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ract 

is research, a theoretic physics-based framework for identification of defects via analysis of strain fields is presented. This framework 
prises identification of self-similarity of strain fields followed by their dimensionality reduction using kernel based principal component 
sis. The efficacy of this framework is tested qualitatively, by visual analysis, and quantitatively, using numerical classification algorithms. 
ee high (>95%) accuracy of classification via cross-validation studies using support vector machine algorithm. These results suggest that 

n field can provide a viable approach for constructing highly robust in line defect detection system in modern manufacturing environments. 
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troduction 

unctional requirements of modern appliances can be 
eved using a combination of advanced geometries, and 
rostructures. The fabrication of such devices is often 
plicated by instabilities in the response of materials to 
momechanical conditions of manufacturing. These 
bilities produce volumetric defects that compromise 
tionality. This can be addressed using in-line monitoring 
aterial behavior in pursuit of identifying the onset of defect 
ration followed by timely mitigation. However, this is a 
lenging endeavor: (i) manufacturing defects are occluded 
ch makes it challenging to ‘observe’ their generation 
dly (e.g., optically) for timely mitigation, and (ii) they 
ct the behavior of the parent material in complex ways that 
often not well understood. This makes it challenging to 
ematically formulate ‘signatures’ that may be used to detect 
cts [1, 2]. Traditional approaches for in-line monitoring 
lve detection of behavior anomalies instigated by defects 

ow-dimensional signals such as force, and acceleration. 
 approach is however susceptible to noise in manufacturing 
ronments. Theoretically, these shortcomings can be 

alleviated if the physics of the material being manufactured are 
accounted for within the in-line monitoring framework itself.  

In this work, we provide numerical proof-of-concept of a 
framework for in-line monitoring of material health that is 
directly based on the physics of its behavior. Specifically, we 
describe how the linear effects of volumetric defects can be 
delineated in pursuit of their classification. For demonstrating 
the proof-of-concept, we ask the fundamental question: can we 
use elastic strain fields as indicators of the morphology of 
underlying defects. Our proposed solution to this problem is 
based on self-similarity analysis of elastic deformation fields 
with the underlying hypothesis- the 2-point correlation function 
of an elastic deformation field contains information to classify 
anomalous features of the parent microstructure. We look at the 
morphology of defects because their characteristics: (i) can be 
correlated to their thermomechanical origins [4]. Thus, their 
detection can advise revision of process parameters, and (ii) 
have been previously shown to affect response [5]. Our 
approach to this solution is inspired from other works on 
statistical analysis of microstructures [6] and involves 
dimensionality reduction of the 2-point correlation functions of 
elastic deformation fields with the scientific hypothesis- that a 
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small number of principal directions in the domain of elastic 
deformation fields can classify a larger number of 
microstructure types.  

In the present work, we limit ourselves to only numerical 
data that is generated using a linear finite element framework. 
This choice enables us to exercise precise control as we 
establish the proof of concept of our proposed methodology for 
characterization of defect types using strain field signatures. 
We however note that numerically generated data is bereft of 
noise which is ubiquitous in empirical data. We attempt to 
delineate some plausible compromising effects of noise on the 
efficacy of this methodology in the forthcoming sections.  

Section 2 presents a review of relevant literature. Section 3 
presents the short description of the numerical methods used in 
this study. Section 4 provides results, that are then discussed in 
section 5. Section 6 provides some immediate future directions 
of research before section 7 that summarizes this research and 
provides concluding remarks.  

2. Literature Review 

In-line monitoring systems comprise in-situ modules for 
acquiring data, modules for processing acquired data, modules 
for decision making based on the processed data, and finally, 
modules for feedback control of the manufacturing platform. 
Such systems must provide within a reasonable amount of time 
the likelihood that a manufacturing step resulted in a defect, 
and if possible, the nature of the defect. This information can 
then be used to pause the manufacturing process until the 
source of the defects is identified and mitigated. All sources of 
latency must be addressed in in-line monitoring systems to 
ensure high throughput. Herein, the bottlenecks in such 
systems often involve data acquisition, and processing. To 
address these issues, several studies have looked at efficient 
methodologies for data acquisition, and processing. These are 
summarized in the following two subsections. 
 
2.1 Methodologies for data acquisition 
 

Methodologies to acquire manufacturing data are advised by 
a combination of the platform configuration, process physics, 
and material state variables such as temperature, and density. 
These methodologies can be dominantly classified into two 
types, viz. low-energy and high-energy. A classic low energy 
source used for imaging defects involves ultrasonic imaging, 
wherein an ultrasonic sound wave is transmitted through the 
component volume. Interaction of the ultrasonic wave with 
internal defects such as cracks, and porosities results in the 
wave being reflected. Characteristics of the reflected wave can 
be recorded, and subsequently processed to infer the presence 
of the corresponding occluded defect features. Ultrasonic 
waves are often used for detecting defects in castings [7,8], and 
welding [9]. More recently, their use has been explored in 
detecting defect features in additively manufactured 
components [10,11].  

A second low-energy defect characterization methodology 
involves optical imaging. Unlike ultrasonic waves that traverse 
through the volume of the component, optical imaging can only 

acquire information from its surface. Nonetheless, features 
captured within these images have been used to infer presence 
of volumetric microstructural defects, e.g., in welding [12], and 
rolling operations. More recently, several applications of 
optical defect detection have been realized in additive 
manufacturing (AM) for detecting volumetric defects [13,14]. 
This is possible because AM involves a layer-by-layer build 
routine. This enables the optical imaging of each individual 
layer wherein subsequent data-processing can indicate the 
genesis of volumetric defects on the present layer allowing for 
timely intervention. Infra-red waves have also been used to 
detect presence of volumetric defects such as internal voids 
[15,16]. Here, the premise underlying detection of volumetric 
defects such as voids is their ability to perturb the dynamics of 
heat, which then results in anomalous signatures in the infra-
red field emanated by the component.  

High energy sources for in-line monitoring involve 
electromagnetic penetration with X-Rays, e.g., via computed 
tomography [17-19], and neutron beams, e.g., via cyclotron 
beam sources [20]. These methodologies for in-line defect 
detection are however resource intensive which limits their use 
for investigations on fundamental mechanisms of material 
behavior during manufacturing.  

 
2.2 Methodologies for processing acquired data 
 

Crucial towards the implementation of an in-line defect 
monitoring system is rapid processing of acquired data to infer 
presence of defects in the component being fabricated. This 
technical challenge is often approached as detection of 
anomalous features in the processed data, whereby presence of 
a defect is inferred. To this end, considerable research has been 
performed with the objective- to classify a feature in the 
acquired data as anomalous, rapidly, and reliably. 

Common implementations of this concept include analysis 
of spectrums of machining force signatures [21]. Here, the 
onset of defects, e.g., due to tool wear, often produces 
vibrations that occupy a distinct part of the spectrum that is 
classified as anomalous. This concept is often also used to 
identify changes in cutting mechanisms even with fresh tools 
with the objective- to classify the material itself. Other data-
processing approaches for detecting defects include machine 
learning algorithms such as Support Vector Machine (SVM) 
[22-24], k-nearest neighbor clustering [25-27], various types of 
neural networks [28-33], and random forests [26, 34-34]. 
SVMs tend to work well when there is a clear separation 
between different data classes (e.g., samples with and without 
defects) and contend well with high dimensionality; however, 
the training time often increases substantially when there are a 
large number of samples. In contrast, the k-nearest neighbors 
algorithm simply averages over the k points nearest to a sample 
in order to render a classification, and as such has negligible 
training time but can be slow during inference. Neural 
networks of various types have also been useful in this domain, 
and are capable of representing extreme nonlinearity in the 
training data. Finally, random forests are a common ensemble 
technique, rendering a classification by combining the 
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individual classifications of a set of decision trees trained on 
different subsets of the data. 

These data-processing methodologies are primarily used for 
analysing the raw acquired data in pursuit of classifying 
features as anomalous. Nonetheless, another intermediate 
processing step may be added before such defect detection 
algorithms are employed. An example of the same includes 
detection of defects in large building structures [36]. Here, 
time-separated images of the same structure are used to 
calculate strain fields, which characterize deformation to the 
building structure. From these fields, evolution of anomalous 
features in the building structure are subsequently deduced to 
characteristics its structural health. 

Characterization of strain fields from images involves the 
use of image correlation algorithms for calculation of 
displacement fields, which are subsequently differentiated to 
produce strain fields [37,38]. Here, sources of inaccuracy are 
dominantly two-fold comprising: (i) resolution of the optics 
used for acquiring images of the structure, and (ii) noise 
associated with image acquisition. To this end, the accuracy of 
defect detection using hand-held optical devices, e.g., 
smartphones cameras has been studied [39]. It was shown that 
a Samsung Galaxy S4 phone that was released in year 2013 can 
detect certain kinds of defects that are larger than 20 𝜇m in size. 
Since then, optical assemblies that are meant to augment the 
resolution of smartphone cameras have been created and are 
commercially available. Presumably, the resolution of 
smartphone cameras that are equipped with such optical 
assemblies is amplified, making them capable of detecting finer 
defects. This is used as a practical premise in the current study, 
that handheld devices can be used to detect defects fine defects 
whose length scales are close to the optical limit.  

3. Methods 

3.1 Generating of numerical strain fields  
 

The data used for this research comprised numerically 
generated strain fields of ASTM-E8 specimens that were 
endowed with volumetric defects and subsequently subject to 
elastic tensile deformation in numerical computing software 
Abaqus. This data was generated using the Python scripting 
interface of Abaqus and is available in an opensource 
repository [3]. The generation procedure involved creation of 
numerical ASTM-E8 plane strain tensile specimens featuring 
dimensions 6 𝑚𝑚 × 38.1 𝑚𝑚. These tensile specimens were 
embedded with circular, elliptical, rectangular, triangular, 
peanut, and crescent shaped defects to produce respective 
defect area fractions of 7% − 9%. These numerical specimens 
were subsequently subject to tensile deformation of 𝜖∼0.003 in 
the plane strain mode. Subsequently, the strain field 
components along the tensile axis were extracted at nodal 
points and discretized onto a square grid featuring a resolution 
of 0.1 𝑚𝑚 /𝑝𝑖𝑥𝑒𝑙. Zones that lie within the defects were 
assigned a strain 𝜖 = 0. A total of 300 data specimens were 
generated for the present research (50 per defect type).  

Fig. 1 shows instances of the strain field 𝜖ଵଵ obtained from 
plane strain tensile deformation of the numerical ASTM E8 

specimens featuring various defect types. These specimens 
were deformed to the same global strain of 𝜖 ∼ 0.003. However, 
it is qualitatively evident from these fields that the nature of the 
underlying defect affects it. This effect is most obvious via 
comparison of the crescent defect specimen with the triangular 
defect specimen. The former features a concave shape with two 
sharp points where strain concentrations can be seen. The latter 
features a convex shape with three sharp corners. However, this 
triangular defect shape, along with its interaction with 
neighboring defects tends to produce strain concentrations at 
its base, rather than at all three corners as can be expected. 
These features are shown using white circles in Fig. 1.  

 
3.2 Extracting 2-point correlations  
 

The elastic strain fields produced using finite elements were 
subsequently processed to produce 2-point correlation 
functions in the frequency domain. The 2-point correlation of a 
function 𝑓 is defined as [40]: 

𝐶 = ⟨𝑓൫𝑟̃ ) 𝑓൫𝑟ᇱ෩ ൯ ൿ = ೾ ௙(௥̃)௙൫௥̃ᇲ൯ௗ௥̃஺׬                               (1) 

Here, 𝑟̃ , and 𝑟′෩  are two vectors that lie in the domain of 
function 𝑓, ⟨⟩ refers to the spatial average that is expanded on 
the RHS of the equation as the integral over the domain Ω of 
the function 𝑓, divided by the size A of the domain. The 2-point 
correlation function 𝐶 characterizes an averaged metric of how 
self-similar two different points in the domain of the function 𝑓 are. The utility of the 2-point correlation has been explored 
in reconstruction of synthetic microstructures that have 
equivalent self-similarity as an empirical characterized sample 
[41]. These synthetically produced microstructures visually 
appear like the original empirical samples from which they 
were generated, and hence presumably also behave like the 
parent empirically characterized counterparts.  
 

 
 
Figure 1. Strain fields 𝜖ଵଵ obtained from simulated plane strain deformation 
of specimens featuring circular, elliptical, square, peanut, triangular, and 
crescent shape defects (top to bottom). The min of all strain fields is 𝜖ଵଵ= 0, 
and max of the respective strain fields is 𝜖ଵଵ= 5.8 ×10-3, 5.8 ×10-3 ,4.7 ×10-3, 
3.8 ×10-3, 6.8 ×10-3, 8 ×10-3, respectively. 
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In this study, it is hypothesized that 2-point correlations of 
strain fields implicitly contain signatures of the microstructures 
from which they originated. If this is true, the nature of the 
microstructure can be inferred by analysis of its strain fields, 
which is less resource intensive than direct characterization of 
the microstructures themselves. The former, e.g., 
characterization of strain fields can be achieved using optical 
characterization, in comparison with latter, e.g., 
characterization of microstructures, that often require sample 
preparation by polishing, and subsequent etching or electron 
microscopy. To this end, we also realize using the convolution 
theorem that the 2-point correlation of a function can be 
represented in the frequency domain concisely. Hence 
subsequent calculations are performed in the frequency 
domain. The convolution theorem is given by: 
  𝐹(𝐶) = 𝐹(𝑓). 𝐹ത(𝑓)              (2) 
 
where 𝐹 represents the Fourier transform, 𝐹ത being its 
conjugate, and the RHS represents element wise multiplication 
of amplitudes of Fourier wave components of function 𝑓. 
     For software implementation of this concept, the ii 
component of the strain tensor is chosen arbitrarily. The reader 
is referred to the i direction in the reference axis in Fig. 1. This 
eventually enabled characterization of 2-point correlation 
functions using the eqn. 2 with 𝑓 = 𝜖௜௜. Results of this exercise 
are shown in Fig. 2. 
 

 
 
Figure 2. Autocorrelation functions for corresponding strain fields shown in 
Fig. 1, for circular, elliptical, square, peanut, triangular, and crescent shape 
defects (left to right). The color bar is logarithmic in scale. The (𝑙𝑛(1+𝑚𝑖𝑛), 𝑙𝑛(1+ 𝑚𝑎𝑥)) values of the respective autocorrelation are (−15.7,9.7), (−13.0, 
9.4), (−15.4, 9.9), (−13.7, 9.9), (−14.9, 9.9), (−20.7, 9.6). 
 
3.3. Classifying 2-point correlations using principal 
component analysis 
 

Classification of the 2-point correlations of elastic strain 
fields was performed using kernel based principal component 
analysis [46,47]. In this approach, the original data points, e.g., 
frequency space representations of 2-point correlations of 

strain fields, e.g., 𝐹(𝐶) in eqn. 2, are mapped to a feature space Φ(𝐶). This mapping enables the construction of the kernel 
matrix as a function of the dot product between the zero 
normalized projections of the 𝛼th, and 𝛽th data point: 

 𝐾ఈఉ = ቆ ቀΦ(𝐹(𝐶ఈ)) − ଵே ∑ Φ(𝐹(𝐶௔))ே௔ୀଵ ቁ் ቀΦ൫𝐹(𝐶ఉ)൯ −
ଵே ∑ Φ(𝐹(𝐶௔))ே௔ୀଵ ቁቇఊ                  (3) 

 
Here, 𝐹(𝐶ఈ) is the frequency space representation of the 2-
point correlation of the 𝛼 th 𝜖௜௜  strain field, in the columnar 
form, and 𝑇 refers to transpose. For the present research, it was 
seen that a simple dot product operation with parameter 𝛾 = 3 
was able to adequately classify the strain fields. Herein, Φ(𝐹(𝐶ఈ)) is the columnized form of the feature representation 
of data point, e.g., Φ(𝐹(𝐶ఈ)) = 𝐹(𝐶ఈ) in this work. Finally, 𝑁 
is the number of samples used for constructing the kernel 
matrix. Of the total number of data points generated, e.g., 300, 𝑁 = 180 samples (e.g., 30 for each microstructure type) were 
used for constructing the kernel matrix. This implies that 
dimensionality of the kernel matrix itself is 180 × 180.  

Construction of the kernel matrix enables classification of 
the frequency space representations of the 2-point correlations 
of the test strain fields 𝐹(𝐶௧௘௦௧)  (e.g., 20 for each 
microstructure type). This involves finding the eigen values of 
the kernel matrix. Subsequently, the projections of the feature 
space mappings of the ‘test’ 2-point correlations Φ(𝐹(𝐶௧௘௦௧)) are obtained with the eigen vectors. For the same, Φ(𝐹(𝐶௧௘௦௧)) is represented as a linear sum of its projections on 
the respective basis vectors Φ(F(𝐶ఈ)) that were used to 
construct the kernel matrix. Here,  𝛼 ∈ {1,2, . .180} wherein a 
valid projection of the feature space representations of the test 
data, viz. Φ(𝐹(𝐶௧௘௦௧)) can be obtained on the Eigen vectors. To 
obtain these projections, the two eigen vectors with the largest 
two eigen values were chosen.  

4. Results 

4.1 Eigen values of the kernel matrix 
 

The nature of these principal components obtained from the 
kernel matrix was evaluated by finding their cumulative 
fractional eigen values, or the total amount of variance that is 
captured from the original data using a progressively larger 
number of principal components. Fig. 3 shows the results of 
this analysis. It is seen that even the first principal component 
can account for > 99% of the variance in the feature space 
projections of the strain fields. This is expected given that 
defects account for only 7%-9% of the area fraction of the 
specimens, wherein the strain fields comprise fundamentally 
similar characteristics with subtle differences that are captured 
by a small number of additional principal components. Further, 
the variance captured by subsequent principal components 
decrease monotonically. 
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4.2 Classification of microstructures 
 

Towards understanding the efficacy of these principal 
components (PCs) at classification of microstructures, the 
projections of the 2-point correlation functions 𝐹(𝐶௔)  were 
plotted with respect to the first two eigen vectors of the kernel 
matrix. These vectors are hereafter referred as PC1, and PC2, 
respectively. Results are shown in Fig. 4, where hollow/solid 
markers refer to training/testing datasets, respectively. It is seen 
that the first principal component PC1 can sufficiently 
distinguish between several defect shapes. Strain fields 
originating from specimens containing crescent defects cluster 
towards the left at smaller values of PC1 (green diamonds). In 
comparison, strain fields originating from square, peanut, and 
elliptical shapes (squares, stars, and inverted triangles, 
respectively) cluster towards the right, e.g., at larger values of 
PC1 and show greater spreads along PC2. Interestingly, peanut, 
ellipse, and rectangular data points were seen to feature similar 
values of PC1. Origins of this behavior can be expected to lie 
in the similarity across these defect shapes in as it pertains to 
their mechanical behaviour. 

 
 
Figure 3. Fractional variance accounted for by principal components of 2-
point correlation fields (cf. Fig. 2.).  
 
Fig. 4 visually confirms that strain fields contain sufficient 
details for classification of numerically generated specimens 
based on the shapes of their defects. The robustness of this 
concept for identification of microstructure defect features 
were quantified by training a series of Error Correcting Output 
Codes (ECOC) Support Vector Machine (SVM) model [42,48], 
using 10-fold cross-validation [49] on the data identified in 
earlier sections. It was seen that not only are the clustering 
patterns in Fig. 4, qualitatively clear, but they also have 
quantitative value. When trained to classify the defect shapes 
using 2 principal components, 92.5±7.3% (mean ± standard 
deviation) of specimens in the validation fold are correctly 
classified. In order to construct a confusion matrix that shows 
how results are misclassified, we retrain a single ECOC SVM 
based with a 50% train/test split, and compute the confusion 
matrix based on the testing data. These results are displayed in 
a confusion matrix (see Fig. 5). We can observe that the model 
misclassifies circular defects as triangular, and also peanut-

shaped defects as elliptical. These categories are adjacent to 
one another in Figure 4, which provides some face validity for 
the confusion matrix. 

5. Discussion 

Results in section 2 suggest that elastic strain fields 
expressed by a parent specimen when subject to external loads 
are distorted in the presence of defects. These distortions 
manifest signatures in the frequency space of the strain field. In 
this section we explore an explanation for this characteristic. 
This explanation is inspired from Mura’s eigen-strain 
formulation for finding residual stresses 𝜎௜௝ because of eigen-
strain inhomogeneities 𝜖௜௝∗  dispersed in the matrix [43]. In this 
formulation, the total strain that results from these 
inhomogeneities is linearly decomposed as a summation of the 
eigen-strains themselves 𝜖௜௝∗ , and the resulting elastic strains 𝑒௜௝. This is given by equation: 

 𝜖௜௝ = 𝑒௜௝ ൅ 𝜖௜௝∗                         (4) 
 

 
 
Figure 4. Projections of 2-point correlation windows on principal components 
PC1 and PC2. The hollow markers refer to the 180 training datasets (30 X 6), 
whereas the solid markers refer to 120 testing datasets (20 X 6). 
 

 
 
Figure 5. Confusion Matrix created for ECOC SVM results obtained from 
kernel PCA shown in Fig. 4. 
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The methodology for solving for 𝑒௜௝  in eqn. 4 relies on 
calculation of force equilibrium, i.e., 
 σ௜௝,௝ = 0 ∀ 𝑖                 (5) 
 

The stress field σ௜௝ is provided using the elastic strain field 𝑒௞௟ , and the elastic modulus 𝐶௜௝௞௟  as σ௜௝ = 𝐶௜௝௞௟𝑒௞௟ . This is 
substituted in eqn. 5, resulting in:  

 𝐶௜௝௞௟𝑒௞௟,௝ = 0                    (6) 
 
Using eqn. 4, we get: 

 𝑒௞௟ = 𝜖௞௟ − 𝜖௞௟∗                                 (7) 
 

and 
 𝐶௜௝௞௟𝑒௞௟ = 𝐶௜௝௞௟(𝜖௞௟,௝ − 𝜖௞௟,௝∗ ) = 0                      (8) 
 

      A non-trivial solution to this equation is found by linearly 
decomposing the eigen-strain components in terms of their 
Fourier wave amplitudes, i.e., 

 𝜖௞௟∗ = Σ𝜖௞̅௟∗൫𝜉ሚ൯ exp(𝑖𝜉ሚ ⋅ 𝑥෤)  
 ⇒ 𝜖௞௟,௝∗ = 𝑖𝜉௝Σϵത∗൫𝜉ሚ൯ exp(𝑖𝜉ሚ ⋅ 𝑥෤) 
 

Here, 𝑖 = √−1, and 𝜉ሚ. 𝑥෤ = 𝜉௞𝑥௞. Expressing total strain as 
a derivative of displacement, e.g., ϵ௞௟ = 𝜕𝑢௞/ 𝜕𝑥௟  enables us 
to solve for total displacement as a function of its 
corresponding Fourier components as: 

 ϵ௞௟ = 𝜕Σuത௞൫𝜉ሚ൯ exp(𝑖𝜉ሚ ⋅ 𝑥෤)/𝜕𝑥௟ = 𝑖𝜉௟ Σuത௞ exp(𝑖𝜉ሚ ⋅ 𝑥෤)       (9) 
          

Thus, ϵ௞௟,௝ = డమ௨ೖడ௫೗డ௫ೕ = −𝜉௟𝜉௝ Σ𝑢ത௞(𝜉ሚ) exp(𝑖𝜉ሚ ⋅ 𝑥෤) , which 

after substituting in equation 8 provides:  
 −𝐶௜௝௞௟ξ୪ξ୨uത௞൫𝜉ሚ൯ exp(𝑖𝜉ሚ ⋅ 𝑥෤)  = 𝑖𝐶௜௝௞௟ξ୨𝜖௞̅௟∗ ൫𝜉ሚ൯ exp(𝑖𝜉ሚ ⋅ 𝑥෤)  (10) 
     

 
The solutions to 𝑢ത௞  are obtained from this equation.   

From these wave amplitudes, the displacement field 
components 𝑢௞ are reconstructed as a Fourier series as: 𝑢௞ =Σ𝑢ത௞ exp(𝑖𝜉ሚ ⋅ 𝑥෤).  Subsequently, strain field components 𝜖௞௟ =𝜕𝑢௞/ 𝜕𝑥௟  can be constructed by differentiating these 
displacement components. It is noted here that this argument, 
in the absence of surface traction equilibrium, viz., n୧σ୧୨ =0 ∀ 𝑗, conforms only to an infinite medium unlike our finite 
sized numerical ASTM E8 specimens. Nonetheless, the sizes 
of the defects are small compared with the size of the specimen, 
wherein the validity of this argument for finite sized samples 
may be implicitly assumed. This surface traction condition is 
of course naturally implemented in the finite element 
framework from which the strain fields shown in Fig. 1 were 
produced.  

This argument suggests that the strain fields originating 
from the interaction of voids with the globally imposed stress 

may be modelled as consequences of fictitiously imposed eigen 
strains. The use of fictitious eigen-strains to analyze total strain 
fields is well known [44,45]. These eigen strains must have 
sufficiently unique characteristics such that the resulting total 
strain fields 𝜖௞௟ , can be clustered (cf. Fig. 4). Further, the 
argument also shows that these strain fields may be completely 
represented in terms of wave amplitudes, e.g., as a spectrum. 
Herein, we note that from Eqn. 2 that 2-point correlations are 
simply squares of the amplitudes of the corresponding wave 
components in the spectrum. In this regard, the process of 
identifying principal components and clustering strain fields is 
equivalent to clustering the respective fictitious eigen-strains 
that implicitly contain characteristics specific to the geometry 
of the defects.  

Some consequences of these insights are demonstrated here. 
The first involves a study of the effect of artificial changes to 
the spectrum of a strain field on its ability to be clustered 
accurately. Such a change can be produced by blurring of the 
strain field. This can be achieved using a low pass filter of the 
form 𝑎ᇱ = 𝑎𝑒ିఈௗ(క෨ ) , applied in the frequency space. Here 𝑎 
refers to the original amplitude of the 2-dimensional wave 
component of frequency 𝜉ሚ , 𝑎′  being the filtered amplitude, 𝑑(𝜉ሚ)  the Euclidean distance of the frequency component 𝜉ሚ 
from the origin of the frequency space, and 𝛼 ∈ {0.05, 0.2} is 
an arbitrary parameter. Note, a larger 𝛼 parameter emulates a 
greater level of blurring. Figs. 6 and 7 show the consequences 
of this filtering using parameters 𝛼 = 0.05 and 𝛼 = 0.2, 
respectively. These images were obtained by inverse Fourier 
transformation of the filtered frequency space. For facilitating 
comparison, the strain fields in these figures correspond to 
those in Fig. 1, respectively.   
 

 
 
Figure 6. Strain fields 𝜖ଵଵ obtained from filtering (𝛼 = 0.05) of simulated 
plane strain deformation of specimens featuring circular, elliptical, square, 
peanut, triangular, and crescent shape defects (top to bottom). 
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Figure 7. Strain fields 𝜖ଵଵ obtained from filtering (𝛼 = 0.2) of simulated plane 
strain deformation of specimens featuring circular, elliptical, square, peanut, 
triangular, and crescent shape defects (top to bottom). 
 

As expected, a larger value of parameter 𝛼 results in greater 
blurring. It is interesting that compared with the filter featuring 𝛼 = 0.05 (e.g., Fig. 5), the filter with 𝛼 = 0.2 (e.g., Fig. 6) blurs 
the strain fields beyond recognition through the naked eye. 
Herein, the shapes of the defects that are still recognizable in 
Fig. 5 are barely (if at all) recognizable in Fig. 6. The filtered 
strain fields were also analyzed using the approach described 
in section 3.3. A new set of principal components was 
generated for each case. Fig. 8 and 9 show the results of this 
analysis for filter parameter 𝛼 = 0.05, and 0.2, respectively.  
This analysis suggests that blurring of the image causes only 
subtle changes to the ability of strain fields to be clustered. This 
inference is made simply by visual inspection, e.g., the clusters 
corresponding to different microstructure types are still 
uniquely visible. This implies that the dominant aspects of 
strain fields are accommodated by wave components featuring 
larger wavelengths, e.g., in their Fourier space representations. 
We do note that for filtering with 𝛼 = 0.2  (cf. Fig. 9), the 
peanut, and elliptical shapes show considerably larger overlap 
along the PC2 direction than the case with 𝛼 = 0.05 (cf. Fig. 
8), or 𝛼 = 0 (cf. Fig. 4). This observation generally highlights 
the importance of the ‘cleanliness’ of the acquired data for 
classification of microstructures. 

 

 
 
Figure 8. Projections of 2-point correlations 𝐹(𝐶) obtained from their filtered 
strain fields (𝛼 = 0.05) on principal components PC1 and PC2. The 
hollow/solid markers refer to training/testing datasets. 

 
Figure 9. Projections of 2-point correlations 𝐹(𝐶) obtained from their filtered 
strain fields (𝛼 = 0.2) on principal components PC1 and PC2. The 
hollow/solid markers refer to training/testing datasets. 

 
The argument provided in this section so far also implies that 

the use of the raw strain field directly for clustering, in 
comparison with its 2-point correlation will result in sub-par 
classification efficacy. This is because the raw strain field is 
highly susceptible to phase of its wave components. This is an 
expected result. We note however that the 2-point correlation 
filters out phase information [41], making the proposed 
methodology insensitive to phase effects. To appreciate this 
thought, Fig. 10 shows the clusters obtained from the strain fields 
directly. A comparison of this figure with Fig. 4 suggests that the 
raw strain field plots cannot be used to accurately differentiating 
between square, triangular, and peanut shape defects. These 
clusters are seen to completely overlap in Fig. 10. This is also 
reflected in the quantified efficacy of clustering, e.g., the 
confusion matrix (see Fig. 11), that showed approximately 30%, 
50%, 30%, and 40% error rates in classification of 
microstructures comprising circle defects, elliptical defects, 
peanut defects, and square defects, respectively.  

Interestingly, the use of the 2-point correlation of the defect 
structure for their classification also produces poor results, 
compared with the 2-point correlation of strain fields. The 
corresponding confusion matrix is shown in Fig. 12. Here, 
errors of 40%, 40%, and 100% are seen in classification of 
circle, ellipse, and square/rectangular defects, respectively, 
without any filtering (𝛼=0). This observation also validates our 
methodology for characterization of microstructures using 
strain fields which is based on the hypothesis that strain fields 
contain signatures that are highly correlated to characteristics 
of the defect which lie in the matrix.  

 

 
 
Figure 10. Direct projections of 2-point correlations of defect fields on 
principal components obtained using kernel PCA (cf. section 3.3). The 
hollow/solid markers refer to training/testing datasets. 
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Figure 11. Confusion Matrix created for ECOC SVM results obtained from 
kernel PCA shown in Fig. 10.  
 

 
 
Figure 12. Confusion Matrix created for ECOC SVM results obtained from 
kernel PCA of 2-point correlation of defect structures directly. 

6. Future Directions  

The work described in this manuscript looks at the use of 
strain fields for classifying their underlying microstructures. It 
is hypothesized that the proposed methodology can be used 
synergistically with optical characterization of strain fields. To 
this end, this work naturally warrants answers to several key 
questions that the authors are currently in the process of 
addressing.  
 

i. The proposed methodology assumes strain fields are 
acquired from a zone that is rich with defects. In this 
regard, the efficacy of this approach in zones that only 
comprise sparse, or even non-homogenous densities 
of these defects is not known. It is also not known how 
rapidly the efficacy of this approach will degrade if 
the defects are smaller in size, which would 
progressively make it more challenging to 
characterize strain fields accurately. 

ii. The proposed methodology also assumes that defects 
are directly visible. The presence of defects in the 
close vicinity beneath a surface can affect the strain 
fields that form directly on the exposed surface of the 
component during external loading. In this regard, it 
is expected that this approach can classify even those 
defects that are hidden from the line of sight. 
However, the accuracy of this approach is unknown in 
such scenarios and can be expected to degrade rapidly 
for defects found at progressively larger depths 
beneath the surface. A parametric study is required to 
delineate such effects.  

iii. Even a weakly non-linear behavior of the matrix will 
affect the strain fields that result from external 
loading. The resulting effects on efficacy of 
classification of microstructures is not well 
understood.  

 
7. Summary and Conclusions 
 

The present work delineates how effect of defects on strain 
fields during external loading of the parent component may be 
analysed to classify the underlying defect shapes. Towards this, 
elastic plane strain deformation of specimens embedded with 6 
different defect types was simulated using finite element 
analysis. The resulting strain fields were processed for 
identification of their self-similarity using 2-point correlation 
functions. A reduced dimension representation of the 2-point 
correlation was then constructed using kernel based principal 
component analysis. The efficacy of this reduced dimension 
representation at classification of defect shapes was then tested 
visually, and quantitatively. It was realized that this theoretical 
approach was accurate for >95% of all specimens. This 
efficacy was degraded by:  
 

i. Blurring of strain field, and thereby artificially 
changing the spectrum 

ii. Direct use of strain field compared with the 
frequency space representation of its 2-point 
correlation  

iii. Direct use of defect microstructure without any 
strain field information. 

 
Plausible underlying reasons that enable the classification of 

defective microstructures using the frequency space 
representation of the 2-point correlations of their strain fields 
were discussed. Mura’s eigen-strain formulation was used for 
the same. Finally, some future directions of this work were also 
described.  
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