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A B S T R A C T   

Stiffness prediction for additively manufactured (AM) lattices is necessary for lightweight components design. 
For a given lattice structure, the Gibson and Ashby (GA) model can predict relative stiffness as a function of its 
relative density. However, volumetric porosity and surface roughness defects that are commonplace in AM 
lattices depreciate the quality of prediction made by the GA model. This is because such defects complicate the 
elastic behavior of lattice structures. In this work, a modified GA model is proposed that accounts for these 
defects. A Bayesian inferencing framework is constructed to delineate the influence of spatial distributions of 
these defects on resulting mechanical response. Principal component analysis (PCA) is used to identify differ
ences between elastic strain fields (∊11, ∊22, and ∊12) resulting from perfect and defective lattices. The insights 
obtained can provide a viable approach to predict the mechanical response of as-received AM lattices that are 
often defective, and thereby enable systematic approaches for their design.   

1. Introduction 

Complex lattice structures with high strength-to-weight ratios that 
could not be produced via traditional routes can now be fabricated by 
additive manufacturing (AM). The circumvention of several design for 
manufacturing issues via AM has spurred rapid innovation aimed to
wards highly beneficial functional behavior in these structures. How
ever, layer-by-layer fabrication in AM naturally results in volumetric 
porosity and surface roughness defects [1–8] that can compromise the 
performance of these structures. This shortcoming can be mitigated by 
post-processing involving hot-isostatic pressing (HIP), e.g., for eradi
cating volumetric defects, and super-finishing, e.g., for eradicating 
surface roughness. Unfortunately, both of these families of post- 
processing steps are only partially efficient, wherein a certain fraction 
of defects can be expected to be present in high-performance lattice 
structures resulting from AM [9–11]. This is of serious concern, espe
cially in thin-walled structures where even small densities of defects can 
rapidly compromise performance. Recent efforts have attempted to 
create methodologies using advanced numerical simulations [12,13], 
and machine learning algorithms [14,15] that attempt to accelerate 
computational predictions of the influence of the aforementioned de
fects. The overarching goal of these efforts is to carefully permit 

acceptable defect densities without risking premature failure. The 
fundamental influence of micro-scale defects on macro-scale lattice 
structures is however not well understood. The traditional approach 
towards modeling the mechanics of lattice structures involves the use of 
the Gibson-Ashby equation in which the relative modulus of the struc
ture E*

Es 
is formulated as a function of its relative density ρ*

ρs 
as [8]: 

E*

Es
= C

(
ρ*

ρs

)n

(1) 

Here, E* is the elastic modulus of the lattice structure, which is a 
function of its geometry and the elastic modulus Es of its parent material. 
The bulk density of the parent material is given by ρs. The term ρ* is the 
volumetric density of the structure. This is a design variable that can be 
characterized using geometrical details of the structure prior to 
manufacturing, thereby facilitating systematic light-weighting of me
chanical parts. Finally, n, C are structure specific coefficients that 
characterize its mechanics in the absence of any defects. The original 
model which was rooted in the elastic mechanics of beam elements 
[16–18] has been applied with exceptional success in predicting the 
mechanics of many families of lattice structures [19]. However, this 
model is not equipped to directly encapsulate the influence of uncon
trolled micro-scale defects that originate during manufacturing such as 
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the porosity and surface roughness defects of AM [20]. 
In this work, the authors attempt to delineate fundamental linkages 

between volumetric porosity and surface roughness defects, and the 
resulting performance of lattice structures. The overarching goal of this 
work is to create a simple approach that can provide a first order pre
diction of this influence. In this regard, the present work can be highly 
impactful as a simple tool that can be used for designing complex lattice 
structures while accounting for defects which are expected during 
fabrication in a given manufacturing platform. 

Towards this end, the effects of volumetric porosity and surface 
roughness defects on the mechanical response of 2.5D body centered 
cubic lattice structures is studied. In the first step, the mechanical 
response of a single 1 × 1 unit cell is studied numerically. Here, 
controlled numerical tests are performed to evaluate the exclusive in
fluence of porosity and surface roughness defects. Subsequently, the 
combined effects of these defects on mechanical response is analyzed. 
This unit cell is shown in Fig. 1 and has a Maxwell number [4] M =

st −2no + 3 = 6 −2 × 5 + 3 = −1, where st , no refer to number of 
struts, and nodes in the structure, respectively. A Maxwell number M <

0 encourages bending dominant behavior in individual struts of the 
lattice structure upon application of compressive boundary conditions 
[19]. This naturally promotes instabilities in the mechanical response, 
especially when thin strut walls are used. The GA model predicts the 
mechanical response of defect-free bending dominant structures with 
n = 2 (Ref. Eq. (1)) [4,16]. In this regard, deviations of the mechanical 
response of the unit cell with respect to predictions made by the GA 
model due to the presence of manufacturing defects will provide a 
platform to delineate their influence. 

2. Methods 

2.1. Finite element framework 

The Abaqus-Python interface was used to set up the plane stress finite 
element model. 2.5D lattice structures like the one shown in Fig. 1 were 
generated by specifying length ls = 4 mm, distance ds = 2.6 mm be
tween two inclined struts, thickness tshell = 0.4 mm of the shell (e.g., top 
and bottom layer), and thickness tstrut of the struts. Table 1 summarizes 
these thickness parameters. Isotropic elastic material properties of 

Fig. 1. (a) Lattice structure with no porosity and 
roughness on struts featuring parameters tshell =

0.4 mm, ls = 4 mm, ds = 2.6 mm, tstrut = 0.7 mm. 
Boundary conditions are shown on bottom and top 
edges. (b) An instance of the lattice structure shown in 
Fig. 1(a) with 6% volumetric porosity defects that are 
uniformly distributed in the load bearing struts. (c) An 
analogue of the lattice shown in (b) but with defects 
concentrated near the surface of the struts. (d) The 
lattice structure in Fig. 1a instilled with sinusoidal 
surface roughness featuring amplitude a = 28 μm, 
and wavelength λ = 108 μm.   

Table 1 
Summary of lattice structure parameters.  

Set 
# 

Strut type tstrut 

(mm)  
porosity α  tmin/tmax  

1 Smooth 0.1–1.0 – 1 
2 Porosity defect- uniform 0.3 0.0511–0.1957 – 
3 Porosity defect- uniform 0.4 0.0482–0.1125 – 
4 Porosity defect- uniform 0.7 0.0283–0.1208 – 
5 Porosity defect- uniform 1 0.0259–0.0791 – 
6 Porosity defect- surface 0.3 0.0340–0.1957 – 
7 Porosity defect- surface 0.4 0.0289–0.1286 – 
8 Porosity defect- surface 0.7 0.0264–0.1075 – 
9 Porosity defect- surface 1 0.0314–0.0791 – 
10 Roughnenss defect 0.3 – 0.5789–0.9868 
11 Roughnenss defect 0.4 – 0.6667–0.9900 
12 Roughnenss defect 0.7 – 0.7949–0.9943 
13 Roughness, uniform 

porosity 
0.4 0.0482–0.1608 0.9608 

14 Roughness, uniform 
porosity 

0.4 0.0482–0.1672 0.8519  
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Inconel 718 were used in the model, viz. Young’s modulus E = 212 GPa, 
and Poisson’s ratio ν = 0.294 [21]. The boundary conditions are shown 
in Fig. 1a. The bottom surface was fixed, and the top surface was com
pressed by 0.048 mm along y direction corresponding to a globally 
imposed compressive strain of 0.01. The global seed size for meshing 
was set at 4 μm. Circular porosity and sinusoidal surface roughness de
fects were implanted onto the inclined load bearing struts of the struc
tures. The pores were generated by sampling radii uniformly from the 
range 20 μm − 60 μm. Subsequently, their center positions were 
sampled in 2 different ways such that they were: (i) uniformly distrib
uted within the thickness of the strut, and (ii) distributed within a band 
of thickness 0.2tstrut in the vicinity of the surface of the strut. These 
modalities were sampled to delineate the effect of changes in distribu
tions of spatial locations of defects on mechanical response. The nu
merical implementation of this specimen generation step involved fixing 
the number of porosity defects and then sampling their diameters and 
spatial locations. Subsequently, the densities of defects in the parent 
material were characterized as α = ΣiAi

Astrut
, where Ai is the area of the ith 

defect, and Astrut is the total area of the 4 inclined load bearing struts 
(Ref. Fig. 1). In this implementation, the number of pores varied be
tween 15, e.g. for strut parameter tstrut = 0.3 mm, to 70, e.g., for strut 
parameter tstrut = 1 mm. This resulted in volumetric porosity ranges 
between α = 0.02 − 0.2 for various instances of numerical struts stud
ied here, as summarized in Table 1. Fig. 1b shows an instance of the strut 
featuring parameter tstrut = 0.7 mm and a uniformly distributed volu
metric porosity of α = 0.06. Fig. 1c shows an instance of a strut of equal 
thickness, e.g., tstrut = 0.7 mm, but with a porosity of α = 0.06 distrib
uted in the vicinity of the surface. Surface roughness defects were 
implanted onto the strut faces as sinusoidal waves of the form: 

y = asin(2π x
λ
) (2)  

, where a is the amplitude of the sine wave, λ is its wavelength, and y 
represents the deviation from the mean, i.e. smooth strut wall. Such a 
wave profile corresponds to a surface roughness measure of Ra = 2a

π . 
Fig. 1d shows a lattice structure with parameter tstrut = 0.7 mm with 
sinusoidal surface roughness featuring parameters a = 28 μm, λ =

108 μm, corresponding to Ra ≈ 17.8 μm. Since the deviation of the 
surfaces with respect to their means does not produce an effective vol
ume change, numerical surface roughness experiments were parame
terized in this study as tmin

tmax
, with the numerator and the denominator 

corresponding to the minimum and maximum thickness of a rough strut. 
In a lattice structure featuring a sinusoidal roughness profile as give in 
Eq. (2), this parameter approximates to tstrut−2a

tstrut+2a ≈ 1 − 4a
tstrut

, when a≪tstrut. 
The deformation of these lattices was simulated using the Abaqus- 
implicit compiler. Multiple instances of every lattice structure were 
studied, as summarized in Table 1. Following the simulations, various 
parameters including reaction force vs. displacement curve, and strain 
field components were extracted. The reaction force was converted to 
relative elasticity modulus (e.g., parameter E*

Es 
in Eq. (1)). Dataset 1 was 

utilized for calibrating the GA model that would be applicable to our 
2.5D BCC structures. Dataset 2–9, and 10–12, were utilized for delin
eting the effect of porosity, and roughness defects, respectively. Subse
quently, the deformation of more complex lattice structures under the 
simultaneous influence of both porosity and surface roughness defects 
was also studied, e.g., those summarized as datasets 13–14 in Table 1. 

2.2. Principal component analysis 

Principal component analysis (PCA) was used to delineate the dif
ferences between strain fields expressed by various numerical strut 
specimens. PCA can enable classification of mechanical response data
sets based on their salient characteristics that are influenced by defects 
in the parent lattice structure. The primary purpose of this PCA was to 

demonstrate that porosity and surface roughness defects fundamentally 
alter the mechanical response of lattice structures, which then merits 
alterations to the GA model for their encapsulation. Towards this end, 
strain fields expressed by various lattice structures, e.g. 2–5 (uniform 
defects), and 10–12 (roughness defects) in Table 1 when subject to the 
same boundary conditions were used as a metric of their mechanical 
response. It was realized that a direct analysis of strain fields for this 
purpose can produce erroneous insights as the strain field itself is sen
sitive to the exact configuration of defects. To mitigate this, PCA was 
performed on the Fourier representation of the auto-correlation func
tion, separately on the three independent components of the strain field, 
viz. ∊11,∊22,∊12. The auto-correlation function is defined as: 

fijij(τ
∼
) =

∫

Ω
∊ij(r

∼
)∊ij(r

∼
+ τ

∼
)dr

∼
(3) 

Here, Ω refers to the domain of the these strain field components. 
This calculation is facilitated using the Fourier transform as [22]: 

F (fijij) = F (∊ij)F (∊ij) (4)  

where F refers to the Fourier transform, and F is its conjugate. The 
auto-correlation of a field is often used to characterize its self similarity, 
and its Fourier representation eliminates phase information from it, thus 
making it rotationally invariant. It is hypothesized that this represen
tation of a strain field captures the influence of defects in the parent 
material in a form that is insensitive to ‘minor’ defect-microstructure 
changes. The implementation of the PCA involved setting of the afore
mentioned domains as rectangular windows centrally located within 
load bearing struts of 1 × 1 dimensional lattice structures as shown in 
Fig. 2. The width of these rectangular domains was 0.2 mm. A collection 
of 64, 44 domains were extracted from lattice structures featuring 
porosity, and roughness defects, respectively. The analysis was done 
separately for specimens exhibiting porosity and those exhibiting 
roughness. This involved obtaining a set of uncorrelated variables with 
ordered variance (from max to min) through PCA of parameters F (fijij), 
with ij = 11, 22, 12, respectively. The principal components of the 
parameter F (fijij) were obtained as the eigen vectors V of the covariance 
S of the matrix [F n,1(fijij)*

F n,2(fijij)*
F n,3(fijij)*…F n,2(fijij)*

] of the zero 
centered parameters F n,s(fijij)*

= F (fijij) −[F (fijij)] corresponding to 
the aforementioned s = 64, 44 samples in their columnar forms, where 
n denotes the dimensionality of the strain query windows shown in 
Fig. 2. [23]. 

3. Results and discussions 

3.1. Calibration of Gibson-Ashby model for 2.5D BCC lattice structure 

The mechanics of defect-free 1 × 1 dimensional unit cells were 
characterized by creating these structures in Abaqus using its Python 
interface, and simulating their elastic deformation to a global 
compressive strain of 0.01. For creating these lattices, structure pa
rameters tstrut ∈ {0.1, 0.2, ⋅⋅⋅1 mm} were used. Subsequently, the force 
vs. displacement curves were extracted from these simulations, which 
were then converted to relative moduli E*

Es
. These relative moduli were 

then plotted with respect to corresponding relative densities ρ
*

ρs
, that were 

characterized as the area fractions of the boxes enclosing the lattice 
structure that are occupied by strut material, i.e. ρ*

ρs
=

ρ*(tstrut)+ρshell
ρs

. Here, 
ρ*(tstrut)

ρs 
is the relative density of the inclined load bearing strut, which is a 

function of the strut thickness tstrut , and ρshell
ρs 

is the relative density of the 
two horizontal, e.g. bottom and top shell walls (Ref. Fig. 1) and is con
stant (ρshell

ρs
= 0.167) throughout this work. Fig. 3 shows results of this 

exercise. By fixing the coefficient n = 2, the mechanical behavior of the 
BCC family of lattice structures was characterized via the GA model 
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using coefficients C = 0.912. This is shown using the green dashed line 
in Fig. 3, which clearly exhibits deviations with respect to the plane 
stress BCC lattice structure studied here. Nonetheless, a re-fitted GA 
model with coefficients C = 1.334, n = 2.763 as shown using the or
ange curve is able to capture the behavior of the defect free BCC lattice. 
It is noteworthy that the GA exponent of our plane-stress BCC lattice 
structure, e.g., n = 2.763, falls in close vicinity of the 3D BCC lattice 
structure, e.g., n = 2.84, as documented in Ref. [24]. 

3.2. The effect of porosity defects on mechanical response of lattice 
structures 

The effect of porosity defects on the mechanical response of lattice 
structures was characterized by implanting numerical voids into struts 
followed by numerical simulation of their deformation. Subsequently, 
force vs. displacement profiles were extracted from these simulations. In 
turn, these were converted to relative moduli E*

Es
. Figs. 4a–c show the von- 

Mises stress fields of a lattice with struts of thickness tstrut = 0.4 mm, 

featuring uniformly distributed porosity defects at fractions of α = 0, 
0.0450, and 0.0965, respectively. Compared with the defect free lattice 
structure seen in Fig. 4a, the defective structures in Figs. 4b, c exhibit a 
complex stress field. To quantify the degradation of stiffness due to the 
presence of porosity defects, their relative moduli were characterized as 
functions of their process induced relative densities which are formu
lated as: ρ

*(α)

ρs
=

ρ*(tstrut )(1−α)+ρshell
ρs

, where α is the density of the numerically 
simulated process induced defects. This enables a comparison between a 
defect free lattice structure, e.g., that featuring the a priori designed 

relative density ρ*
1

ρs
=

ρ*(tstrut )+ρshell
ρs 

with another defective lattice featuring 

relative density ρ
*
2

ρs
=

ρ*(tstrut)(1−α)+ρshell
ρs

. Figs. 4d–g illustrate this analysis for 
lattice structures featuring tstrut = 0.3 mm,0.4 mm,0.7 mm,1 mm, these 

featuring designed relative density parameters ρ*
1

ρs
= 0.2890, 0.3290,

0.4430, 0.5480, respectively. 
With respect to their defect-free counterparts, the struts featuring 

defects exhibited degradation of their mechanical response E*

Es 
at 

remarkably larger rates than an a priori designed decrease in strut 
thickness would produce, e.g., that is encapsulated in the GA model (ref 
Eq. (1)). For instance, a relative decline of ∼ 48%, 35.4%, 30.1%,

23.2% was seen in the relative moduli E*

Es 
for Δ ρ*

ρs
= 3.2% resulting from 

porosity defects, compared with defect free counterparts that exhibited 
smaller levels of decline 21%, 15.4%, 20.4%, 12.8% from a pure 
reduction in strut thickness, respectively. Although a monotonic change 
in the rate of this decline was not observed as a function of the respective 
strut thicknesses, it is evident from these observations that characteris
tics of the decline were influenced by the mechanics of the original 
defect-free strut. This observation is formulated phenomenologically as 
an influence of the defect fraction α on the ratio β between observed 

mechanical response E*

Es 
and that predicted by the GA model C

(
ρ*

ρs

)n 
as: 

dβ
dα = − κβ (5)  

where, β =

E*

Es

C(
ρ*

ρs
)

n (6) 

Here, κ is a fitting coefficient that encapsulates the influence of the 
mechanics of the parent defect-free strut. Taking the integral of the Eq. 
(6) and upon rearranging, we get: 

β = C′ e−κα (7) 

Fig. 2. Query window to extract (a) EE22 (∊22) in lattice with tstrut = 0.3 mm , (b) EE22 (∊22) in lattice with tstrut = 0.7 mm .  

Fig. 3. Variation of numerically simulated relative elastic moduli E*

Es 
with 

respect to relative density ρ*

ρs
. 
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The integral constant C′ naturally resolves to C′

= 1. This is because 
in the absence of porosity defects in strut, i.e. α = 0, the stiffness of the 
lattice should be equal to predictions obtained from GA model, viz. E*

Es
=

C
(

ρ*

ρs

)n

, i.e. β = 1 whereby C′

= 1. This then suggests a more general 

form of GA model that incorporates the effect of porosity defects: 

E*

Es
= C(

ρ*

ρs
)

ne−κα (8) 

Results of this analyses are shown in Fig. 4d–g on the respective blue 
curves that show good fit, e.g., R2 > 0.93 with numerically simulated 
values. Here, fit parameters were found to be κ = 2.215, 1.288, 1.226,

Fig. 4. Stress field of lattice with strut thickness of 0.4 mm and porosity of: (a) α = 0, (b) α = 0.045 and (c) α = 0.0965 on the struts. Fitting for lattice structure with 
different porosity ranges from α = 0.0259 −0.1957, and with strut thickness of (d) 0.3 mm, (e) 0.4 mm, (f) 0.7 mm, and (g) 1 mm. 

Table 2 
Fitted Coefficients for Modified Gibson-Ashby Law that Incorporates Effects of Uniformly Distributed Porosity Defects.  

Set # Strut type tstrut (mm)  α  C n κ  R2  

1 Smooth struts 0.1–1.0 / 1.334 2.763 / 0.9997 
2 Porous struts- uniform 0.3 0.0511–0.1957 1.334 2.763 2.215 0.9826 
3 Porous struts- uniform 0.4 0.0482–0.1125 1.334 2.763 1.288 0.9376 
4 Porous struts- uniform 0.7 0.0283–0.1208 1.334 2.763 1.226 0.9737 
5 Porous struts- uniform 1 0.0259–0.0791 1.334 2.763 1.412 0.9438  
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1.412, for tstrut = 0.3 mm, 0.4 mm, 0.7 mm, 1 mm, respectively. These 
are listed in Table 2. The mechanistic underpinnings of discrepancies in 
the parameter κ with respect to strut thickness of their parent lattices tstrut 

are pursued here via principal component analysis. Towards this, strain 
fields ∊11, ∊12, ∊22 were extracted from central sections of struts featuring 
spatially uniform defect distributions, e.g., rows 1–5 in Table 1 and 
converted to their Fourier space amplitudes as described in Section 2.2. 

This was done separately for left leaning and right leaning struts, and 
results of these analyses are shown in Fig. 5. It is seen that PC1 readily 
distinguishes between ∊11, and ∊22 strain fields obtained from lattices 
with defect-free struts as clearly observable separations in their 
respective projections with this component. Herein, ∊11 strain fields of 
defect-free lattices with larger strut thickness, e.g. tstrut = 1 mm, 
expressed comparatively smaller projections on the first principal 

Fig. 5. PCA of elastic strain ∊11 from: (a) right leaning strut, and, (b) left leaning strut, ∊12 from (c) right leaning strut, and, (d) left leaning strut, and ∊22 from (e) 
right leaning strut, and, (f) left leaning strut. 
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component axis as opposed to those obtained from thinner struts, e.g. 
tstrut = 0.3 mm, that exhibited larger projections. An opposite effect was 
seen for strain field ∊22, where defect-free lattices with smaller strut 
thickness, e.g. tstrut = 0.3 mm, expressed comparatively smaller pro
jections on the first principal component axis, and larger struts, e.g., 
tstrut = 1 mm expressed comparatively larger projections. Separation was 
also seen in analogous PCA of ∊12 strain field components, albeit one that 
could not be distinguished monotonically with respect to its projections 
on first or second principal component. Strain fields obtained from lat
tice structures with defective porous struts exhibited key deviations with 
respect to their defect-free counterparts. The separation between their 
projections and their corresponding defect-free analogues was obvious. 
However, the defective lattice structures were found to be clustered 
closer together in the space spanned by the first and second principal 
axes. Further, the defective lattice structures exhibited an anticipated 
spread corresponding to various defect configurations tested here. 
Within this cluster though, the defective lattice structures were found to 
be subtly separated from each other. It is noteworthy that these patterns 
are similar across left leaning and right leaning struts despite obvious 
differences between their defect configurations. These discrepancies are 
rationalized on the basis of the influence of free surfaces where traction 
vectors must resolve to n

∼
.σ = 0

∼
for maintaining local force equilibrium. 

Herein, lattice structures with porosity defects comprise significant free 
surface area, e.g., that existing in their inner walls, which can suffi
ciently distort the strain fields and leave a signature on their auto- 
correlation functions. These phenomena are expected to be magnified 
in lattices featuring smallest strut thicknesses or largest surface to vol
ume ratios which is expected to translate to larger values of κ (Ref. Eq. 
(6)) in these structures. This is also seen from our examination of nu
merical results, e.g., κ0.3 mm = 2.215 > κ0.4 mm( = 1.288), κ0.7 mm( =

1.226), κ1 mm( = 1.412). 
From the arguments in the previous paragraph, it can be inferred that 

the mechanical behavior of the lattice structures that feature porosity 
defects is affected not just by the porosity fraction α, but also by the 
location of the defects. This conjecture is based on evidence presented in 
Fig. 4a that shows the von-Mises stress field in a perfect unit cell that is 
subject to elastic compressive deformation. Due to the bending domi
nated nature of this lattice, the struts exhibit larger von-Mises stresses 
close to their surfaces. Herein, the presence of a high density of porosity 
defects in such locations can alter the relative elastic response as well as 
the general mechanical response [25–30] of the parent strut, in com
parison with what an equivalent density of uniformly distributed defects 
such as that shown in Figs. 4b, c would manifest. We note that an 
ensemble of such instances that feature high densities of defects close to 
the surface presents an additional source of variability in our model 
given in Eq. (8) that was calibrated using instances that featured uni
formly distributed defects. To quantify this variability, we formulate a 
Bayesian inferencing framework that can model the response exhibited 
by our simulated instances probabilistically. Bayesian inferencing in
volves the use of the Bayes’ theorem to estimate the distribution P(H|E1,

…, En) of a model parameter, e.g., H, given a certain number of simu
lated or empirically characterized data points, e.g., E1, …, En. This is 
formulated as: 

P(H|E1, …, En) =
P(E1, …, En|H)P(H)

P(E1, …, En)
(9)  

, where P(H) is the prior probability mass or density function of the 
model parameter H, P(E1, …, En|H) is the probability of observing the 
data points E1,…,En, given the model parameter is H, and P(E1, …, En) is 
the probability of observing data points E1, …,En, i.e. 

P(E1, …, En) =
∫

ΩP(E1, …, En|H) dG(H), where Ω is the domain of H,

G being its cumulative distribution function. The term P(E1, …, En|H) is 
also referred to as the likelihood L (H|E1, …, En). This formulation is 
iteratively implemented, wherein the posterior distribution of the pre
vious iteration, i.e. P(H|E1, …, En−1) is used as the prior for the forth

coming iteration, i.e. P(H) and updated as prescribed in Eq. (9) in light of 
newly available evidence En. By deploying a new data point in every 
iteration, the distribution of the model parameter H is iteratively 
updated till a pre-defined convergence criterion is met. The Bayesian 
inferencing methodology summarized in the previous paragraph was 
implemented for our datasets by setting the model parameter H as κ 
which is the random variable (RV) of interest (Ref. Eq. (8)). Based on this 
parameterization the observations referred to as Ei in Eq. (9), where i ∈

{1, …, n}, correspond to the RV EGA- the predicted relative elastic 
modulus, which is a function of RVs κ, and porosity fraction α (Ref. Eq. 
(8)). This enables us to formulate the likelihood function as Gaussian, i. 

e., L (κ|EGA) = P(EGA = EFEM|κ)∝exp
(

−
(EGA−EFEM)

2

2h2

)

. Here, EGA
Es

=

C(
ρ*

ρs
)
ne−κα, and h = 1.06σq−1/5 is the standard error given standard de

viation of observed data σ, and the number of samples q [31,32]. With 
this notion, the Bayesian inferencing framework that attempts to 
encapsulate the behavior of our material system comprising defective 
lattice structures is given by: 

P(κ|EGA = EFEM) =
P(EGA = EFEM |κ)P(κ)

P(EGA = EFEM)
(10) 

The first step towards the numerical implementation of this frame
work involved calibration with respect to specimens in which porosity 
defects were uniformly distributed. This was done individually for the 4 
different strut thicknesses of the BCC lattice studied in the present work. 
Herein, a non-informative prior, i.e. uniform distribution was assigned 
to the RV κ in each of these cases. These distributions were centered 
about their nominally observed values given in Table 2, i.e. κ ∈ (1.715,

2.715), (0.788, 1.788), (0.726, 1.726), (0.912, 1.912), for tstrut = 0.3 mm,

0.4 mm, 0.7 mm, 1 mm, respectively. These prior distributions were 
multiplied with respective Likelihood functions L (κ|EGA) in an ele
mentwise manner and the result was normalized, thus providing the 
posterior distribution, e.g. LHS in Eq. (10). The values of the parameter α 
that were used for constructing these likelihood functions are shown in 
Figs. 4d–g for tstrut = 0.3 mm, 0.4 mm, 0.7 mm, 1 mm, respectively. The 
aforementioned posterior distribution served as prior distributions for 
their next iterations, respectively. In every step, the most likely point 
estimate of the RV κ was extracted from the corresponding posterior 
distribution. Using this estimate, the goodness of fit of the model in Eq. 
(8) was calculated with respect to the simulated behavior of all nu
merical specimens that featured the same strut thickness and comprised 
a uniform distribution of defects. The iterations were terminated after 
12–15 steps. In each case, a goodness of fit R2 > 0.93 was obtained at the 
end of these iterations. Fig. 6 shows the implementation of our Bayesian 
inferencing model as applied to lattice structures with uniformly 
distributed porosity defects. Starting with a uniform prior distribution, 
this approach was able to provide a most likely point estimate of 
parameter κ at the end of iterations that closely matched its nominal 
counterparts, e.g., those obtained using least square error based 
regression. For instance, the probabilistically inferred values of this 
parameter were κ = 2.210, 1.280, 1.217, 1.412, compared with nom
inal values, which were κ = 2.215, 1.288, 1.226, 1.412, for tstrut =

0.3 mm, 0.4 mm, 0.7 mm, 1 mm, respectively. Herein, an important 
pattern in the convergence of the posterior distributions of κ for different 
values of tstrut is immediately obvious, that a larger number of simulated 
observations produces a point estimate of κ that matches the nominally 
produced counterpart with greater probability. A conservatively large 
number, e.g., > 500, of simulations was not pursued in the present work 
that would allow the estimation of the standard deviation of κ from its 
inferred distribution. Nonetheless, we still report the variability in the 
simulated behavior of defective lattice structures as the standard devi
ation of the posterior distribution of κ that is inferred after 12–15 iter
ations, viz. σ ∼ 0.24, 0.18, 0.22, 0.13. This suggests an inferred 
effective variability of σ

κ ∼ 0.11, 0.14, 0.18, 0.13, for tstrut = 0.3 mm,

0.4 mm,0.7 mm,1 mm, respectively. A 20% change in parameter κ, e.g., 
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for tstrut = 0.7 mm albeit likely in one instance of a lattice structure with 
probability P(κ > μtsturt=0.7 mm +σ) ∼ 0.45 rapidly decays to background 
noise levels, e.g. P(∩6

i=1κi > μtsturt =0.7 mm + σ) = Π6
i=1P(κi > μtsturt =0.7 mm +

σ) = 0.456 ∼ 8 × 10−3. In this regard, such an occurrence is highly 
unlikely until it is driven by a fundamental change in the behavior of the 
parent lattice structure such as a reduction in its thickness or change in 
its geometry. Such a change may also be instigated by an input change in 

the spatial arrangement of the defects. To test the influence of the spatial 
arrangement of defects on mechanical response, lattice structures with 
high density of defects close to surfaces were generated numerically. 
Defect densities within a similar range as shown in Fig. 4d–g were used. 
Herein, the spatial location of these defects was confined within a band 
of thickness 0.2tstrut in the vicinity of the respective surface. Note, this 
arrangement of defects enables us to make comparisons between such 
lattice structures and their counterparts of equal strut thickness tstrut, but 

Fig. 6. Variability analysis for lattice structures featuring uniformly distributed defects. Strut thicknesses tstrut in the figures correspond to: (a) 0.3 mm, (b) 0.4 mm, 
(c) 0.7 mm, (d) 1 mm. The subfigures on the left hand side show the inferred distribution of parameter κ in the last 5 iterations. The horizontal line shows the uniform 
prior distribution. The vertical line corresponds to the nominal value of κ given in Table 2. The subfigures on the right hand side show goodness of fits R2 of the most 
likely point estimates of parameter κ inferred and their convergence to the nominal κ shown using horizontal line, at various stages o.f the iteration. 
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which comprise spatially uniform defect distributions. Such comparison 
would be complicated if defects were strictly confined within a band of 
absolute specified thickness, wherein the fractional thickness of this 
band, e.g., ftstrut , would be different across every structure studied here. 
Towards this end, the fraction f = 0.2 was arbitrarily chosen. The 
objective of the present research is to formulate a framework that can 
delineate the changes to mechanical response resulting from probabi
listic changes to spatial distributions of defects. We show in the forth
coming paragraphs that we are able to achieve this objective. 
Nonetheless, the authors intend to extend this research to understand 
the influence of different fractional band thicknesses in the future. The 
mechanical response of lattice structures with high density of defects 
close to the surface was numerically simulated with a protocol that 
mirrored the one used for their spatially uniform counterparts (cf. Sec
tion 2.1). Subsequently, this simulated data was compiled using an 
approach discussed in Section 3.2. Lattices with surface defects exhibi
ted nominal values of parameter κ that were moderately different for 
tstrut = 0.3 mm, and considerably different for tstrut = 0.4 mm, 0.7 mm,

1 mm, with respect to their spatially uniform counterparts. For 
instance, κ = 2.134, 1.623, 1.016, 1.092 for surface defects (summa
rized in Table 3), in comparison with κ = 2.215, 1.288, 1.226, 1.412 
for spatially uniform defects. These correspond to relative differences of 

|Δκ|

κuniform
∼ 0.04, 0.26, 0.17, 0.23 for tstrut = 0.3 mm, 0.4 mm, 0.7 mm,

1 mm, respectively. These values provided adequate goodness of fits 
R2 ∼ 0.96, 0.97, 0.96, 0.94, respectively, with respect to numerically 
simulated mechanical responses. However, a consistent pattern between 
parameter κ for surface and uniform defect distributions was not found 
suggesting a complex interaction between the defects and the sur
rounding stress field within the structure. This data was used to establish 
another Bayesian inferencing framework, with the objective of 
analyzing the resulting standard deviation of parameter κ. For this 
framework, a non-informative, e.g., uniform prior distribution wasalso 
used for parameter κ. Fig. 7 shows the results of this analysis, illustrating 
similar convergence characteristics with the spatially uniform counter
parts. These characteristics include the general trend, that a larger 
number of observed data points resulted in most likely point estimates of 
κ that became progressively closer to their nominal counterparts with 
greater probability. At the end of 12–15 iterations, these most likely 
points estimates were κ = 2.145, 1.623, 1.019, 1.097, for tstrut =

0.3 mm,0.4 mm,0.7 mm,1 mm, near identical to counterparts obtained 
via regression, i.e. κ = 2.134, 1.623, 1.016, 1.092, respectively. Stan
dard deviations σ were extracted from the posterior distributions of 
parameter κ for structures featuring tstrut = 0.3 mm, 0.4 mm, 0.7 mm,

1 mm and were found to be σ ∼ 0.22, 0.21, 0.2, 0.14, respectively. 
These suggest effective variabilities of σ

κ ∼ 0.10, 0.17, 0.2, 0.13, which 
were only marginally different than their spatially uniform counterparts 
that exhibited σ

κ ∼ 0.11, 0.14, 0.21, 0.14, respectively. 
It is clear from this analysis that the spatial distribution of defects can 

significantly alter the mechanical response of structures. In order to test 
the efficacy of a simplified, e.g. single parameter model (cf. Eq. (8)) at 
accounting for such variances, the Bayesian inferencing models illus
trated in Figs. 6 and 7 were merged. For doing the same the posterior 
distributions of κ for various structures comprising uniform defects (e.g., 
distributions illustrated in magenta corresponding to last iteration in 
Fig. 6) were used as prior and updated with mechanical response of 

structures comprising high density of surface defects. The most likely 
point estimates of κ were extracted in each step and the goodness of fit of 
the model given in Eq. (8) was found with respect to all data sets, e.g., 
surface defects + uniform defects. This was done individually for 
structures featuring different strut thicknesses. Fig. 8 illustrates this 
framework. The most likely point estimates of κ predicted by the merged 
Bayesian framework were κ = 2.171, 1.424, 1.101, 1.195. These values 
provided only marginally different (sometimes exceeding) goodness of 
fits, e.g., R2 = 0.98, 0.94, 0.96, 0.91, for tstrut = 0.3 mm, 0.4 mm,

0.7 mm, 1 mm, respectively. Given that an equal number of instances 
comprising spatially uniform defects, and surface defects were used for 
constructing this model, these κ values were also approximately midway 
between the inferred values of the respective struts, e.g., κ = 2.210,

1.280, 1.217, 1.412, for uniformly distributed defects (cf. Table 2), and 
κ = 2.145, 1.623, 1.019, 1.097, for surface defects, respectively (cf. 
Table 3). Interestingly, merging of the two datasets within this Bayesian 
framework resulted in smaller standard deviations after all iterations 
were complete, e.g., σ ∼ 0.18, 0.14, 0.16, 0.12, when compared with 
standard deviations of distributions inferred from instances comprising 
surface, or uniform defects alone. This is a promising result that testifies 
to the efficacy of a single parameter model such as Eq. (8) in encapsu
lating different modalities of spatial defect distributions. However, the 
framework is based on an implicit assumption, that the mechanical 
response of structures comprising a high density of defects near the 
surface is not dramatically different than those comprising a spatially 
uniform distribution of defects. Realistically, differences in spatial dis
tribution of defects can arise in additively manufactured components if 
build parameters are appropriately changed. The manufacturing com
munity has generally focused on reducing the density of defects uni
formly throughout the volume, wherein a single modality of spatial 
defects is anticipated in real specimens. It is envisioned that the me
chanics of such unique modalities can be well encapsulated by the model 
in Eq. (8). 

3.3. The effect of roughness on mechanical response of lattice structures 

Fig. 9a shows the numerically simulated influence of sinusoidal 
surface roughnesses on the mechanical response of lattice structures. 
With respect to the perfectly smooth counterpart, lattice structures with 
rougher surfaces exhibit degradation in their relative moduli E*

Es
. It is seen 

from Fig. 9b that this degradation is highly dependent on the mechanics 
of the parent strut. For instance, a comparatively larger degradation 
caused by roughness was seen in lattice structures with thinner struts. 
This trend was quantified as the ratio of the relative moduli of rough, e. 

g. tmin
tmax

∼ 0.8, and smooth struts, e.g., tmin
tmax

= 1, as 
E*

rough
Es

/
E*

smooth
Es

∼ 0.94, 0.82,

0.95for tstrut = 0.7 mm, 0.4 mm,0.3 mm, respectively. The source of this 
degradation was found to lie in the roughness peaks of these surfaces 
that cannot efficiently accommodate external deformation boundary 
conditions imposed on the lattice structure. This is evidenced in the 
rapid decay of stresses within them as shown in the inset in Fig. 9a. 
However, the GA model is incapable of modeling this effect because a 
sinusodal roughness despite producing a degradation in the mechanical 
response of lattice structure E*

Es 
does not change its relative density ρ

*

ρs
. This 

shortcoming can be addressed by following a similar line of thought as 

Table 3 
Fitted Coefficients for Modified Gibson-Ashby Law that Incorporates Effects of Surface Distributed Porosity.  

Set # Strut type tstrut (mm)  α  C n κ  R2  

1 Smooth struts 0.1–1.0 / 1.334 2.763 / 0.9997 
6 Porous struts- surface 0.3 0.0340–0.1957 1.334 2.763 2.134 0.9608 
7 Porous struts- surface 0.4 0.0289–0.1286 1.334 2.763 1.623 0.9701 
8 Porous struts- surface 0.7 0.0264–0.1075 1.334 2.763 1.016 0.9629 
9 Porous struts- surface 1 0.0314–0.0791 1.334 2.763 1.092 0.9393  
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given in Section 3.2 where it was assumed that degradation to the me
chanical response of lattice structures takes place in relation to their 
current state (Ref. Eq. (6)). This hypothesis results in the equation: 

E*

Es
= C(

ρ*

ρs
)

nkr1 ekr2
tmin
tmax (11) 

Here, tmin
tmax

≈ 1 − 4a
tstrut 

(e.g., when a
tstrut

≪1), is a measure of the surface 
roughness. This formulation suggests that for a smooth surface, i.e. tmin

tmax
=

1,E*

Es
= C(

ρ*

ρs
)

n, implying kr1 = e−kr2 . Fig. 9b shows the comparison of the 
original GA model with this roughness effect term for nominal strut 
thickness tstrut = 0.3 mm, 0.4 mm, 0.7 mm and roughness metric tmin

tmax 

ranging between 0.5789 −0.9868, 0.6667 −0.9900, 0.7949 −0.9943, 
respectively. The fitting coefficient for these lattices were found to be 
(kr1, kr2) = (0.9574, 0.1091), (0.5881, 0.612), (0.7282, 0.3341), 
respectively. It is noteworthy that here, kr1 ≈ e−kr2, e.g. kr1 ×

Fig. 7. Variability analysis for lattice structures featuring surface defects. Strut thicknesses tstrut in the figures correspond to: (a) 0.3 mm, (b) 0.4 mm, (c) 0.7 mm, (d) 
1 mm. The subfigures on the left hand side show the inferred distribution of parameter κ in the last 5 iterations. The horizontal line shows the uniform prior dis
tribution. The vertical line corresponds to the nominal value of κ given in Table 3. The subfigures on the right hand side show goodness of fits R2 of the most likely 
point estimates of parameter κ inferred and their convergence to the nominal κ shown using horizontal line, at various stages o.f the iteration. 
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ekr2 ∼ 1.07, 1.08, 1.02, respectively. This fitting coefficients produced 
coefficient of determinations R2 > 0.93, as listed in Table 4. 

The salient aspects of strain fields expressed by lattice structures with 
rough struts were studied via PCA. This is shown in Fig. 10 for left and 
right leaning struts separately. Towards this, the protocol described in 
Section 2.2 was followed. Here, strain fields obtained from struts 
featuring thicknesses tstrut = 0.3 mm,0.4 mm, and 0.7 mm and roughness 
parameters tmin

tmax
= 0.5789 −0.9868, 0.6667 −0.9900, 0.7949 −0.9943 

were used respectively. Note, porosity defects were ignored in this 
analysis. Due to this reason, a completely new set of principal axes can 
be generated, wherein the location of even defect-free struts, e.g. those 
featuring tmin

tmax
= 1 can be expected to be completely different than their 

analogous positions that the PCA using lattice structures with porosity 
defects would predict. Indeed, this was the case as seen in Fig. 10 where 
the projections of Fourier representations of autocorrelations of strain 
fields expressed values that did not match their aforementioned 

Fig. 8. Variability analysis for lattice structures featuring uniform and surface defects. Strut thicknesses tstrut in the figures correspond to: (a) 0.3 mm, (b) 0.4 mm, (c) 
0.7 mm, (d) 1 mm. The subfigures on the left hand side show the inferred distribution of parameter κ in the last 5 iterations. The vertical line corresponds to the 
nominal value of κ that is obtained from the instances featuring spatially uniform distribution of defects. The subfigures on the right hand side show goodness of fits 
R2 of the most likely point estimates of parameter κ inferred. The horizontal lines show nominal values of κ for uniform and surface defects. 

P. Jiang et al.                                                                                                                                                                                                                                    



Computational Materials Science 199 (2021) 110716

12

counterparts seen in Fig. 5. Nonetheless, even this new set of principal 
axes were able to separate lattice structures featuring different nominal 
strut thicknesses tstrut = 0.3 mm, 0.4 mm and 0.7 mm. Further, their 
projection values along the first principal component also showed 
monotonic increase with respect to the parameter tstrut . 

The projections of auto-correlations of strain fields in their Fourier 
representations that were obtained from lattice structures with rough 
struts expressed interesting variations that were not exhibited by their 
smooth counterparts. Herein, the strut with the smallest thickness used 
for this analyses, e.g. tstrut = 0.3mm exhibited little separation between 
their smooth and rough counterparts on the space spanned by the first 2 
principal axes.This separation was however more dominant, albeit 
similar in lattice structures with thicker struts tstrut = 0.4 mm and 
0.7 mm. Further, unlike strain fields expressed by lattice structures with 
porous struts, those resulting from rough struts generally did not ‘clus
ter’ in the vicinity of each other, but neatly arrange linearly in this space 
spanned by the first two principal axes. This is most obvious for strain 
fields obtained from lattice structure featuring tstrut = 0.4 mm. The 
reason behind this observation is that in comparison with the random
ness of porosity defects that manifested the random clustering of pro
jections seen in Fig. 5, strain fields here were influenced by periodic sine 
waves that obviously lack this randomness. This lack of randomness 
produces more regular projections as seen in Fig. 10. Herein, the lattice 
structure with the thickest strut tstrut = 0.7 mm studied for this analyses 
exhibited variations in their projections on the principal axes that were 
also highly correlated to their surface roughness measure, viz. tstrut−2a

tstrut+2a as 
shown in Fig. 10. 

3.4. The combined influence of porosity and surface roughness defects on 
mechanical response 

Insights obtained so far in Section 3 can enable formulation of pre
dictive models of the mechanical response of complex lattice structures. 

Towards the same, it is realized that typical lattice structures possess a 
combination of porosity and surface roughness defects. In this regard, a 
more complex and more compromised response can be expected in a 
typical lattice structure. This was analyzed by simulating the response of 
1 × 1 dimensional structures with struts featuring tstrut = 0.4 mm. 
Herein, two different roughness measures were tested featuring sine 
amplitudes a = 0.004 mm, 0.016 mm, corresponding to Ra = 2.5 μm,

10.2 μm, respectively. Both surface roughnesses were generated with 
the same wavelength that was used to calibrate the model described in 
Section 3, viz. λ = 108 μm. Porosity fractions similar to those used for 
calibration were assigned to these lattice structures, whereby relative 
densities ρ*

ρs 
between 30% −32.5% were analyzed. The macroscopic 

behavior of these structures was modeled as: 

E*

Es
= C

(
ρ*

ρs

)n

e−κα kr1 ekr2
tmin
tmax (12) 

This form multiplicatively combines the effects of porosity and 
roughness within the same response equation. Note, constraints on the 
respective porosity and roughness terms, viz. e−κα,kr1 ekr2

tmin
tmax , respectively, 

ensure that Eq. (12) collapses to Eq. (11), Eq. (8), or simply the Eq. (1), 
in the absence of porosity, or roughness defects, or in a pefect defect-free 
state, respectively. Herein, such a multiplicative combination also 
implicitly assumes that roughness or porosity defects do not affect the 
fundamental influence of each in the presence of the other. 

Figs. 11 shows results of two instances of lattice structures pertaining 
to roughness values Ra = 2.5 μm, Ra = 10.2μm, and porosity fractions 
α = 0.0386, 0.0482, respectively. Stress fields in these lattice structures 
simultaneously shared characteristics with those that exclusively 
featured porosity, and surface roughness defects (cf. Sections 3.2, 3.3, 
respectively). These characteristics include stress concentrations in the 
vicinity of porosity defects, like in Fig. 4, and decaying stress fields 
within roughness peaks, like in Fig. 9. Figs. 11b, d show the mechanical 
response of such lattice structures featuring a combined influence of 

Fig. 9. (a) Stress field of lattice structure with surface roughness, featuring λ = 0.108 mm, a = 0.016 mm and tstrut = 0.4 mm. (b) Fitting for lattice structure with 
tstrut = 0.4 mm and different roughness on struts. 

Table 4 
Fitted Coefficients for Modified Gibson-Ashby Law that Incorporates Effects of Surface Roughness.  

Set # Strut type tstrut (mm)  tmin/tmax  C n kr1  kr2  R2  

1 Smooth struts 0.1–1.0 1 1.334 2.763 / / 0.9997 
10 Rough struts 0.3 0.5789–0.9868 1.334 2.763 0.9574 0.1091 0.9326 
11 Rough struts 0.4 0.6667–0.9900 1.334 2.763 0.5881 0.612 0.9665 
12 Rough struts 0.7 0.7949–0.9943 1.334 2.763 0.7282 0.3341 0.9720  

P. Jiang et al.                                                                                                                                                                                                                                    



Computational Materials Science 199 (2021) 110716

13

porosity and surface roughness (cf. hollow triangles). For comparison, 
the response predicted by the original GA form, e.g., Eq. (1) that is 
calibrated for 3D BCC structures, and that calibrated for our 2.5D plane 
stress BCC structures is also shown in this figure using green, and red 
curves, respectively. Towards delineation the influences of roughness 
and porosity, fitting coefficients gathered from controlled studies 

described in Sections 3.2, and 3.3 were initially used here, viz. (C,n,κ,kr1,

kr2) = (1.334, 2.763, 1.288, 0.5881, 0.612). These fitting coefficients 
were able to characterize the response E*

Es 
of lattice structures within 15% 

of the values that were predicted numerically. It is noteworthy that this 
model, based on multiplicative coupling of porosity and surface 

Fig. 10. PCA for elastic strain from rough struts. Hollow markers on the left column represent strains extracted from left leaning struts, e.g.,top-left to bottom-right, 
while solid marker on the right columns represent strains extracted from the right leaning struts. 
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roughness defects slightly overestimated the response compared with 
that predicted by numerical simulations. This suggests an interaction 
between these defects, which further degrades their relative elastic 
moduli, e.g., when both defects are present. In the present work, this 
discrepancy could be resolved by adjusting the value of kr1 to 0.57. This 
relatively minor change produced coefficient of determination of R2 >

0.95 in both these cases, as listed in Table 5. 

3.5. Implications of this work 

The simulation framework described in this paper was used to 
demonstrate how porosity defects and topography defects introduced by 
metal AM processing degrades the relative stiffness of a printed lattice. 
However, the complexity and significance of these defects in practice 
have been understated thus far. So are the challenges of correcting them. 
The reasons are as follows. 

• Stiffness is an extremely important performance measure for a lat
tice, but fatigue resistance is equally if not more important. 
Furthermore, it is believed to be far more sensitive to defects.  

• Metal AM processes do not leave behind porosity defects that are 
uniformly distributed throughout the bulk. Instead, a higher con
centration are typically observed near the surface, many of these are 
surface interconnected. As such, they are incapable of being healed 
by HIP. Furthermore, under high temperature conditions, bulk 
porosity defects healed by HIP often reappear to varying degree.  

• The surface topography created by metal AM processes is heavily 
influenced by staircasing and partial powder solidification. In turn, 
these factors are extremely sensitive to surface orientation relative to 
the build direction. Consequently, metal AM parts typically have 
surfaces with extremely heterogenous topography.  

• Simple quantitative measures of surface topography such as Ra are 
not necessarily good metrics to target, because it is possible for a 

Fig. 11. Stress field of lattice structure with λ = 0.108 mm, (a) a = 0.004 mm and α = 0.386, and (c) a = 0.016 mm and α = 0.0482. (b, d) The mechanical response 
of lattice structures with strut dimension corresponding to (a, c), at various relative densities ρ*(α)

ρs
. 

Table 5 
Fitted Coefficients for Modified Gibson-Ashby Law that Incorporates Effects of Uniform Porosity and Surface Roughness.  

Set # Strut type tstrut (mm)  α  tmin/tmax  C n κ  kr1  kr2  R2  

1 Smooth struts 0.1–1.0 / / 1.334 2.763 / / / 0.9997 
13 Rough, porous 0.4 0.048–0.161 0.961 1.334 2.763 1.288 0.57 0.612 0.9536 
14 Rough, porous 0.4 0.048–0.167 0.923 1.334 2.763 1.288 0.57 0.612 0.9792  
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surface riddled with surface interconnected porosity defects to have 
the same Ra value as one that does not. Consequently, while a surface 
may appear to be fatigue resistant on account of its perceived 
smoothness, it may not be.  

• An objective of the metal AM community is to print ever thinner 
lattices. However, the invariable increase in defect concentration is 
going to be a limiting factor. In response, AM processing technology 
will continue to advance so that lower defect concentrations may be 
realized. However, this will invariably require greater process lead 
time or greater process cost to achieve. 

• A super finishing process cannot be used to directly control geome
try. It is a material erosion process, that if carried out in a repeatable 
manner, leads to consistent localized material removal and consis
tent localized surface topography. However, process development 
requires multiple iterations of trial, measurement, part redesign, and 
process redesign to derive feasible solutions.  

• Super finishing processes remove material from surface topographies 
in different ways, causing the geometries of the peaks, valley, and 
surface interconnected defects to evolve in different ways. The rate at 
which they remove material is process dependent as well.  

• The localized removal rate of super finishing processes is relatively 
low. But they are capable of completely machining through skin into 
the bulk volume with sufficient processing time. Consequently, they 
are capable of not only removing surface defects but sub surface 
defects as well. 

In summary, defect management is critical to the performance and 
cost of printed parts, especially those that are light weighted with lat
ticing or topology optimization. With continued development, the 
simulation framework presented in this work can become a powerful 
tool to explore how defect distribution and geometry affect lattice 
stiffness, buckling, and stress concentrations. Knowledge of this will 
allow the design and processing community to make better engineering 
decisions. 

4. Conclusions and future work  

1. The present work demonstrates the effect of volumetric porosity and 
surface roughness defects on the elastic response of 2.5 D BCC lattice 
structures. Implementation of this workflow involved the python 
interface of Abaqus that was used to generate these structures and 
implant them with circular porosity and sinusoidal surface roughness 
defects. Subsequently their elastic response was numerically simu
lated, whereby their relative elastic moduli were characterized.  

2. It was seen that the influence of porosity defects and surface 
roughnesses can be modeled as exponential degradations to the 
response of the defect-free lattices. Herein, fitting coefficients of 
these exponential degradation terms were found to be influenced by 
the parameters of the parent structure itself. Lattices with thinner 
struts generally exhibited more rapid degradations in response to 
increasing densities of porosity defects and larger surface 
roughnesses.  

3. A Bayesian inferencing framework was formulated to delineate the 
effect of changes in spatial distribution of porosity defects on the 
mechanical response of the parent structures. It was seen that 
different modalities of these distributions can profoundly affect the 
mechanical response. The Bayesian inferencing model was trained 
using an equal number of simulated instances of both types of 
structures, e.g., those comprising uniformly distributed, and surface 
porosities, for various strut thicknesses tstrut studied here. This model 
was able to predict a most likely point estimate of the primary 
random variable κ pertinent to porosity defects while providing a 
reduction in the variance of its distribution.  

4. Principal component analysis was used to delineate salient aspects of 
the mechanical response of the aforementioned 2.5D BCC lattice 
structures. This involved characterization of auto-correlation 

functions of strain fields followed by their transformation to the 
Fourier space. The first two principal components could effectively 
classify defect-free lattice structures. However, this stark separation 
was found to collapse in presence of porosity defects, wherein pro
jections pertaining to lattices featuring various strut thicknesses were 
found to cluster around closely spaced means. In comparison, anal
ogous measures extracted from lattices with rough surfaces showed 
better separation in the space spanned by principal components 
produced from their response.  

5. Analysis of the combined influence of porosity defect and surface 
roughness on the mechanical response of lattice structures suggested 
that these individual influences may be coupled multiplicatively in 
the Gibson-Ashby equation, especially if the presence of one family 
of defects does not alter the influence of another.  

6. This work clearly suggests that the mechanical response of lattice 
structures is complicated by the presence of defects and surface 
roughness in a way that is intimately tied to attributes of the parent 
lattice itself. These linkages were not probed here in the context of 
other geometrical attributes such as lattice aspect ratio, lattice type, 
various modalities in spatial distributions of porosity defects, and 
wavelength spectrum of surface roughness, and this will be pursued 
in the near future. 
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