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ABSTRACT

Given a graph and an integer k, Densest k-Subgraph is the algorith-
mic task of finding the subgraph on k vertices with the maximum
number of edges. This is a fundamental problem that has been sub-
ject to intense study for decades, with applications spanning a wide
variety of fields. The state-of-the-art algorithm is an O(nl/4+¢)-
factor approximation (for any ¢ > 0) due to Bhaskara et al. [STOC
’10]. Moreover, the so-called log-density framework predicts that
this is optimal, i.e. it is impossible for an efficient algorithm to
achieve an O(n!/4~¢)-factor approximation. In the average case,
Densest k-Subgraph is a prototypical noisy inference task which is
conjectured to exhibit a statistical-computational gap.

In this work, we provide the strongest evidence yet of hardness
for Densest k-Subgraph by showing matching lower bounds against
the powerful Sum-of-Squares (SoS) algorithm, a meta-algorithm
based on convex programming that achieves state-of-art algorith-
mic guarantees for many optimization and inference problems. For
k< n%, we obtain a degree n% SoS lower bound for the hard regime
as predicted by the log-density framework.

To show this, we utilize the modern framework for proving
SoS lower bounds on average-case problems pioneered by Barak
et al. [FOCS ’16]. A key issue is that small denser-than-average
subgraphs in the input will greatly affect the value of the candidate
pseudoexpectation operator around the subgraph. To handle this
challenge, we devise a novel matrix factorization scheme based on
the positive minimum vertex separator. We then prove an intersec-
tion tradeoff lemma to show that the error terms when using this
separator are indeed small.
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1 INTRODUCTION

In the Densest k-Subgraph problem, we are given an undirected
graph G on n vertices and an integer k and we want to output the
subgraph on k vertices with the most edges, or in other words,
the subgraph on k vertices with the highest edge density. This is a
natural generalization of the k-clique problem [65] and has been
subject to a long line of work for decades [3, 4, 11, 18-20, 22, 23, 43—
46, 50, 52, 53, 66, 67, 84, 99, 108]. This problem has been the subject
of intense study partly because of its numerous connections to other
problems and fields (e.g. [5, 30, 32, 33, 35, 36, 41, 54-56, 70, 71, 80,
82, 87, 94, 107, 110]) The best known approximation algorithm for
this problem yields an approximation factor of O(n'/**¢) for any
constant ¢ > 0, due to [19]. On the other hand, it is conjectured that
no efficient algorithm can achieve an O(n'/*=¢) approximation.

Densest k-Subgraph is a compelling problem because random
instances (Erdés-Rényi graphs) are conjectured and widely believed
to be the "hardest” instances for algorithms. In fact, the insight that
“worst case is average case” was crucial to the aforementioned al-
gorithm in [19]. Their idea of going from average-case instances
to worst-case instances was generalized into the log-density frame-
work, which has been further applied to various other problems
[37, 38, 40]. Since an algorithm for random instances seems to be the
crucial conceptual step needed to solve the problem on all instances,
understanding these random instances is a pressing topic.
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As stated in [19, 20, 23, 84], Densest k-Subgraph on a random
graph is a landmark question in the field of average-case complex-
ity. Moreover, the conjectured hardness of this problem on random
instances (which is the focus of our work) has been used for ap-
plications in finance [8] and cryptography [7]. However, evidence
of hardness for Densest k-Subgraph stands to be improved, both
in the average-case and worst-case settings. For example, even in
the worst-case setting, no work has been able to show that Densest
k-Subgraph is hard to n®-approximate for a fixed ¢ > 0 using any
reasonable complexity-theoretic assumption (although some works
come close, see Section 1.3). In the more interesting average-case
setting of random graphs, relatively little progress has been made
to justify hardness, let alone match the log-density framework.

In this work, we study the hardness of Densest k-Subgraph on
random graphs through a generic, powerful algorithm for optimiza-
tion known as the Sum-of-Squares (SoS) hierarchy [51, 79, 90, 93,
106]. The SoS hierarchy is a family of semidefinite programming re-
laxations for polynomial optimization problems which implements
a certain type of “sum-of-squares reasoning”. Arguably at the center
stage of average-case complexity in recent years, SoS has proven
to be a highly effective tool for combinatorial and continuous opti-
mization. First, it was shown that the SoS hierarchy is rich enough
to capture the state-of-the-art convex relaxations for Sparsest Cut
[9], Max-Cut [49], all Max k-CSPs [97], etc. Later on, the SoS hi-
erarchy led to new algorithms for approximating CSPs [2, 12, 13]
and breakthroughs in robust statistics [15, 16, 58, 61, 69, 75, 98], a
highlight being the resolution of longstanding open problems in
Gaussian mixture learning (over a decade of work culminating in
[14, 83]). Finally, for a large class of problems, it has been shown
that SoS algorithms are the most effective among all semidefinite
programming relaxations [81]. Therefore, understanding the limits
of SoS algorithms is an important research endeavour and lower
bounds against SoS serve as strong evidence for algorithmic hard-
ness [60, 62, 77].

In this paper, we prove that for k < n%, SoS of degree nd
does not offer any significant improvement in the conjectural hard
regime of random instances for Densest k-Subgraph as predicted by
the log-density framework. This settles the open questions raised in
the works [20, 39, 101]. Considering that the algorithm of Bhaskara
et al. [19] matching the log-density framework is captured by SoS,
our lower bound completes the picture of the performance of SoS
for Densest k-Subgraph for k < n. This gives solid evidence that
the conjectured approximability thresholds for Densest k-Subgraph
are correct.

1.1 Our Contributions

We will now describe our results on SoS lower bounds for Densest k-
Subgraph that match the predictions of the log-density framework.

Consider the following hypothesis testing variant of the Dens-
est k-Subgraph problem. For an integer n and a real p € [0, 1], let
Ghn,p denote the Erd6s-Rényi random distribution where a graph on
n vertices is sampled by choosing each edge to be present indepen-
dently with probability p. For parameters n,k € N and p, q € [0, 1],
we are given a graph G sampled either from
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(1) The null distribution Gp,p or

(2) The alternative distribution where we first sample G ~
Gn,p, then a set H C V(G) is chosen by including each
vertex with probability % and finally we replace H by a
sample from G\ 4.

and our goal is to correctly identify which distribution it came from,
with non-negligible probability.

The hypothesis testing question is a “planted model” of Densest
k-Subgraph which is conjectured to exhibit a statistics-computation
gap [25, 26]. With high probability, for g slightly larger than p, the
subgraph H in the alternative distribution is truly the densest sub-
graph of G with size k (hence the null and alternative distributions
are statistically distinguishable), but it is conjecturally computa-
tionally impossible to distinguish the two cases (in the parameter
regime below).

Studying algorithms for this hypothesis testing variant was
crucial to the log-density framework [19], which both generalizes
an algorithm for the hypothesis testing variant into a worst-case
algorithm, and predicts the relationships between n, k, p, q for which
the hypothesis testing problem is hard. In particular, consider the
setting

k =n%, p= n_ﬁ, q= nY

for constants @ € (0,1/2], f € (0,1),y € (0, 1), a notation that we
will use throughout this paper. According to the framework, it’s
algorithmically hard to solve the problem if

y>ap

That is, in this regime, no polynomial-time algorithm can distin-
guish the two distributions with probability at least 2/3 of success.!

To state our result, we recall that the SoS hierarchy is a family
of convex semidefinite programming relaxations parameterized by
an integer Dg,g called the degree or level of SoS. The relaxation gets
tighter as Ds,g increases but the runtime also increases at the rate?
of approximately nODsos) for degree Dgos SoS. Thus, conceptually
degree O(1) corresponds to polynomial time algorithms and degree
n® corresponds to subexponential time algorithms. In this work,
we study the performance of degree Dsos = n® Sum-of-Squares on
the Densest k-Subgraph problem for a constant § > 0 and obtain
strong lower bounds.

Because of the well-known duality between SoS programs and
pseudo-expectation operators, to show a lower bound, it suffices
to show a feasible pseudo-expectation operator E satisfying the
constraints. For a formal definition of SoS, see Section 2.1. We are
now ready to state our result.

THEOREM 1.1. For all constants « € (0,1/2], € (0,1),y €
(0,1) such thaty > af, there exists § > 0 such that with high
probability over G = (V,E) ~ Gn,p, there exists a degree n® pseudo-
expectation operatorE on SoS program variables {Xy }yev such that

'When @ > % ie. k = w(\/n), spectral algorithms beat the log-density threshold
[19, 66]. Spectral algorithms are captured by degree-2 SoS. Various works have also
studied other special settings (e.g. when q = 1, or when p, g are constants). See
Section 1.3.

%In pathological cases, there may be issues with bit complexity [91, 100]



Sum-of-Squares Lower Bounds for Densest k-Subgraph

(1) (Normalization)E[l] =1=+0(1).
(2) (Subgraph on k vertices)E[ZUEV Xo] = k(1 £0(1)).

(3) (Large density) B[ (.0} 5 XuXo] = SL(1+ 0(1))

(4) (Feasibility) The moment matrix M corresponding to E is
positive semidefinite.

This in particular implies that, in the predicted hard regime of
the log-density framework, SoS cannot be used to solve the Densest
k-Subgraph problem as stated above. As discussed earlier, these SoS
lower bounds offer strong evidence that for k < \n, it is unlikely
that efficient algorithms can beat the predictions of the log-density
framework for Densest k-Subgraph.

By setting @ = 1/2,# = 1/2 and y = 1/4 + ¢, we obtain the
following important corollary.

Corollary 1.2. Foranye > 0, there exists a constant § > 0 such that
degree-n® Sum-of-Squares exhibits an integrality gap of O(n'/4=¢)
for the Densest k-Subgraph problem.

This corollary essentially matches the best known algorithmic
guarantees for the Densest k-subgraph problem [19], namely an
efficient O(n!/4*¢)-factor approximation algorithm, thereby com-
pleting the picture for Sum-of-Squares.

1.2 Our Approach

Since Sum-of-Squares is a convex program, in order to prove a
lower bound, it suffices to construct a feasible point, i.e. a pseudo-
expectation operator or moment matrix, which is a large nonlinear
random matrix that depends on the input. We remark that in the
literature, the pseudoexpectation operator formulation is often re-
ferred to as the dual semidefinite program, but in this work, we
exclusively work with this formulation. At a high level, our proof
leverages an existing strategy for proving lower bounds against the
Sum-of-Squares algorithm on random inputs: use pseudocalibration
[17] to construct a candidate moment matrix, then study the spec-
trum of the candidate matrix using graph matrices [1]. This strategy
has been successfully applied in several contexts [17, 48, 64, 95],
although in each case, including ours, significant additional insights
have been required.

Given a random input graph, the first step is to construct the
candidate pseudoexpectation operator or moment matrix. Pseudo-
calibration suggests a candidate matrix, which we can use here
without further thinking. Recall that a semidefinite program opti-
mizes over the cone of positive semi-definite (PSD) matrices; the
main challenge is showing that the candidate moment matrix is
feasible (PSD) with high probability over the random input.

The main issue we face is that matrix factorization strategies
in prior works do not obviously lead to dominant PSD terms in our
setting. There are several steps in the existing framework:

(1) Express the candidate moment matrix A in the graph matrix
(i.e., Fourier) basis;

(2) Identify a class of spectrally dominant graph matrices in A
which are together approximately PSD;
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(3) Perform an approximate PSD decomposition to create PSD
terms plus additional error terms;

(4) Show that all non-dominant terms and error terms can be
charged to the dominant PSD terms, i.e. they are “negligi-
ble”.

For the purposes of the current discussion, it is enough to
know that each graph matrix in step (1) measures how a fixed small
subgraph, or shape, contributes to the candidate moment matrix,
and furthermore that the spectral norm of a graph matrix can be
read off of combinatorial properties of the small shape graph. It was
shown in [64, 103] that the norm of a graph matrix is determined
up to lower-order factors by the Sparse Minimum-weight Vertex
Separator (SMVS) of the shape (Theorem 2.20). For intuition, shapes
with smaller, denser separators have larger norms.

In order to identify the class of norm-dominant shapes in step
(2), previous work decomposes shapes using their leftmost and right-
most Minimum Vertex Separator (in contrast to SMVS), yielding for
each shape an approximately PSD term that spectrally dominates
the original graph matrix. Using the norm bounds, combinatorial
arguments about vertex separators are then employed to show that
all deviation terms in step (4) are small.

Prior work has avoided using the SMVS as the decomposi-
tion criterion, using the Minimum Vertex Separator (MVS) instead.
However, the SMVS is a necessity in our setting, because Densest
k-Subgraph is sensitive to small, local structures in the input. To
explain, for a fixed set of vertices U, if many vertices in U have a
common exterior neighbor or are part of a denser-than-average
subgraph, then this greatly increases the algorithm’s belief that U
is part of the dense subgraph. Using the SMVS can be thought of as
pinpointing, for each shape, the small dense subgraph which has
the strongest effect on the graph matrix’s norm.

Interestingly, a decomposition based on SMVS poses new con-
ceptual challenges. For one, the SMVS is highly sensitive to the
instantiation of the graph sample (which is to be expected, since
this is exactly how small subgraphs can have outsize effect). Sur-
prisingly, the SMVS decomposition, without extra care, may rather
lead to some supposedly “PSD” terms being negative instead. We
address these technical challenges, alongside our solution using
the Positive Minimum-weight Vertex Separator (see Section 3.1 for
a technical overview) after providing the definitions needed for
working with graph matrices.

Once we have properly identified the dominant PSD terms,
what remains is to prove that the error terms in the decomposition
are small using an intersection tradeoff lemma. This is also one of
our novel contributions as it is significantly different from intersec-
tion lemmas in prior works. This combinatorial lemma is the most
crucial part of the proof, as it ensures that the error terms in the
approximate PSD decomposition have small enough norms.

It’s worth highlighting that the log-density criterion y > aff
occurs multiple times throughout our proof, which is fascinating
to the authors. A partial explanation is that if we look at the con-
tribution of each Fourier character, the quantity y — ¢ measures
the decay as the degree of the Fourier character increases, i.e. it’s
the edge decay in a shape. Therefore, this has a dampening effect
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on the higher Fourier levels in the decomposition. Such a Fourier
decay is ubiquitous in the analysis of the low-degree likelihood
ratio [60, 62, 78] and has been important in prior average-case SoS
lower bounds [17, 48, 64, 96].

1.3 Related Work

Algorithms. Algorithms for the Densest k-Subgraph problem
have been widely studied, e.g. [4, 11, 18, 19, 22, 23, 44-46, 50, 66,
85, 108, 109], and we do not attempt to give an overview of them
(see e.g. [66] for a nice overview of some of them). For general
graphs, the work [72] (which also introduced the problem) gave a
polynomial time O(n%3835)-factor approximation algorithm. This
was later improved to a O(n'/3~¢)-factor approximation (for a con-
stant £ ~ 1/60) in [45] and to a O(n®315%)-factor approximation in
[50] respectively. The seminal work of [19], which also proposed
the log-density framework improved this to give an algorithm that
achieves a n!/**-factor approximation in time n©/) for all con-
stants ¢ > 0. This is conjectured to be the best achievable by efficient
algorithms.

Lower bounds for Densest k-Subgraph. Because of its concep-
tual significance and wide applicability, studying lower bounds
against the Densest k-Subgraph problem is an important research
endeavour. We give a non-exhaustive list of such prior works below.

(1) Conditional hardness: While it’s well known that Dens-
est k-Subgraph is NP-hard to solve exactly, to the best of
our knowledge, NP-hardness of even constant factor ap-
proximation is unknown. That said, there are various other
conditional hardness results assuming more than P # NP,
e.g. [3, 23, 43, 67, 84, 99]. We highlight the influential work
of Manurangsi [84], who assuming the Exponential Time
Hypothesis showed almost-polynomial factor hardness for
this problem. See the same paper for a more detailed list of
other conditional hardness results. It’s worth noting that
none of these results achieve polynomial factor hardness.
These approaches argue that Densest k-Subgraph is hard
by reduction. One source of difficulty is that reductions
are not as successful for average-case problems, since a
reduction tends to distort the input distribution and pro-
duce somewhat pathological outputs. Proving hardness of
Densest k-Subgraph may be possible using a reduction to
a novel non-random instance, but, if it is true that random
(or sufficiently pseudorandom) graphs are the only hard
instances of Densest k-Subgraph, then a stronger theory of
average-case reductions may be a prerequisite. Some recent
works make exciting progress on realizing average-case
reductions [21, 25, 27, 57].

The remaining lower bounds, including ours, are uncondi-
tional results that do not rely on any conjectures.
Sherali-Adams hardness: An integrality gap of n®(1-@)=0(1)
was shown for the degree-Q(log n) Sherali-Adams hierar-
chy (which is a family of linear programming relaxations)
in [20, 39]. Our result is stronger than these Sherali-Adams
lower bounds in three important ways. First, we consider
SoS rather then Sherali-Adams. The SoS hierarchy captures

—
S
~
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the Sherali-Adams hierarchy and is known to be much
stronger in many cases (e.g., see [29, 31, 42, 68, 74] in con-
junction with [10, 49]) so our result implies their result.
Second, we obtain an n® degree lower bound as opposed
to an Q(logn) degree lower bound. Finally, while these
Sherali-Adams lower bounds are for the particular setting
where f = « (the setting that maximizes the integrality gap
for a fixed @), our lower bounds work for the entire range
of parameters o, f, y

SoS hardness: Worst-case SoS lower bounds have been
exhibited in [20, 40, 85] obtained by reducing from Max
k-CSP hardness results, within the SoS framework as pio-
neered by [111]. However, these SoS lower bounds were
not optimal even for worst-case instances, since they didn’t
match known algorithmic guarantees (to be more precise,
they showed an n!/14-9(¢)_factor lower bound for degree

©)

n¢ SoS, whereas n'/4~0() _factor hardness is conjectured).
Our work on the other hand studies average-case instances
(as opposed to worst-case) and matches the guarantees
of known algorithms. Therefore, we significantly improve
these prior hardness results and close the gap. Moreover,
our results can be reduced a la [111] to show SoS hard-
ness for other problems such as Densest k-Subhypergraph
[101, Theorem 3.17] and also potentially Minimum p-Union
[101].

Average-case Sum-of-Squares lower bounds. Sum-of-Squares
lower bounds for average-case problems have proliferated in the
last decade, for example, Planted Clique [17, 59, 88], Sherrington-
Kirkpatrick Hamiltonian [48, 76, 89], Sparse and Tensor PCA [60,
95, 96] and Max k-CSPs [73]. Most of these works have been in the
colloquial “dense” regime where the random inputs are sampled
from Gy, 1/, or the standard normal distribution N (0, 1). Recently,
average-case SoS lower bounds have been shown for the sparse set-
ting, i.e. inputs sampled from Gy, where p = 0(1), for the problem
of Maximum Independent Set [64, 103]. The common thread under-
lying recent SoS lower bounds, including ours, is spectral analysis
of large random matrices. See the works [63, 95, 102] for additional
background and intuition on the matrix analysis framework used
in these lower bounds.

The low-degree likelihood ratio hypothesis. We add that simi-
lar predictions as the log-density framework for the threshold of
algorithmic distinguishability may possibly be obtained by ana-
lyzing the low-degree likelihood ratio [60, 62, 78]. The low-degree
likelihood ratio is used in the context of noisy statistical infer-
ence problems to predict, among other things, the existence of
statistical-computational gaps, i.e. when the signal (the planted
dense subgraph) is information-theoretically detectable (and hence
recoverable by a brute-force search), but is not detectable by effi-
cient algorithms. In the same context, the low-degree likelihood
ratio is used to predict the distinguishing power of low-degree poly-
nomial algorithms. In [105], they analyze the low-degree likelihood
ratio for certain parameter regimes of Densest k-Subraph, but their
results do not seem to recover the predictions of the log-density
framework precisely. Our Proposition 2.31 can be interpreted as
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showing that the low-degree likelihood ratio is 1+0(1) in the entire
hard regime for the log-density framework.

Planted Dense Subgraph and Planted Clique conjectures. In our
work, we have focused on the regime a € (0,1/2],5,y € (0,1).
Other instantiations of these parameters have also been subject to
intense study in recent years and various conjectures predicting the
limits of efficient algorithms have been proposed, broadly referred
to as the Planted Dense Subgraph conjecture or in the case y = 0,
the Planted Clique conjecture. Furthermore, assuming these con-
jectures, inapproximability results have been derived for various
problems such as Sparse PCA, Stochastic Block model, Biclustering,
etc. See e.g. [24, 27, 28, 34, 52, 86, 95, 96] and references therein.
Densest k-Subgraph lies at the heart of many of these reductions,
therefore it’s plausible that our hardness result can be exploited to
derive better inapproximability results for various other problems,
which we leave for future work.

1.4 Organization of the Paper

The rest of the paper is organized as follows. We start with a brief
overview in Section 2 of graph matrices, which are at the heart of
our spectral analysis, using it to construct our candidate moment
matrix following the pseudo-calibration framework in Section 2.5.
With the matrix in hand, we then delve into the extensive PSDness
analysis that forms the bulk of work. We motivate and discuss our
conceptually novel PMVS decomposition in Section 3. We defer the
formal details and other technical verifications to the full version
of the paper.

2 PRELIMINARIES
2.1 The Sum-of-Squares Algorithm

We now formally describe the Sum-of-Squares hierarchy. For a
detailed treatment and survey of SoS, see e.g. [47, 62, 63, 98, 104].

SoS is used to check feasibility of a system of polynomials.
Given a graph G = (V, E), the simplest polynomial formulation for
the existence of a subgraph with k vertices and m edges encodes
the 0/1 indicator of the subgraph:

Variables: Xy, Yo € V

Constraints:
Z Xo =k (Vertex count)
veV

XuXy =m (Edge count)
{u,v}€E
Xf, =Xp YoeV (Boolean)

The sum-of-squares algorithm is parameterized by the de-
gree Dgos € N. The nontrivial levels of the algorithm are Dgog =
2,4,6,8,....

Definition 2.1 (Pseudoexpectation). Given a set of variablesX, .. .,
Xp, a degree-Dgog pseudoexpectation operator is a linear functional
E:RSPsos[Xy, ..., X,] — R such that E[1] = 1.
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Here R<Pses[X, . .., X,,] denotes the set of polynomials with
degree at most Dgqg.

Definition 2.2 (Satisfying an equality constraint). A degree-Dsog
pseudoexpectation operatorE satisfies a polynomial constraint “f (X) =
0” ifE[f(X)p(X)] = 0 for all polynomials p(X) f (X) of degree at most
Dsos.

Definition 2.3 (SoS-feasible). A degree-Dsos pseudoexpectation
operator E is SoS-feasible if for every polynomial p € R=Dsos/2,
E[p(X)*] 2 0.

Definition 2.4 (Sum-of-squares algorithm). Given a system of
polynomial constraints {f;(X) = 0} in n variables Xy, ..., Xy, the
degree-Dsos Sum-of-Squares algorithm checks for the existence of an
SoS-feasible degree-Dsos pseudoexpectation operatorE that satisfies
the constraints. IfE exists, the algorithm outputs “may be feasible’,
otherwise it outputs “infeasible’. This can be done algorithmically by
solving a semidefinite program of size nODses) that searches fora
feasible moment matrix (Definition 2.7).

If no pseudoexpectation operator exists, then SoS successfully
refutes the polynomial system (i.e., it proves that there is no dense
subgraph in the input). On the other hand, if a pseudoexpectation
operator exists, SoS cannot rule out that the polynomial system
is feasible (the pseudoexpectation operator fools SoS, but it may
or may not correspond to a true distribution on feasible points). A
lower bound against SoS consists of a feasible pseudoexpectation
operator in the case when the system is actually infeasible.

2.2 Moment Matrices

Analysis of the SoS algorithm on an n-variable polynomial system is
typically accomplished by formulating it in terms of large matrices
indexed by subsets of [n], known as moment matrices.

Definition 2.5 (Matrix index). Let I be the set of ordered subsets of
[n] of size at most Dsqg /2.

Remark 2.6. Another reasonable definition of I uses subsets of [n]
and not ordered subsets. For technical reasons, we include an ordering.

The degree-Dsog sum-of-squares algorithm can be equivalently

RfXI

formulated in terms of matrices, which are called moment

matrices.

Definition 2.7 (Moment matrix). The moment matrix A = A(E)
associated to a degree-Dsgs pseudoexpectation E is an 1 -by-I matrix
defined as

AL J] ::E[xf-xf].

Fact 2.8. E is SoS-feasible if and only if A(E) > 0.

Definition 2.9 (SoS-symmetric). A matrix A € RY*L s SoS-
symmetric if A[I, J] depends only on the disjoint union Il J as an
unordered multiset. Along with the additional constraint A[0, 0] = 1,
this characterizes A € RT*Z which are moment matrices of degree-
Dsos pseudoexpectation operators.

In the presence of Boolean constraints “Xl? = X;”, a moment
matrix satisfies these constraints if and only if A[I, J] depends only
on the union I U J as an unordered set (ignore duplicates).



STOC ’23, June 20-23, 2023, Orlando, FL, USA

2.3 p-biased Fourier Analysis and Graph
Matrices

We are interested in matrices which depend on a random graph
G ~ Gnyp- To analyze these as functions of G, we encode G via

its edge indicator vector in {0, 1}(';) and perform p-biased Fourier
analysis.

Definition 2.10 (Fourier character). y denotes the p-biased Fourier

character,
p 1-p
0)=—[——, 1)=,|—=.
x(0) ,ll_p x(1) ,/p

For H a subset or multi-subset of([g]), let xgg(G) = [leer x(Ge).

Definition 2.11 (Ribbon). A ribbon is a tuple R = (Agr, Br, E(R))
where Ag,Br € I and E(R) C ([;]). The corresponding matrix
Mg € RTXT js:

1

Mg[L]] = {XE(R) G) I :AR’.] = Br
0 otherwise.

The ribbon matrices Mg are mean-zero, orthonormal under the
expectation of the Frobenius inner product on matrices, and form
a basis for all R7*7 -valued functions of G. They are the natural
Fourier basis for random matrices that depend on G.

In the matrices that we study, the coefficient on a ribbon will
not depend on the particular labels of the ribbon’s vertices, but only
on the graphical structure of the ribbon. This graphical structure is
called the shape.

Definition 2.12 (Shape). A shape « is an equivalence class of ribbons
under relabeling of the vertices (equivalently, permutation by Sp).
Each shape is associated with a representative graph (Ug, Vg, E(2)).
We let V(a) == Uy UV, UV(E()).

We use the convention of Greek letters such as «, y, 7 for shapes
and Latin letters R, L, T for ribbons.

Definition 2.13 (Embedding). Given a shape a and an injective
function ¢ : V(a) — [n], we let ¢(a) be the ribbon obtained by
labeling a in the natural way (preserving the order on Uy and V).

A ribbon R has shape « if and only if R can be obtained by an
embedding of V() into [n]. Note that different embeddings may
produce the same ribbon.

Definition 2.14 (Graph matrix). Given a shape a, the graph matrix

Mg is
2,

injective ¢:V (a)—[n]

My = M(p(a) .

The entries of a graph matrix are degree-|E(a)| monomials
in the variables Ge, therefore we think of graph matrices as low-
degree polynomial random matrices in G. We call them “nonlinear”
to distinguish them from the degree-1 case, which is well-studied
(being essentially the adjacency matrix of G).

Definition 2.15 (Diagonal). A ribbon or shape « is diagonal if
V(@) = Uy = Va.
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A diagonal shape is only nonzero on the diagonal entries of
the matrix in the block corresponding to Uy. Note that there are
additional shapes which have the same support, namely shapes
which potentially have additional edges and vertices outside of
Uy = Vu. The diagonal shapes as we have defined them are the
most important contributors to the diagonal entries of the matrix.

Definition 2.16 (Transpose). The transpose of a ribbon or shape
swaps AR, Br or Uy, Vi respectively. This has the effect of transposing
the matrix for the ribbon/shape.

2.4 Norm Bounds

Definition 2.17 (Weight of a set). Fora graphS, letw(S) = |V (S)|-
log,, (1/p)IE(S)|.

Definition 2.18 (Vertex separator). A vertex separator of two sets
A,Binagraph G is a set S C V(G) such that all paths from A to B
pass through S.

Definition 2.19 (Sparse minimum vertex separator (SMVS)). Given
a ribbon or shape a, a sparse minimum vertex separator (SMVS) is
a minimizer of w(S) over S C V(a) which separate Uy and V.

THEOREM 2.20 (NORM BOUND, INFORMAL [64, 103]). With high
probability, for all proper shapes a:

=~ [ WVie@)-dw(Snip)l
Mgl < Ofn ’

where Spin is the SMVS of a.

2.5 Pseudocalibration

Pseudocalibration is a heuristic used to construct candidate pseu-
doexpectation operators E for SoS lower bounds, introduced in
the context of SoS lower bounds for Planted Clique [17]. See e.g.
[17, 48, 98] for a formal description.

The pseudocalibrated operator E[X'] is defined using the Fourier
coefficients of the corresponding function X! (H) evaluated on the
planted distribution. First we need to compute these Fourier coef-
ficients. A similar computation was performed by [39] to exhibit
integrality gaps for the Sherali-Adams hierarchy.

Lemma 2.21. Let X! (H) be the 0/1 indicator function for I being in
the planted solution i.e. I C H. Then, for allI C [n] and a C (['21]),
K |E(a) |
EG.m)~n, [X'(H) - xa(G)] = (—

|V (a)uI| ( )
”) Vp(1-p)

Proor. First observe that if any vertex of V(a) U I is outside
H, then the expectation is 0. This is because either I is outside H, in
which case X/ (H) = 0, or an edge of a is outside H, in which case
the expectation of this Fourier character is 0. Now, each vertex of
V(a) UTis in H independently with probability % Conditioned on
this event happening, each edge independently evaluates to

9-p
IE5’6~Bern0ulli( )X(e) =q - x()+(1-q  x(0) = ——.
! Vp(1-p)
Putting these together gives the result. |
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For technical convenience, we slightly modify the parameters
f and y so that % =nF and % =n7V.

Pseudocalibration suggests transferring the low-degree Fourier
coefficients from the planted distribution. As long as the size of the
Fourier coefficients is larger than the SoS degree, i.e. Dy > Dgqs,
then SoS should not notice that we are using a truncation.

Definition 2.22 (Additional parameters). Let ¢ = y — aff be the
slack in the log-density equations.

Let Dy = C - Dsos log n where constant C = C(¢) is sufficiently
large.

Definition 2.23 (S). Let S be the set of (proper) ribbons R such that:
(i) (Degree bound) |AR|,|Br| < Dsos/2
(ii) (Size bound) |V(R)| < Dy

We will sometimes use o € S as the set of shapes with the same
properties, following the convention of using Latin letters for ribbons
and Greek letters for shapes.

Definition 2.24 (M). Define the pseudocalibrated candidate moment
k

matrix
VR ER)]
I e B
" p(1-p)

For the purposes of analyzing the spectrum of M in later sec-

M= (
ReS

tions, it is more convenient to rescale the entries so that E[XI ] has
order 1 forall I C [n].

Definition 2.25 (1,). Given a shape or ribbon «a, let
[Ug|+|Ve|
k V() |-=25-%
=)

n

[E(a)|
-p )
Vp(1-p)
_ (@ (Ve | Bl ) (B oy |G|
Definition 2.26 (properly composable, informal). We say that
a sequence of ribbons Ry, ..., Ry is properly composable if for all

j € |k —1], Bg, = AR,., and these ribbons have no other vertices in
' i+t
common.

Lemma 2.27. IfR,S are properly composable ribbons, then ARos =
ARAs.

Definition 2.28 (A). Define A = Y pcs ARMR.
Lemma 2.29. M > 0 if and only if A > 0.

Proor. We have M = DAD where D is a diagonal matrix with
]

positive entries D[L,I] = (%) Z Hence xTMx > 0forallx € RY
ifand only if xTAx > 0 for all x € RY. |
Lemma 2.30. M is SoS-symmetric and satisfies the constraints ’X? =
Xi”

Proposition 2.31. With high probability, we have E[l] =1=+o0(1).

Remark 2.32. While the definition of E requires that E[1] = 1, this
can be achieved by taking the pseudo-expectation values given by
pseudo-calibration and dividing them by E[1].
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Proposition 2.33. With high probability,
L —~
D LEIXi] = (12 0,(D)k,
i=1

and

- k2
E[XiX;] > (1+ on(l))Tq.
(i.j) €E(G)

3 POSITIVE MINIMUM VERTEX SEPARATOR
DECOMPOSITION

3.1 Motivation for the Positive Minimum Vertex
Separator

After pseudocalibration, to complete the proof of Theorem 1.1, we
need to show that the rescaled candidate moment matrix is PSD
with high probability,

A:ZAQ~M0,20.
a€eS

For each graph matrix A My in A, we want to find an (approx-
imately) PSD term which spectrally dominates it. Previous work
led to the following idea: for each shape a, we can split it across
the leftmost and rightmost minimum vertex separators so that « is
decomposed into three parts,

a=corog’T.
Then the target spectral upper bound is given by
Ag—Mo—ogT +)~¢2)-/Mo"oo"T .

This is approximately PSD since Mgoor ¥ MgMJ > 0. To make
this strategy work, we need to prove that the middle shape M; is
spectrally dominated by the corresponding identity via combina-
torial charging. In previous work, it has been essentially possible
to charge all middle shapes to the identity matrix, but this breaks
down in the setting of Densest k-Subgraph. In the baby case, this
is evident in our calculation for ¥, »)eE(G) E[X,X,] in Proposi-
tion 2.33, where the dominant term is no longer the trivial shape
but instead the shape with an edge in between.

A second, related issue is the presence of edges inside the sepa-
rator. Concretely, say that (Ur, E(Uy)) and (V, E(V;)) are the left-
most/rightmost SMVS of a middle shape 7, and we hope to charge
7 to the diagonal matrix corresponding to the leftmost/rightmost
SMVS. Concretely, letting U also denote the diagonal shape with
edges E(U;), we want to charge

Ar(M; + M]) < Au, My, + Ay, My, .

However, this strategy crucially requires that Ay, - My, and
Ay, - My, are PSD by themselves in order to conclude that the result
is PSD. Since A, is non-negative, this boils down to the PSD-ness
of the diagonal shape (U, E(U)) for the SMVS. This latter matrix
is easy to verify as the non-zero diagonal entries are given by, for a
ribbon R of the corresponding shape Uz,

@@ =[] r©

ecE(R)
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and recall that we are working on the p-biased Fourier basis,

1—p P
(1) = | —=, e (0) = — [—
X(),/p Xe(0) -

At this point, we observe that the instantiation of the SMVS edges
E(R) plays a crucial role as they determine whether our candidate
”PSD” mass is truly positive. If all edges of E(R) are present in G,
then the diagonal entry is positive,

) [E(R)|
[T w@==2 =0
e€E(R) p

On the other hand, if an edge is missing, then positivity is not
guaranteed. Ignoring this bad case for now, we have the following
sufficient criterion for finding a PSD dominant term. If T is a ribbon
of shape 7, and R is the restricted ribbon to Uy, then if E(R) € E(G),
we must charge A:Mr to Ay, Mg.

When an edge is missing inside the SMVS, then we need to look
harder. Despite the candidate PSD term not being truly positive, it
is not yet time to panic. In this case, (1) a missing edge scales down
the matrix, in line with the intuition that subgraphs with edges
present are the highest-norm terms, therefore (2) we look in the
remainder of the shape for the new SMVS, to determine the new
matrix norm. This creates a recursive process, and when all edges
inside the candidate SMVS are actually present in the graph, we
terminate, calling this the Positive Minimum-weight Vertex Separator
(PMVS).

Glab) =7

\G a,b) =

Figure 1: PMVS Search

G(a,b) = \?

Let us give an example. The graph matrix at the top of Fig. 1 ap-
pears on the diagonal of our moment matrix. In this example shape,
the only vertex separator is the entire shape, and so the SMVS con-
tains the edge G(a, b). We check whether or not the edge appears
in the graph. In the “yes” outcome on the left, we have a PSD matrix

whose (a, b)-th diagonal entry is 1(4 p)e£(G)/ I—Tp In the “no” out-

come on the right, the (a, b)-th diagonal entry is =14 b)¢E(G) + l%
which is negative and therefore the matrix is not PSD. This matrix
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comes with a small coefficient of approximately +/p and hence it can
be charged to the corresponding identity matrix, whose (g, b)-th
diagonal entry is just 1. In this example, the recursion terminates
after just one step, but in larger shapes, we would need to find the
new SMVS for the case on the right.

As described above, the recursion outputs the minimizer of a
certain weight function. However, we need to slightly modify the
recursive process described above so that it always “moves left”, in
order for the crucial Remark 3.7 to hold.

3.2 PMYVS Subroutine

We make the following extended definition of the Positive Minimum
Vertex Separator (PMVS) of a ribbon R.

Definition 3.1 (Left and right indicators). We say that a ribbon R
has left indicators if R has edge indicators for every edge e € E(AR).
Similarly, we say that a ribbon R has right indicators if R has edge
indicators for every edge e € E(BR).

Our goal is to have composable triples of ribbons Ry, Rz, R3
with the following properties:

Definition 3.2 (Ribbons with PMVS identified). A composable
triple of ribbons Ry, Ro, R3 has PMVS identified if:

(i) Ry is a left ribbon and R3 is a right ribbon.

(ii) Ry, Ro, R3 are properly composable.

(iii) Ry has right indicators, Ry has both left and right indicators, and
Rs3 has left indicators.

(iv) The edges and edge indicators agree on By,
AR

= Ag, and Bg, =
»
(v) R1,Ro, R3 have no other edge indicators.

When these properties hold, we say that the left PMVS is Ag, and the
right PMVS is Bg,.

Remark 3.3. The left and right PMVS may not have the same size or
weight. In fact, they may not even be an SMVS of Ry. We will bound
the difference between the PMVS and the SMVS.

At the beginning, we take each ribbon R and decompose it into
ribbons Ry, Ry, R3 based on the leftmost and rightmost SMVS. This
gives us a composable triple of ribbons Ry, Rz, R3 such that

(i) Ry is a left ribbon, Ry is a middle ribbon, and Rs is a right
ribbon.
(if) R1, Ro, R3 are properly composable.
(iv) The edges agree on Bg, = Ag, and B,
(v) R1, Rz, and R3 have no edge indicators.

= Ag,.

Remark 3.4. The ribbon encoded by the triple R1, Ry, R3 is (Rq \
E(BR,)) o Rz o (R3 \ E(AR,)) rather than Ry o Ry o R3 because edges
inside BR, = AR, should not be duplicated.

In order to satisfy the condition that R; has right indicators,
Ry has both left and right indicators, and Rs has left indicators,
we repeat the following sequence of operations as many times as
needed.
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(1) Adding left and right indicators operation: To add in-
dicators to Bg, = Ag, and Bg, = Ag,, we replace each
edge e € E(AR,) UE(Bg,) that does not yet have an indica-

125 This
leads to two possible new ribbons which have different
edge structure, one with e still present and the other with
e removed.

(2) PMVS operation: After adding the edge indicators to
BRr, = Ag, and Bg, = Ag,, we check if Ry is still a left
ribbon and Rj is still a right ribbon. If so, we stop and exit
the loop. If not, we let A” be the leftmost SMVS separating
Ag, from Bg, and we let B’ be the rightmost SMVS sepa-
rating Ag, from Bg,. We then replace R1, Rz, and R3 with
the ribbons R{, Ré, and Ré where

(a) Ry is the part of Ry between Ag, and A”.

(b) R} is the composition of the part of R \ E(Bg,) between
A’ and Bg,, Ry, and the part of R3 \ E(AR,) between Ap,
and B’.

(c) R} is the part of R3 between B’ and Bg,.

(3) Removing middle edge indicators operation: If Ry has
one or more edge indicators which are now outside of Ag,
and Bg,, we re-convert them back into Fourier characters

using the equation ﬁleeE(G) Xe = A I% + Xe-

tor using® the equation y, = #leeg(G) Xe —

We call this repeated sequence of operations the Finding
PMVS subroutine, which takes a triple of composable ribbons
R1, Ry, R3 which have all the needed properties except having left
and right indicators (some but not all indicators may be present)
and gives us a triple of composable ribbons with all of the needed
properties.

Remark 3.5. Note that each triple Ry, Ro, R3 leads to many triples
R}, R}, R; depending on which summand is taken in each equation.
The recursion proceeds on every term except for the one in which every

Xe is replaced by ﬁleeE(G) Xe-

Remark 3.6. At first glance, checking whether or not edges inside
AR, and Bg, are present leads to a complicated dependence on the
input graph G. In order to mathematically express the recursion in a
G-independent way, we formally use the edge indicator function to
express the two cases.

3.3 Intersection Term Operation

Once we have these triples of ribbons Ry, Ry, R3, we can apply an
approximate factorization across the PMVS. When we do this, we
will obtain error terms which can be described by triples of ribbons
Ry, Ry, and R3 which have at least one non-trivial intersection (they
are not properly composable) but satisfy the other four properties
in Definition 3.2. We handle this as follows.

(1) Intersection term decomposition operation: Let A’ be
the leftmost SMVS between Ag, and Vi, sersecreqd (R1) UBR,
and let B’ be the rightmost SMVS between V; s ersected (R3)U

3The high-level overview of the PMVS alluded to the slightly different formula y, =
1ecE(G) Xe t1egE(G) Xe- These are morally equivalent, but the formula here is simpler
to analyze.
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AR, and Bg,. We now replace Ry, Ry, and R3 with the rib-
bons R{, R, and Rg where

(a) Ry is the part of Ry between Ag, and A”.

(b) To obtain R, we improperly compose the part of Ry \
E(Bg,) between A’ and Bg,, Ry, and the part of R3 \
E(AR,) between Ag, and B’. We then linearize the multi-
edges, replacing )(]e‘ = co + ¢1 xe using the appropriate
coeflicients cg, c1.

In the edge case that a multi-edge also has an edge in-
dicator (for example, because an each inside Ag, inter-

sects with an edge from Rs), we instead use the equation
k-1

1ok =( /1‘71’) TeXe.

(c) R; is the part of R3 between B’ and Bg,.
(2) We apply the Removing middle edge indicators opera-
tion to Ry.

The ribbon R} is defined to “grow” Rz so that it includes the inter-
sections. After these steps, we are in essentially the same situation
as we started. More precisely, we have a triple of ribbons Rj, Ry, R3
such that

(i) Rp is a left ribbon and Rj3 is a right ribbon.
(ii) Ry, Ry, R3 are properly composable.
(iv) The edges and edge indicators agree on Bg, = Ag, and Bg, =

Ag,.
(v) Ry, Rz, R3 have no edge indicators outside of B, = Ag, and
Bgr, = ARg,.

At this point, we can repeat the operations, applying the Find-
ing PMVS subroutine to identify a new PMVS, approximately
factoring, then decomposing intersection terms, as many times as
needed.

3.4 Summary of the Operations and Overall
Decomposition

We now summarize our procedure.

Finding PMVS subroutine: repeat the following until con-
vergence,

(1) Apply the Adding left and right indicators operation
to add indicators to Bg, = AR, and Bg, = Ap,.

(2) Apply the PMVS operation to ensure that R; is a left
ribbon and Rs is a right ribbon. If no change is made to Ry
or R3, then we have identified the PMVS.

(3) Apply the Removing middle edge indicators operation
to Ry to ensure that Ry has no middle indicators.

Overall decomposition procedure:

(1) We start with triples of composable ribbons R1, Rz, R3 which
have all the needed properties except having left and right
indicators.

(2) We apply the Finding PMVS subroutine.

(3) Recursive factorization: We apply the following procedure
repeatedly until there are no more error terms.

1. We approximate the sum over the composable triples of
ribbons Ry, Rz, R3 by enlarging the sum to include all left
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ribbons R; and right ribbons R3 (not necessarily properly
composable with Ry or with each other). This yields a
matrix LQ;LT where L sums over left ribbons and Q;
sums over the ribbons Ry on the ith iteration of the loop.
We then move to the triples of ribbons Ry, Rs, R3 for the
intersection error terms, if any.4

2. We apply the Intersection term decomposition op-
eration to obtain a triple of ribbons Ry, Rz, R3 which are
properly composable.

3. We apply the Removing middle edge indicators op-
eration to Ry to ensure that Ry has no middle indicators.

4. We apply the Finding PMVS subroutine.

Remark 3.7. As with previous SoS lower bounds using graph matri-
ces, a key observation is that the PMVS operation and the intersection
term decomposition operation are unaffected by replacing R] with a
different left ribbon R or replacing R; with a different right ribbon
Ry as long as Bgr = B, and Agy = Ag;. This ensures that all left
ribbons R and right ribbons R} appear in the matrices L and LT.

Carrying out this process, the overall decomposition of the
moment matrix is then
2Dy

Z Ql) LT + truncation error .
i=0

A=L

Therefore, the main requirement for A > 0 is to show that
Z?EOV Q; > 0. We will show that the norm-dominant terms are the
diagonal shapes (Definition 2.15). By virtue of the PMVS factoriza-

tion, these shapes are PSD, as we can easily check.

Lemma 3.8. IfRy, Ry, R3 are ribbons with PMVS identified, such that
Ry is diagonal, then Ag,Mpg, > 0.

PRrROOF. ARZ > 0 and Ry is diagonal with one nonzero entry, so
we need that the entry is nonnegative. Since Ry has edge indicators,
the entry is

l_[ 1eEE(G)Xe(G) .

e€E(Ry)

Any time the entry is nonzero, its value is

> 0.

) [E(Rp) |

1-p
()E®R) = 2
& P

4 CONCLUSION

In this work, we showed Sum-of-Squares lower bounds for Dens-
est k-Subgraph. Our results lend strength to the conjecture that
Densest k-Subgraph is truly a hard problem in the predicted “hard”
parameter regime. Our results are in line with the log-density frame-
work for Densest-k-Subgraph, complementing the extraordinary
work of [19] from over a decade ago.

4There are also additional error terms for the truncation error, as the maximum size
of the left ribbons R;, R3 will be slightly smaller for intersection terms. This must be
handled separately.
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Our work provides a formal lower bound against a concrete
class of algorithms for Densest k-Subgraph. For the optimistic algo-
rithm designer that wishes to solve Densest k-Subgraph, what kind
of algorithms could circumvent our lower bound? First, one could
try to modify the constraints or objective of the semi-definite pro-
gram. For example, “mismatching” the size of the hidden subgraph
may be helpful for the related Planted Clique problem [6]. Our proof
does not formally rule out non-standard SDP-based algorithms, al-
though we believe it is likely that our proof could be modified into
a lower bound against other SDPs. Second, algebraic approaches
based on finite fields, Gaussian elimination, or lattice-based meth-
ods are not captured by Sum-of-Squares reasoning [112]. However,
these techniques typically require a rigid “noise-free” structure in
the problem which isn’t present in Densest k-Subgraph, so such an
algorithm would be unexpected.

There are some technical limitations to our work, which are
also present in almost all existing SoS lower bounds. Technical
improvements such as improving the SoS degree from n¢ to Q(k),
or tightening the slack y — aff seem out of reach for our current
techniques. We could also consider the closely related planted model
where the size of the planted subgraph is not approximately but
exactly k. Our analysis doesn’t go through immediately in this
setting for technical reasons, which is also the case in most existing
SoS lower bounds. With additional work, this might be overcome,
as Pang [92] did for Planted Clique. That said, we believe that the
behavior of SoS is qualitatively the same.
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