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Abstract—Assuming the Unique Games Conjecture (UGC), the
best approximation ratio that can be obtained in polynomial
time for the MAaX cUT problem is acur ~ 0.87856, obtained by
the celebrated SDP-based approximation algorithm of Goemans
and Williamson. Currently, the best approximation algorithm for
MAX DI-CUT, i.e., the MAX CcUT problem in directed graphs, achieves
a ratio of about 0.87401, leaving open the question whether
MAX DI-CUT can be approximated as well as MAX cUT. We obtain
a slightly improved algorithm for Max DI-cUT and a new UGC-
hardness result for it, showing that 0.87446 < apr.cur < 0.87461,
where apr.cur is the best approximation ratio that can be
obtained in polynomial time for MmaX DI-cUT under UGC. The new
upper bound separates MAX DI-CUT from MAX CUT, i.e., shows that
MAX DI-CUT cannot be approximated as well as MAX CUT, resolving
a question raised by Feige and Goemans.

A natural generalization of MAX DI-CUT is the MAX 2-AND prob-
lem in which each constraint is of the form z; A z2, where z;
and z: are literals, i.e., variables or their negations. (In MAX DI-CUT
each constraint is of the form z; A z2, where x1 and zo
are variables.) Austrin separated MAX2-AND from MAXCUT by
showing that aszanp < 0.87435 and conjectured that MAX 2-AND
and MAXDI-CUT have the same approximation ratio. QOur new
lower bound on MAXDI-CUT refutes this conjecture, completing
the separation of the three problems MAX 2-AND, MAX DI-CUT and
MAX CUT. We also obtain a new lower bound for MAX2-AND
showing that 0.87414 < asanp < 0.87435.

Our upper bound on MAXDICUT is achieved via a

simple analytical proof. The new lower bounds on
MAXDI-CUT and MAX?2-AND, i.e., the new approximation
algorithms, use experimentally-discovered  distributions

of rounding functions which are then verified via

computer-assisted proofs.’

Index Terms—approximation algorithms, hardness of approx-
imation, constraint satisfaction problem, maximum cut, semidef-
inite programming, computer-assisted proof
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I. INTRODUCTION

Goemans and Williamson [1], in their seminal paper, intro-
duced the paradigm of obtaining approximation algorithms
for Boolean Constraint Satisfaction Problems (CSPs) by first
obtaining a semidefinite programming (SDP) relaxation of the
problem and then rounding an optimal solution of the relax-
ation. The first, and perhaps biggest, success of this paradigm
is a simple and elegant agw-approximation algorithm, where
agw =~ 0.87856, for the MAX CUT problem, i.e., the maximum
cut problem in undirected graphs, improving for the first
time over the naive %-approximation algorithm. Goemans and
Williamson [1] also obtained improved algorithms for the
MAX DI-CUT, MAX 2-SAT and MAX SAT problems.

Feige and Goemans [2], Matuura and Matsui [3] and Lewin,
Livnat and Zwick [4] obtained improved approximation al-
gorithms for the MAX 2-SAT and MAXDI-CUT problems. The
best approximation ratios, obtained by Lewin, Livnat and
Zwick [4], are 0.940 for MAX 2-SAT and 0.874 for MAX DI-CUT.
Karloff and Zwick [5] obtained an optimal (see below) %—
approximation algorithm for MAX {1,2,3}-SAT and Zwick [6]
obtained approximation algorithms, some of them optimal, for
many other MAX 3-CSP problems, i.e., maximization versions of
Boolean CSP problems in which each constraint is on at most
three variables. Andersson and Engebretsen [7], Zwick [8],
Halperin and Zwick [9], Asano and Williamson [10], Zhang,
Ye and Han [11], and Avidor, Berkovitch and Zwick [12]
obtained approximation algorithms for various versions of the
MAX SAT and MAX NAE-SAT problems. It is a major open problem
whether there is a %—approximation algorithm for the MAX
SAT problem. Brakensiek, Huang, Potechin and Zwick [13]
showed that there is no %-approximation algorithm for the
MAX NAE-SAT problem, assuming UGC. Abbasi-Zadeh et al
[14] and Eldan and Naor [15] used “sticky Brownian motion”
to obtain optimal, or close to optimal, algorithms for MAX CUT
and related problems. For a survey of these and related results,
see Makarychev and Makarychev [16].



Hastad [17], in a major breakthrough, extending the cele-
brated PCP theorem of Arora et al. [18], showed, among other
things, that, for any € > 0, it is NP-hard to obtain a (% +e)-
approximation of MAX 3-SAT and a (% + €)-approximation of
MAX 3-LIN, showing that the trivial algorithms for these two
problems that just choose a random assignment are tight.
Trevisan, Sorkin, Sudan and Williamson [19] showed, using
gadget reductions, that it is NP-hard to obtain a (12 + )-
approximation of MAXcCUT and (% + ¢)-approximation of
MAX DI-CUT.

Khot [20] introduced the Unique Games Conjecture (UGC).
Khot, Kindler, Mossel and O’Donnell [21] then showed that
UGC and the Majority is Stablest Conjecture (later proved by
Mossel, O’Donnell and Oleszkiewicz [22]) implies that, for
any € > 0, obtaining an (agw +¢)-approximation for MAX CUT
is NP-hard, showing, quite remarkably, that the algorithm of
Goemans and Williamson [1] is optimal, i.e., acur = agw,
assuming UGC. Austrin [23] then showed that the MAX 2-
SAT algorithm of Lewin, Livnat and Zwick [4] is essentially
optimal, again modulo UGC. Austrin [24] obtained some
upper bounds on the approximation ratio that can be achieved
for MAX2-AND in polynomial time. However, they do not
match the approximation ratio obtained by the MAX DI-CUT
algorithm of Lewin, Livnat and Zwick [4] which is in fact
an approximation algorithm for MAX 2-AND.

Raghavendra [25], [26], in another breakthrough, showed
that under UGC, the best approximation ratio that can be
obtained for any MAX CSP problem, over a finite domain and
with a finite number of constraint types, can be obtained using
a canonical SDP relaxation of the problem and the rounding
of an optimal solution of this relaxation using an appropriate
rounding procedure taken from a specified family of rounding
procedures. The approximation ratio obtained is then exactly
the integrality gap of the relaxation. Approximating the in-
tegrality gap up to ¢ takes doubly exponential time in 1/e,
and a close to optimal algorithm can be obtained by trying
discretized versions of all rounding procedures, up to some
resolution. (See Raghavendra and Steurer [27] for more on
finding almost optimal rounding schemes.)

It might seem that these results resolve all problems related
to the approximation of MAX CSP problems. Unfortunately,
this is not the case. These results do give valuable guidance
to the designers of approximation algorithms. In particular,
it is clear which semidefinite programming relaxation should
be used and the search for an optimal, or almost optimal,
rounding procedure can be restricted to the family of rounding
procedures specified by Raghavendra [25]. However, these
results give almost no concrete information on the integrality
gap of the relaxation, which is also the best approximation
ratio that can be obtained. Also, no practical information is
given on how to obtain optimal, or almost optimal rounding
procedures, other than the fact that they belong to a huge
class of rounding procedures, as it is wildly impractical to
implement and run a brute force algorithm whose running time
is doubly exponential in 1/e.

In particular, Raghavendra’s results are unable® to answer
the following questions: Is there a g—approximation algorithm
for MAX SAT, with clauses of all sizes allowed? Can MAX DI-CUT
be approximated as well as MAXCUT? Can MAX?2-AND be
approximated as well as MAX DI-CUT? In this paper we study
the latter two questions and answer them in the negative,
assuming UGC.

A. Our results

Our main result is the following theorem.

Theorem 1.1 (Main). Assuming UGC, czanp < aprcur <
QCuT-

To separate MAX 2-AND, MAX DI-CUT and MAX CUT, we obtain
an improved upper bound and an improved lower bound (i.e.,
an approximation algorithms) for MAX DI-CUT. Our improved
upper bound is:

Theorem 1.2. Assuming UGC, ap.cyr < 0.87461.

To obtain the new upper bound, we construct a distribution
over MAX DI-CUT configurations that is hard for any rounding
procedure from the family 7THRESH™ defined by Lewin,
Livnat and Zwick [4]. Such hard distributions can then be
converted into dictatorship tests and then Unique Games
hardness by small modifications to the technique used by
Austrin [24] for distributions over MAX 2-AND configurations.

The reason why MAX2-AND and MAX DI-CUT have a lower
approximation ratio than MAX CUT is as follows. By symmetry,
for instances of MAX CUT, there is always an SDP solution
where none of the variables have any bias towards —1 or 1.
Thus, for MAX cuT, the rounding scheme only needs to use
the pairwise biases between variables and it turns out that
hyperplane rounding is the optimal way to do this. However,
for MAX 2-AND and MAX DI-CUT, the SDP solution may have
variables with nonzero biases. In this case, there are some
configurations where it is better to focus more on the biases
while for other configurations it is better to focus more on the
pairwise biases. Mixing these configurations gives a harder
distribution of configurations.

That said, it is more difficult to obtain hard configurations
for MAX DI-CUT than for MAX2-AND, since in MAX 2-AND the
functions used in the rounding scheme can be assumed, with-
out loss of generality, to be odd. (A function f : [-1,1] = R
is odd if and only if f(—z) = —f(x) for every z € [-1,1].)
Using an odd rounding function ensures that a variable and
its negation are assigned opposite truth values. In MAX DI-CUT
there is no such restriction as, in a sense, there are no negated
variables. The possibility of using non-odd rounding functions
gives the rounding scheme more power. (The improved round-
ing scheme that we obtain for MAX DI-CUT uses a distribution of

’In particular, if the answer to any of these questions is “yes” the
Raghavendra-Steurer algorithm cannot certify these in finite time, and if the
answer is “no” the € needed for separation is so small that the algorithm
would need to run over a galactic time scale.



rounding functions some of which are not odd. This is exactly
what enables the separation of MAX DI-CUT from MAX 2-AND, as
we discuss below.) We overcome this difficulty using a simple,
symmetric construction for which the best rounding scheme
is odd. Another interesting feature of our hard construction
is that it contains a configuration for which all the triangle
inequalities, powerful constraints of the SDP relaxation, are
not tight. This is in contrast to previous work on MAX 2-SAT [23]
and MAX 2-AND [24], where hardness results are derived only
from configurations in which one of the triangle inequalities
is tight.

Our construction yields an upper bound of aprcur <
0.87461, which together with acyr > 0.87856 exhibits a clear
separation between MAX DI-CUT and MAX CUT. (Although the
separation is clear, it is still perplexing that the approximation
ratios of MAX CUT and MAX DI-CUT are so close, and yet not
equal.) We believe that our upper bound can be slightly
improved using a sequence of more and more complicated
constructions that yield slightly better and better upper bounds.

In addition to our improved upper bound for MAX DI-CUT,
we also obtain two new lower bounds for MAX DI-CUT and
MAX 2-AND.

Theorem 1.3. ap,.cyr > 0.87446. (In other words, there is
an approximation algorithm for MAX DI-CUT with an approxi-
mation ratio of at least 0.87446.)

Theorem 1.4. apanp > 0.87414. (In other words, there is an
approximation algorithm for MAX 2-AND with an approximation
ratio of at least 0.87414.)

The new lower bounds improve on the previously best, and
non-rigorous, bound of 0.87401 obtained by Lewin, Livnat
and Zwick [4] for both MAX DI-CUT and MAX 2-AND. Despite
the relatively small improvements, the improved approxima-
tion algorithms are interesting for at least two reasons. The
first is that the new approximation algorithm for MAX DI-CUT
separates MAX DI-CUT from MAX 2-AND, refuting a conjecture
of Austrin [24]. The second is that the new algorithms show
that taking a single rounding scheme from 7HRESH ™, as
done by Lewin, Livnat and Zwick [4] and as shown by
Austrin [23], [24] to be sufficient for obtaining an optimal
approximation algorithm for MAX 2-SAT, is not sufficient for ob-
taining optimal approximation algorithms for MAX DI-CUT and
MAX 2-AND. Using insights gained from the upper bounds, we
design an improved approximation algorithm for MAX DI-CUT
that uses distributions of THRESH™ rounding procedures,
i.e., rounding procedures belonging to the more general family
THRESH also defined in Lewin, Livnat and Zwick [4].
Using a computer search, we find a new rounding procedure
from this family? which shows that aprcur > 0.87446. Our
rigorous proof of this inequality is computer assisted.

In [4], the authors discovered their THRESH ™ procedures
for MAX DI-CUT and MAX 2-AND using non-convex optimization.

3Technically, we add in a tiny amount of independent rounding for
verification purposes but we believe this can be removed.

More precisely, they used a local descent procedure from
random starting points to tune a single rounding function that
performs well for all possible configurations simultaneously.
However, this approach becomes impractical for finding an
optimal probability distribution of THRESH ™~ functions (i.e.,
a “THRESH scheme”). One potential reason why this would
not work is that there would be a significant local optimum
where all the functions in the distribution identical to the one
in Lewin, Livnat and Zwick [4].

Instead, we cast the design of the THRESH scheme for
MAX DI-CUT and MAX 2-AND as infinite zero-sum games played
by two players. The first player, Alice, selects a THRESH™
function and the second player, Bob, selects a configuration
of SDP vectors to round. (This configuration may or may not
correspond to an optimal solution of an SDP relaxation of
an actual instance.) Alice’s value is then the approximation
ratio achieved by her THRESH ™ function on the SDP value
of the configuration. Bob’s value is the negative of Alice’s
value. One can then show, that ap.cyr (or asanp) is precisely
the value of this game, assuming UGC and the positivity
conjecture in the work of Austrin [24]. Computationally, we
discretize this game and use a min-max optimization procedure
to estimate the value of this game and find an optimal,
or almost optimal, strategy for Alice. This proceeds in a
series of phases: Bob challenges Alice with a distribution of
instances, and Alice computes a nearly-optimal response using
methods similar to that of Lewin, Livnat and Zwick [4]. Then,
with Alice’s functions, Bob computes a new distribution of
instances which Alice does the worst one. This latter step
is done by solving a suitable LP (the dual variables tell us
Alice’s optimal THRESH scheme). As the “raw” THRESH
scheme produced by this procedure can be somewhat noisy, we
subsequently manually simplified the THRESH distribution.

As mentioned, the proofs of the bounds apr.cyr > 0.87446
and apanp > 0.87414 are computer-assisted, using the
technique of interval arithmetic. This technique has been
previously used in the study of approximation algorithms. For
example, Zwick [28] used it to certify the %-approximation
ratio for MAX {1,2,3}-SAT claimed by Karloff and Zwick [5].
The use of interval arithmetic in our setting is much more
challenging, however, as the rounding procedures used for
MAX DI-CUT are much more complicated than the simple ran-
dom hyperplane rounding used for MAX {1,2,3}-SAT. In particu-
lar, we need to use rigorous numerical integration to compute
two-dimensional normal probabilities. A computer-assisted
verification is probably necessary in our setting since fairly
complicated distributions seem to be needed for obtaining
good approximation ratios, and it is hard to imagine that such
distributions can be analyzed manually.

Since Austrin [24] showed that asanp < 0.87435, assuming
UGC, our new MAX DI-CUT approximation algorithm separates
MAX 2-AND and MAX DI-CUT. This refutes Austrin’s conjecture
that MAX 2-AND and MAX DI-CUT have the same approximation
ratios. It also gives an interesting, non-trivial, example where a
positive CSP (i.e., CSP that does not allow negated variables)



is strictly easier to approximate than the CSP with the same
predicate when negated variables are allowed.

We believe that the fact that rounding procedures from
THRESH™ do not yield optimal approximation algorithms
for MAXDI-CUT is interesting in its own right. We conjec-
ture that distributions over such procedures, i.e., rounding
procedures from THRESH are enough to obtain optimal
algorithms for MAXDI-CUT and MAX2-AND. (A continuous
distribution is probably needed to get the optimal algorithms.)

We note that both THRESH™ and THRESH are tiny
subfamilies of the families shown by Raghavendra [25] to
be enough for obtaining optimal approximation algorithms
for general MAx Csp problems. In particular, THRESH™
and THRESH use only one Gaussian random vector while,
in general, the families of Raghavendra [25] may need an
unbounded number of such random vectors to obtain optimal
or close-to-optimal results.

B. Organization of the paper

The rest of the paper is organized as follows. In Section II we
introduce the MAX CUT, MAX DI-CUT and MAX 2-AND problems
and their SDP relaxations, we state the Unique Games Con-
jecture, and we introduce the THRESH ™ and THRESH
families of rounding procedures used throughout the paper. In
Section III we derive our new upper bound on MAX DI-CUT
which separates MAXDI-CUT from MAXcCUT. The proof of
this upper bound is completely analytical. In Section IV we
describe the computation techniques used to discover our
improved MAXDI-CUT algorithm and the computation tech-
niques used to rigorously verify the approximation ratio that
it achieves. In Section V we obtain corresponding results for
the MAX2-AND problem. We end in Section VI with some
concluding remarks and open problems.

II. PRELIMINARIES

A. MAX CSP and canonical SDP relaxations

For a Boolean variable, we associate —1 with true and 1 with
false. A Boolean predicate on k variables is a function P :
{~1,1}* — {0,1}. If P outputs 1, then we say P is satisfied.

Definition IL.1 (MAX CSP(P)). Let P be a Boolean predicate
on k variables. An instance of MAX CSP(P) is defined by a
set of Boolean variables V = {x1,xa,...,x,} and a set of
constraints C = {C1,Cs,...,C,,}, where each constraint C;
is of the form P(b;1xj, ,bi2xj, ,,...,bixxj,,) for some
Jids--sJik € [n] and bi1,b2,... b, € {—1,1}, and a
weight function w : C — [0,1] satisfying Y .-, w(C;) = 1.
The goal is to find an assignment to the variables that
maximizes Z?;l w(i)P(bi,lx]},Jabi,2xji,2a ey bi-,kxji,k)r i.E.,
the sum of the weights of satisfied constraints.

Definition IL2 (MaX cSPT(P)). MAX CSPH(P) has the same
definition as MAX cSP(P), except that now each constraint C;

is of the form P(xj, |, xj, ,,..
variables are not allowed.

-5, ,, ). In other words, negated

Since the weight function is non-negative and sums up
to 1, we can think of it as a probability distribution over
the constraints. Note that we only defined CSPs with a single
Boolean predicate, while in general there can be more than
one predicate and they may not be Boolean. We refer to a
CSP with a k-ary predicate as a k-CSP.

We are now ready to define the three MAX 2-CSP problems
that we separate.

Definition IL3. Ler cut : {—1,1}? — {0, 1} be the predicate
which is satisfied if and only if the two inputs are not equal. Let
DICUT : {—1,1}2 — {0, 1} be the predicate which is satisfied
if and only if x = 1 and y = —1. Then MAX CUT is the problem
MAX CSPT (CUT), MAX DI-CUT is the problem MAX CSPT (DI-CUT)
and MAX 2-AND is the problem MAX CSP(DI-CUT).

In graph-theoretic language, we can think of each variable
in a MAX DI-CUT instance as a vertex, and each constraint as a
weighted direct edge between two vertices. An assignment of
+1 and —1 to the vertices defines a directed cut in the graph.
We are asked to assign +1 and —1 to the vertices so that the
sum of the weights of edges that cross the cut, i.e., go from
+1 to —1, is maximized.

We can also define ano : {—1,1}> — {0,1} such
that AND(z,y) = 1 if and only if x = y = —1. Note
that then pI-cUT(z,y) = AND(Z,y), and MAX2-AND is also
MAX CSP(AND), hence its name.

The following Fourier expansion of DI-CUT is heavily used
throughout the paper.

1+z—y—zy

Proposition I1.4. pI-cuT(x,y) = 1

This proposition can be used to extend the domain of DI-CUT
to real inputs.

Any MAX CSP(P) has a canonical semi-definite program-
ming relaxation. The canonical SDP relaxation for MAX DI-CUT,
for example, is:

Maximize
1+V0'Vi7V0'Vj7Vi'Vj
> we 1

C=DI-CUT(z;,z;)€C
subject to
Vi€ {0,1,2,...,n}, vi-v; =1,

(vo—vi) - (vo—v;) > 0,

_ . (vo+vi)-(vo—v;) >0,

VC = brcur(z;, ;) € C, (Vo—vi)- (vo+v)) > 0,

(Vo + V,’) . (VO + Vj) Z 0.

The canonical SDP relaxation is obtained as follows. There is
a unit vector v; € R™t! for each variable z;, and a special
unit vector vy corresponding to false. Each linear term x;
in the Fourier expansion of P is replaced by v - v;, and



each quadratic term x;x; is replaced by v; - v;. The so-called
triangle inequalities are then added.

Note that this is the special case of Raghavendra’s basic
SDP in the setting of Boolean 2-CSPs, and the triangle in-
equalties ensure that there is a local distribution of assignments
for each constraint.

B. Unique Games Conjecture

The Unique Games Conjecture (UGC), introduced by
Khot [20], plays a crucial role in the study of hardness of
approximation of CSPs. One version of the conjecture is as
follows.

Definition IL.5 (Unique Games). In a unique games instance
I = (G,L,1I), we are given a weighted graph G =

(V(G), E(G),w), aset of labels [L] = {1,2,...,L} and a set
of permutations Il = {7¥ : [L] — [L] | e = {v,u} € E(G)}
such that for every e = {u,v} € E(G), 70 = (7%)~% An

assignment to this instance is a function A : V(G) — [L]. We
say that A satisfies an edge e = {u,v} if 7% (A(u)) = A(v).
The value of an assignment A is the weight of satisfied edges,
ie, Val(I,A) = > cp(c).A saisfies « W(€), and the value of
the instance Val(I) is defined to be the value of the best
assignment, i.e., Val(I) = max4 Val(I, A).

Conjecture (Unique Games Conjecture). For any n,v > 0,
there exists a sufficiently large L such that the problem of
determining whether a given unique games instance I with L
labels has Val(I) > 1 —n or Val(I) <+ is NP-hard.

We say that a problem is UG-hard, if it is NP-hard assuming
the UGC. Raghavendra [25] showed that any integrality gap
instance of the canonical SDP relaxation can be turned into a
UG-hardness result.

C. Configurations of biases and pairwise biases

As it turns out, an actual integrality gap instance is not
required to derive UG-hardness results. Instead, it is sufficient
to consider configurations of SDP solution vectors that appear
in the same constraint. For 2-CSPs, each such configuration is
represented by a triplet 6 = (b;, b;, b;j), where b; = vo-v;, and
bj = vo-vj,bi; = vi-v;. b; and b; are called biases and b;;
is called a pairwise bias. A valid configuration is required
to satisfy the triangle inequalities described in the previous
section. We will use © for a set of valid configurations, and &}
for such a set endowed with a probability distribution.

Definition I1.6 (Completeness). Given a configuration 6 =
(bi,bj,bij) for MAXDLCUT, its completeness is defined as
Comp(#) = % For a distribution of configu-

rations ©, its completeness is defined as Comp(©) =
E,.a[Comp(0)].

Note that if © actually comes from an SDP solution, then

Comp(O) is simply the SDP value of this solution.

Definition ILI.7 (Relative pairwise bias). Given a configuration
0 = (b;, bj, bi;), the relative pairwise bias is defined as p(6) =
by —bib; . .
m, if (1 =07)(1—b3) #0, and 0 otherwise.
Geometrically, p(6) is the inner product between v; and v;
after removing their components parallel to vy and renormal-
izing.
Definition IL8 (Positive configurations [24]). Given a
Boolean predicate P(x1,73) on two variables with Fourier
expansion P“’+P1m1+P122+P1’2m1m2, a configuration 0 =
(i, bj, bi;) for MAX csP(P) (or MAX csP(P)) is called posi-
tive l'fPLg . ,0(9) > 0.

If P = pI-cur, then the quadratic coefficient in the Fourier
expansion is —1/4, which implies that a configuration is
positive if and only if its relative pairwise bias is not positive.
Austrin [24] presented a general mechanism to deduce UG-
hardness results for MAX cSP(P) from hard distributions of
positive configurations. With very slight modifications, the
same mechanism can also be used for MaX CSP™ (P). Austrin
also conjectured that positive configurations are the hardest to
round. This conjecture is still open. Our results do not rely on
this conjecture.

In a MAX DI-CUT instance, if we flip the direction of every
edge in the graph, then an optimal solution to this new instance
can be obtained by flipping all the signs in an optimal solution
to the original instance. For configurations, this symmetry
corresponds to swapping the two biases and then changing
the signs.

Definition IL1.9 (Flipping a configuration). Let 6 = (b;, b;, b;;)
be a DI-CUT configuration. We define its flip to be flip(6) =
(=bj, =bi, bij).

The following proposition can be easily verified.

Proposition I1.10. Ler 6 = (b;,b;,b;;) be a DI-CUT configu-
ration. We have

1) p(0) = p(tlip(6)).
2) Comp(6) = Comp(flip(0)).

D. The THRESH and THRESH™ families of rounding
functions

THRESH and THRESH , first introduced in Lewin,
Livnat and Zwick [4], are small but powerful families
of rounding functions for SDP relaxations of CSPs. In a
THRESH™ rounding scheme, a continuous threshold func-
tion f : [-1,1] — R is specified. The algorithm chooses a
random Gaussian vector r € R”*1, and sets each variable z;
to true (—1) if and only if r - vi- > f(vq - v;), where

4J_ _ V; — (Vi . Vo)VO
! 1-— (V'i . V0)2

is the component of v; orthogonal to v renormalized to a unit
vector. (If v; = £vg, we can take vil to be any unit vector



that is orthogonal to every other vector in the SDP solution.)

Since v;- is a unit vector, r- v is a standard normal random

variable. Furthermore, for any i,j € [n], r-v;- and r- vy are
L

jointly Gaussian with correlation v;- - V]Jf.

Let @, be the c.d.f. and p.d.f. of the standard normal
distribution, respectively. For ¢1,to € R, let ®,(t1,t2) :=
Pr[X < t;AY < t3], where X and Y are two standard normal
random variables that are jointly Gaussian with E[XY] = p.
Then for a THRESH™ rounding scheme with threshold
function f, a variable x; is rounded to false with probability
®(f(b;)). For a prLcuT configuration § = (b;,b;,b;5), the
probability that it is satisfied by THRESH ™ with f, which
happens when z; is set to false and x; is set to true, is equal
to

Pr[r~VJ‘ < f(b;) and r - V
=Prfr- vi < f(bj) and —r-
=P_,0)(f(b), = f(b;)) -

This naturally leads to the following definition.

Definition IL11 (Soundness). Let f -1,1] — R
be a continuous threshold function and 6 = (b;,b;,b;;)
a configuration for MAXDI-CUT. We define Sound(0, f) =
S _,0)(f(bi), —f(b;)). For a distribution of configurations 6,
its soundness Sound(©, f) is defined as E,,_g[Sound (8, f)].

> f(b;
L
v <

)]
—f(b;)]

As in the case for configurations, we can also flip a
THRESH™ threshold function.

Definition IL.12. Ler f : [-1,1] — R be a continuous thresh-
old function. We define flip(f) as the function © — — f(—x).

Proposition IL.13. Ler f : [-1,1] — R be a continuous
threshold function and 0 = (b;,b;,b;;) a configuration. Then

Sound(#, f) = Sound(flip(8), flip(f)) -

Proof. By Proposition I1.10, we have that p(6)
p. By definition of soundness,

= ©_,(f(bi),—f(b))

_,(— flip(f)(—b:), Aip(f)(=b;))

= ®_,(flip(f)(—b;), — flip(f)(~b:))

= Sound(flip(#), flip(f)) . =

— p(ip(9)) =

Sound(#, f)

A rounding scheme from 7THRESH can be thought of as
a distribution over THRESH ™ rounding schemes. Formally
speaking, a THRESH rounding scheme is specified by a
continuous function 7' : R x [-1,1] — R, and a variable x;
is set to true if and only if r- v > T(vo - r,vq - Vv;).
This allows for a continuous distribution over THRESH ™
rounding schemes.

The following partial derivatives are helpful for analyzing
THRESH and THRESH™ rounding schemes.

Proposition I1.14 (Partial derivatives of <I>p(t1, t2)).

00, (t1,t2) 1 exp <t% — 2ptaty + t%)

dp 2my/1 — p? 2(1—-p?) ’
8(I>p(t1,t2) tg — ptl
L2 () | 2L

atl 90( 1) /1 — p2 ?
8(I>p(t1,t2) tl — ptg

P — )0 | —= | .

o, o(t2) T

A derivation of the formula given for 9%p(t1:t2) oo be

found in Drezner and Wesolowsky [29]. The formulas for
6%@(2@) nd aq)”a(g’t?) follow easily from the definition of
D, (t1,t2).

III. UPPER BOUNDS FOR MAX DI-CUT

A. Separating MAX DI-CUT from MAX CUT

In this section, we prove the following theorem, which sepa-
rates MAX DI-CUT from MAX CUT.

Theorem IIL.1. Assuming the Unique Games Conjecture, it
is NP-hard to approximate MAXDI-CUT within a factor of
0.87461.

To prove Theorem III.1 we construct a distribution of posi-
tive configurations e, compute its completeness, and show that
no THRESH™ rounding scheme can achieve a performance
ratio of 0.87461 on it. The UG-hardness result then follows
from a slight generalization of a reduction of Austrin [24].
(We describe this reduction in the full version.)

The distribution © used to obtain the upper bound is
extremely simple. Let pi,p2,b,c be some parameters to be
chosen later. We will choose them so that b, p1,p2 € (0,1),
c € (—1,-b), and 2p; + po = 1. Consider the following
distribution of configurations © = {#, 65, 63}

61 = (=b,—b,—1+2b)  with probability p;
0> = ( b,—b, ¢ ) with probability ps
03 = (b, b,—1+2b) with probability p;

Note that in the #; and 03 one of the triangle inequalities
is tight, while in f3 none of the triangle inequalities are tight,
as was mentioned earlier. Also, this distribution is symmetric
with respect to flip, since flip(6,1) = 03 and flip(f3) = 5.

We first verify that O satisfies the positivity condition.

Proposition IIL2. © is a distribution of positive configura-
tions.

Proof. In 6 and 03, the relative pairwise bias is equal to p; =

2 . . . . .
=L2b2bt — _12b o ) In 6y, the relative pairwise bias is

102 13
equal to py = {f’gQ < 0 since we choose ¢ < —b?. O

4Since the distribution is fixed, the optimal THRESH ~
for it is also the best THRESH rounding scheme.

rounding scheme



The completeness of this instance can be easily computed.

Proposition I11.3.

- 14+2b—c¢
Comp(@):p1~(1—b)+p2~?.
Proof. We have
Comp(0©)
14 (=b) — (=b) — (=14 2b)
=P1- 4
1+b—(—=b)—c 1+b—b—(—14+2b
R EIRS S RS
o 2-% 1+2b—c 2 -2
=P 74 b2 74 b1 74
14+2b—
—pl'(l_b)+p2'%~ O

We now give an upper bound on the performance of any
THRESH™ rounding scheme on this distribution. Let t; =
f(=b) and t5 = f(b) be the thresholds for —b, b respectively.
Let s(t1,t2) be the soundness of this rounding scheme on o.
By definition of THRESH ~, we have

s(t1,t2) = p1-P_p, (t1, —t1) +p2- P, (t2, —t1)
+p1- @y, (t2, —t2) ,

where p1, po < 0 are computed in Proposition II1.2. We first
look at the case where —oo < t1,t5 < oo. The case where
t1 = oo or t; = F00, which corresponds to always setting
one or both variables to 1 or —1, can be dealt with separately
via a simple case analysis.

As we discussed in the introduction, a THRESH ™ round-
ing scheme for MAX DI-CUT is not necessarily odd, but as the
following lemma shows, the simple and symmetric structure
of our construction ensures that any finite critical point of s
is necessarily symmetric around the origin.

Lemma IIL4. Let z,y € R. If (x,y) is a critical point of
s(t1,t2), then x +y =0 with y > 0 and x < 0.

Proof. Recall that by Proposition 11.14

0 ty — pt
o Boltntz) = w(tl)-‘1><2 “) :
t1

V1—p?
The partial derivatives of s(t1,t2) are
1—p1 f
1+ p1

88: pl( (t1) = 2¢(t1) - ‘I)(

o (- () om (2725
o (-0 (F220) o (- (22))-

In the above computation, we used Proposition II.14 and
the chain rule. Since (z,y) is a critical point of s and ¢ is
strictly positive, we have

0,

0.

The first equation can be rewritten as

1—p )) Y — p2r
1-29 x = | 1. (D

1 ( ( 1+ p D2 =2 2
Since ® is a positive function, the right hand side of (1) is
A= ’”x) > 0, which

positive and therefore we have 1 —2® ( T

implies that x < 0.
Since 1 — ®(t) =
rewritten as

1—p —x + p2y
1—92P = —p® | ——=Z] .2
p1< ( 1+p1y>> D2 < 1_,0%) (2)

By similar logic we can deduce that y > 0. We now show that
we must have |z| = |y|. Assume for the sake of contradiction
that |z| # |y|. We have two cases:

®(—t), the second equation can be

e |z| > |y|. It follows that
by - 12@( 1p1x>‘
1+ p1
of_ 1= J[1=p1
1+Pl Ttp
1-— 1-—
<I>( P1y>®( P1 >
L+p1 1+,
1=
1—2@(,/’”;,)‘.
1+p1

Note that here we again used 1 — ®(t) = ®(—t), as well
as the fact that |®(¢) — ®(—t)| is an increasing function
in |t|. On the other hand, by (1) and (2) this implies that

o | L2 pn @ | LY
V1-03 V1-p

Since @ is a positive and monotone function, this implies

that

=p1-

> p1-

=Dp1-

>

Yy — p22 —T+ p2y
Vi—p3  /1-p3
Rearranging the terms, we obtain
(1—=p2)y > (1=p2)-(—x).

But this would imply that |y| > |z|, which contradicts
our assumption.
e |y| > |z|. This can be dealt with in a similar manner.




We conclude that we must have then x + y = 0 with y > 0
and z < 0. O

Lemma IILS5. [f p; > po, then s(t1,t2) has a unique critical
point.

Proof. Assume (z,y) is a critical point. In the previous
lemma, we established that x = —y < 0, so we can now

plug y = —x into (1) and get
P
V1-p

p1 <12<1>( z>> _
pz@(—ﬁx) .

We need to show the equation above has only one solution
when p; > po. To this end, define
1+ p2 t)
L—py )

so-n (o2 (550) (-

We have g(0) = —p2/2 < 0 and limy—, o g(t) = p1 —
p2 > 0, so g(t) = 0 has at least one solution in (—o0,0)
by Intermediate Value Theorem. To show that the solution is
unique, we compute the derivative of g:

)

L—p
"t) = -2 .
g'() p1< \/1+p1 w(
1+ 1+
tpy- / '02-<p(—/ let>.
17,02 17p2

By setting ¢'(¢) = 0, we obtain

L—p1
1+ p1

Since p1,p2 < 0 and exp is monotone, this equation has
exactly one solution t* € (—o0, 0). Furthermore, ¢'(¢) > 0 for
t € (—oo,t*) and ¢'(t) < 0 for t € (t*,0). It follows that g
has no root in (—oo, t*) and has a unique root in (¢*,0). 0O

We now deal with the boundary cases. Since our distribution
is symmetric with respect to flip, it is sufficient to look at the
case where t; = +o0.

Lemma IIL6. We have s(4o00,+00) = s(—00,—00) =
s(4+00,—00) = 0, s(—00,+00) = po. For t3 € R, we
have s(—oo,ts) > s(+o0o,ts). Furthermore, if p1 > po,

1+p1 |

then s(—oo,t2) is maximized when t; = t* = /{75

o (5222),

Proof. Setting a threshold to 400 corresponds to always
setting a variable to false, and —oo corresponds to always
true. When (t1,t2) € {(+00, +00), (—00, —00), (+00, —00) },
none of the configurations are satisfied, giving a soundness
of 0. When (t1,t2) = (—00,+00), only the second configu-
ration is satisfied and this gives a soundness of ps. For aim,
we have

s(—00,ta) =pa - P(t2) +p1- P, (2, —t2)
>p1- @, (t2, —t2) = s(+o0,t2),

and

= et (e (1220 (yi5500)))

_— = t + 1-29 t .
Oto wltz) | P2 1 1+p °

When p; > po, we have aS(T:Oh) > 0 on (—oo,t*) and

%ﬁj’m < 0 on (t*,00). O

With Lemma II1.5 and Lemma II1.6, it becomes very easy to
determine the maximum of s by simply computing the unique
critical point and comparing it with the boundary cases. It
turns out that when b = 0.1757079776, ¢ = —0.6876930116,
p1 = 0.3770580295, the unique critical point of s(¢1,ts) is at
(—to,to) where ¢y ~ 0.1887837358, which is also a global
maximum whose value is about 0.8746024732. A plot of
5(t1,t2)/Comp(©) with these parameters can be found in Fig-
ure 1. It follows that with these parameters, any 7HRESH™
rounding scheme achieves a ratio of at most 0.87461. This can
then be converted into Unique Games hardness, with the help
of the following theorem.

Theorem II1.7 ( [24]). Let P be a predicate of arity 2. Let S}
be a distribution of positive configurations for MAX cSP™(P)
such that Comp(©) = c. If Sound(©, f) < s for every f :
[-1,1] — R, then it is UG-hard to approximate MAX CSP™ (P)
within a ratio of s/c + € for any € > 0.

The above theorem was originally stated in terms of
MAX CSP(P) in [24], but the proof is essentially the same for
MAX cSPT(P). We include a proof in the appendix of the full
version for completeness.

B. Intuition for the upper bound

While we found this integrality gap instance with a computer
search, we now give some intuition for why this integrality
gap instance works well. Previously, the best algorithm for
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Fig. 1. Contour plots of s(t1,t2)/Comp(©) with optimal parameters. The black dot represents the global maximum (—to, to) where to ~ 0.1887837358.

All plots in this paper are made with Matplotlib [30].

MAX DI-CUT was the LLZ algorithm [4] which works equally
well for MAX 2-AND.

If we restrict our attention to points (by, by, —1 + by + b))
where the triangle inequality is tight (so the completeness
is as large as possible given b; and bs), using experimental
simulations, the performance of LLZ in terms of b; and b, is
shown in Figure 2.

We observe that there is a strip where b; + by ~ .35 and
a strip where by + by &~ —.35 where the LLZ algorithm does
poorly. In order to reduce the degrees of freedom for rounding
schemes for our instance, it makes sense to choose by = b; =
+b. With this choice, there are only two degrees of freedom,
the threshold for b and the threshold for —b. b ~ 0.1757079776
puts us right in the middle of the hard strips for LLZ.

Once we have these two points, we can also add points of
the form (b, —b,c) and (—b,b, ') without additional degrees
of freedom. While we originally thought that points where the
triangle inequality is tight may be optimal, this turned out to
not be the case. Instead, we found experimentally that adding
the point (b, —b, ¢) with ¢ ~ —0.6876930116 worked best. The
completeness for (—b,b,¢’) is too low, so adding this kind of
point does not help.

C. Possibly improved upper bounds

We believe that slightly improved upper bounds for MAX DI-CUT
can be obtained using more than one pair of biases. In the
full version, we give more complicated distributions that use
up to 4 pairs of biases that seem to indicate that aprcur <
0.8745794663 (not verified rigorously). It would probably be
very hard to prove this inequality analytically. It is probably
possible to prove that, say, aprLcur < 0.8745795, using
interval arithmetic, but we have not done so yet.

IV. A NEW APPROXIMATION ALGORITHM FOR MAX DI-CUT

In this section, we present the techniques used for proving
Theorem 1.3. We first briefly give some intuition for why a
rounding scheme for MAX DI-CUT better than those possible for
MAX 2-AND should exist. Then, after describing the rounding
scheme, we explain how this rounding scheme was discovered
experimentally. Finally, we discuss how we rigorously verify
the approximation guarantees of this rounding scheme using
interval arithmetic.

A. Intuition for the separation between MAX2-AND and
MAX DI-CUT

We now try to give some intuition for why there is a gap
between MAX2-AND and MAX DI-CUT. We first observe that
Austrin’s hard distributions of configurations for MAX 2-AND
(see Section 6 of [24]) can be easily beaten for MAX DI-CUT. For
simplicity, we consider Austrin’s simpler two-configuration
distribution which is as follows

1) (0,—b,b— 1) with probability 0.64612
2) (0,b,b — 1) with probability 0.35388

where b = 0.33633. This gives an inapproximability of
0.87451 for MAX 2-AND.

For MAX2-AND, since variables can be negated, we can
assume without loss of generality that when b = 0, for each
rounding scheme in our distribution the variable has an equal
probability of being rounded to true or false.

For MAX DI-CUT, we only have the symmetry of 6 — flip(6).
When we add this symmetry to the integrality gap instance,
we obtain:

1) (0,—b,b— 1) with probability 0.32306
2) (b,0,b— 1) with probability 0.32306
3) (0,b,b— 1) with probability 0.17694
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Fig. 2. Contour plots of the performance of the LLZ function [4] for MAX 2-AND and MAX DI-CUT.

4) (=b,0,b— 1) with probability 0.17694
where b = 0.33633.

The following distribution of rounding functions trivially
satisfies % of the configurations of this MAX DI-CUT instance.

1) With probability %, round all variables with bias 0 to 1
and round all variables with bias —b or b to —1.

2) With probability %, round all variables with bias 0 to
—1 and round all variables with bias —b or b to 1.

Since the completeness of these configurations are all at
most %, we obtain a ratio which is at least 1.

While this is an extreme example, this shows that making
the variables with zero or low bias more likely to be rounded
to 1 or more likely to be rounded to —1 can help round other
variables more effectively as the behavior of these variables is
more predictable.

This means that configurations where one or more variables
have bias 0 are easier for MAX DI-CUT. Instead, the configura-
tions in our simple distribution (i.e., (b,b,—1 + 2b) where
b ~ 0.1757079776) are hard configurations and all rounding
schemes in the distribution have essentially the same behavior
at these configurations.

B. The rounding scheme

We now describe a THRESH scheme, that separates
MAXDI-CUT from MAX2-AND. As mentioned, a THRESH
scheme is a distribution over THRESH™ schemes. We
use discrete distributions over a relatively small number of
THRESH™ schemes. For computational convenience, we
choose the THRESH™ functions to be piecewise linear
functions. More precisely, to build a piecewise linear function
f, we pick a finite set S C [—1,1] of control points with
—1,1 € S. For each of these control points s € R, we assign
a real threshold f(s) such that the breakpoints of the graph of

f are at (s, f(s)) for s € S. Then, for every z € (—1,1)\ S,
we identify z_ = max(SN[—1,x)) and zy = min(SN(x, 1)),
and set

r—T_

fl) = flz)+ (f(zy) = f(z)) -

Ty —T—

We use the same set of control points for every function in
our THRESH scheme.

For our application to MAX DI-CUT, we picked a set .S of 17
control points: 0, 0.1, +0.164720, +0.179515, +0.25, +0.3,
40.45, +0.7, £1. The choice of most control points is fairly
arbitrary. It seemed important, however, to choose the four
control points £0.164720 and +0.179515 as they seem to be
situated in regions in which very fine control over the values of
the rounding functions is needed. Further small improvements
are probably possible by slightly moving some of the control
points or by adding new control points.

Then, using the algorithm presented in Section IV-C, we
produced a “raw” THRESH rounding scheme which is
a probability distribution over 39 piecewise-linear rounding
functions. After a careful ad-hoc analysis, we were able to
simplify the distribution to a “clean” THRESH scheme with
only 7 piecewise rounding functions, which we summarize in
Table I and Figure 3.

It is interesting to note that the function f;, which is used
in about 99.7% of the time, is very close to the single function
used by Lewin, Livnat and Zwick [4]. We do not yet have a
satisfactory explanation of the shape of the other functions.
Some of the values of the functions, especially at control
points +0.45, £0.7 and £1 can be changed slightly without
affecting the performance ratio obtained. We also note that the
last two functions do not seem to contribute much. We have a
scheme with only 5 functions with only a very slightly smaller
performance ratio.



f1 f2 f3 fa fs fe fz
prob 0.996902 0.000956 0.000956 0.000393 0.000393 0.000200 0.000200
—1.000000 —1.601709 —2.000000 —2.000000 —0.034381 —0.430994 —2.000000 2.000000
—0.700000 —0.853605 —2.000000 —2.000000 —0.034381 —0.430994 —2.000000 2.000000
—0.450000 —0.517014 —2.000000 —0.629564 —0.440988 —0.896878 —2.000000 2.000000
—0.300000 —0.333109 —1.520523 1.711824 —1.406591 1.643936 —2.070000 1.970000
—0.250000 —0.274589 —0.687582 2.019266 —0.622399 —0.127984 —1.629055 2.070000
—0.179515 —0.192926 —0.195474 —0.229007 —0.268471 —0.339566 —0.544957 —0.103307
—0.164720 —0.175942 —0.381789 —0.649998 —0.116530 —0.073069 —0.361234 —0.575047
—0.100000 —0.105428 —0.026636 —1.175439 0.066139 —0.123693 2.070000 —1.351740
0.000000 0.000000 2.046025 —2.046025 1.728858 —1.728858 2.050000 —2.050000
0.100000 0.105428 1.175439 0.026636 0.123693 —0.066139 1.351740 —2.070000
0.164720 0.175942 0.649998 0.381789 0.073069 0.116530 0.575047 0.361234
0.179515 0.192926 0.229007 0.195474 0.339566 0.268471 0.103307 0.544957
0.250000 0.274589 —2.019266 0.687582 0.127984 0.622399 —2.070000 1.629055
0.300000 0.333109 —1.711824 1.520523 —1.643936 1.406591 —1.970000 2.070000
0.450000 0.517014 0.629564 2.000000 0.896878 0.440988 —2.000000 2.000000
0.700000 0.853605 2.000000 2.000000 0.430994 0.034381 —2.000000 2.000000
1.000000 1.601709 2.000000 2.000000 0.430994 0.034381 —2.000000 2.000000
TABLE 1

A THRESH ROUNDING SCHEME THAT GIVES A RIGOROUSLY VERIFIED APPROXIMATION RATIO OF AT LEAST 0.874473 FOR MAX DI-CUT. (THE ACTUAL

RATIO IS PROBABLY ABOUT 0.874502.) THE SCHEME USES 7 PIECEWISE-LINEAR ROUNDING FUNCTIONS f1, fa,...

, f7 DEFINED ON 17 CONTROL

POINTS. THE FUNCTION f1 IS ODD AND IS VERY CLOSE TO THE SINGLE FUNCTION USED BY LEWIN, LIVNAT AND ZWICK [4]. THE OTHER SIX
FUNCTIONS COME IN PAIRS. THE TWO FUNCTIONS IN EACH PAIR ARE FLIPS OF EACH OTHER.

C. Discovery of the THRESH scheme

In this section, we discuss the process of experimentally
discovering the “raw” THRESH scheme described in Sec-
tion IV-B. For now, we will make a couple of assumptions,
which will be fully worked out in Section IV-C4.

(1) Instead of optimizing over all valid configurations of
MAX DI-CUT, we restrict to optimizing over a finite set ©
of configurations, where Comp(6) > 0 for all 6 € ©.

(2) Let F be a restricted family of THRESH™ schemes
(e.g., the piecewise linear functions). We shall further
assume throughout this discussion that we have access to
an oracle Oz which, when given a probability distribution
© € Dist(©), identifies a function f € F which
maximizes Sound(©, f).

1) Finite F: a game-theoretic approach

Assume further we have found a finite set F© C F of
candidate rounding functions. We would like to identify the
following:

(a) An optimal (worst) distribution © over O such that

6 = argmin max S()L(@lf).

6epist(@) J€F Comp(O)

(b) An optimal (best) distribution F over F such that

~ . Sound(©, f)
F = argmax min E [————
Fepist(r) 9€© f~F | Comp(©)

It turns out that both of these objectives can be solved by
mutually dual LPs. This is best seen by casting both questions
as a zero-sum game. Fix a real number «, which should be
thought of as an estimate of the approximation ratio of this
restricted MAX DI-CUT problem. In our game, which we call
the a-game, there are two players Alice and Bob that play

simultaneously: Alice picks 6 € © and Bob picks f € F. We
then have the following payoffs

Alice: alice, (0, f) := aComp(#) — Sound(0, f)
Bob: bob, (0, f) := Sound(d, f) — o Comp(6)

Note that this game is a finite zero-sum game and thus by
standard theory (e.g., Von Neumann’s minimax theorem [31]
and Nash equilibria [32]), there is a single® Nash-equilibrium
((:)a, Fa) which is the optimal mixed strategy for both players.
Let v(a) be the expected payoff of this optimal strategy for
Alice (i.e., the value of the game). We now make the following
simple observation.

Proposition IV.1. The function v(«) is strictly increasing in c.
Proof. Fix a < «'. Assume for the o'-game that Alice

plays ©,. Assume Bob plays an arbitrary mixed strategy F.
Then, Alice’s expected payoff is

E [aliceq (6, f)]

0~Oy,f~F
= E [aliceq(0, f) + (o' — a)Comp(0)]
NCIN
= E [aliceq(0, )]+ (¢/ —a) E [Comp(0)]
9~Bu, fr I 9~O0
> v(a),

where we use the fact that ©,, is the Nash equilibrium for the
a-game and that Comp(6) > 0 for all § € ©. In other words,
Alice can assure for the o’-game a payoff strictly greater
than v(a). Thus, v(a’) > v(a). O

It is easy to see that v(0) < 0 (as alicey < 0). Further
alice, (0, f) — oo as @ — oo. Thus, by Proposition IV.1, there

SDepending on the singular values of the payoff matrices, there may be
multiple Nash-equilibrium, but they all have the same value. In that situation,
we pick one of the Nash equilibriums arbitrarily to be representative Nash
equilibrium.
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Fig. 3. Plots of the seven rounding functions used in the 7HRESH rounding scheme given in Table I that achieves a verified approximation ration of at
least 0.87446 for MAX DI-CUT.

is a unique avg r for which v(ae r) = 0 with a corresponding ~ weights of the optimal distribution Fo. By definition of the
Nash equilibrium of ©r and Fg. Unpacking the definition of ~Nash equilibrium, we have that
Nash equilibrium and using the fact that Sound(©, f) is an

affine function in ©, we have that Z wo(cve, Comp(6) — Sound(6, f)) > 0 , VfeF
(a) For all f € F, we have that e® 3)
Sound((:)li,f) <o pr(Sound(H,f) —ag,rComp(d)) >0 , V€O
Comp(®) fer
4)

(b) For all & € ©, we have that

To formulate this as a pair of linear programs, we will have
Sound(4, f) o .

| Comn(d) « ae,r be our objective. Since v(a) > 0 for all & > ag,r we

f~Fo omp(6) will have a “minimize” objective to compute the wy’s and a

- - ) o “maximize” objective to compute the py’s.
Thus, ©F and Fo are the optimal distributions for problems

(a) and (b) from before. We can efficiently compute these However, neither set of constraints is currently an LP as
distributions through a suitable linear program. Let wy be «ae,r is also a variable of our LP (in fact the objective
the weights of the optimal distribution O and let py be the function). This is easy to fix for (4), as > ferPf = 1, so
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Fig. 4. This plot is a contour plot of the performance of the THRESH
scheme with 7 piecewise-linear rounding functions for various choices of by
and b (with an approximately worst-case choice of b12) selected.

we can rewrite (4) as

> prSound(d, f) > ae,r Comp(0) .
fer

For (3), we use a ‘clever’ trick. We renormalize the weights
so that >, wy Comp(#) = 1 instead of >, wg = 1, and use
the wy’s as the variables of the LP. With this normalization,
we then get the linear constraints

> g Sound(6, f) < ae,r
0co

After solving the LP, We can find the original weights by
setting wy = wy/ 29,66 wyr. Formally, the two LPs we solve
are as follows.

Primal LP (finding © )
minimize: o

subject to: Y _ Sound(6;, f)iy <a , VfEF

)
Z Comp(8;)wy =1
9€0
wg>0 , V€O

Dual LP (finding Fg)

maximize: «

subject to: Z Sound(8, f;)py

fer
> aComp(d) , VoeO
> pr=1
fer
prO , VfeF

It is straightforward to prove that these two LPs are dual
to each other and thus will both achieve the same objective
value ag, F

2) Extending to infinite F

Since the full family of functions we optimize over is
infinite, we cannot hope to find a (near) optimal distribution
over F by just solving a suitable finite linear program. Instead,
we work with a small set of candidate functions F' which we
iteratively improve. In particular, for a fixed F', we can com-
pute the hardest distribution O for this family of functions
and then use the oracle to find the function f = Ox(OF)
which does the best on this hard distribution. (Note that
Ox(OF) needs to solve a non-linear, and probably non-
convex, optimization problem.) We add f to F' and continue
for some fixed number 7 of steps. We note that similar
minimax algorithms are prevalent in machine learning, such
as in generative adversarial networks [33]. See Algorithm 1
for the formal details.

Algorithm 1 THRESH discovery algorithm (fixed ©)
1: procedure FINDTHRESH(O, T~)
2: Pick an initial distribution ©¢ € Dist(O)

3 fi < Ox(©y)

4: F {fl}

5: for i € {1,2,...,7 — 1} do

6: Find the hardest éz for F; using the Primal LP
with objective value o

7: fit1 < Ox(0;)

8: Fiy1 < FiU{fiz1}

9: end for

10: Find the optimal distribution Fip over Fy for © using
the Dual LP

11: return FT

12: end procedure

It is easy to see that the objective value «; of the Primal
LP in Algorithm 1 increases at each step of the loop. Further,
it is not hard to prove that o; < 1/ mingeg Comp(6). Thus,
as T — oo, the objective value of the Primal LP tends to a
limit oyjy,. Our main correctness guarantee of our algorithm
is that we converge to this limit at an effective rate and that

this limit is the best we can hope for.

Theorem 1IV.2. Fix ¢ > 0 and assume C :=
1/ mingece Comp(0) is finite. Let ar be the objective value
of the Dual LP computing Fr. Assume that T > (C/e)!®),
then ar > aym — €. Further, for every finite distribution F
over functions in F,

E
f~F

~7 S Qim -
Comp(©

Sound(€ f)]
)

Proof. Observe that for all j > ¢ > 1, we have that

Sound(©;, fir1) - Sound(©, f;)

Comp(©;) Comp(©,)




because the distribution (:)i certifies that no finite distri-
bution of rounding functions over F; can do better than
Sound(éi,(’)}-(éi)) . . .. .
= Comp(@n) In particular, by taking the limit as j — oo,

this imphe§ that for all 7 > 1,
Sound(éi, fiJrl)

= > im - 5
Comp(©;) =™ )

Assume for sake of contradiction that oy < ayj — €. Thus,
a; < aym —e foralli e {1,...,T —1}. Pick 6 = ¢/C.
Define the function sg : F — [0,1]® as

se(f) = (Sound(f, f):0 € 0O).

Observe that if f and f” are such that ||se(f)—se(f’)|le <6,
then for any fixed distribution ©, we have that

Sound(®, f)  Sound(®, f) _ B)

Comp(O) Comp(©)

=c.
(6)

Divide [0,1]® in (1/6)I®! hypercubes with £.,-diameter &.
Let A be the this family of hypercubes. Since T > (C/¢)!®,
by the pigeonhole principle there exists i,5 € {1,...,T}
with f; and f; in the same hypercube but ¢ < j. In particular,
we have by the minimax guarantee of ©;_1, (6), and (5),

~ mingee Comp(6)

Sound(®j_1, fl)

ar > a;_q > z
J Comp(0;_1)
>w_gzahm—5, (7)
Comp(©,_1)
as desired.

For the claim about ]5, assume for sake of contradiction that
there is a ¢/ > 0 such that

. lSound(@, )
f~F

im + €.
Comp(©) :

Then, we must have that for all 7 > 1,

Sound(6;, f;
Sound(®i, fir) o L
Comp(6,)
However, if we take the limit in (7) as ¢ — 0 and T >
(C/a)|9|, we obtain that & > i, + €', a contradiction. [

Remark IV.3. The second claim of Theorem IV.2 can also
be proved for continuous distributions F over F. In that case,
we can approximately discretize F by picking representative
Sfunctions which cover the space of functions in the (., metric
with respect to sg. We omit further details.

Remark IV4. Although this proof only gives correctness
when T is exponential in the size of ©, in practice our
simulation only requires T' = \®|O(1) rounds to converge with
e ~ 1075, Perhaps this suggests that the theoretical analysis
can also be improved.

3) Extension to infinite ©

We now briefly discuss how to extend Algorithm 1 to
allow O to grow. Let O.uiq. be the space of all valid
configurations of MAXDI-CUT with completeness at least .
Assume we also have an oracle Og which when given a
distribution of rounding functions F outputs the configuration
0 € Oyalig. on which F performs the worst. We can then
dynamically grow our “working set” of configurations © using
the following procedure.

Algorithm 2 THRESH discovery algorithm (growing ©)

1: procedure FINDTHRESHFULL(T, T")
2 Pick ©g arbitrarily.

3 for i € {1,2,..., 7" — 1} do

4: F; < FindThresh(©;_;,T).
5: 0; + Og (FZ)

6 0,+ 0, 1U {91}

7 end for

8 return FindThresh(©r.,T')

9: end procedure

Let «; the performance guarantee of Fi over ©;_; and let &;
be optimal approximation ratio if 7" were to tend to co. Note
that &; must monotonically decrease (although non-necessarily
strictly). Since each ¢&; is nonnegative, they must have a
limit @iy, Via an argument similar® to Theorem IV.2, we
can take an J-net over the configuration space ©yyiq. and
argue that if both ; and §; are in the same region of the J-
net, then Fj must perform with a ratio at least &y, — € on
all conﬁgurations7 in Oy,lig,c. In particular, we can guarantee
that when 7" is sufficiently large, then nearly all F;’s with
i€ {T"/2,...,T'} are near-optimal distributions. This proves
to be an adequate guarantee for practical simulation.

4) Implementation details

We now discuss the implementation details for how the
“raw” THRESH scheme was generated as well as details
of how the “clean” THRESH scheme was derived from it.

a) The raw distribution.

Overall, the algorithm for discovering the “raw” THRESH
distribution was implemented in Python (version 3.10).

The oracle Or is computed using the SciPy library’s
minimize routine [34] which finds a locally maximal rounding
function f when given a starting function f:8— (—00,0)
as input. For numerical stability, we assume that all thresholds
are in the range [—2,2]. We compute Og by computing
Sound(#, F ) for #’s in a suitably spaced grid and then calling
minimize on the worst grid point to further tune the parame-
ters.

This further requires that the family of functions F is uniformly con-
tinuous: that is small changes in the configurations imply that the rounding
functions do not change much. This is true for uniformly bounded, piecewise
linear functions.

Tn practice, the distribution of functions also does well on instances with
completeness less than €.



The Sound routine was computed using Genz’s numerical
algorithms for approximate multivariate normal integration
[35], [36] which is bundled with SciPy. The linear program-
ming routines were implemented using CVXPY [37], [38] as
a wrapper around the ECOS solver [39].

In practice, we found that the convergence was more stable
by additionally adding flip(f;) to F; in Algorithm 1. Likewise,
in Algorithm 2, it was best to add flip(6;) along with 6.

Perhaps the most sensitive part of this algorithm is the
choice of the initial Oy in Algorithm 2. We found it best
to set ©p to be a near-optimal hard distribution. With this
choice, it only took 7" = 150. In practice, we did not aim for a
fixed T in Algorithm 1, but rather a more complicated stopping
criteria based on how fast «; is stabilizing. This roughly
translates to 7' < 100. In total, it took a few hours of single-
core computation on a standard desktop computer to find the
THRESH function described in Section IV-B. However, as
mentioned in Section IV-C3, the worst-case performance of the
distribution Fi is not monotone in 7, so it took a few instances
of trial and error (i.e., run for a few more iterations) until the
worst-case performance was satisfactory.

We further remark that routines similar to the ones described
in this section were used to discover (approximately) the
configurations used to prove the upper bound on MAX DI-CUT in
Section III (in this case O was seeded to be a fixed e-spaced
grid).

b) The clean distribution.

Inspecting the 39 functions of the raw distribution revealed
that they naturally divide into 7 families of functions, with
the functions in each family being fairly similar to each other.
Taking a weighted average of the functions in each family
yielded a scheme with only 7 functions that did almost as
well as the original scheme. Further inspection revealed that
one of these 7 functions was almost odd, and that the other
six functions divide into three pairs in which functions are
close to being flips of each other. The first function was
made odd by taking the average of the function and its flip.
Similarly, the functions in each pair were made flips of each
other. This slightly improved the performance ratio obtained.
Finally, numerical optimization was used to perform small
optimizations. The resulting 7 functions are the ones given
in Table I. The final performance ratio obtained was slightly
better than the one achieved by the raw distribution. The
computations and optimizations were done using MATLAB.

D. Verification using interval arithmetic

1) Sketch of the algorithm

From now on, we use F to refer to the clean distribution
of 7 functions from the previous subsection. To prove that
the claimed distribution F' of rounding functions achieves an

approximation ratio of at least o for MAX DI-CUT, we need to
show that

V6, Comp(6) # 0
IEfNF[Sound(G,f)]
Comp(6) z

or equivalently

Ve, E [Sound(f, f)] — a- Comp(6) > 0.

f~F

Note that in the above expression, Comp(6) only involves
simple arithmetic operations, and E[Sound (0, f)] is a weighted
sum of two-dimensional Gaussian integrals, while 6 takes
value in [—1,1]3, modulo the triangle inequalities.

To rigorously verify the inequality for all configurations, we
deploy the technique of interval arithmetic. In interval arith-
metic, instead of doing arithmetics with numbers, we apply
arithmetic operations to intervals. Let op be a k-ary operation
and I, I, ...,I; be k intervals, then the interval arithmetic
on op(I1,Is,...,I;) will produce an interval I,, with the
following rigorous guarantee: op(z1,x2,...,zx) € I, for
every (r1,22,...,25) € Iy X Iy X - -+ X Ij.. By transitivity of
set inclusion, if we implement a function g as a composition
of such operations in interval arithmetic, then it is guaranteed
that the range of g is included in the output interval 1.

This property is useful when it comes to certifying the
nonnegativity of g. Indeed, if the output interval I, lies entirely
in [0,00), then we can establish that g is a nonnegative
function on the given input intervals. However, since the
computation is usually not exact, to maintain correctness, I,
will also contain elements that are not in the range of g. In
particular, if g attains O, then we cannot hope to certify the
nonnegativity of g with interval arithmetic unless some very
special conditions on g allow for exact evaluation.

Even in the case where inf(g) > 0, I, may still contain
negative elements. For example, if g = g1 + g2, then I,
might be obtained by adding I, and I,,. This will imply
that sup(lg, ) +sup(ly,) € I,, while in reality g; and g, may
attain maximum/supremum on very different inputs. This issue
can be resolved via a simple divide-and-conquer algorithm.
Whenever the check on I, is inconclusive, i.e., it contains
both positive and negative numbers, then we split one of the
input intervals into halves, and recursively apply the same
computation to each half. This is like using a microscope:
if we cannot see a region clearly, we zoom in to get a better
view.

The pseudocode of the algorithm is presented in Algo-
rithm 3. The CHECKVALIDITY function checks if there exists
a valid configuration in I; X Iy x I, i.e., a configuration
that satisfies all triangle inequalities, and returns true if it
does. If CHECKVALIDITY returns false, then the algorithm
returns true, since in this case the region consists entirely of
invalid configurations and there is nothing to check. Otherwise,



Algorithm 3 Interval arithmetic verification algorithm
1: procedure CHECKRATIO(I1, 12, I12)

2 if CHECKVALIDITY(I4, I3, I1 2) = FALSE then

3 return TRUE

4: end if

5: I < INTERVALARITHMETICEVALUATE(!y, I3, I1 2).

6 if I C [0,00) then

7 return TRUE

8 else if 7 C (00, 0) then

9: return FALSE

10: else

11: if |I1| :max(\fl|,|1’2|,|I172|) then

12: Split [; into two equal-length sub-intervals
L =Lul.

13: return CHECKRATIO(I!, I5, I1 2) A
CHECKRATIO(IT, Iz, I1 2)

14: else if |IQ| :max(\fl|,|12|,|1172|) then

15: Split I into two equal-length sub-intervals
L=I,UI’.

16: return CHECKRATIO(I4, I}, I1 2) A
CHECKRATIO(I1, I3, I1 2)

17: else

18: Split I » into two equal-length sub-intervals
Lo = 1{72 UI,.

19: return CHECKRATIO(I1, I3, I} 5) A
CHECKRATIO(I1, I3, I7 5)

20: end if

21: end if

22: end procedure

the algorithm continues to compute an interval I, using the
INTERVALARITHMETICEVALUATE subroutine, such that

VO el xIyx T2, E [Sound(d, f)] —a- Comp() € I.

FoF

The algorithm then checks if I is entirely non-negative or
entirely negative, in which cases we can decide that either
the ratio is achieved over the entire region, or there exists
a valid configuration that violates the ratio, and exit the
algorithm accordingly. Otherwise, I consists of both positive
and negative values, but the negative values may come from
evaluation of invalid configurations, or more intrinsically the
error produced by interval arithmetic itself. In this case,
we subdivide the longest interval into two equal-length sub-
intervals and recursively apply the algorithm, as explained
earlier.

We implemented this verification algorithm in C using the
interval arithmetic library Arb [40]. Specific advantages of
this library is that it has rigorous implementations of the
error function [41] as well as a routine for rigorous numerical
integration [42]. To speed up the computation, we split the
various tasks between cores using GNU Parallel [43]. We
obtain the following lemma.

Lemma IV.5. F achieves an approximation ratio of 0.87447

on all MAXDI-CUT configurations with completeness at least
1076,

We address the requirement on completeness in the next
subsection.

2) Removing the completeness requirement and a proof of
Theorem 1.3

As we discussed, interval arithmetic in general cannot cer-
tify nonnegativity of a function which attains 0. Unfortunately,
the function that we care about, E;_[Sound(f, )] — a -
Comp(), does attain 0, regardless of the choice of r, as the
following proposition shows.

Proposition IV.6. Let 0 = (b;, b;,b;;) be a configuration with
b, =b; = b and p(0) = 1. Then for any f,
Sound(d, f) = Comp(f) = 0.

Proof. Since p(f) = 1, we have

bij = bibj +p\/1 =0} /1 =02 = b*+(1-b") = 1

and
For soundness, we have Sound(, f) = ®_,(f(b:), —f(b;)) =
®_,(f(b),—f(b)). Since p = 1, this is equal to

Prxnon[X < f(b) A =X < —f(b)i = Prx non[X =
=0 =

Luckily, on configurations with small completeness, it is
known that independent rounding, which assigns true to
each variable independently with probability 1/2, does very
well. Indeed, this rounding scheme satisfies each MAX DI-CUT
constraint with probability 1/4 on every configuration. This
implies that F combined with the independent rounding will
achieve a good approximation ratio over all DI-CUT configura-
tions.

Proof of Theorem 1.3. Consider the rounding algorithm where
we use the THRESH rounding scheme F with probability
(1 —1075) and independent rounding with probability 1075.
We show that this algorithm achieves a ratio of 0.87446 on
all configurations of MAX DI-CUT.

Let 6 be a DI-CUT configuration. If Comp(#) > 1075, then
by Theorem IV.5, we achieve a ratio of at least 0.87447 x
(1—1075) > 0.87446. If Comp(#) < 10~°, then independent
rounding contributes a soundness of 0.25 x 107° = 2.5 x
10~% > 0.87446 - Comp(#). O

3) Further optimizations

To further speed up the computation, we compute partial
derivatives of E;_z[Sound (0, f)] — o - Comp(#), and reduce
an interval to its boundary point if the corresponding partial
derivative is nonnegative or nonpositive.



For example, if we have for every 6 € I} X I x I; 5

0
— | E [Sound(#, f)] — a-Comp(#) | >0,
by \ s

and Iy = [l,r], then to certify the nonnegativity of
E;.5[Sound(0, f)] — - Comp(f), it is sufficient to check

VO € {l} xIyxI, 5, E [Sound(f, f)]—a-Comp(f) > 0.
f~F

We remark that we only perform this optimization in regions

that are entirely valid, i.e., consisting only of valid configu-

rations. This is because otherwise we may reduce the region

to an invalid subregion, on which the program returns true

without checking the ratio.

4) Implementation details

To compute the soundness, we need to evaluate bivariate
Gaussian distributions of the form ®,(¢,%2). However, Arb
only has implementation of one-dimensional integration. To
overcome this, we use the following formula from Drezner
and Wesolowsky [29], which transforms ®,(¢;,t2) into a one-
dimensional integral:

D,(t1,t2) = % /0” \/%GXP (—
+ @(t1)@(t2) .

12 — 2rtyty + 13 p
2(1 —r?)

Another potential issue is numerical stability. Computing p
from (b;, bj, bi;) involves division by /(1 —b7)(1—b3),
which can be unstable when b; or b; is close to +1. In the
actual implementation, we overcome this by representing a
configuration using (b;, b;, p).

V. A NEW APPROXIMATION ALGORITHM FOR MAX 2-AND

Recall that THRESH rounding schemes for MAX 2-AND are
nearly identical to those for MAXDI-CUT, except that the
rounding schemes for MAX2-AND are required to be odd
functions. It is easy to enforce in the discovery algorithm
that the family of piecewise-linear functions we consider are
odd (in fact, the oracle runs quicker as the number of free
parameters is cut in half). Empirically, we found a “raw”
distribution of 15 rounding functions which attains a ratio of
approximately 0.8741. Using a clean-up procedure similar to
that for MAX DI-CUT, we were able to simplify it to another
distribution F” with only 3 functions. See Table II for details.

Using the same interval arithmetic algorithm used for
MAX DI-CUT, we obtain the following result.

Lemma V.1. F’ achieves an approximation ratio of 0.87415
on all MAX2-AND configurations with completeness at least
1076,

We can then use the same proof idea as that in Sec-
tion IV-D2 to get rid of the completeness requirement and
obtain the lower bound of 0.87414 for MAX 2-AND, as claimed
in Theorem 1.4.

Approx Ratio for MAX-2AND
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Fig. 5. This plot is a contour plot of the performance of the THRESH
scheme for MAX 2-AND with 3 piecewise-linear rounding functions for various
choices of b1 and b2 (with an approximately worst-case choice of bi2)
selected.

VI. CONCLUSION

We used a “computational lens” to obtain a much better,
and an almost complete, understanding of the MAX DI-CUT
and MAX2-AND problems. Insights gained from numerical
experiments yielded a completely analytical new upper bound
for MAX DI-CUT that can be verified by hand (see Section III), as
well as new lower bounds, i.e., new approximation algorithms,
for MAX DI-CUT and MAX 2-AND, for which we obtain a rigorous
computer-assisted analysis (see Section IV and Section V).

We have established that the MAXDI-CUT problem has
its own approximation ratio by strictly separating it from
MAX 2-AND and MAX CUT (assuming the unique games conjec-
ture). Fundamental to our approach was the use of algorithmic
discovery to identify both difficult instances of MAX DI-CUT
and MAX2-AND as well as discovering THRESH rounding
schemes which improve on the 20+ year state of the art.

As discussed in Section IV, assuming the unique games
conjecture and Austrin’s positivity conjecture, the opti-
mal THRESH schemes® achieve aprcur and aoanp for
MAX DI-CUT and MAX2-AND, respectively. We demonstrated
a computational procedure which helps us to approximate
aprcut and apanp to greater precision than previously known.
However, a proper theoretical understanding is still missing.
In particular:

Theoretical understanding of the optimal 7THRESH
scheme. Currently, we lack a satisfactory explanation of
why the secondary functions in the currently best-known
MAX DI-CUT and MAX 2-AND T HRESH schemes take on the
shapes they do. Perhaps one can prove that the optimal func-
tions must satisfy particular constraints (such as in the calculus

80r more precisely a limiting sequence of finite, bounded THRESH
schemes.



T

.
15
f1 f2 f3
prob 0.998105 0.001126 0.000769
—1.000000 —1.585394 0.934459 0.163540
—0.700000 —0.870350 0.443616 —0.212976
—0.450000 —0.512239 0.675617 —1.435794
—0.300000 —0.332896 —1.446206 0.289432
—0.250000 —0.274526 —1.495506 2.000000
—0.179515 —0.193131 —0.382870 —0.492446
—0.164720 —0.176869 0.015196 —0.933550
—0.100000 —0.107901 2.000000 —1.568231
0.000000 0.000000 0.000000 0.000000
0.100000 0.107901 —2.000000 1.568231 r
0.164720 0.176869 —0.015196 0.933550
0.179515 0.193131 0.382870 0.492446 155
0.250000 0.274526 1.495506 —2.000000
0.300000 0.332896 1.446206 —0.289432
0.450000 0.512239 —0.675617 1.435794 -21
0.700000 0.870350 —0.443616 0.212976 )
1.000000 1.585394 —0.934459 —0.163540
TABLE 11

A THRESH ROUNDING SCHEME THAT GIVES A RIGOROUSLY VERIFIED APPROXIMATION RATIO OF AT LEAST 0.87414 FOR MAX 2-AND. (THE ACTUAL
RATIO IS PROBABLY ABOUT 0.874202.) THE SCHEME USES THREE PIECEWISE-LINEAR ODD ROUNDING FUNCTIONS f7, f2, f3 DEFINED ON 17 CONTROL
POINTS. A PLOT OF THE FUNCTIONS IS GIVEN ON THE RIGHT.

of variations), or at least provide a satisfactory understand of
the second-order affect these functions have.

Theoretical understanding of the hardest configurations.
Likewise, we do not understand the structure of the hardest
distributions of configurations for MAX DI-CUT and MAX 2-AND.
In the full version, we demonstrate that some rather complex
distributions appear to give increasingly better upper bounds
for apr.cur and aanp. Would it be possible to theoretically
describe what the hardest configurations are? It is not clear
whether the hardest distribution should even have finite sup-
port. Properly describing the hardest distributions would also
resolve Austrin’s positivity conjecture.
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