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Abstract

In this research, a theoretic physics-based framework for identification of defects via analysis of strain fields is presented. This framework
comprises identification of self-similarity of strain fields followed by their dimensionality reduction using kernel based principal component
analysis. The efficacy of this framework is tested qualitatively, by visual analysis, and quantitatively, using numerical classification algorithms.
We see high (>95%) accuracy of classification via cross-validation studies using support vector machine algorithm. These results suggest that
strain field can provide a viable approach for constructing highly robust in line defect detection system in modern manufacturing environments.
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1. Introduction

Functional requirements of modern appliances can be
achieved using a combination of advanced geometries, and
microstructures. The fabrication of such devices is often
complicated by instabilities in the response of materials to
thermomechanical conditions of manufacturing. These
instabilities produce volumetric defects that compromise
functionality. This can be addressed using in-line monitoring
of material behavior in pursuit of identifying the onset of defect
generation followed by timely mitigation. However, this is a
challenging endeavor: (i) manufacturing defects are occluded
which makes it challenging to ‘observe’ their generation
rapidly (e.g., optically) for timely mitigation, and (ii) they
affect the behavior of the parent material in complex ways that
are often not well understood. This makes it challenging to
systematically formulate ‘signatures’ that may be used to detect
defects [1, 2]. Traditional approaches for in-line monitoring
involve detection of behavior anomalies instigated by defects
in low-dimensional signals such as force, and acceleration.
This approach is however susceptible to noise in manufacturing
environments. Theoretically, these shortcomings can be

alleviated if the physics of the material being manufactured are
accounted for within the in-line monitoring framework itself.
In this work, we provide numerical proof-of-concept of a
framework for in-line monitoring of material health that is
directly based on the physics of its behavior. Specifically, we
describe how the linear effects of volumetric defects can be
delineated in pursuit of their classification. For demonstrating
the proof-of-concept, we ask the fundamental question: can we
use elastic strain fields as indicators of the morphology of
underlying defects. Our proposed solution to this problem is
based on self-similarity analysis of elastic deformation fields
with the underlying hypothesis- the 2-point correlation function
of an elastic deformation field contains information to classify
anomalous features of the parent microstructure. We look at the
morphology of defects because their characteristics: (i) can be
correlated to their thermomechanical origins [4]. Thus, their
detection can advise revision of process parameters, and (ii)
have been previously shown to affect response [5]. Our
approach to this solution is inspired from other works on
statistical analysis of microstructures [6] and involves
dimensionality reduction of the 2-point correlation functions of
elastic deformation fields with the scientific hypothesis- that a
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small number of principal directions in the domain of elastic
deformation fields can classify a larger number of
microstructure types.

In the present work, we limit ourselves to only numerical
data that is generated using a linear finite element framework.
This choice enables us to exercise precise control as we
establish the proof of concept of our proposed methodology for
characterization of defect types using strain field signatures.
We however note that numerically generated data is bereft of
noise which is ubiquitous in empirical data. We attempt to
delineate some plausible compromising effects of noise on the
efficacy of this methodology in the forthcoming sections.

Section 2 presents a review of relevant literature. Section 3
presents the short description of the numerical methods used in
this study. Section 4 provides results, that are then discussed in
section 5. Section 6 provides some immediate future directions
of research before section 7 that summarizes this research and
provides concluding remarks.

2. Literature Review

In-line monitoring systems comprise in-situ modules for
acquiring data, modules for processing acquired data, modules
for decision making based on the processed data, and finally,
modules for feedback control of the manufacturing platform.
Such systems must provide within a reasonable amount of time
the likelihood that a manufacturing step resulted in a defect,
and if possible, the nature of the defect. This information can
then be used to pause the manufacturing process until the
source of the defects is identified and mitigated. All sources of
latency must be addressed in in-line monitoring systems to
ensure high throughput. Herein, the bottlenecks in such
systems often involve data acquisition, and processing. To
address these issues, several studies have looked at efficient
methodologies for data acquisition, and processing. These are
summarized in the following two subsections.

2.1 Methodologies for data acquisition

Methodologies to acquire manufacturing data are advised by
a combination of the platform configuration, process physics,
and material state variables such as temperature, and density.
These methodologies can be dominantly classified into two
types, viz. low-energy and high-energy. A classic low energy
source used for imaging defects involves ultrasonic imaging,
wherein an ultrasonic sound wave is transmitted through the
component volume. Interaction of the ultrasonic wave with
internal defects such as cracks, and porosities results in the
wave being reflected. Characteristics of the reflected wave can
be recorded, and subsequently processed to infer the presence
of the corresponding occluded defect features. Ultrasonic
waves are often used for detecting defects in castings [7,8], and
welding [9]. More recently, their use has been explored in
detecting defect features in additively manufactured
components [10,11].

A second low-energy defect characterization methodology
involves optical imaging. Unlike ultrasonic waves that traverse
through the volume of the component, optical imaging can only

acquire information from its surface. Nonetheless, features
captured within these images have been used to infer presence
of volumetric microstructural defects, e.g., in welding [12], and
rolling operations. More recently, several applications of
optical defect detection have been realized in additive
manufacturing (AM) for detecting volumetric defects [13,14].
This is possible because AM involves a layer-by-layer build
routine. This enables the optical imaging of each individual
layer wherein subsequent data-processing can indicate the
genesis of volumetric defects on the present layer allowing for
timely intervention. Infra-red waves have also been used to
detect presence of volumetric defects such as internal voids
[15,16]. Here, the premise underlying detection of volumetric
defects such as voids is their ability to perturb the dynamics of
heat, which then results in anomalous signatures in the infra-
red field emanated by the component.

High energy sources for in-line monitoring involve
electromagnetic penetration with X-Rays, e.g., via computed
tomography [17-19], and neutron beams, e.g., via cyclotron
beam sources [20]. These methodologies for in-line defect
detection are however resource intensive which limits their use
for investigations on fundamental mechanisms of material
behavior during manufacturing.

2.2 Methodologies for processing acquired data

Crucial towards the implementation of an in-line defect
monitoring system is rapid processing of acquired data to infer
presence of defects in the component being fabricated. This
technical challenge is often approached as detection of
anomalous features in the processed data, whereby presence of
a defect is inferred. To this end, considerable research has been
performed with the objective- to classify a feature in the
acquired data as anomalous, rapidly, and reliably.

Common implementations of this concept include analysis
of spectrums of machining force signatures [21]. Here, the
onset of defects, e.g., due to tool wear, often produces
vibrations that occupy a distinct part of the spectrum that is
classified as anomalous. This concept is often also used to
identify changes in cutting mechanisms even with fresh tools
with the objective- to classify the material itself. Other data-
processing approaches for detecting defects include machine
learning algorithms such as Support Vector Machine (SVM)
[22-24], k-nearest neighbor clustering [25-27], various types of
neural networks [28-33], and random forests [26, 34-34].
SVMs tend to work well when there is a clear separation
between different data classes (e.g., samples with and without
defects) and contend well with high dimensionality; however,
the training time often increases substantially when there are a
large number of samples. In contrast, the k-nearest neighbors
algorithm simply averages over the k points nearest to a sample
in order to render a classification, and as such has negligible
training time but can be slow during inference. Neural
networks of various types have also been useful in this domain,
and are capable of representing extreme nonlinearity in the
training data. Finally, random forests are a common ensemble
technique, rendering a classification by combining the
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individual classifications of a set of decision trees trained on
different subsets of the data.

These data-processing methodologies are primarily used for
analysing the raw acquired data in pursuit of classifying
features as anomalous. Nonetheless, another intermediate
processing step may be added before such defect detection
algorithms are employed. An example of the same includes
detection of defects in large building structures [36]. Here,
time-separated images of the same structure are used to
calculate strain fields, which characterize deformation to the
building structure. From these fields, evolution of anomalous
features in the building structure are subsequently deduced to
characteristics its structural health.

Characterization of strain fields from images involves the
use of image correlation algorithms for calculation of
displacement fields, which are subsequently differentiated to
produce strain fields [37,38]. Here, sources of inaccuracy are
dominantly two-fold comprising: (i) resolution of the optics
used for acquiring images of the structure, and (ii) noise
associated with image acquisition. To this end, the accuracy of
defect detection wusing hand-held optical devices, e.g.,
smartphones cameras has been studied [39]. It was shown that
a Samsung Galaxy S4 phone that was released in year 2013 can
detect certain kinds of defects that are larger than 20 um in size.
Since then, optical assemblies that are meant to augment the
resolution of smartphone cameras have been created and are
commercially available. Presumably, the resolution of
smartphone cameras that are equipped with such optical
assemblies is amplified, making them capable of detecting finer
defects. This is used as a practical premise in the current study,
that handheld devices can be used to detect defects fine defects
whose length scales are close to the optical limit.

3. Methods
3.1 Generating of numerical strain fields

The data used for this research comprised numerically
generated strain fields of ASTM-E8 specimens that were
endowed with volumetric defects and subsequently subject to
elastic tensile deformation in numerical computing software
Abaqus. This data was generated using the Python scripting
interface of Abaqus and is available in an opensource
repository [3]. The generation procedure involved creation of
numerical ASTM-E8 plane strain tensile specimens featuring
dimensions 6 mm x 38.1 mm. These tensile specimens were
embedded with circular, elliptical, rectangular, triangular,
peanut, and crescent shaped defects to produce respective
defect area fractions of 7% — 9%. These numerical specimens
were subsequently subject to tensile deformation of e~0.003 in
the plane strain mode. Subsequently, the strain field
components along the tensile axis were extracted at nodal
points and discretized onto a square grid featuring a resolution
of 0.1 mm /pixel. Zones that lie within the defects were
assigned a strain € = 0. A total of 300 data specimens were
generated for the present research (50 per defect type).

Fig. 1 shows instances of the strain field €;; obtained from
plane strain tensile deformation of the numerical ASTM ES8

specimens featuring various defect types. These specimens
were deformed to the same global strain of € ~ 0.003. However,
it is qualitatively evident from these fields that the nature of the
underlying defect affects it. This effect is most obvious via
comparison of the crescent defect specimen with the triangular
defect specimen. The former features a concave shape with two
sharp points where strain concentrations can be seen. The latter
features a convex shape with three sharp corners. However, this
triangular defect shape, along with its interaction with
neighboring defects tends to produce strain concentrations at
its base, rather than at all three corners as can be expected.
These features are shown using white circles in Fig. 1.

3.2 Extracting 2-point correlations

The elastic strain fields produced using finite elements were
subsequently processed to produce 2-point correlation
functions in the frequency domain. The 2-point correlation of a
function £ is defined as [40]:

C = (f(7) f(7) ) = Ll DL .

A

Here, 7, and ' are two vectors that lie in the domain of
function f, () refers to the spatial average that is expanded on
the RHS of the equation as the integral over the domain Q of
the function f, divided by the size 4 of the domain. The 2-point
correlation function C characterizes an averaged metric of how
self-similar two different points in the domain of the function
f are. The utility of the 2-point correlation has been explored
in reconstruction of synthetic microstructures that have
equivalent self-similarity as an empirical characterized sample
[41]. These synthetically produced microstructures visually
appear like the original empirical samples from which they
were generated, and hence presumably also behave like the
parent empirically characterized counterparts.

Figure 1. Strain fields €;, obtained from simulated plane strain deformation
of specimens featuring circular, elliptical, square, peanut, triangular, and
crescent shape defects (top to bottom). The min of all strain fields is €,,= 0,
and max of the respective strain fields is €;;= 5.8 x103, 5.8 x107 ,4.7 x1073,
3.8 x107, 6.8 X107, 8 x1073, respectively.
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In this study, it is hypothesized that 2-point correlations of
strain fields implicitly contain signatures of the microstructures
from which they originated. If this is true, the nature of the
microstructure can be inferred by analysis of its strain fields,
which is less resource intensive than direct characterization of
the microstructures themselves. The former, e.g.,
characterization of strain fields can be achieved using optical
characterization, in comparison with latter, e.g.,
characterization of microstructures, that often require sample
preparation by polishing, and subsequent etching or electron
microscopy. To this end, we also realize using the convolution
theorem that the 2-point correlation of a function can be
represented in the frequency domain concisely. Hence
subsequent calculations are performed in the frequency
domain. The convolution theorem is given by:

F(C) =F(N-F(f) @

where F represents the Fourier transform, F being its
conjugate, and the RHS represents element wise multiplication
of amplitudes of Fourier wave components of function f.

For software implementation of this concept, the ii
component of the strain tensor is chosen arbitrarily. The reader
is referred to the i direction in the reference axis in Fig. 1. This
eventually enabled characterization of 2-point correlation
functions using the eqn. 2 with f = ¢;;. Results of this exercise
are shown in Fig. 2.

min

|

x

ma.

Figure 2. Autocorrelation functions for corresponding strain fields shown in
Fig. 1, for circular, elliptical, square, peanut, triangular, and crescent shape
defects (left to right). The color bar is logarithmic in scale. The (In(1+min),
In(1+ max)) values of the respective autocorrelation are (—15.7,9.7), (—=13.0,
9.4),(-15.4,9.9), (-13.7,9.9), (-14.9, 9.9), (-20.7, 9.6).

3.3.  Classifying 2-point correlations

component analysis

using  principal

Classification of the 2-point correlations of elastic strain
fields was performed using kernel based principal component
analysis [46,47]. In this approach, the original data points, e.g.,
frequency space representations of 2-point correlations of

strain fields, e.g., F(C) in eqn. 2, are mapped to a feature space
@(C). This mapping enables the construction of the kernel
matrix as a function of the dot product between the zero
normalized projections of the ath, and Sth data point:

Kap = < (CD(F(Ca)) - %Z{.Y:l CI>(F(Ca)))T (‘D(F(CB)) -
14
o cb(F(ca)))) ©)

Here, F(C,) is the frequency space representation of the 2-
point correlation of the ath €; strain field, in the columnar
form, and T refers to transpose. For the present research, it was
seen that a simple dot product operation with parameter y = 3
was able to adequately classify the strain fields. Herein,
®(F(Cy)) is the columnized form of the feature representation
of data point, e.g., ®(F(C,)) = F(C,) in this work. Finally, N
is the number of samples used for constructing the kernel
matrix. Of the total number of data points generated, e.g., 300,
N = 180 samples (e.g., 30 for each microstructure type) were
used for constructing the kernel matrix. This implies that
dimensionality of the kernel matrix itself is 180 x 180.

Construction of the kernel matrix enables classification of
the frequency space representations of the 2-point correlations
of the test strain fields F(Cis) (e.g., 20 for each
microstructure type). This involves finding the eigen values of
the kernel matrix. Subsequently, the projections of the feature
space mappings of the ‘test” 2-point correlations
@O (F(Crest)) are obtained with the eigen vectors. For the same,
O (F(Cresy)) 1s represented as a linear sum of its projections on
the respective basis vectors ®(F(C,)) that were used to
construct the kernel matrix. Here, « € {1,2,..180} wherein a
valid projection of the feature space representations of the test
data, viz. ®(F(Cyes:)) can be obtained on the Eigen vectors. To
obtain these projections, the two eigen vectors with the largest
two eigen values were chosen.

4. Results
4.1 Eigen values of the kernel matrix

The nature of these principal components obtained from the
kernel matrix was evaluated by finding their cumulative
fractional eigen values, or the total amount of variance that is
captured from the original data using a progressively larger
number of principal components. Fig. 3 shows the results of
this analysis. It is seen that even the first principal component
can account for > 99% of the variance in the feature space
projections of the strain fields. This is expected given that
defects account for only 7%-9% of the area fraction of the
specimens, wherein the strain fields comprise fundamentally
similar characteristics with subtle differences that are captured
by a small number of additional principal components. Further,
the variance captured by subsequent principal components
decrease monotonically.
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4.2 Classification of microstructures

Towards understanding the efficacy of these principal
components (PCs) at classification of microstructures, the
projections of the 2-point correlation functions F(C,) were
plotted with respect to the first two eigen vectors of the kernel
matrix. These vectors are hereafter referred as PC1, and PC2,
respectively. Results are shown in Fig. 4, where hollow/solid
markers refer to training/testing datasets, respectively. It is seen
that the first principal component PC1 can sufficiently
distinguish between several defect shapes. Strain fields
originating from specimens containing crescent defects cluster
towards the left at smaller values of PC1 (green diamonds). In
comparison, strain fields originating from square, peanut, and
elliptical shapes (squares, stars, and inverted triangles,
respectively) cluster towards the right, e.g., at larger values of
PC1 and show greater spreads along PC2. Interestingly, peanut,
ellipse, and rectangular data points were seen to feature similar
values of PC1. Origins of this behavior can be expected to lie
in the similarity across these defect shapes in as it pertains to
their mechanical behaviour.

Figure 3. Fractional variance accounted for by principal components of 2-
point correlation fields (cf. Fig. 2.).

Fig. 4 visually confirms that strain fields contain sufficient
details for classification of numerically generated specimens
based on the shapes of their defects. The robustness of this
concept for identification of microstructure defect features
were quantified by training a series of Error Correcting Output
Codes (ECOC) Support Vector Machine (SVM) model [42,48],
using 10-fold cross-validation [49] on the data identified in
earlier sections. It was seen that not only are the clustering
patterns in Fig. 4, qualitatively clear, but they also have
quantitative value. When trained to classify the defect shapes
using 2 principal components, 92.5+7.3% (mean + standard
deviation) of specimens in the validation fold are correctly
classified. In order to construct a confusion matrix that shows
how results are misclassified, we retrain a single ECOC SVM
based with a 50% train/test split, and compute the confusion
matrix based on the testing data. These results are displayed in
a confusion matrix (see Fig. 5). We can observe that the model
misclassifies circular defects as triangular, and also peanut-

shaped defects as elliptical. These categories are adjacent to
one another in Figure 4, which provides some face validity for
the confusion matrix.

5. Discussion

Results in section 2 suggest that elastic strain fields
expressed by a parent specimen when subject to external loads
are distorted in the presence of defects. These distortions
manifest signatures in the frequency space of the strain field. In
this section we explore an explanation for this characteristic.
This explanation is inspired from Mura’s eigen-strain
formulation for finding residual stresses g;; because of eigen-
strain inhomogeneities €;; dispersed in the matrix [43]. In this
formulation, the total strain that results from these
inhomogeneities is linearly decomposed as a summation of the
eigen-strains themselves €;;, and the resulting elastic strains
e;j. This is given by equation:

Eij =eij+6';j (4)
x10%2
0
’ A
V Ew
N 7 e
8 iV = A .
5
ecircular velliptical ®*square
¢crescent xpeanut 4 triangular
-10 : : : _—
0.5 1 1.5 2 2.5 3 3.5

PC1 %1028

Figure 4. Projections of 2-point correlation windows on principal components
PC1 and PC2. The hollow markers refer to the 180 training datasets (30 X 6),
whereas the solid markers refer to 120 testing datasets (20 X 6).
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Figure 5. Confusion Matrix created for ECOC SVM results obtained from
kernel PCA shown in Fig. 4.
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The methodology for solving for e;; in eqn. 4 relies on
calculation of force equilibrium, i.e.,

The stress field o;; is provided using the elastic strain field

ey, and the elastic modulus Cjjy,; as 0;; = Cjjiey; . This is
substituted in eqn. 5, resulting in:

Cijiaer,j =0 (6)

Using eqn. 4, we get:

€rr = €1 ~ gt ™)
and
Cijii€rr = Cijri(€rj — €x1,j) =0 ®)

A non-trivial solution to this equation is found by linearly
decomposing the eigen-strain components in terms of their
Fourier wave amplitudes, i.e.,

en =26 (&) exp(i€ - %)
> E;z,j = iijE*(f) exp(if - X)

Here, i = vV—1, and &. % = & x;. Expressing total strain as
a derivative of displacement, e.g., €,; = du;/ dx; enables us
to solve for total displacement as a function of its
corresponding Fourier components as:

e = 02U, (&) exp(if - ¥)/0x; = i§ S exp(i&-%)  (9)

Thus, €, = -2 = —§&; 51,(5) exp(if - %) , which

6xlax j
after substituting in equation 8 provides:

—Ciji&i&Ue(§) exp(i€ - ®) = iCijii&ién(E) exp(i€ - %) (10)

The solutions to #, are obtained from this equation.
From these wave amplitudes, the displacement field
components u,, are reconstructed as a Fourier series as: u;, =
27, exp(i€ - %). Subsequently, strain field components €,
duy/ 0x; can be constructed by differentiating these
displacement components. It is noted here that this argument,
in the absence of surface traction equilibrium, viz., n;o;; =
0V j, conforms only to an infinite medium unlike our finite
sized numerical ASTM E8 specimens. Nonetheless, the sizes
of the defects are small compared with the size of the specimen,
wherein the validity of this argument for finite sized samples
may be implicitly assumed. This surface traction condition is
of course naturally implemented in the finite element
framework from which the strain fields shown in Fig. 1 were
produced.

This argument suggests that the strain fields originating
from the interaction of voids with the globally imposed stress

may be modelled as consequences of fictitiously imposed eigen
strains. The use of fictitious eigen-strains to analyze total strain
fields is well known [44,45]. These eigen strains must have
sufficiently unique characteristics such that the resulting total
strain fields €;;, can be clustered (cf. Fig. 4). Further, the
argument also shows that these strain fields may be completely
represented in terms of wave amplitudes, e.g., as a spectrum.
Herein, we note that from Eqn. 2 that 2-point correlations are
simply squares of the amplitudes of the corresponding wave
components in the spectrum. In this regard, the process of
identifying principal components and clustering strain fields is
equivalent to clustering the respective fictitious eigen-strains
that implicitly contain characteristics specific to the geometry
of the defects.

Some consequences of these insights are demonstrated here.
The first involves a study of the effect of artificial changes to
the spectrum of a strain field on its ability to be clustered
accurately. Such a change can be produced by blurring of the
strain field. This can be achieved using a low pass filter of the
form a’ = ae~*@@) | applied in the frequency space. Here a
refers to the original amplitude of the 2-dimensional wave
component of frequency &, a’ being the filtered amplitude,
d(&) the Euclidean distance of the frequency component &
from the origin of the frequency space, and @ € {0.05, 0.2} is
an arbitrary parameter. Note, a larger a parameter emulates a
greater level of blurring. Figs. 6 and 7 show the consequences
of this filtering using parameters « = 0.05 and a = 0.2,
respectively. These images were obtained by inverse Fourier
transformation of the filtered frequency space. For facilitating
comparison, the strain fields in these figures correspond to
those in Fig. 1, respectively.

- p—‘ —
- B
B3 S—
A ot

Figure 6. Strain fields €, obtained from filtering (@ = 0.05) of simulated
plane strain deformation of specimens featuring circular, elliptical, square,
peanut, triangular, and crescent shape defects (top to bottom).
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3
3

Figure 7. Strain fields €;; obtained from filtering (a = 0.2) of simulated plane
strain deformation of specimens featuring circular, elliptical, square, peanut,
triangular, and crescent shape defects (top to bottom).

As expected, a larger value of parameter « results in greater
blurring. It is interesting that compared with the filter featuring
a=0.05 (e.g., Fig. 5), the filter with @ = 0.2 (e.g., Fig. 6) blurs
the strain fields beyond recognition through the naked eye.
Herein, the shapes of the defects that are still recognizable in
Fig. 5 are barely (if at all) recognizable in Fig. 6. The filtered
strain fields were also analyzed using the approach described
in section 3.3. A new set of principal components was
generated for each case. Fig. 8 and 9 show the results of this
analysis for filter parameter & = 0.05, and 0.2, respectively.
This analysis suggests that blurring of the image causes only
subtle changes to the ability of strain fields to be clustered. This
inference is made simply by visual inspection, e.g., the clusters
corresponding to different microstructure types are still
uniquely visible. This implies that the dominant aspects of
strain fields are accommodated by wave components featuring
larger wavelengths, e.g., in their Fourier space representations.
We do note that for filtering with « = 0.2 (cf. Fig. 9), the
peanut, and elliptical shapes show considerably larger overlap
along the PC2 direction than the case with @ = 0.05 (cf. Fig.
8), or &« = 0 (cf. Fig. 4). This observation generally highlights
the importance of the ‘cleanliness’ of the acquired data for
classification of microstructures.

22
2‘><’10

0 Aoy a0
8 -2 ‘S %'o"
a O

4

g ecircular velliptical =square =
¢crescent xpeanut 4 triangular
-8 e .
056 1 15 2 25 3 3.5
PC1 x10%

Figure 8. Projections of 2-point correlations F (C) obtained from their filtered
strain fields (a = 0.05) on principal components PC1 and PC2. The
hollow/solid markers refer to training/testing datasets.

22
1><10

¥ 2,
-3 ecircular velliptical ®square
¢crescent xpeanut 4 triangular

-4 ‘ s ‘
-3.5 -3 -2.5 -2 -1.5 -1 -0.5

PC1 x10%8
Figure 9. Projections of 2-point correlations F (C) obtained from their filtered
strain fields (@ = 0.2) on principal components PC1 and PC2. The
hollow/solid markers refer to training/testing datasets.

The argument provided in this section so far also implies that
the use of the raw strain field directly for clustering, in
comparison with its 2-point correlation will result in sub-par
classification efficacy. This is because the raw strain field is
highly susceptible to phase of its wave components. This is an
expected result. We note however that the 2-point correlation
filters out phase information [41], making the proposed
methodology insensitive to phase effects. To appreciate this
thought, Fig. 10 shows the clusters obtained from the strain fields
directly. A comparison of this figure with Fig. 4 suggests that the
raw strain field plots cannot be used to accurately differentiating
between square, triangular, and peanut shape defects. These
clusters are seen to completely overlap in Fig. 10. This is also
reflected in the quantified efficacy of clustering, e.g., the
confusion matrix (see Fig. 11), that showed approximately 30%,
50%, 30%, and 40% error rates in classification of
microstructures comprising circle defects, elliptical defects,
peanut defects, and square defects, respectively.

Interestingly, the use of the 2-point correlation of the defect
structure for their classification also produces poor results,
compared with the 2-point correlation of strain fields. The
corresponding confusion matrix is shown in Fig. 12. Here,
errors of 40%, 40%, and 100% are seen in classification of
circle, ellipse, and square/rectangular defects, respectively,
without any filtering (@=0). This observation also validates our
methodology for characterization of microstructures using
strain fields which is based on the hypothesis that strain fields
contain signatures that are highly correlated to characteristics
of the defect which lie in the matrix.

0.01
0.005

0

C2

a
-0.005

ecircular velliptical =square
¢crescent xpeanut 4 triangular

-0.01

-0.015 ! ! '
0.03 0.04 005 006 0.07 0.08 0.09 0.1

PC1

Figure 10. Direct projections of 2-point correlations of defect fields on
principal components obtained using kernel PCA (cf. section 3.3). The
hollow/solid markers refer to training/testing datasets.
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Figure 11. Confusion Matrix created for ECOC SVM results obtained from
kernel PCA shown in Fig. 10.
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Figure 12. Confusion Matrix created for ECOC SVM results obtained from
kernel PCA of 2-point correlation of defect structures directly.

6. Future Directions

The work described in this manuscript looks at the use of
strain fields for classifying their underlying microstructures. It
is hypothesized that the proposed methodology can be used
synergistically with optical characterization of strain fields. To
this end, this work naturally warrants answers to several key
questions that the authors are currently in the process of
addressing.

i.  The proposed methodology assumes strain fields are
acquired from a zone that is rich with defects. In this
regard, the efficacy of this approach in zones that only
comprise sparse, or even non-homogenous densities
of these defects is not known. It is also not known how
rapidly the efficacy of this approach will degrade if
the defects are smaller in size, which would
progressively make it more challenging to
characterize strain fields accurately.

ii.  The proposed methodology also assumes that defects
are directly visible. The presence of defects in the
close vicinity beneath a surface can affect the strain
fields that form directly on the exposed surface of the
component during external loading. In this regard, it
is expected that this approach can classify even those
defects that are hidden from the line of sight.
However, the accuracy of this approach is unknown in
such scenarios and can be expected to degrade rapidly
for defects found at progressively larger depths
beneath the surface. A parametric study is required to
delineate such effects.

iii. Even a weakly non-linear behavior of the matrix will
affect the strain fields that result from external
loading. The resulting effects on efficacy of
classification of microstructures is not well
understood.

7. Summary and Conclusions

The present work delineates how effect of defects on strain
fields during external loading of the parent component may be
analysed to classify the underlying defect shapes. Towards this,
elastic plane strain deformation of specimens embedded with 6
different defect types was simulated using finite element
analysis. The resulting strain fields were processed for
identification of their self-similarity using 2-point correlation
functions. A reduced dimension representation of the 2-point
correlation was then constructed using kernel based principal
component analysis. The efficacy of this reduced dimension
representation at classification of defect shapes was then tested
visually, and quantitatively. It was realized that this theoretical
approach was accurate for >95% of all specimens. This
efficacy was degraded by:

i. Blurring of strain field, and thereby artificially
changing the spectrum

il. Direct use of strain field compared with the
frequency space representation of its 2-point
correlation

iii. Direct use of defect microstructure without any

strain field information.

Plausible underlying reasons that enable the classification of
defective microstructures using the frequency space
representation of the 2-point correlations of their strain fields
were discussed. Mura’s eigen-strain formulation was used for
the same. Finally, some future directions of this work were also
described.
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