identical to counterparts obtained
via regression, i.e. k = 2.134, 1.623, 1.016, 1.092, respectively. Stan-
dard deviations ¢ were extracted from the posterior distributions of
parameter « for structures featuring tym, = 0.3 mm,0.4 mm, 0.7 mm,
1 mm and were found to be ¢ ~ 0.22, 0.21, 0.2, 0.14, respectively.
These suggest effective variabilities of 2~ 0.10, 0.17, 0.2, 0.13, which
were only marginally different than their spatially uniform counterparts
that exhibited ¢ ~ 0.11, 0.14, 0.21, 0.14, respectively.

It is clear from this analysis that the spatial distribution of defects can
significantly alter the mechanical response of structures. In order to test
the efficacy of a simplified, e.g. single parameter model (cf. Eq. (8)) at
accounting for such variances, the Bayesian inferencing models illus-
trated in Figs. 6 and 7 were merged. For doing the same the posterior
distributions of « for various structures comprising uniform defects (e.g.,
distributions illustrated in magenta corresponding to last iteration in
Fig. 6) were used as prior and updated with mechanical response of
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structures comprising high density of surface defects. The most likely
point estimates of k were extracted in each step and the goodness of fit of
the model given in Eq. (8) was found with respect to all data sets, e.g.,
surface defects + uniform defects. This was done individually for
structures featuring different strut thicknesses. Fig. 8 illustrates this
framework. The most likely point estimates of k predicted by the merged
Bayesian framework were xk =2.171, 1.424, 1.101, 1.195. These values
provided only marginally different (sometimes exceeding) goodness of
fits, e.g., R> = 0.98, 0.94, 0.96, 0.91, for tyn, = 0.3 mm, 0.4 mm,
0.7 mm, 1 mm, respectively. Given that an equal number of instances
comprising spatially uniform defects, and surface defects were used for
constructing this model, these k values were also approximately midway
between the inferred values of the respective struts, e.g., k = 2.210,
1.280, 1.217, 1.412, for uniformly distributed defects (cf. Table 2), and
k = 2.145, 1.623, 1.019, 1.097, for surface defects, respectively (cf.
Table 3). Interestingly, merging of the two datasets within this Bayesian
framework resulted in smaller standard deviations after all iterations
were complete, e.g., 6 ~ 0.18, 0.14, 0.16, 0.12, when compared with
standard deviations of distributions inferred from instances comprising
surface, or uniform defects alone. This is a promising result that testifies
to the efficacy of a single parameter model such as Eq. (8) in encapsu-
lating different modalities of spatial defect distributions. However, the
framework is based on an implicit assumption, that the mechanical
response of structures comprising a high density of defects near the
surface is not dramatically different than those comprising a spatially
uniform distribution of defects. Realistically, differences in spatial dis-
tribution of defects can arise in additively manufactured components if
build parameters are appropriately changed. The manufacturing com-
munity has generally focused on reducing the density of defects uni-
formly throughout the volume, wherein a single modality of spatial
defects is anticipated in real specimens. It is envisioned that the me-
chanics of such unique modalities can be well encapsulated by the model
in Eq. (8).

3.3. The effect of roughness on mechanical response of lattice structures

Fig. 9a shows the numerically simulated influence of sinusoidal
surface roughnesses on the mechanical response of lattice structures.
With respect to the perfectly smooth counterpart, lattice structures with
rougher surfaces exhibit degradation in their relative moduli %S It is seen
from Fig. 9b that this degradation is highly dependent on the mechanics
of the parent strut. For instance, a comparatively larger degradation
caused by roughness was seen in lattice structures with thinner struts.
This trend was quantified as the ratio of the relative moduli of rough, e.

g. t‘ﬁ ~ 0.8, and smooth struts, e.g., g’l‘—;'; =1, as %/% ~ 0.94, 0.82,
0.95for tyry = 0.7 mm, 0.4 mm,0.3 mm, respectively. The source of this
degradation was found to lie in the roughness peaks of these surfaces
that cannot efficiently accommodate external deformation boundary
conditions imposed on the lattice structure. This is evidenced in the
rapid decay of stresses within them as shown in the inset in Fig. 9a.
However, the GA model is incapable of modeling this effect because a

sinusodal roughness despite producing a degradation in the mechanical
response of lattice structure g—s does not change its relative density ;’— This
shortcoming can be addressed by following a similar line of thought as

Table 3

Fitted Coefficients for Modified Gibson-Ashby Law that Incorporates Effects of Surface Distributed Porosity.
Set # Strut type tstrye (M) a C n K R?
1 Smooth struts 0.1-1.0 / 1.334 2.763 / 0.9997
6 Porous struts- surface 0.3 0.0340-0.1957 1.334 2.763 2.134 0.9608
7 Porous struts- surface 0.4 0.0289-0.1286 1.334 2.763 1.623 0.9701
8 Porous struts- surface 0.7 0.0264-0.1075 1.334 2.763 1.016 0.9629
9 Porous struts- surface 1 0.0314-0.0791 1.334 2.763 1.092 0.9393
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Fig. 7. Variability analysis for lattice structures featuring surface defects. Strut thicknesses ty, in the figures correspond to: (a) 0.3 mm, (b) 0.4 mm, (c) 0.7 mm, (d)
1 mm. The subfigures on the left hand side show the inferred distribution of parameter « in the last 5 iterations. The horizontal line shows the uniform prior dis-
tribution. The vertical line corresponds to the nominal value of « given in Table 3. The subfigures on the right hand side show goodness of fits R? of the most likely
point estimates of parameter x inferred and their convergence to the nominal x shown using horizontal line, at various stages o.f the iteration.

given in Section 3.2 where it was assumed that degradation to the me- 1%
original GA model with this roughness effect term for nominal strut
thickness ty,, = 0.3 mm,0.4 mm,0.7 mm and roughness metric
ranging between 0.5789 —0.9868, 0.6667 —0.9900, 0.7949 —0.9943,
A respectively. The fitting coefficient for these lattices were found to be
(krl, kr2) = (0.9574, 0.1091), (0.5881, 0.612), (0.7282, 0.3341),

respectively. It is noteworthy that here, krl =~ e %2,

chanical response of lattice structures takes place in relation to their
current state (Ref. Eq. (6)). This hypothesis results in the equation:

E * " min
£ C(p—)"k,, i

E (€8]

tmin 4
Here, P 1 *ts,i,

(e.g., when ﬁ«l), is a measure of the surface
roughness. This formulation suggests that for a smooth surface, i.e. ["'""—;: =

10

C(f,;)", implying k,, = e 2. Fig. 9b shows the comparison of the

tmin
tmax

e.g. krl x
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Fig. 8. Variability analysis for lattice structures featuring uniform and surface defects. Strut thicknesses tyn, in the figures correspond to: (a) 0.3 mm, (b) 0.4 mm, (c)
0.7 mm, (d) 1 mm. The subfigures on the left hand side show the inferred distribution of parameter « in the last 5 iterations. The vertical line corresponds to the
nominal value of « that is obtained from the instances featuring spatially uniform distribution of defects. The subfigures on the right hand side show goodness of fits
R? of the most likely point estimates of parameter « inferred. The horizontal lines show nominal values of « for uniform and surface defects.

€2 ~ 1.07,1.08, 1.02, respectively. This fitting coefficients produced
coefficient of determinations R? > 0.93, as listed in Table 4.

The salient aspects of strain fields expressed by lattice structures with
rough struts were studied via PCA. This is shown in Fig. 10 for left and
right leaning struts separately. Towards this, the protocol described in
Section 2.2 was followed. Here, strain fields obtained from struts
featuring thicknesses ty.,; = 0.3 mm,0.4 mm, and 0.7 mm and roughness
parameters ttﬁ = 0.5789—-0.9868,0.6667 —0.9900,0.7949 —0.9943

11

were used respectively. Note, porosity defects were ignored in this
analysis. Due to this reason, a completely new set of principal axes can
be generated, wherein the location of even defect-free struts, e.g. those
featuring Z:—;'; =1 can be expected to be completely different than their
analogous positions that the PCA using lattice structures with porosity
defects would predict. Indeed, this was the case as seen in Fig. 10 where
the projections of Fourier representations of autocorrelations of strain
fields expressed values that did not match their aforementioned
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Fig. 9. (a) Stress field of lattice structure with surface roughness, featuring 1 = 0.108 mm, a = 0.016 mm and t, = 0.4 mm. (b) Fitting for lattice structure with

tarwe = 0.4 mm and different roughness on struts.

Table 4

Fitted Coefficients for Modified Gibson-Ashby Law that Incorporates Effects of Surface Roughness.
Set # Strut type tstrye (M) tmin/tmax C n kn kro R?
1 Smooth struts 0.1-1.0 1 1.334 2.763 / / 0.9997
10 Rough struts 0.3 0.5789-0.9868 1.334 2.763 0.9574 0.1091 0.9326
11 Rough struts 0.4 0.6667-0.9900 1.334 2.763 0.5881 0.612 0.9665
12 Rough struts 0.7 0.7949-0.9943 1.334 2.763 0.7282 0.3341 0.9720

counterparts seen in Fig. 5. Nonetheless, even this new set of principal
axes were able to separate lattice structures featuring different nominal
strut thicknesses tyre = 0.3 mm,0.4 mm and 0.7 mm. Further, their
projection values along the first principal component also showed
monotonic increase with respect to the parameter tyy;.

The projections of auto-correlations of strain fields in their Fourier
representations that were obtained from lattice structures with rough
struts expressed interesting variations that were not exhibited by their
smooth counterparts. Herein, the strut with the smallest thickness used
for this analyses, e.g. tyn: = 0.3mm exhibited little separation between
their smooth and rough counterparts on the space spanned by the first 2
principal axes.This separation was however more dominant, albeit
similar in lattice structures with thicker struts tgu,, = 0.4 mm and
0.7 mm. Further, unlike strain fields expressed by lattice structures with
porous struts, those resulting from rough struts generally did not ‘clus-
ter’ in the vicinity of each other, but neatly arrange linearly in this space
spanned by the first two principal axes. This is most obvious for strain
fields obtained from lattice structure featuring ty = 0.4 mm. The
reason behind this observation is that in comparison with the random-
ness of porosity defects that manifested the random clustering of pro-
jections seen in Fig. 5, strain fields here were influenced by periodic sine
waves that obviously lack this randomness. This lack of randomness
produces more regular projections as seen in Fig. 10. Herein, the lattice
structure with the thickest strut ty, = 0.7 mm studied for this analyses

exhibited variations in their projections on the principal axes that were

tyrue—20a
Cstrue+20

also highly correlated to their surface roughness measure, viz. as

shown in Fig. 10.

3.4. The combined influence of porosity and surface roughness defects on
mechanical response

Insights obtained so far in Section 3 can enable formulation of pre-
dictive models of the mechanical response of complex lattice structures.

12

Towards the same, it is realized that typical lattice structures possess a
combination of porosity and surface roughness defects. In this regard, a
more complex and more compromised response can be expected in a
typical lattice structure. This was analyzed by simulating the response of
1 x 1 dimensional structures with struts featuring tym: = 0.4 mm.
Herein, two different roughness measures were tested featuring sine
amplitudes a = 0.004 mm, 0.016 mm, corresponding to R, = 2.5 um,
10.2 um, respectively. Both surface roughnesses were generated with
the same wavelength that was used to calibrate the model described in
Section 3, viz. A = 108 um. Porosity fractions similar to those used for
calibration were assigned to these lattice structures, whereby relative

densities f); between 30% —32.5% were analyzed. The macroscopic
behavior of these structures was modeled as:

E () emp et
Es Ps

This form multiplicatively combines the effects of porosity and
roughness within the same response equation. Note, constraints on the

12

respective porosity and roughness terms, viz. e ** k., ek'zrrr'n"*f-i, respectively,
ensure that Eq. (12) collapses to Eq. (11), Eq. (8), or simply the Eq. (1),
in the absence of porosity, or roughness defects, or in a pefect defect-free
state, respectively. Herein, such a multiplicative combination also
implicitly assumes that roughness or porosity defects do not affect the
fundamental influence of each in the presence of the other.

Figs. 11 shows results of two instances of lattice structures pertaining
to roughness values R, = 2.5 ym,R, = 10.2um, and porosity fractions
a = 0.0386, 0.0482, respectively. Stress fields in these lattice structures
simultaneously shared characteristics with those that exclusively
featured porosity, and surface roughness defects (cf. Sections 3.2, 3.3,
respectively). These characteristics include stress concentrations in the
vicinity of porosity defects, like in Fig. 4, and decaying stress fields
within roughness peaks, like in Fig. 9. Figs. 11b, d show the mechanical
response of such lattice structures featuring a combined influence of
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Fig. 10. PCA for elastic strain from rough struts. Hollow markers on the left column represent strains extracted from left leaning struts, e.g.,top-left to bottom-right,
while solid marker on the right columns represent strains extracted from the right leaning struts.

porosity and surface roughness (cf. hollow triangles). For comparison,
the response predicted by the original GA form, e.g., Eq. (1) that is
calibrated for 3D BCC structures, and that calibrated for our 2.5D plane
stress BCC structures is also shown in this figure using green, and red
curves, respectively. Towards delineation the influences of roughness
and porosity, fitting coefficients gathered from controlled studies

13

described in Sections 3.2, and 3.3 were initially used here, viz. (C,n,x,kr,
k2) = (1.334,2.763, 1.288, 0.5881, 0.612). These fitting coefficients

were able to characterize the response }Es_s of lattice structures within 15%

of the values that were predicted numerically. It is noteworthy that this
model, based on multiplicative coupling of porosity and surface
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of lattice structures with strut dimension corresponding to (a, c), at various relative densities £ (@

roughness defects slightly overestimated the response compared with
that predicted by numerical simulations. This suggests an interaction
between these defects, which further degrades their relative elastic
moduli, e.g., when both defects are present. In the present work, this
discrepancy could be resolved by adjusting the value of k;; to 0.57. This
relatively minor change produced coefficient of determination of R? >
0.95 in both these cases, as listed in Table 5.

3.5. Implications of this work

The simulation framework described in this paper was used to
demonstrate how porosity defects and topography defects introduced by
metal AM processing degrades the relative stiffness of a printed lattice.
However, the complexity and significance of these defects in practice
have been understated thus far. So are the challenges of correcting them.
The reasons are as follows.

Ps

o Stiffness is an extremely important performance measure for a lat-
tice, but fatigue resistance is equally if not more important.
Furthermore, it is believed to be far more sensitive to defects.
Metal AM processes do not leave behind porosity defects that are
uniformly distributed throughout the bulk. Instead, a higher con-
centration are typically observed near the surface, many of these are
surface interconnected. As such, they are incapable of being healed
by HIP. Furthermore, under high temperature conditions, bulk
porosity defects healed by HIP often reappear to varying degree.

e The surface topography created by metal AM processes is heavily
influenced by staircasing and partial powder solidification. In turn,
these factors are extremely sensitive to surface orientation relative to
the build direction. Consequently, metal AM parts typically have
surfaces with extremely heterogenous topography.

e Simple quantitative measures of surface topography such as R, are
not necessarily good metrics to target, because it is possible for a

Table 5

Fitted Coefficients for Modified Gibson-Ashby Law that Incorporates Effects of Uniform Porosity and Surface Roughness.
Set # Strut type tsgrur (Mm) a tmin /tmax C n K kn kro R?
1 Smooth struts 0.1-1.0 / / 1.334 2.763 / / / 0.9997
13 Rough, porous 0.4 0.048-0.161 0.961 1.334 2.763 1.288 0.57 0.612 0.9536
14 Rough, porous 0.4 0.048-0.167 0.923 1.334 2.763 1.288 0.57 0.612 0.9792
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surface riddled with surface interconnected porosity defects to have
the same R, value as one that does not. Consequently, while a surface
may appear to be fatigue resistant on account of its perceived
smoothness, it may not be.

An objective of the metal AM community is to print ever thinner
lattices. However, the invariable increase in defect concentration is
going to be a limiting factor. In response, AM processing technology
will continue to advance so that lower defect concentrations may be
realized. However, this will invariably require greater process lead
time or greater process cost to achieve.

A super finishing process cannot be used to directly control geome-
try. It is a material erosion process, that if carried out in a repeatable
manner, leads to consistent localized material removal and consis-
tent localized surface topography. However, process development
requires multiple iterations of trial, measurement, part redesign, and
process redesign to derive feasible solutions.

Super finishing processes remove material from surface topographies
in different ways, causing the geometries of the peaks, valley, and
surface interconnected defects to evolve in different ways. The rate at
which they remove material is process dependent as well.

The localized removal rate of super finishing processes is relatively
low. But they are capable of completely machining through skin into
the bulk volume with sufficient processing time. Consequently, they
are capable of not only removing surface defects but sub surface
defects as well.

In summary, defect management is critical to the performance and
cost of printed parts, especially those that are light weighted with lat-
ticing or topology optimization. With continued development, the
simulation framework presented in this work can become a powerful
tool to explore how defect distribution and geometry affect lattice
stiffness, buckling, and stress concentrations. Knowledge of this will
allow the design and processing community to make better engineering
decisions.

4. Conclusions and future work

1. The present work demonstrates the effect of volumetric porosity and
surface roughness defects on the elastic response of 2.5 D BCC lattice
structures. Implementation of this workflow involved the python
interface of Abaqus that was used to generate these structures and
implant them with circular porosity and sinusoidal surface roughness
defects. Subsequently their elastic response was numerically simu-
lated, whereby their relative elastic moduli were characterized.

2. It was seen that the influence of porosity defects and surface
roughnesses can be modeled as exponential degradations to the
response of the defect-free lattices. Herein, fitting coefficients of
these exponential degradation terms were found to be influenced by
the parameters of the parent structure itself. Lattices with thinner
struts generally exhibited more rapid degradations in response to
increasing densities of porosity defects and larger surface
roughnesses.

3. A Bayesian inferencing framework was formulated to delineate the
effect of changes in spatial distribution of porosity defects on the
mechanical response of the parent structures. It was seen that
different modalities of these distributions can profoundly affect the
mechanical response. The Bayesian inferencing model was trained
using an equal number of simulated instances of both types of
structures, e.g., those comprising uniformly distributed, and surface
porosities, for various strut thicknesses ty,; studied here. This model
was able to predict a most likely point estimate of the primary
random variable x pertinent to porosity defects while providing a
reduction in the variance of its distribution.

4. Principal component analysis was used to delineate salient aspects of
the mechanical response of the aforementioned 2.5D BCC lattice
structures. This involved characterization of auto-correlation
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functions of strain fields followed by their transformation to the
Fourier space. The first two principal components could effectively
classify defect-free lattice structures. However, this stark separation
was found to collapse in presence of porosity defects, wherein pro-
jections pertaining to lattices featuring various strut thicknesses were
found to cluster around closely spaced means. In comparison, anal-
ogous measures extracted from lattices with rough surfaces showed
better separation in the space spanned by principal components
produced from their response.

5. Analysis of the combined influence of porosity defect and surface
roughness on the mechanical response of lattice structures suggested
that these individual influences may be coupled multiplicatively in
the Gibson-Ashby equation, especially if the presence of one family
of defects does not alter the influence of another.

6. This work clearly suggests that the mechanical response of lattice
structures is complicated by the presence of defects and surface
roughness in a way that is intimately tied to attributes of the parent
lattice itself. These linkages were not probed here in the context of
other geometrical attributes such as lattice aspect ratio, lattice type,
various modalities in spatial distributions of porosity defects, and
wavelength spectrum of surface roughness, and this will be pursued
in the near future.
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