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ABSTRACT

Given a graph and an integer 𝑘 , Densest 𝑘-Subgraph is the algorith-

mic task of finding the subgraph on 𝑘 vertices with the maximum

number of edges. This is a fundamental problem that has been sub-

ject to intense study for decades, with applications spanning a wide

variety of fields. The state-of-the-art algorithm is an 𝑂 (𝑛1/4+𝜀 )-
factor approximation (for any 𝜀 > 0) due to Bhaskara et al. [STOC

’10]. Moreover, the so-called log-density framework predicts that

this is optimal, i.e. it is impossible for an efficient algorithm to

achieve an 𝑂 (𝑛1/4−𝜀 )-factor approximation. In the average case,

Densest 𝑘-Subgraph is a prototypical noisy inference task which is

conjectured to exhibit a statistical-computational gap.

In this work, we provide the strongest evidence yet of hardness

for Densest 𝑘-Subgraph by showing matching lower bounds against

the powerful Sum-of-Squares (SoS) algorithm, a meta-algorithm

based on convex programming that achieves state-of-art algorith-

mic guarantees for many optimization and inference problems. For

𝑘 ≤ 𝑛
1
2 , we obtain a degree 𝑛𝛿 SoS lower bound for the hard regime

as predicted by the log-density framework.

To show this, we utilize the modern framework for proving

SoS lower bounds on average-case problems pioneered by Barak

et al. [FOCS ’16]. A key issue is that small denser-than-average

subgraphs in the input will greatly affect the value of the candidate

pseudoexpectation operator around the subgraph. To handle this

challenge, we devise a novel matrix factorization scheme based on

the positive minimum vertex separator. We then prove an intersec-

tion tradeoff lemma to show that the error terms when using this

separator are indeed small.
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1 INTRODUCTION

In the Densest 𝑘-Subgraph problem, we are given an undirected

graph 𝐺 on 𝑛 vertices and an integer 𝑘 and we want to output the

subgraph on 𝑘 vertices with the most edges, or in other words,

the subgraph on 𝑘 vertices with the highest edge density. This is a

natural generalization of the 𝑘-clique problem [65] and has been

subject to a long line of work for decades [3, 4, 11, 18ś20, 22, 23, 43ś

46, 50, 52, 53, 66, 67, 84, 99, 108]. This problem has been the subject

of intense study partly because of its numerous connections to other

problems and fields (e.g. [5, 30, 32, 33, 35, 36, 41, 54ś56, 70, 71, 80,

82, 87, 94, 107, 110]) The best known approximation algorithm for

this problem yields an approximation factor of 𝑂 (𝑛1/4+𝜀 ) for any
constant 𝜀 > 0, due to [19]. On the other hand, it is conjectured that

no efficient algorithm can achieve an 𝑂 (𝑛1/4−𝜀 ) approximation.

Densest 𝑘-Subgraph is a compelling problem because random

instances (Erdős-Rényi graphs) are conjectured and widely believed

to be the žhardestž instances for algorithms. In fact, the insight that

łworst case is average casež was crucial to the aforementioned al-

gorithm in [19]. Their idea of going from average-case instances

to worst-case instances was generalized into the log-density frame-

work, which has been further applied to various other problems

[37, 38, 40]. Since an algorithm for random instances seems to be the

crucial conceptual step needed to solve the problem on all instances,

understanding these random instances is a pressing topic.
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As stated in [19, 20, 23, 84], Densest 𝑘-Subgraph on a random

graph is a landmark question in the field of average-case complex-

ity. Moreover, the conjectured hardness of this problem on random

instances (which is the focus of our work) has been used for ap-

plications in finance [8] and cryptography [7]. However, evidence

of hardness for Densest 𝑘-Subgraph stands to be improved, both

in the average-case and worst-case settings. For example, even in

the worst-case setting, no work has been able to show that Densest

𝑘-Subgraph is hard to 𝑛𝜀 -approximate for a fixed 𝜀 > 0 using any

reasonable complexity-theoretic assumption (although some works

come close, see Section 1.3). In the more interesting average-case

setting of random graphs, relatively little progress has been made

to justify hardness, let alone match the log-density framework.

In this work, we study the hardness of Densest 𝑘-Subgraph on

random graphs through a generic, powerful algorithm for optimiza-

tion known as the Sum-of-Squares (SoS) hierarchy [51, 79, 90, 93,

106]. The SoS hierarchy is a family of semidefinite programming re-

laxations for polynomial optimization problems which implements

a certain type of łsum-of-squares reasoningž. Arguably at the center

stage of average-case complexity in recent years, SoS has proven

to be a highly effective tool for combinatorial and continuous opti-

mization. First, it was shown that the SoS hierarchy is rich enough

to capture the state-of-the-art convex relaxations for Sparsest Cut

[9], Max-Cut [49], all Max 𝑘-CSPs [97], etc. Later on, the SoS hi-

erarchy led to new algorithms for approximating CSPs [2, 12, 13]

and breakthroughs in robust statistics [15, 16, 58, 61, 69, 75, 98], a

highlight being the resolution of longstanding open problems in

Gaussian mixture learning (over a decade of work culminating in

[14, 83]). Finally, for a large class of problems, it has been shown

that SoS algorithms are the most effective among all semidefinite

programming relaxations [81]. Therefore, understanding the limits

of SoS algorithms is an important research endeavour and lower

bounds against SoS serve as strong evidence for algorithmic hard-

ness [60, 62, 77].

In this paper, we prove that for 𝑘 ≤ 𝑛
1
2 , SoS of degree 𝑛𝛿

does not offer any significant improvement in the conjectural hard

regime of random instances for Densest 𝑘-Subgraph as predicted by

the log-density framework. This settles the open questions raised in

the works [20, 39, 101]. Considering that the algorithm of Bhaskara

et al. [19] matching the log-density framework is captured by SoS,

our lower bound completes the picture of the performance of SoS

for Densest 𝑘-Subgraph for 𝑘 ≤ 𝑛
1
2 . This gives solid evidence that

the conjectured approximability thresholds for Densest 𝑘-Subgraph

are correct.

1.1 Our Contributions

Wewill now describe our results on SoS lower bounds for Densest 𝑘-

Subgraph that match the predictions of the log-density framework.

Consider the following hypothesis testing variant of the Dens-

est 𝑘-Subgraph problem. For an integer 𝑛 and a real 𝑝 ∈ [0, 1], let
G𝑛,𝑝 denote the Erdős-Rényi random distribution where a graph on

𝑛 vertices is sampled by choosing each edge to be present indepen-

dently with probability 𝑝 . For parameters 𝑛, 𝑘 ∈ N and 𝑝, 𝑞 ∈ [0, 1],
we are given a graph 𝐺 sampled either from

(1) The null distribution G𝑛,𝑝 or

(2) The alternative distribution where we first sample 𝐺 ∼
G𝑛,𝑝 , then a set 𝐻 ⊆ 𝑉 (𝐺) is chosen by including each

vertex with probability 𝑘
𝑛 , and finally we replace 𝐻 by a

sample from G|𝐻 |,𝑞 .

and our goal is to correctly identify which distribution it came from,

with non-negligible probability.

The hypothesis testing question is a łplanted modelž of Densest

𝑘-Subgraph which is conjectured to exhibit a statistics-computation

gap [25, 26]. With high probability, for 𝑞 slightly larger than 𝑝 , the

subgraph 𝐻 in the alternative distribution is truly the densest sub-

graph of 𝐺 with size 𝑘 (hence the null and alternative distributions

are statistically distinguishable), but it is conjecturally computa-

tionally impossible to distinguish the two cases (in the parameter

regime below).

Studying algorithms for this hypothesis testing variant was

crucial to the log-density framework [19], which both generalizes

an algorithm for the hypothesis testing variant into a worst-case

algorithm, and predicts the relationships between𝑛, 𝑘, 𝑝, 𝑞 for which

the hypothesis testing problem is hard. In particular, consider the

setting

𝑘 = 𝑛𝛼 , 𝑝 = 𝑛−𝛽 , 𝑞 = 𝑛−𝛾

for constants 𝛼 ∈ (0, 1/2], 𝛽 ∈ (0, 1), 𝛾 ∈ (0, 1), a notation that we

will use throughout this paper. According to the framework, it’s

algorithmically hard to solve the problem if

𝛾 > 𝛼𝛽

That is, in this regime, no polynomial-time algorithm can distin-

guish the two distributions with probability at least 2/3 of success.1

To state our result, we recall that the SoS hierarchy is a family

of convex semidefinite programming relaxations parameterized by

an integer 𝐷SoS called the degree or level of SoS. The relaxation gets

tighter as 𝐷SoS increases but the runtime also increases at the rate2

of approximately 𝑛𝑂 (𝐷SoS) for degree 𝐷SoS SoS. Thus, conceptually

degree𝑂 (1) corresponds to polynomial time algorithms and degree

𝑛𝛿 corresponds to subexponential time algorithms. In this work,

we study the performance of degree 𝐷SoS = 𝑛𝛿 Sum-of-Squares on

the Densest 𝑘-Subgraph problem for a constant 𝛿 > 0 and obtain

strong lower bounds.

Because of the well-known duality between SoS programs and

pseudo-expectation operators, to show a lower bound, it suffices

to show a feasible pseudo-expectation operator Ẽ satisfying the

constraints. For a formal definition of SoS, see Section 2.1. We are

now ready to state our result.

Theorem 1.1. For all constants 𝛼 ∈ (0, 1/2], 𝛽 ∈ (0, 1), 𝛾 ∈
(0, 1) such that 𝛾 > 𝛼𝛽 , there exists 𝛿 > 0 such that with high

probability over 𝐺 = (𝑉 , 𝐸) ∼ G𝑛,𝑝 , there exists a degree 𝑛
𝛿 pseudo-

expectation operator Ẽ on SoS program variables {XX𝑢 }𝑢∈𝑉 such that

1When 𝛼 >
1
2 , i.e. 𝑘 = 𝜔 (

√
𝑛) , spectral algorithms beat the log-density threshold

[19, 66]. Spectral algorithms are captured by degree-2 SoS. Various works have also
studied other special settings (e.g. when 𝑞 = 1, or when 𝑝,𝑞 are constants). See
Section 1.3.
2In pathological cases, there may be issues with bit complexity [91, 100]
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(1) (Normalization) Ẽ[1] = 1 ± 𝑜 (1).
(2) (Subgraph on 𝑘 vertices) Ẽ[∑𝑣∈𝑉 XX𝑣] = 𝑘 (1 ± 𝑜 (1)).

(3) (Large density) Ẽ[∑{𝑢,𝑣 }∈𝐸 XX𝑢XX𝑣] = 𝑘2𝑞
2 (1 ± 𝑜 (1))

(4) (Feasibility) The moment matrix M corresponding to Ẽ is

positive semidefinite.

This in particular implies that, in the predicted hard regime of

the log-density framework, SoS cannot be used to solve the Densest

𝑘-Subgraph problem as stated above. As discussed earlier, these SoS

lower bounds offer strong evidence that for 𝑘 ≤
√
𝑛, it is unlikely

that efficient algorithms can beat the predictions of the log-density

framework for Densest 𝑘-Subgraph.

By setting 𝛼 = 1/2, 𝛽 = 1/2 and 𝛾 = 1/4 + 𝜀, we obtain the

following important corollary.

Corollary 1.2. For any 𝜀 > 0, there exists a constant 𝛿 > 0 such that

degree-𝑛𝛿 Sum-of-Squares exhibits an integrality gap of 𝑂 (𝑛1/4−𝜀 )
for the Densest 𝑘-Subgraph problem.

This corollary essentially matches the best known algorithmic

guarantees for the Densest 𝑘-subgraph problem [19], namely an

efficient 𝑂 (𝑛1/4+𝜀 )-factor approximation algorithm, thereby com-

pleting the picture for Sum-of-Squares.

1.2 Our Approach

Since Sum-of-Squares is a convex program, in order to prove a

lower bound, it suffices to construct a feasible point, i.e. a pseudo-

expectation operator or moment matrix, which is a large nonlinear

random matrix that depends on the input. We remark that in the

literature, the pseudoexpectation operator formulation is often re-

ferred to as the dual semidefinite program, but in this work, we

exclusively work with this formulation. At a high level, our proof

leverages an existing strategy for proving lower bounds against the

Sum-of-Squares algorithm on random inputs: use pseudocalibration

[17] to construct a candidate moment matrix, then study the spec-

trum of the candidate matrix using graph matrices [1]. This strategy

has been successfully applied in several contexts [17, 48, 64, 95],

although in each case, including ours, significant additional insights

have been required.

Given a random input graph, the first step is to construct the

candidate pseudoexpectation operator or moment matrix. Pseudo-

calibration suggests a candidate matrix, which we can use here

without further thinking. Recall that a semidefinite program opti-

mizes over the cone of positive semi-definite (PSD) matrices; the

main challenge is showing that the candidate moment matrix is

feasible (PSD) with high probability over the random input.

The main issue we face is that matrix factorization strategies

in prior works do not obviously lead to dominant PSD terms in our

setting. There are several steps in the existing framework:

(1) Express the candidate moment matrixΛ in the graphmatrix

(i.e., Fourier) basis;

(2) Identify a class of spectrally dominant graph matrices in Λ

which are together approximately PSD;

(3) Perform an approximate PSD decomposition to create PSD

terms plus additional error terms;

(4) Show that all non-dominant terms and error terms can be

charged to the dominant PSD terms, i.e. they are łnegligi-

blež.

For the purposes of the current discussion, it is enough to

know that each graph matrix in step (1) measures how a fixed small

subgraph, or shape, contributes to the candidate moment matrix,

and furthermore that the spectral norm of a graph matrix can be

read off of combinatorial properties of the small shape graph. It was

shown in [64, 103] that the norm of a graph matrix is determined

up to lower-order factors by the Sparse Minimum-weight Vertex

Separator (SMVS) of the shape (Theorem 2.20). For intuition, shapes

with smaller, denser separators have larger norms.

In order to identify the class of norm-dominant shapes in step

(2), previouswork decomposes shapes using their leftmost and right-

most Minimum Vertex Separator (in contrast to SMVS), yielding for

each shape an approximately PSD term that spectrally dominates

the original graph matrix. Using the norm bounds, combinatorial

arguments about vertex separators are then employed to show that

all deviation terms in step (4) are small.

Prior work has avoided using the SMVS as the decomposi-

tion criterion, using the Minimum Vertex Separator (MVS) instead.

However, the SMVS is a necessity in our setting, because Densest

𝑘-Subgraph is sensitive to small, local structures in the input. To

explain, for a fixed set of vertices𝑈 , if many vertices in𝑈 have a

common exterior neighbor or are part of a denser-than-average

subgraph, then this greatly increases the algorithm’s belief that𝑈

is part of the dense subgraph. Using the SMVS can be thought of as

pinpointing, for each shape, the small dense subgraph which has

the strongest effect on the graph matrix’s norm.

Interestingly, a decomposition based on SMVS poses new con-

ceptual challenges. For one, the SMVS is highly sensitive to the

instantiation of the graph sample (which is to be expected, since

this is exactly how small subgraphs can have outsize effect). Sur-

prisingly, the SMVS decomposition, without extra care, may rather

lead to some supposedly łPSDž terms being negative instead. We

address these technical challenges, alongside our solution using

the Positive Minimum-weight Vertex Separator (see Section 3.1 for

a technical overview) after providing the definitions needed for

working with graph matrices.

Once we have properly identified the dominant PSD terms,

what remains is to prove that the error terms in the decomposition

are small using an intersection tradeoff lemma. This is also one of

our novel contributions as it is significantly different from intersec-

tion lemmas in prior works. This combinatorial lemma is the most

crucial part of the proof, as it ensures that the error terms in the

approximate PSD decomposition have small enough norms.

It’s worth highlighting that the log-density criterion 𝛾 > 𝛼𝛽

occurs multiple times throughout our proof, which is fascinating

to the authors. A partial explanation is that if we look at the con-

tribution of each Fourier character, the quantity 𝛾 − 𝛼𝛽 measures

the decay as the degree of the Fourier character increases, i.e. it’s

the edge decay in a shape. Therefore, this has a dampening effect
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on the higher Fourier levels in the decomposition. Such a Fourier

decay is ubiquitous in the analysis of the low-degree likelihood

ratio [60, 62, 78] and has been important in prior average-case SoS

lower bounds [17, 48, 64, 96].

1.3 Related Work

Algorithms. Algorithms for the Densest 𝑘-Subgraph problem

have been widely studied, e.g. [4, 11, 18, 19, 22, 23, 44ś46, 50, 66,

85, 108, 109], and we do not attempt to give an overview of them

(see e.g. [66] for a nice overview of some of them). For general

graphs, the work [72] (which also introduced the problem) gave a

polynomial time 𝑂̃ (𝑛0.3885)-factor approximation algorithm. This

was later improved to a 𝑂 (𝑛1/3−𝜀 )-factor approximation (for a con-

stant 𝜀 ≈ 1/60) in [45] and to a 𝑂 (𝑛0.3159)-factor approximation in

[50] respectively. The seminal work of [19], which also proposed

the log-density framework improved this to give an algorithm that

achieves a 𝑛1/4+𝜀 -factor approximation in time 𝑛𝑂 (1/𝜀) , for all con-
stants 𝜀 > 0. This is conjectured to be the best achievable by efficient

algorithms.

Lower bounds for Densest 𝑘-Subgraph. Because of its concep-

tual significance and wide applicability, studying lower bounds

against the Densest 𝑘-Subgraph problem is an important research

endeavour. We give a non-exhaustive list of such prior works below.

(1) Conditional hardness: While it’s well known that Dens-

est 𝑘-Subgraph is NP-hard to solve exactly, to the best of

our knowledge, NP-hardness of even constant factor ap-

proximation is unknown. That said, there are various other

conditional hardness results assuming more than P ≠ NP,

e.g. [3, 23, 43, 67, 84, 99]. We highlight the influential work

of Manurangsi [84], who assuming the Exponential Time

Hypothesis showed almost-polynomial factor hardness for

this problem. See the same paper for a more detailed list of

other conditional hardness results. It’s worth noting that

none of these results achieve polynomial factor hardness.

These approaches argue that Densest 𝑘-Subgraph is hard

by reduction. One source of difficulty is that reductions

are not as successful for average-case problems, since a

reduction tends to distort the input distribution and pro-

duce somewhat pathological outputs. Proving hardness of

Densest 𝑘-Subgraph may be possible using a reduction to

a novel non-random instance, but, if it is true that random

(or sufficiently pseudorandom) graphs are the only hard

instances of Densest 𝑘-Subgraph, then a stronger theory of

average-case reductions may be a prerequisite. Some recent

works make exciting progress on realizing average-case

reductions [21, 25, 27, 57].

The remaining lower bounds, including ours, are uncondi-

tional results that do not rely on any conjectures.

(2) Sherali-Adams hardness: An integrality gap of𝑛𝛼 (1−𝛼)−𝑜 (1)

was shown for the degree-Ω̃(log𝑛) Sherali-Adams hierar-

chy (which is a family of linear programming relaxations)

in [20, 39]. Our result is stronger than these Sherali-Adams

lower bounds in three important ways. First, we consider

SoS rather then Sherali-Adams. The SoS hierarchy captures

the Sherali-Adams hierarchy and is known to be much

stronger in many cases (e.g., see [29, 31, 42, 68, 74] in con-

junction with [10, 49]) so our result implies their result.

Second, we obtain an 𝑛𝛿 degree lower bound as opposed

to an Ω̃(log𝑛) degree lower bound. Finally, while these

Sherali-Adams lower bounds are for the particular setting

where 𝛽 = 𝛼 (the setting that maximizes the integrality gap

for a fixed 𝛼), our lower bounds work for the entire range

of parameters 𝛼, 𝛽,𝛾

(3) SoS hardness: Worst-case SoS lower bounds have been

exhibited in [20, 40, 85] obtained by reducing from Max

𝑘-CSP hardness results, within the SoS framework as pio-

neered by [111]. However, these SoS lower bounds were

not optimal even for worst-case instances, since they didn’t

match known algorithmic guarantees (to be more precise,

they showed an 𝑛1/14−𝑂 (𝜀) -factor lower bound for degree

𝑛𝜀 SoS, whereas 𝑛1/4−𝑂 (𝜀) -factor hardness is conjectured).
Our work on the other hand studies average-case instances

(as opposed to worst-case) and matches the guarantees

of known algorithms. Therefore, we significantly improve

these prior hardness results and close the gap. Moreover,

our results can be reduced à la [111] to show SoS hard-

ness for other problems such as Densest 𝑘-Subhypergraph

[101, Theorem 3.17] and also potentiallyMinimum 𝑝-Union

[101].

Average-case Sum-of-Squares lower bounds. Sum-of-Squares

lower bounds for average-case problems have proliferated in the

last decade, for example, Planted Clique [17, 59, 88], Sherrington-

Kirkpatrick Hamiltonian [48, 76, 89], Sparse and Tensor PCA [60,

95, 96] and Max 𝑘-CSPs [73]. Most of these works have been in the

colloquial łdensež regime where the random inputs are sampled

from G𝑛,1/2 or the standard normal distribution N(0, 1). Recently,
average-case SoS lower bounds have been shown for the sparse set-

ting, i.e. inputs sampled from G𝑛,𝑝 where 𝑝 = 𝑜 (1), for the problem
of Maximum Independent Set [64, 103]. The common thread under-

lying recent SoS lower bounds, including ours, is spectral analysis

of large random matrices. See the works [63, 95, 102] for additional

background and intuition on the matrix analysis framework used

in these lower bounds.

The low-degree likelihood ratio hypothesis. We add that simi-

lar predictions as the log-density framework for the threshold of

algorithmic distinguishability may possibly be obtained by ana-

lyzing the low-degree likelihood ratio [60, 62, 78]. The low-degree

likelihood ratio is used in the context of noisy statistical infer-

ence problems to predict, among other things, the existence of

statistical-computational gaps, i.e. when the signal (the planted

dense subgraph) is information-theoretically detectable (and hence

recoverable by a brute-force search), but is not detectable by effi-

cient algorithms. In the same context, the low-degree likelihood

ratio is used to predict the distinguishing power of low-degree poly-

nomial algorithms. In [105], they analyze the low-degree likelihood

ratio for certain parameter regimes of Densest 𝑘-Subraph, but their

results do not seem to recover the predictions of the log-density

framework precisely. Our Proposition 2.31 can be interpreted as
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showing that the low-degree likelihood ratio is 1+𝑜 (1) in the entire

hard regime for the log-density framework.

Planted Dense Subgraph and Planted Clique conjectures. In our

work, we have focused on the regime 𝛼 ∈ (0, 1/2], 𝛽, 𝛾 ∈ (0, 1).
Other instantiations of these parameters have also been subject to

intense study in recent years and various conjectures predicting the

limits of efficient algorithms have been proposed, broadly referred

to as the Planted Dense Subgraph conjecture or in the case 𝛾 = 0,

the Planted Clique conjecture. Furthermore, assuming these con-

jectures, inapproximability results have been derived for various

problems such as Sparse PCA, Stochastic Block model, Biclustering,

etc. See e.g. [24, 27, 28, 34, 52, 86, 95, 96] and references therein.

Densest 𝑘-Subgraph lies at the heart of many of these reductions,

therefore it’s plausible that our hardness result can be exploited to

derive better inapproximability results for various other problems,

which we leave for future work.

1.4 Organization of the Paper

The rest of the paper is organized as follows. We start with a brief

overview in Section 2 of graph matrices, which are at the heart of

our spectral analysis, using it to construct our candidate moment

matrix following the pseudo-calibration framework in Section 2.5.

With the matrix in hand, we then delve into the extensive PSDness

analysis that forms the bulk of work. We motivate and discuss our

conceptually novel PMVS decomposition in Section 3. We defer the

formal details and other technical verifications to the full version

of the paper.

2 PRELIMINARIES

2.1 The Sum-of-Squares Algorithm

We now formally describe the Sum-of-Squares hierarchy. For a

detailed treatment and survey of SoS, see e.g. [47, 62, 63, 98, 104].

SoS is used to check feasibility of a system of polynomials.

Given a graph 𝐺 = (𝑉 , 𝐸), the simplest polynomial formulation for

the existence of a subgraph with 𝑘 vertices and𝑚 edges encodes

the 0/1 indicator of the subgraph:

Variables: XX𝑣, ∀𝑣 ∈ 𝑉

Constraints:
∑︁

𝑣∈𝑉
XX𝑣 = 𝑘 (Vertex count)

∑︁

{𝑢,𝑣 }∈𝐸
XX𝑢XX𝑣 =𝑚 (Edge count)

XX2𝑣 = XX𝑣 ∀𝑣 ∈ 𝑉 (Boolean)

The sum-of-squares algorithm is parameterized by the de-

gree 𝐷SoS ∈ N. The nontrivial levels of the algorithm are 𝐷SoS =

2, 4, 6, 8, . . . .

Definition 2.1 (Pseudoexpectation). Given a set of variables XX1, . . . ,

XX𝑛 , a degree-𝐷SoS pseudoexpectation operator is a linear functional

Ẽ : R≤𝐷SoS [XX1, . . . , XX𝑛] → R such that Ẽ[1] = 1.

Here R≤𝐷SoS [XX1, . . . , XX𝑛] denotes the set of polynomials with

degree at most 𝐷SoS.

Definition 2.2 (Satisfying an equality constraint). A degree-𝐷SoS

pseudoexpectation operator Ẽ satisfies a polynomial constraint ł𝑓 (XX) =
0ž if Ẽ[𝑓 (XX)𝑝 (XX)] = 0 for all polynomials 𝑝 (XX) 𝑓 (XX) of degree at most

𝐷SoS.

Definition 2.3 (SoS-feasible). A degree-𝐷SoS pseudoexpectation

operator Ẽ is SoS-feasible if for every polynomial 𝑝 ∈ R≤𝐷SoS/2,
Ẽ[𝑝 (XX)2] ≥ 0.

Definition 2.4 (Sum-of-squares algorithm). Given a system of

polynomial constraints {𝑓𝑖 (XX) = 0} in 𝑛 variables XX1, . . . , XX𝑛 , the

degree-𝐷SoS Sum-of-Squares algorithm checks for the existence of an

SoS-feasible degree-𝐷SoS pseudoexpectation operator Ẽ that satisfies

the constraints. If Ẽ exists, the algorithm outputs łmay be feasiblež,

otherwise it outputs łinfeasiblež. This can be done algorithmically by

solving a semidefinite program of size 𝑛𝑂 (𝐷SoS) that searches for a
feasible moment matrix (Definition 2.7).

If no pseudoexpectation operator exists, then SoS successfully

refutes the polynomial system (i.e., it proves that there is no dense

subgraph in the input). On the other hand, if a pseudoexpectation

operator exists, SoS cannot rule out that the polynomial system

is feasible (the pseudoexpectation operator fools SoS, but it may

or may not correspond to a true distribution on feasible points). A

lower bound against SoS consists of a feasible pseudoexpectation

operator in the case when the system is actually infeasible.

2.2 Moment Matrices

Analysis of the SoS algorithm on an𝑛-variable polynomial system is

typically accomplished by formulating it in terms of large matrices

indexed by subsets of [𝑛], known as moment matrices.

Definition 2.5 (Matrix index). Let I be the set of ordered subsets of

[𝑛] of size at most 𝐷SoS/2.
Remark 2.6. Another reasonable definition of I uses subsets of [𝑛]
and not ordered subsets. For technical reasons, we include an ordering.

The degree-𝐷SoS sum-of-squares algorithm can be equivalently

formulated in terms of RI×I matrices, which are called moment

matrices.

Definition 2.7 (Moment matrix). The moment matrix Λ = Λ(Ẽ)
associated to a degree-𝐷SoS pseudoexpectation Ẽ is an I-by-I matrix

defined as

Λ[𝐼 , 𝐽 ] := Ẽ
[
XX𝐼 · XX𝐽

]
.

Fact 2.8. Ẽ is SoS-feasible if and only if Λ(Ẽ) ⪰ 0.

Definition 2.9 (SoS-symmetric). A matrix Λ ∈ RI×I is SoS-

symmetric if Λ[𝐼 , 𝐽 ] depends only on the disjoint union 𝐼 ⊔ 𝐽 as an

unordered multiset. Along with the additional constraint Λ[∅, ∅] = 1,

this characterizes Λ ∈ RI×I which are moment matrices of degree-

𝐷SoS pseudoexpectation operators.

In the presence of Boolean constraints łXX2𝑖 = XX𝑖ž, a moment

matrix satisfies these constraints if and only if Λ[𝐼 , 𝐽 ] depends only
on the union 𝐼 ∪ 𝐽 as an unordered set (ignore duplicates).
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2.3 𝑝-biased Fourier Analysis and Graph

Matrices

We are interested in matrices which depend on a random graph

𝐺 ∼ G𝑛,𝑝 . To analyze these as functions of 𝐺 , we encode 𝐺 via

its edge indicator vector in {0, 1}(
𝑛
2) and perform 𝑝-biased Fourier

analysis.

Definition 2.10 (Fourier character). 𝜒 denotes the 𝑝-biased Fourier

character,

𝜒 (0) = −
√︂

𝑝

1 − 𝑝
, 𝜒 (1) =

√︄
1 − 𝑝

𝑝
. (1)

For 𝐻 a subset or multi-subset of
( [𝑛]
2

)
, let 𝜒𝐻 (𝐺) := ∏

𝑒∈𝐻 𝜒 (𝐺𝑒 ).

Definition 2.11 (Ribbon). A ribbon is a tuple 𝑅 = (𝐴𝑅, 𝐵𝑅, 𝐸 (𝑅))
where 𝐴𝑅, 𝐵𝑅 ∈ I and 𝐸 (𝑅) ⊆

( [𝑛]
2

)
. The corresponding matrix

M𝑅 ∈ RI×I is:

M𝑅 [𝐼 , 𝐽 ] =
{
𝜒𝐸 (𝑅) (𝐺) 𝐼 = 𝐴𝑅, 𝐽 = 𝐵𝑅

0 otherwise .

The ribbon matricesM𝑅 are mean-zero, orthonormal under the

expectation of the Frobenius inner product on matrices, and form

a basis for all RI×I-valued functions of 𝐺 . They are the natural

Fourier basis for random matrices that depend on 𝐺 .

In the matrices that we study, the coefficient on a ribbon will

not depend on the particular labels of the ribbon’s vertices, but only

on the graphical structure of the ribbon. This graphical structure is

called the shape.

Definition 2.12 (Shape). A shape𝛼 is an equivalence class of ribbons

under relabeling of the vertices (equivalently, permutation by 𝑆𝑛).

Each shape is associated with a representative graph (𝑈𝛼 ,𝑉𝛼 , 𝐸 (𝛼)).
We let 𝑉 (𝛼) := 𝑈𝛼 ∪𝑉𝛼 ∪𝑉 (𝐸 (𝛼)).

We use the convention of Greek letters such as 𝛼,𝛾, 𝜏 for shapes

and Latin letters 𝑅, 𝐿,𝑇 for ribbons.

Definition 2.13 (Embedding). Given a shape 𝛼 and an injective

function 𝜑 : 𝑉 (𝛼) → [𝑛], we let 𝜑 (𝛼) be the ribbon obtained by

labeling 𝛼 in the natural way (preserving the order on𝑈𝛼 and 𝑉𝛼 ).

A ribbon 𝑅 has shape 𝛼 if and only if 𝑅 can be obtained by an

embedding of 𝑉 (𝛼) into [𝑛]. Note that different embeddings may

produce the same ribbon.

Definition 2.14 (Graph matrix). Given a shape 𝛼 , the graph matrix

M𝛼 is

M𝛼 =

∑︁

injective 𝜑 :𝑉 (𝛼)→[𝑛]
M𝜑 (𝛼) .

The entries of a graph matrix are degree-|𝐸 (𝛼) | monomials

in the variables 𝐺𝑒 , therefore we think of graph matrices as low-

degree polynomial random matrices in𝐺 . We call them łnonlinearž

to distinguish them from the degree-1 case, which is well-studied

(being essentially the adjacency matrix of 𝐺).

Definition 2.15 (Diagonal). A ribbon or shape 𝛼 is diagonal if

𝑉 (𝛼) = 𝑈𝛼 = 𝑉𝛼 .

A diagonal shape is only nonzero on the diagonal entries of

the matrix in the block corresponding to 𝑈𝛼 . Note that there are

additional shapes which have the same support, namely shapes

which potentially have additional edges and vertices outside of

𝑈𝛼 = 𝑉𝛼 . The diagonal shapes as we have defined them are the

most important contributors to the diagonal entries of the matrix.

Definition 2.16 (Transpose). The transpose of a ribbon or shape

swaps𝐴𝑅, 𝐵𝑅 or𝑈𝛼 ,𝑉𝛼 respectively. This has the effect of transposing

the matrix for the ribbon/shape.

2.4 Norm Bounds

Definition 2.17 (Weight of a set). For a graph 𝑆 , let𝑤 (𝑆) = |𝑉 (𝑆) |−
log𝑛 (1/𝑝) |𝐸 (𝑆) |.

Definition 2.18 (Vertex separator). A vertex separator of two sets

𝐴, 𝐵 in a graph 𝐺 is a set 𝑆 ⊆ 𝑉 (𝐺) such that all paths from 𝐴 to 𝐵

pass through 𝑆 .

Definition 2.19 (Sparse minimum vertex separator (SMVS)). Given

a ribbon or shape 𝛼 , a sparse minimum vertex separator (SMVS) is

a minimizer of𝑤 (𝑆) over 𝑆 ⊆ 𝑉 (𝛼) which separate𝑈𝛼 and 𝑉𝛼 .

Theorem 2.20 (Norm bound, informal [64, 103]). With high

probability, for all proper shapes 𝛼 :

∥M𝛼 ∥ ≤ Õ

(
𝑛

|𝑉 (𝛼 ) |−|𝑤 (𝑆min ) |
2

)

where 𝑆min is the SMVS of 𝛼 .

2.5 Pseudocalibration

Pseudocalibration is a heuristic used to construct candidate pseu-

doexpectation operators Ẽ for SoS lower bounds, introduced in

the context of SoS lower bounds for Planted Clique [17]. See e.g.

[17, 48, 98] for a formal description.

The pseudocalibrated operator Ẽ[XX𝐼 ] is defined using the Fourier
coefficients of the corresponding function XX𝐼 (𝐻 ) evaluated on the

planted distribution. First we need to compute these Fourier coef-

ficients. A similar computation was performed by [39] to exhibit

integrality gaps for the Sherali-Adams hierarchy.

Lemma 2.21. Let XX𝐼 (𝐻 ) be the 0/1 indicator function for 𝐼 being in

the planted solution i.e. 𝐼 ⊆ 𝐻 . Then, for all 𝐼 ⊆ [𝑛] and 𝛼 ⊆
( [𝑛]
2

)
,

E(𝐺,𝐻 )∼D𝑝𝑙
[XX𝐼 (𝐻 ) · 𝜒𝛼 (𝐺)] =

(
𝑘

𝑛

) |𝑉 (𝛼)∪𝐼 | ( 𝑞 − 𝑝
√︁
𝑝 (1 − 𝑝)

) |𝐸 (𝛼) |

Proof. First observe that if any vertex of 𝑉 (𝛼) ∪ 𝐼 is outside

𝐻 , then the expectation is 0. This is because either 𝐼 is outside 𝐻 , in

which case XX𝐼 (𝐻 ) = 0, or an edge of 𝛼 is outside 𝐻 , in which case

the expectation of this Fourier character is 0. Now, each vertex of

𝑉 (𝛼) ∪ 𝐼 is in 𝐻 independently with probability 𝑘
𝑛 . Conditioned on

this event happening, each edge independently evaluates to

E𝑒∼Bernoulli(𝑞) 𝜒 (𝑒) = 𝑞 · 𝜒 (1) + (1 − 𝑞) · 𝜒 (0) = 𝑞 − 𝑝
√︁
𝑝 (1 − 𝑝)

.

Putting these together gives the result.
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For technical convenience, we slightly modify the parameters

𝛽 and 𝛾 so that
𝑝

1−𝑝 = 𝑛−𝛽 and
𝑞−𝑝
1−𝑝 = 𝑛−𝛾 .

Pseudocalibration suggests transferring the low-degree Fourier

coefficients from the planted distribution. As long as the size of the

Fourier coefficients is larger than the SoS degree, i.e. 𝐷𝑉 ≫ 𝐷SoS,

then SoS should not notice that we are using a truncation.

Definition 2.22 (Additional parameters). Let 𝜀 = 𝛾 − 𝛼𝛽 be the

slack in the log-density equations.

Let 𝐷𝑉 = 𝐶 · 𝐷SoS log𝑛 where constant 𝐶 = 𝐶 (𝜀) is sufficiently

large.

Definition 2.23 (S). Let S be the set of (proper) ribbons 𝑅 such that:

(i) (Degree bound) |𝐴𝑅 | , |𝐵𝑅 | ≤ 𝐷SoS/2
(ii) (Size bound) |𝑉 (𝑅) | ≤ 𝐷𝑉

We will sometimes use 𝛼 ∈ S as the set of shapes with the same

properties, following the convention of using Latin letters for ribbons

and Greek letters for shapes.

Definition 2.24 (M). Define the pseudocalibrated candidate moment

matrix

M =

∑︁

𝑅∈S

(
𝑘

𝑛

) |𝑉 (𝑅) | ( 𝑞 − 𝑝
√︁
𝑝 (1 − 𝑝)

) |𝐸 (𝑅) |
M𝑅

For the purposes of analyzing the spectrum ofM in later sec-

tions, it is more convenient to rescale the entries so that Ẽ[XX𝐼 ] has
order 1 for all 𝐼 ⊆ [𝑛].
Definition 2.25 (𝜆𝛼 ). Given a shape or ribbon 𝛼 , let

𝜆𝛼 =

(
𝑘

𝑛

) |𝑉 (𝛼) |− |𝑈𝛼 |+|𝑉𝛼 |
2

(
𝑞 − 𝑝

√︁
𝑝 (1 − 𝑝)

) |𝐸 (𝛼) |

= 𝑛
(𝛼−1)

(
|𝑉 (𝛼) |− |𝑈𝛼 |+|𝑉𝛼 |

2

)
+( 𝛽2 −𝛾 ) |𝐸 (𝛼) | .

Definition 2.26 (properly composable, informal). We say that

a sequence of ribbons 𝑅1, . . . , 𝑅𝑘 is properly composable if for all

𝑗 ∈ [𝑘 − 1], 𝐵𝑅 𝑗
= 𝐴𝑅 𝑗+1 and these ribbons have no other vertices in

common.

Lemma 2.27. If 𝑅, 𝑆 are properly composable ribbons, then 𝜆𝑅◦𝑆 =

𝜆𝑅𝜆𝑆 .

Definition 2.28 (Λ). Define Λ =
∑
𝑅∈S 𝜆𝑅M𝑅 .

Lemma 2.29. M ⪰ 0 if and only if Λ ⪰ 0.

Proof. We have M = DΛD where D is a diagonal matrix with

positive entries D[𝐼 , 𝐼 ] =
(
𝑘
𝑛

) |𝐼 |
2
. Hence 𝑥⊺M𝑥 ≥ 0 for all 𝑥 ∈ RI

if and only if 𝑥⊺Λ𝑥 ≥ 0 for all 𝑥 ∈ RI .

Lemma 2.30. M is SoS-symmetric and satisfies the constraints łXX2𝑖 =

XX𝑖 ž.

Proposition 2.31. With high probability, we have Ẽ[1] = 1 ± 𝑜 (1).

Remark 2.32. While the definition of Ẽ requires that Ẽ[1] = 1, this

can be achieved by taking the pseudo-expectation values given by

pseudo-calibration and dividing them by Ẽ[1].

Proposition 2.33. With high probability,

𝑛∑︁

𝑖=1

Ẽ[XX𝑖 ] ≥ (1 ± 𝑜𝑛 (1))𝑘,

and
∑︁

(𝑖, 𝑗) ∈𝐸 (𝐺)
Ẽ[XX𝑖XX𝑗 ] ≥ (1 ± 𝑜𝑛 (1))

𝑘2𝑞

2
.

3 POSITIVE MINIMUM VERTEX SEPARATOR

DECOMPOSITION

3.1 Motivation for the Positive Minimum Vertex

Separator

After pseudocalibration, to complete the proof of Theorem 1.1, we

need to show that the rescaled candidate moment matrix is PSD

with high probability,

Λ =

∑︁

𝛼 ∈S
𝜆𝛼 ·M𝛼 ⪰ 0 .

For each graph matrix 𝜆𝛼M𝛼 in Λ, we want to find an (approx-

imately) PSD term which spectrally dominates it. Previous work

led to the following idea: for each shape 𝛼 , we can split it across

the leftmost and rightmost minimum vertex separators so that 𝛼 is

decomposed into three parts,

𝛼 = 𝜎 ◦ 𝜏 ◦ 𝜎 ′⊺ .

Then the target spectral upper bound is given by

𝜆2𝜎M𝜎◦𝜎⊺ + 𝜆2𝜎′M𝜎′◦𝜎′⊺ .

This is approximately PSD since M𝜎◦𝜎⊺ ≈ M𝜎M
⊺

𝜎 ⪰ 0. To make

this strategy work, we need to prove that the middle shapeM𝜏 is

spectrally dominated by the corresponding identity via combina-

torial charging. In previous work, it has been essentially possible

to charge all middle shapes to the identity matrix, but this breaks

down in the setting of Densest 𝑘-Subgraph. In the baby case, this

is evident in our calculation for
∑

(𝑢,𝑣) ∈𝐸 (𝐺) Ẽ[XX𝑢XX𝑣] in Proposi-

tion 2.33, where the dominant term is no longer the trivial shape

but instead the shape with an edge in between.

A second, related issue is the presence of edges inside the sepa-

rator. Concretely, say that (𝑈𝜏 , 𝐸 (𝑈𝜏 )) and (𝑉𝜏 , 𝐸 (𝑉𝜏 )) are the left-
most/rightmost SMVS of a middle shape 𝜏 , and we hope to charge

𝜏 to the diagonal matrix corresponding to the leftmost/rightmost

SMVS. Concretely, letting 𝑈𝜏 also denote the diagonal shape with

edges 𝐸 (𝑈𝜏 ), we want to charge

𝜆𝜏 (M𝜏 +M
⊺

𝜏 ) ⪯ 𝜆𝑈𝜏
M𝑈𝜏

+ 𝜆𝑉𝜏M𝑉𝜏 .

However, this strategy crucially requires that 𝜆𝑈𝜏
·M𝑈𝜏

and

𝜆𝑉𝜏 ·M𝑉𝜏 are PSD by themselves in order to conclude that the result

is PSD. Since 𝜆𝛼 is non-negative, this boils down to the PSD-ness

of the diagonal shape (𝑈𝜏 , 𝐸 (𝑈𝜏 )) for the SMVS. This latter matrix

is easy to verify as the non-zero diagonal entries are given by, for a

ribbon 𝑅 of the corresponding shape𝑈𝜏 ,

𝜒𝐸 (𝑅) (𝐺) =
∏

𝑒∈𝐸 (𝑅)
𝜒𝑒 (𝐺)
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and recall that we are working on the 𝑝-biased Fourier basis,

𝜒𝑒 (1) =
√︄

1 − 𝑝

𝑝
, 𝜒𝑒 (0) = −

√︂
𝑝

1 − 𝑝

At this point, we observe that the instantiation of the SMVS edges

𝐸 (𝑅) plays a crucial role as they determine whether our candidate

žPSDž mass is truly positive. If all edges of 𝐸 (𝑅) are present in 𝐺 ,

then the diagonal entry is positive,

∏

𝑒∈𝐸 (𝑅)
𝜒𝑒 (𝐺) =

√︄
1 − 𝑝

𝑝

|𝐸 (𝑅) |

≥ 0 .

On the other hand, if an edge is missing, then positivity is not

guaranteed. Ignoring this bad case for now, we have the following

sufficient criterion for finding a PSD dominant term. If𝑇 is a ribbon

of shape 𝜏 , and 𝑅 is the restricted ribbon to𝑈𝜏 , then if 𝐸 (𝑅) ⊆ 𝐸 (𝐺),
we must charge 𝜆𝜏M𝑇 to 𝜆𝑈𝜏

M𝑅 .

When an edge is missing inside the SMVS, then we need to look

harder. Despite the candidate PSD term not being truly positive, it

is not yet time to panic. In this case, (1) a missing edge scales down

the matrix, in line with the intuition that subgraphs with edges

present are the highest-norm terms, therefore (2) we look in the

remainder of the shape for the new SMVS, to determine the new

matrix norm. This creates a recursive process, and when all edges

inside the candidate SMVS are actually present in the graph, we

terminate, calling this the Positive Minimum-weight Vertex Separator

(PMVS).

a

b

a

b

a

b

G(a,b) = ?

G(a, b) = −

√

√

√

√

p
1−pG(a, b) =

√

√

√

√

√

1−p
p

Figure 1: PMVS Search

Let us give an example. The graph matrix at the top of Fig. 1 ap-

pears on the diagonal of our moment matrix. In this example shape,

the only vertex separator is the entire shape, and so the SMVS con-

tains the edge𝐺 (𝑎, 𝑏). We check whether or not the edge appears

in the graph. In the łyesž outcome on the left, we have a PSD matrix

whose (𝑎, 𝑏)-th diagonal entry is 1(𝑎,𝑏) ∈𝐸 (𝐺)
√︃

1−𝑝
𝑝 . In the łnož out-

come on the right, the (𝑎, 𝑏)-th diagonal entry is−1(𝑎,𝑏)∉𝐸 (𝐺)
√︃

𝑝
1−𝑝 ,

which is negative and therefore the matrix is not PSD. This matrix

comes with a small coefficient of approximately
√
𝑝 and hence it can

be charged to the corresponding identity matrix, whose (𝑎, 𝑏)-th
diagonal entry is just 1. In this example, the recursion terminates

after just one step, but in larger shapes, we would need to find the

new SMVS for the case on the right.

As described above, the recursion outputs the minimizer of a

certain weight function. However, we need to slightly modify the

recursive process described above so that it always łmoves leftž, in

order for the crucial Remark 3.7 to hold.

3.2 PMVS Subroutine

Wemake the following extended definition of the Positive Minimum

Vertex Separator (PMVS) of a ribbon 𝑅.

Definition 3.1 (Left and right indicators). We say that a ribbon 𝑅

has left indicators if 𝑅 has edge indicators for every edge 𝑒 ∈ 𝐸 (𝐴𝑅).
Similarly, we say that a ribbon 𝑅 has right indicators if 𝑅 has edge

indicators for every edge 𝑒 ∈ 𝐸 (𝐵𝑅).

Our goal is to have composable triples of ribbons 𝑅1, 𝑅2, 𝑅3
with the following properties:

Definition 3.2 (Ribbons with PMVS identified). A composable

triple of ribbons 𝑅1, 𝑅2, 𝑅3 has PMVS identified if:

(i) 𝑅1 is a left ribbon and 𝑅3 is a right ribbon.

(ii) 𝑅1, 𝑅2, 𝑅3 are properly composable.

(iii) 𝑅1 has right indicators, 𝑅2 has both left and right indicators, and

𝑅3 has left indicators.

(iv) The edges and edge indicators agree on 𝐵𝑅1
= 𝐴𝑅2

and 𝐵𝑅2
=

𝐴𝑅3
.

(v) 𝑅1, 𝑅2, 𝑅3 have no other edge indicators.

When these properties hold, we say that the left PMVS is 𝐴𝑅2
and the

right PMVS is 𝐵𝑅2
.

Remark 3.3. The left and right PMVS may not have the same size or

weight. In fact, they may not even be an SMVS of 𝑅2. We will bound

the difference between the PMVS and the SMVS.

At the beginning, we take each ribbon 𝑅 and decompose it into

ribbons 𝑅1, 𝑅2, 𝑅3 based on the leftmost and rightmost SMVS. This

gives us a composable triple of ribbons 𝑅1, 𝑅2, 𝑅3 such that

(i) 𝑅1 is a left ribbon, 𝑅2 is a middle ribbon, and 𝑅3 is a right

ribbon.

(ii) 𝑅1, 𝑅2, 𝑅3 are properly composable.

(iv) The edges agree on 𝐵𝑅1
= 𝐴𝑅2

and 𝐵𝑅2
= 𝐴𝑅3

.

(v) 𝑅1, 𝑅2, and 𝑅3 have no edge indicators.

Remark 3.4. The ribbon encoded by the triple 𝑅1, 𝑅2, 𝑅3 is (𝑅1 \
𝐸 (𝐵𝑅1

)) ◦ 𝑅2 ◦ (𝑅3 \ 𝐸 (𝐴𝑅3
)) rather than 𝑅1 ◦ 𝑅2 ◦ 𝑅3 because edges

inside 𝐵𝑅1
= 𝐴𝑅2

should not be duplicated.

In order to satisfy the condition that 𝑅1 has right indicators,

𝑅2 has both left and right indicators, and 𝑅3 has left indicators,

we repeat the following sequence of operations as many times as

needed.
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(1) Adding left and right indicators operation: To add in-

dicators to 𝐵𝑅1
= 𝐴𝑅2

and 𝐵𝑅2
= 𝐴𝑅3

, we replace each

edge 𝑒 ∈ 𝐸 (𝐴𝑅2
) ∪𝐸 (𝐵𝑅2

) that does not yet have an indica-

tor using3 the equation 𝜒𝑒 =
1

1−𝑝 1𝑒∈𝐸 (𝐺) 𝜒𝑒 −
√︃

𝑝
1−𝑝 . This

leads to two possible new ribbons which have different

edge structure, one with 𝑒 still present and the other with

𝑒 removed.

(2) PMVS operation: After adding the edge indicators to

𝐵𝑅1
= 𝐴𝑅2

and 𝐵𝑅2
= 𝐴𝑅3

, we check if 𝑅1 is still a left

ribbon and 𝑅3 is still a right ribbon. If so, we stop and exit

the loop. If not, we let 𝐴′ be the leftmost SMVS separating

𝐴𝑅1
from 𝐵𝑅1

and we let 𝐵′ be the rightmost SMVS sepa-

rating 𝐴𝑅3
from 𝐵𝑅3

. We then replace 𝑅1, 𝑅2, and 𝑅3 with

the ribbons 𝑅′
1, 𝑅

′
2, and 𝑅

′
3 where

(a) 𝑅′
1 is the part of 𝑅1 between 𝐴𝑅1

and 𝐴′.
(b) 𝑅′

2 is the composition of the part of 𝑅1 \ 𝐸 (𝐵𝑅1
) between

𝐴′ and 𝐵𝑅1
, 𝑅2, and the part of 𝑅3 \ 𝐸 (𝐴𝑅3

) between 𝐴𝑅3

and 𝐵′.
(c) 𝑅′

3 is the part of 𝑅3 between 𝐵′ and 𝐵𝑅3
.

(3) Removing middle edge indicators operation: If 𝑅2 has

one or more edge indicators which are now outside of 𝐴𝑅2

and 𝐵𝑅2
, we re-convert them back into Fourier characters

using the equation 1
1−𝑝 1𝑒∈𝐸 (𝐺) 𝜒𝑒 =

√︃
𝑝

1−𝑝 + 𝜒𝑒 .

We call this repeated sequence of operations the Finding

PMVS subroutine, which takes a triple of composable ribbons

𝑅1, 𝑅2, 𝑅3 which have all the needed properties except having left

and right indicators (some but not all indicators may be present)

and gives us a triple of composable ribbons with all of the needed

properties.

Remark 3.5. Note that each triple 𝑅1, 𝑅2, 𝑅3 leads to many triples

𝑅′
1, 𝑅

′
2, 𝑅

′
3 depending on which summand is taken in each equation.

The recursion proceeds on every term except for the one in which every

𝜒𝑒 is replaced by
1

1−𝑝 1𝑒∈𝐸 (𝐺) 𝜒𝑒 .

Remark 3.6. At first glance, checking whether or not edges inside

𝐴𝑅2
and 𝐵𝑅2

are present leads to a complicated dependence on the

input graph 𝐺 . In order to mathematically express the recursion in a

𝐺-independent way, we formally use the edge indicator function to

express the two cases.

3.3 Intersection Term Operation

Once we have these triples of ribbons 𝑅1, 𝑅2, 𝑅3, we can apply an

approximate factorization across the PMVS. When we do this, we

will obtain error terms which can be described by triples of ribbons

𝑅1, 𝑅2, and 𝑅3 which have at least one non-trivial intersection (they

are not properly composable) but satisfy the other four properties

in Definition 3.2. We handle this as follows.

(1) Intersection term decomposition operation: Let 𝐴′ be
the leftmost SMVS between𝐴𝑅1

and𝑉𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑒𝑑 (𝑅1) ∪𝐵𝑅1

and let𝐵′ be the rightmost SMVS between𝑉𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑒𝑑 (𝑅3)∪

3The high-level overview of the PMVS alluded to the slightly different formula 𝜒𝑒 =

1𝑒∈𝐸 (𝐺 ) 𝜒𝑒 +1𝑒∉𝐸 (𝐺 ) 𝜒𝑒 . These are morally equivalent, but the formula here is simpler

to analyze.

𝐴𝑅3
and 𝐵𝑅3

. We now replace 𝑅1, 𝑅2, and 𝑅3 with the rib-

bons 𝑅′
1, 𝑅

′
2, and 𝑅

′
3 where

(a) 𝑅′
1 is the part of 𝑅1 between 𝐴𝑅1

and 𝐴′.
(b) To obtain 𝑅′

2, we improperly compose the part of 𝑅1 \
𝐸 (𝐵𝑅1

) between 𝐴′ and 𝐵𝑅1
, 𝑅2, and the part of 𝑅3 \

𝐸 (𝐴𝑅3
) between𝐴𝑅3

and 𝐵′. We then linearize the multi-

edges, replacing 𝜒𝑘𝑒 = 𝑐0 + 𝑐1𝜒𝑒 using the appropriate

coefficients 𝑐0, 𝑐1.

In the edge case that a multi-edge also has an edge in-

dicator (for example, because an each inside 𝐴𝑅2
inter-

sects with an edge from 𝑅3), we instead use the equation

1𝑒 𝜒
𝑘
𝑒 =

(√︃
1−𝑝
𝑝

)𝑘−1
1𝑒 𝜒𝑒 .

(c) 𝑅′
3 is the part of 𝑅3 between 𝐵′ and 𝐵𝑅3

.

(2) We apply the Removing middle edge indicators opera-

tion to 𝑅2.

The ribbon 𝑅′
2 is defined to łgrowž 𝑅2 so that it includes the inter-

sections. After these steps, we are in essentially the same situation

as we started. More precisely, we have a triple of ribbons 𝑅1, 𝑅2, 𝑅3
such that

(i) 𝑅1 is a left ribbon and 𝑅3 is a right ribbon.

(ii) 𝑅1, 𝑅2, 𝑅3 are properly composable.

(iv) The edges and edge indicators agree on 𝐵𝑅1
= 𝐴𝑅2

and 𝐵𝑅2
=

𝐴𝑅1
.

(v) 𝑅1, 𝑅2, 𝑅3 have no edge indicators outside of 𝐵𝑅1
= 𝐴𝑅2

and

𝐵𝑅2
= 𝐴𝑅3

.

At this point, we can repeat the operations, applying the Find-

ing PMVS subroutine to identify a new PMVS, approximately

factoring, then decomposing intersection terms, as many times as

needed.

3.4 Summary of the Operations and Overall

Decomposition

We now summarize our procedure.

Finding PMVS subroutine: repeat the following until con-

vergence,

(1) Apply the Adding left and right indicators operation

to add indicators to 𝐵𝑅1
= 𝐴𝑅2

and 𝐵𝑅2
= 𝐴𝑅3

.

(2) Apply the PMVS operation to ensure that 𝑅1 is a left

ribbon and 𝑅3 is a right ribbon. If no change is made to 𝑅1
or 𝑅3, then we have identified the PMVS.

(3) Apply the Removing middle edge indicators operation

to 𝑅2 to ensure that 𝑅2 has no middle indicators.

Overall decomposition procedure:

(1) We start with triples of composable ribbons𝑅1, 𝑅2, 𝑅3 which

have all the needed properties except having left and right

indicators.

(2) We apply the Finding PMVS subroutine.

(3) Recursive factorization: We apply the following procedure

repeatedly until there are no more error terms.

1. We approximate the sum over the composable triples of

ribbons 𝑅1, 𝑅2, 𝑅3 by enlarging the sum to include all left
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ribbons𝑅1 and right ribbons𝑅3 (not necessarily properly

composable with 𝑅2 or with each other). This yields a

matrix LQ𝑖L
⊺ where L sums over left ribbons and Q𝑖

sums over the ribbons 𝑅2 on the 𝑖th iteration of the loop.

We then move to the triples of ribbons 𝑅1, 𝑅2, 𝑅3 for the

intersection error terms, if any.4

2. We apply the Intersection term decomposition op-

eration to obtain a triple of ribbons 𝑅1, 𝑅2, 𝑅3 which are

properly composable.

3. We apply the Removing middle edge indicators op-

eration to 𝑅2 to ensure that 𝑅2 has no middle indicators.

4. We apply the Finding PMVS subroutine.

Remark 3.7. As with previous SoS lower bounds using graph matri-

ces, a key observation is that the PMVS operation and the intersection

term decomposition operation are unaffected by replacing 𝑅′
1 with a

different left ribbon 𝑅′′
1 or replacing 𝑅′

3 with a different right ribbon

𝑅′′
3 as long as 𝐵𝑅′′

1
= 𝐵𝑅′

1
and 𝐴𝑅′′

3
= 𝐴𝑅′

3
. This ensures that all left

ribbons 𝑅′
1 and right ribbons 𝑅

′
3 appear in the matrices L and L⊺ .

Carrying out this process, the overall decomposition of the

moment matrix is then

Λ = L

(
2𝐷𝑉∑︁

𝑖=0

Q𝑖

)
L⊺ + truncation error .

Therefore, the main requirement for Λ ⪰ 0 is to show that∑2𝐷𝑉

𝑖=0 Q𝑖 ⪰ 0. We will show that the norm-dominant terms are the

diagonal shapes (Definition 2.15). By virtue of the PMVS factoriza-

tion, these shapes are PSD, as we can easily check.

Lemma 3.8. If 𝑅1, 𝑅2, 𝑅3 are ribbons with PMVS identified, such that

𝑅2 is diagonal, then 𝜆𝑅2
M𝑅2

⪰ 0.

Proof. 𝜆𝑅2
≥ 0 and 𝑅2 is diagonal with one nonzero entry, so

we need that the entry is nonnegative. Since 𝑅2 has edge indicators,

the entry is ∏

𝑒∈𝐸 (𝑅2)
1𝑒∈𝐸 (𝐺) 𝜒𝑒 (𝐺) .

Any time the entry is nonzero, its value is

𝜒 (1) |𝐸 (𝑅2) | =

(√︄
1 − 𝑝

𝑝

) |𝐸 (𝑅2) |

≥ 0.

4 CONCLUSION

In this work, we showed Sum-of-Squares lower bounds for Dens-

est 𝑘-Subgraph. Our results lend strength to the conjecture that

Densest 𝑘-Subgraph is truly a hard problem in the predicted łhardž

parameter regime. Our results are in line with the log-density frame-

work for Densest-𝑘-Subgraph, complementing the extraordinary

work of [19] from over a decade ago.

4There are also additional error terms for the truncation error, as the maximum size
of the left ribbons 𝑅1, 𝑅3 will be slightly smaller for intersection terms. This must be
handled separately.

Our work provides a formal lower bound against a concrete

class of algorithms for Densest 𝑘-Subgraph. For the optimistic algo-

rithm designer that wishes to solve Densest 𝑘-Subgraph, what kind

of algorithms could circumvent our lower bound? First, one could

try to modify the constraints or objective of the semi-definite pro-

gram. For example, łmismatchingž the size of the hidden subgraph

may be helpful for the related Planted Clique problem [6]. Our proof

does not formally rule out non-standard SDP-based algorithms, al-

though we believe it is likely that our proof could be modified into

a lower bound against other SDPs. Second, algebraic approaches

based on finite fields, Gaussian elimination, or lattice-based meth-

ods are not captured by Sum-of-Squares reasoning [112]. However,

these techniques typically require a rigid łnoise-freež structure in

the problem which isn’t present in Densest 𝑘-Subgraph, so such an

algorithm would be unexpected.

There are some technical limitations to our work, which are

also present in almost all existing SoS lower bounds. Technical

improvements such as improving the SoS degree from 𝑛𝜀 to Ω̃(𝑘),
or tightening the slack 𝛾 − 𝛼𝛽 seem out of reach for our current

techniques.We could also consider the closely related plantedmodel

where the size of the planted subgraph is not approximately but

exactly 𝑘 . Our analysis doesn’t go through immediately in this

setting for technical reasons, which is also the case in most existing

SoS lower bounds. With additional work, this might be overcome,

as Pang [92] did for Planted Clique. That said, we believe that the

behavior of SoS is qualitatively the same.
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