
Separating MAX 2-AND, MAX DI-CUT and MAX CUT

Joshua Brakensiek
Computer Science Department

Stanford University

Stanford, CA, USA

jbrakens@cs.stanford.edu

Neng Huang
Department of Computer Science

University of Chicago

Chicago, IL, USA

nenghuang@uchicago.edu

Aaron Potechin
Department of Computer Science

University of Chicago

Chicago, IL, USA

potechin@uchicago.edu

Uri Zwick
Blavatnik School of Computer Science

Tel Aviv University

Tel Aviv, Israel

zwick@tau.ac.il

AbstractÐAssuming the Unique Games Conjecture (UGC), the
best approximation ratio that can be obtained in polynomial
time for the MAX CUT problem is αCUT ≃ 0.87856, obtained by
the celebrated SDP-based approximation algorithm of Goemans
and Williamson. Currently, the best approximation algorithm for
MAX DI-CUT, i.e., the MAX CUT problem in directed graphs, achieves
a ratio of about 0.87401, leaving open the question whether
MAX DI-CUT can be approximated as well as MAX CUT. We obtain
a slightly improved algorithm for MAX DI-CUT and a new UGC-
hardness result for it, showing that 0.87446 ≤ αDI-CUT ≤ 0.87461,
where αDI-CUT is the best approximation ratio that can be
obtained in polynomial time for MAX DI-CUT under UGC. The new
upper bound separates MAX DI-CUT from MAX CUT, i.e., shows that
MAX DI-CUT cannot be approximated as well as MAX CUT, resolving
a question raised by Feige and Goemans.

A natural generalization of MAX DI-CUT is the MAX 2-AND prob-
lem in which each constraint is of the form z1 ∧ z2, where z1

and z2 are literals, i.e., variables or their negations. (In MAX DI-CUT

each constraint is of the form x̄1 ∧ x2, where x1 and x2

are variables.) Austrin separated MAX 2-AND from MAX CUT by
showing that α2AND ≤ 0.87435 and conjectured that MAX 2-AND

and MAX DI-CUT have the same approximation ratio. Our new
lower bound on MAX DI-CUT refutes this conjecture, completing
the separation of the three problems MAX 2-AND, MAX DI-CUT and
MAX CUT. We also obtain a new lower bound for MAX 2-AND

showing that 0.87414 ≤ α2AND ≤ 0.87435.

Our upper bound on MAX DI-CUT is achieved via a
simple analytical proof. The new lower bounds on
MAX DI-CUT and MAX 2-AND, i.e., the new approximation
algorithms, use experimentally-discovered distributions
of rounding functions which are then verified via
computer-assisted proofs.1

Index TermsÐapproximation algorithms, hardness of approx-
imation, constraint satisfaction problem, maximum cut, semidef-
inite programming, computer-assisted proof

The first author is support in part by an NSF Graduate Research Fellowship
and a Microsoft Research PhD Fellowship. The second and third authors are
supported in part by NSF grant CCF:2008920. We thank anonymous referees
for various helpful comments.

1Code for the project: https://github.com/jbrakensiek/max-dicut

I. INTRODUCTION

Goemans and Williamson [1], in their seminal paper, intro-

duced the paradigm of obtaining approximation algorithms

for Boolean Constraint Satisfaction Problems (CSPs) by first

obtaining a semidefinite programming (SDP) relaxation of the

problem and then rounding an optimal solution of the relax-

ation. The first, and perhaps biggest, success of this paradigm

is a simple and elegant αGW-approximation algorithm, where

αGW ≃ 0.87856, for the MAX CUT problem, i.e., the maximum

cut problem in undirected graphs, improving for the first

time over the naive 1
2 -approximation algorithm. Goemans and

Williamson [1] also obtained improved algorithms for the

MAX DI-CUT, MAX 2-SAT and MAX SAT problems.

Feige and Goemans [2], Matuura and Matsui [3] and Lewin,

Livnat and Zwick [4] obtained improved approximation al-

gorithms for the MAX 2-SAT and MAX DI-CUT problems. The

best approximation ratios, obtained by Lewin, Livnat and

Zwick [4], are 0.940 for MAX 2-SAT and 0.874 for MAX DI-CUT.

Karloff and Zwick [5] obtained an optimal (see below) 7
8 -

approximation algorithm for MAX {1,2,3}-SAT and Zwick [6]

obtained approximation algorithms, some of them optimal, for

many other MAX 3-CSP problems, i.e., maximization versions of

Boolean CSP problems in which each constraint is on at most

three variables. Andersson and Engebretsen [7], Zwick [8],

Halperin and Zwick [9], Asano and Williamson [10], Zhang,

Ye and Han [11], and Avidor, Berkovitch and Zwick [12]

obtained approximation algorithms for various versions of the

MAX SAT and MAX NAE-SAT problems. It is a major open problem

whether there is a 7
8 -approximation algorithm for the MAX

SAT problem. Brakensiek, Huang, Potechin and Zwick [13]

showed that there is no 7
8 -approximation algorithm for the

MAX NAE-SAT problem, assuming UGC. Abbasi-Zadeh et al

[14] and Eldan and Naor [15] used ªsticky Brownian motionº

to obtain optimal, or close to optimal, algorithms for MAX CUT

and related problems. For a survey of these and related results,

see Makarychev and Makarychev [16].

Håstad [17], in a major breakthrough, extending the cele-

brated PCP theorem of Arora et al. [18], showed, among other

things, that, for any ε > 0, it is NP-hard to obtain a (78 + ε)-
approximation of MAX 3-SAT and a (12 + ε)-approximation of

MAX 3-LIN, showing that the trivial algorithms for these two

problems that just choose a random assignment are tight.

Trevisan, Sorkin, Sudan and Williamson [19] showed, using

gadget reductions, that it is NP-hard to obtain a (1617 + ε)-
approximation of MAX CUT and (1213 + ε)-approximation of

MAX DI-CUT.

Khot [20] introduced the Unique Games Conjecture (UGC).

Khot, Kindler, Mossel and O’Donnell [21] then showed that

UGC and the Majority is Stablest Conjecture (later proved by

Mossel, O’Donnell and Oleszkiewicz [22]) implies that, for

any ε > 0, obtaining an (αGW+ε)-approximation for MAX CUT

is NP-hard, showing, quite remarkably, that the algorithm of

Goemans and Williamson [1] is optimal, i.e., αCUT = αGW,

assuming UGC. Austrin [23] then showed that the MAX 2-

SAT algorithm of Lewin, Livnat and Zwick [4] is essentially

optimal, again modulo UGC. Austrin [24] obtained some

upper bounds on the approximation ratio that can be achieved

for MAX 2-AND in polynomial time. However, they do not

match the approximation ratio obtained by the MAX DI-CUT

algorithm of Lewin, Livnat and Zwick [4] which is in fact

an approximation algorithm for MAX 2-AND.

Raghavendra [25], [26], in another breakthrough, showed

that under UGC, the best approximation ratio that can be

obtained for any MAX CSP problem, over a finite domain and

with a finite number of constraint types, can be obtained using

a canonical SDP relaxation of the problem and the rounding

of an optimal solution of this relaxation using an appropriate

rounding procedure taken from a specified family of rounding

procedures. The approximation ratio obtained is then exactly

the integrality gap of the relaxation. Approximating the in-

tegrality gap up to ε takes doubly exponential time in 1/ε,

and a close to optimal algorithm can be obtained by trying

discretized versions of all rounding procedures, up to some

resolution. (See Raghavendra and Steurer [27] for more on

finding almost optimal rounding schemes.)

It might seem that these results resolve all problems related

to the approximation of MAX CSP problems. Unfortunately,

this is not the case. These results do give valuable guidance

to the designers of approximation algorithms. In particular,

it is clear which semidefinite programming relaxation should

be used and the search for an optimal, or almost optimal,

rounding procedure can be restricted to the family of rounding

procedures specified by Raghavendra [25]. However, these

results give almost no concrete information on the integrality

gap of the relaxation, which is also the best approximation

ratio that can be obtained. Also, no practical information is

given on how to obtain optimal, or almost optimal rounding

procedures, other than the fact that they belong to a huge

class of rounding procedures, as it is wildly impractical to

implement and run a brute force algorithm whose running time

is doubly exponential in 1/ε.

In particular, Raghavendra’s results are unable2 to answer

the following questions: Is there a 7
8 -approximation algorithm

for MAX SAT, with clauses of all sizes allowed? Can MAX DI-CUT

be approximated as well as MAX CUT? Can MAX 2-AND be

approximated as well as MAX DI-CUT? In this paper we study

the latter two questions and answer them in the negative,

assuming UGC.

A. Our results

Our main result is the following theorem.

Theorem I.1 (Main). Assuming UGC, α2AND < αDI-CUT <
αCUT.

To separate MAX 2-AND, MAX DI-CUT and MAX CUT, we obtain

an improved upper bound and an improved lower bound (i.e.,

an approximation algorithms) for MAX DI-CUT. Our improved

upper bound is:

Theorem I.2. Assuming UGC, αDI-CUT ≤ 0.87461.

To obtain the new upper bound, we construct a distribution

over MAX DI-CUT configurations that is hard for any rounding

procedure from the family T HRESH− defined by Lewin,

Livnat and Zwick [4]. Such hard distributions can then be

converted into dictatorship tests and then Unique Games

hardness by small modifications to the technique used by

Austrin [24] for distributions over MAX 2-AND configurations.

The reason why MAX 2-AND and MAX DI-CUT have a lower

approximation ratio than MAX CUT is as follows. By symmetry,

for instances of MAX CUT, there is always an SDP solution

where none of the variables have any bias towards −1 or 1.

Thus, for MAX CUT, the rounding scheme only needs to use

the pairwise biases between variables and it turns out that

hyperplane rounding is the optimal way to do this. However,

for MAX 2-AND and MAX DI-CUT, the SDP solution may have

variables with nonzero biases. In this case, there are some

configurations where it is better to focus more on the biases

while for other configurations it is better to focus more on the

pairwise biases. Mixing these configurations gives a harder

distribution of configurations.

That said, it is more difficult to obtain hard configurations

for MAX DI-CUT than for MAX 2-AND, since in MAX 2-AND the

functions used in the rounding scheme can be assumed, with-

out loss of generality, to be odd. (A function f : [−1, 1]→ R

is odd if and only if f(−x) = −f(x) for every x ∈ [−1, 1].)
Using an odd rounding function ensures that a variable and

its negation are assigned opposite truth values. In MAX DI-CUT

there is no such restriction as, in a sense, there are no negated

variables. The possibility of using non-odd rounding functions

gives the rounding scheme more power. (The improved round-

ing scheme that we obtain for MAX DI-CUT uses a distribution of

2In particular, if the answer to any of these questions is ªyesº the
Raghavendra-Steurer algorithm cannot certify these in finite time, and if the
answer is ªnoº the ε needed for separation is so small that the algorithm
would need to run over a galactic time scale.

rounding functions some of which are not odd. This is exactly

what enables the separation of MAX DI-CUT from MAX 2-AND, as

we discuss below.) We overcome this difficulty using a simple,

symmetric construction for which the best rounding scheme

is odd. Another interesting feature of our hard construction

is that it contains a configuration for which all the triangle

inequalities, powerful constraints of the SDP relaxation, are

not tight. This is in contrast to previous work on MAX 2-SAT [23]

and MAX 2-AND [24], where hardness results are derived only

from configurations in which one of the triangle inequalities

is tight.

Our construction yields an upper bound of αDI-CUT ≤
0.87461, which together with αCUT ≥ 0.87856 exhibits a clear

separation between MAX DI-CUT and MAX CUT. (Although the

separation is clear, it is still perplexing that the approximation

ratios of MAX CUT and MAX DI-CUT are so close, and yet not

equal.) We believe that our upper bound can be slightly

improved using a sequence of more and more complicated

constructions that yield slightly better and better upper bounds.

In addition to our improved upper bound for MAX DI-CUT,

we also obtain two new lower bounds for MAX DI-CUT and

MAX 2-AND.

Theorem I.3. αDI-CUT ≥ 0.87446. (In other words, there is

an approximation algorithm for MAX DI-CUT with an approxi-

mation ratio of at least 0.87446.)

Theorem I.4. α2AND ≥ 0.87414. (In other words, there is an

approximation algorithm for MAX 2-AND with an approximation

ratio of at least 0.87414.)

The new lower bounds improve on the previously best, and

non-rigorous, bound of 0.87401 obtained by Lewin, Livnat

and Zwick [4] for both MAX DI-CUT and MAX 2-AND. Despite

the relatively small improvements, the improved approxima-

tion algorithms are interesting for at least two reasons. The

first is that the new approximation algorithm for MAX DI-CUT

separates MAX DI-CUT from MAX 2-AND, refuting a conjecture

of Austrin [24]. The second is that the new algorithms show

that taking a single rounding scheme from T HRESH−, as

done by Lewin, Livnat and Zwick [4] and as shown by

Austrin [23], [24] to be sufficient for obtaining an optimal

approximation algorithm for MAX 2-SAT, is not sufficient for ob-

taining optimal approximation algorithms for MAX DI-CUT and

MAX 2-AND. Using insights gained from the upper bounds, we

design an improved approximation algorithm for MAX DI-CUT

that uses distributions of T HRESH− rounding procedures,

i.e., rounding procedures belonging to the more general family

T HRESH also defined in Lewin, Livnat and Zwick [4].

Using a computer search, we find a new rounding procedure

from this family3 which shows that αDI-CUT ≥ 0.87446. Our

rigorous proof of this inequality is computer assisted.

In [4], the authors discovered their T HRESH− procedures

for MAX DI-CUT and MAX 2-AND using non-convex optimization.

3Technically, we add in a tiny amount of independent rounding for
verification purposes but we believe this can be removed.

More precisely, they used a local descent procedure from

random starting points to tune a single rounding function that

performs well for all possible configurations simultaneously.

However, this approach becomes impractical for finding an

optimal probability distribution of T HRESH− functions (i.e.,

a ªT HRESH schemeº). One potential reason why this would

not work is that there would be a significant local optimum

where all the functions in the distribution identical to the one

in Lewin, Livnat and Zwick [4].

Instead, we cast the design of the T HRESH scheme for

MAX DI-CUT and MAX 2-AND as infinite zero-sum games played

by two players. The first player, Alice, selects a T HRESH−

function and the second player, Bob, selects a configuration

of SDP vectors to round. (This configuration may or may not

correspond to an optimal solution of an SDP relaxation of

an actual instance.) Alice’s value is then the approximation

ratio achieved by her T HRESH− function on the SDP value

of the configuration. Bob’s value is the negative of Alice’s

value. One can then show, that αDI-CUT (or α2AND) is precisely

the value of this game, assuming UGC and the positivity

conjecture in the work of Austrin [24]. Computationally, we

discretize this game and use a min-max optimization procedure

to estimate the value of this game and find an optimal,

or almost optimal, strategy for Alice. This proceeds in a

series of phases: Bob challenges Alice with a distribution of

instances, and Alice computes a nearly-optimal response using

methods similar to that of Lewin, Livnat and Zwick [4]. Then,

with Alice’s functions, Bob computes a new distribution of

instances which Alice does the worst one. This latter step

is done by solving a suitable LP (the dual variables tell us

Alice’s optimal T HRESH scheme). As the ªrawº T HRESH
scheme produced by this procedure can be somewhat noisy, we

subsequently manually simplified the T HRESH distribution.

As mentioned, the proofs of the bounds αDI-CUT ≥ 0.87446
and α2AND ≥ 0.87414 are computer-assisted, using the

technique of interval arithmetic. This technique has been

previously used in the study of approximation algorithms. For

example, Zwick [28] used it to certify the 7
8 -approximation

ratio for MAX {1,2,3}-SAT claimed by Karloff and Zwick [5].

The use of interval arithmetic in our setting is much more

challenging, however, as the rounding procedures used for

MAX DI-CUT are much more complicated than the simple ran-

dom hyperplane rounding used for MAX {1,2,3}-SAT. In particu-

lar, we need to use rigorous numerical integration to compute

two-dimensional normal probabilities. A computer-assisted

verification is probably necessary in our setting since fairly

complicated distributions seem to be needed for obtaining

good approximation ratios, and it is hard to imagine that such

distributions can be analyzed manually.

Since Austrin [24] showed that α2AND < 0.87435, assuming

UGC, our new MAX DI-CUT approximation algorithm separates

MAX 2-AND and MAX DI-CUT. This refutes Austrin’s conjecture

that MAX 2-AND and MAX DI-CUT have the same approximation

ratios. It also gives an interesting, non-trivial, example where a

positive CSP (i.e., CSP that does not allow negated variables)

is strictly easier to approximate than the CSP with the same

predicate when negated variables are allowed.

We believe that the fact that rounding procedures from

T HRESH− do not yield optimal approximation algorithms

for MAX DI-CUT is interesting in its own right. We conjec-

ture that distributions over such procedures, i.e., rounding

procedures from T HRESH are enough to obtain optimal

algorithms for MAX DI-CUT and MAX 2-AND. (A continuous

distribution is probably needed to get the optimal algorithms.)

We note that both T HRESH− and T HRESH are tiny

subfamilies of the families shown by Raghavendra [25] to

be enough for obtaining optimal approximation algorithms

for general MAX CSP problems. In particular, T HRESH−

and T HRESH use only one Gaussian random vector while,

in general, the families of Raghavendra [25] may need an

unbounded number of such random vectors to obtain optimal

or close-to-optimal results.

B. Organization of the paper

The rest of the paper is organized as follows. In Section II we

introduce the MAX CUT, MAX DI-CUT and MAX 2-AND problems

and their SDP relaxations, we state the Unique Games Con-

jecture, and we introduce the T HRESH− and T HRESH
families of rounding procedures used throughout the paper. In

Section III we derive our new upper bound on MAX DI-CUT

which separates MAX DI-CUT from MAX CUT. The proof of

this upper bound is completely analytical. In Section IV we

describe the computation techniques used to discover our

improved MAX DI-CUT algorithm and the computation tech-

niques used to rigorously verify the approximation ratio that

it achieves. In Section V we obtain corresponding results for

the MAX 2-AND problem. We end in Section VI with some

concluding remarks and open problems.

II. PRELIMINARIES

A. MAX CSP and canonical SDP relaxations

For a Boolean variable, we associate −1 with true and 1 with

false. A Boolean predicate on k variables is a function P :
{−1, 1}k → {0, 1}. If P outputs 1, then we say P is satisfied.

Definition II.1 (MAX CSP(P)). Let P be a Boolean predicate

on k variables. An instance of MAX CSP(P) is defined by a

set of Boolean variables V = {x1, x2, . . . , xn} and a set of

constraints C = {C1, C2, . . . , Cm}, where each constraint Ci

is of the form P (bi,1xji,1 , bi,2xji,2 , . . . , bi,kxji,k) for some

ji,1, . . . , ji,k ∈ [n] and bi,1, bi,2, . . . bi,k ∈ {−1, 1}, and a

weight function w : C → [0, 1] satisfying
∑m

i=1 w(Ci) = 1.

The goal is to find an assignment to the variables that

maximizes
∑m

i=1 w(i)P (bi,1xji,1 , bi,2xji,2 , . . . , bi,kxji,k), i.e.,

the sum of the weights of satisfied constraints.

Definition II.2 (MAX CSP
+(P)). MAX CSP

+(P) has the same

definition as MAX CSP(P), except that now each constraint Ci

is of the form P (xji,1 , xji,2 , . . . , xji,k). In other words, negated

variables are not allowed.

Since the weight function is non-negative and sums up

to 1, we can think of it as a probability distribution over

the constraints. Note that we only defined CSPs with a single

Boolean predicate, while in general there can be more than

one predicate and they may not be Boolean. We refer to a

CSP with a k-ary predicate as a k-CSP.

We are now ready to define the three MAX 2-CSP problems

that we separate.

Definition II.3. Let CUT : {−1, 1}2 → {0, 1} be the predicate

which is satisfied if and only if the two inputs are not equal. Let

DI-CUT : {−1, 1}2 → {0, 1} be the predicate which is satisfied

if and only if x = 1 and y = −1. Then MAX CUT is the problem

MAX CSP
+(CUT), MAX DI-CUT is the problem MAX CSP

+(DI-CUT)
and MAX 2-AND is the problem MAX CSP(DI-CUT).

In graph-theoretic language, we can think of each variable

in a MAX DI-CUT instance as a vertex, and each constraint as a

weighted direct edge between two vertices. An assignment of

+1 and −1 to the vertices defines a directed cut in the graph.

We are asked to assign +1 and −1 to the vertices so that the

sum of the weights of edges that cross the cut, i.e., go from

+1 to −1, is maximized.

We can also define AND : {−1, 1}2 → {0, 1} such

that AND(x, y) = 1 if and only if x = y = −1. Note

that then DI-CUT(x, y) = AND(x̄, y), and MAX 2-AND is also

MAX CSP(AND), hence its name.

The following Fourier expansion of DI-CUT is heavily used

throughout the paper.

Proposition II.4. DI-CUT(x, y) = 1+x−y−xy
4 .

This proposition can be used to extend the domain of DI-CUT

to real inputs.

Any MAX CSP(P) has a canonical semi-definite program-

ming relaxation. The canonical SDP relaxation for MAX DI-CUT,

for example, is:

Maximize
∑

C=DI-CUT(xi,xj)∈C

wC ·
1 + v0 · vi − v0 · vj − vi · vj

4

subject to

∀i ∈ {0, 1, 2, . . . , n}, vi · vi = 1,

∀C = DI-CUT(xi, xj) ∈ C,
(v0 − vi) · (v0 − vj) ≥ 0,
(v0 + vi) · (v0 − vj) ≥ 0,
(v0 − vi) · (v0 + vj) ≥ 0,
(v0 + vi) · (v0 + vj) ≥ 0.

The canonical SDP relaxation is obtained as follows. There is

a unit vector vi ∈ R
n+1 for each variable xi, and a special

unit vector v0 corresponding to false. Each linear term xi

in the Fourier expansion of P is replaced by v0 · vi, and

each quadratic term xixj is replaced by vi ·vj . The so-called

triangle inequalities are then added.

Note that this is the special case of Raghavendra’s basic

SDP in the setting of Boolean 2-CSPs, and the triangle in-

equalties ensure that there is a local distribution of assignments

for each constraint.

B. Unique Games Conjecture

The Unique Games Conjecture (UGC), introduced by

Khot [20], plays a crucial role in the study of hardness of

approximation of CSPs. One version of the conjecture is as

follows.

Definition II.5 (Unique Games). In a unique games instance

I = (G,L,Π), we are given a weighted graph G =
(V (G), E(G), w), a set of labels [L] = {1, 2, . . . , L} and a set

of permutations Π = {πv
e : [L] → [L] | e = {v, u} ∈ E(G)}

such that for every e = {u, v} ∈ E(G), πv
e = (πu

e)
−1. An

assignment to this instance is a function A : V (G)→ [L]. We

say that A satisfies an edge e = {u, v} if πu
e (A(u)) = A(v).

The value of an assignment A is the weight of satisfied edges,

i.e., Val(I, A) =
∑

e∈E(G):A satisfies e w(e), and the value of

the instance Val(I) is defined to be the value of the best

assignment, i.e., Val(I) = maxA Val(I, A).

Conjecture (Unique Games Conjecture). For any η, γ > 0,

there exists a sufficiently large L such that the problem of

determining whether a given unique games instance I with L
labels has Val(I) ≥ 1− η or Val(I) ≤ γ is NP-hard.

We say that a problem is UG-hard, if it is NP-hard assuming

the UGC. Raghavendra [25] showed that any integrality gap

instance of the canonical SDP relaxation can be turned into a

UG-hardness result.

C. Configurations of biases and pairwise biases

As it turns out, an actual integrality gap instance is not

required to derive UG-hardness results. Instead, it is sufficient

to consider configurations of SDP solution vectors that appear

in the same constraint. For 2-CSPs, each such configuration is

represented by a triplet θ = (bi, bj , bij), where bi = v0·vi, and

bj = v0 · vj , bij = vi · vj . bi and bj are called biases and bij
is called a pairwise bias. A valid configuration is required

to satisfy the triangle inequalities described in the previous

section. We will use Θ for a set of valid configurations, and Θ̃
for such a set endowed with a probability distribution.

Definition II.6 (Completeness). Given a configuration θ =
(bi, bj , bij) for MAX DI-CUT, its completeness is defined as

Comp(θ) =
1+bi−bj−bij

4 . For a distribution of configu-

rations Θ̃, its completeness is defined as Comp(Θ̃) =
Eθ∼Θ̃[Comp(θ)].

Note that if Θ̃ actually comes from an SDP solution, then

Comp(Θ̃) is simply the SDP value of this solution.

Definition II.7 (Relative pairwise bias). Given a configuration

θ = (bi, bj , bij), the relative pairwise bias is defined as ρ(θ) =
bij−bibj√

(1−b2
i
)(1−b2

j
)
, if (1− b2i)(1− b2j) ̸= 0, and 0 otherwise.

Geometrically, ρ(θ) is the inner product between vi and vj

after removing their components parallel to v0 and renormal-

izing.

Definition II.8 (Positive configurations [24]). Given a

Boolean predicate P (x1, x2) on two variables with Fourier

expansion
P̂∅+P̂1x1+P̂2x2+P̂1,2x1x2

4 , a configuration θ =
(bi, bj , bij) for MAX CSP(P) (or MAX CSP

+(P)) is called posi-

tive if P̂1,2 · ρ(θ) ≥ 0.

If P = DI-CUT, then the quadratic coefficient in the Fourier

expansion is −1/4, which implies that a configuration is

positive if and only if its relative pairwise bias is not positive.

Austrin [24] presented a general mechanism to deduce UG-

hardness results for MAX CSP(P) from hard distributions of

positive configurations. With very slight modifications, the

same mechanism can also be used for MAX CSP
+(P). Austrin

also conjectured that positive configurations are the hardest to

round. This conjecture is still open. Our results do not rely on

this conjecture.

In a MAX DI-CUT instance, if we flip the direction of every

edge in the graph, then an optimal solution to this new instance

can be obtained by flipping all the signs in an optimal solution

to the original instance. For configurations, this symmetry

corresponds to swapping the two biases and then changing

the signs.

Definition II.9 (Flipping a configuration). Let θ = (bi, bj , bij)
be a DI-CUT configuration. We define its flip to be flip(θ) =
(−bj ,−bi, bij).

The following proposition can be easily verified.

Proposition II.10. Let θ = (bi, bj , bij) be a DI-CUT configu-

ration. We have

1) ρ(θ) = ρ(flip(θ)).
2) Comp(θ) = Comp(flip(θ)).

D. The T HRESH and T HRESH− families of rounding

functions

T HRESH and T HRESH−, first introduced in Lewin,

Livnat and Zwick [4], are small but powerful families

of rounding functions for SDP relaxations of CSPs. In a

T HRESH− rounding scheme, a continuous threshold func-

tion f : [−1, 1] → R is specified. The algorithm chooses a

random Gaussian vector r ∈ R
n+1, and sets each variable xi

to true (−1) if and only if r · v⊥
i ≥ f(v0 · vi), where

v
⊥
i =

vi − (vi · v0)v0
√

1− (vi · v0)2

is the component of vi orthogonal to v0 renormalized to a unit

vector. (If vi = ±v0, we can take v
⊥
i to be any unit vector

that is orthogonal to every other vector in the SDP solution.)

Since v
⊥
i is a unit vector, r ·v⊥

i is a standard normal random

variable. Furthermore, for any i, j ∈ [n], r ·v⊥
i and r ·v⊥

j are

jointly Gaussian with correlation v
⊥
i · v⊥

j .

Let Φ, φ be the c.d.f. and p.d.f. of the standard normal

distribution, respectively. For t1, t2 ∈ R, let Φρ(t1, t2) :=
Pr[X ≤ t1∧Y ≤ t2], where X and Y are two standard normal

random variables that are jointly Gaussian with E[XY] = ρ.

Then for a T HRESH− rounding scheme with threshold

function f , a variable xi is rounded to false with probability

Φ(f(bi)). For a DI-CUT configuration θ = (bi, bj , bij), the

probability that it is satisfied by T HRESH− with f , which

happens when xi is set to false and xj is set to true, is equal

to

Pr
[

r · v⊥
i ≤ f(bi) and r · v⊥

j ≥ f(bj)
]

= Pr
[

r · v⊥
i ≤ f(bi) and − r · v⊥

j ≤ −f(bj)
]

= Φ−ρ(θ)(f(bi),−f(bj)) .

This naturally leads to the following definition.

Definition II.11 (Soundness). Let f : [−1, 1] → R

be a continuous threshold function and θ = (bi, bj , bij)
a configuration for MAX DI-CUT. We define Sound(θ, f) =
Φ−ρ(θ)(f(bi),−f(bj)). For a distribution of configurations Θ̃,

its soundness Sound(Θ̃, f) is defined as Eθ∼Θ̃[Sound(θ, f)].

As in the case for configurations, we can also flip a

T HRESH− threshold function.

Definition II.12. Let f : [−1, 1]→ R be a continuous thresh-

old function. We define flip(f) as the function x 7→ −f(−x).
Proposition II.13. Let f : [−1, 1] → R be a continuous

threshold function and θ = (bi, bj , bij) a configuration. Then

Sound(θ, f) = Sound(flip(θ), flip(f)) .

Proof. By Proposition II.10, we have that ρ(θ) = ρ(flip(θ)) =
ρ. By definition of soundness,

Sound(θ, f) = Φ−ρ(f(bi),−f(bj))
= Φ−ρ(− flip(f)(−bi), flip(f)(−bj))
= Φ−ρ(flip(f)(−bj),− flip(f)(−bi))
= Sound(flip(θ), flip(f)) .

A rounding scheme from T HRESH can be thought of as

a distribution over T HRESH− rounding schemes. Formally

speaking, a T HRESH rounding scheme is specified by a

continuous function T : R × [−1, 1] → R, and a variable xi

is set to true if and only if r · v⊥
i ≥ T (v0 · r,v0 · vi).

This allows for a continuous distribution over T HRESH−

rounding schemes.

The following partial derivatives are helpful for analyzing

T HRESH and T HRESH− rounding schemes.

Proposition II.14 (Partial derivatives of Φρ(t1, t2)).

∂Φρ(t1, t2)

∂ρ
=

1

2π
√

1− ρ2
exp

(

− t21 − 2ρt1t2 + t22
2(1− ρ2)

)

,

∂Φρ(t1, t2)

∂t1
= φ(t1)Φ

(

t2 − ρt1
√

1− ρ2

)

,

∂Φρ(t1, t2)

∂t2
= φ(t2)Φ

(

t1 − ρt2
√

1− ρ2

)

.

A derivation of the formula given for
∂Φρ(t1,t2)

∂ρ
can be

found in Drezner and Wesolowsky [29]. The formulas for
∂Φρ(t1,t2)

∂t1
and

∂Φρ(t1,t2)
∂t2

follow easily from the definition of

Φρ(t1, t2).

III. UPPER BOUNDS FOR MAX DI-CUT

A. Separating MAX DI-CUT from MAX CUT

In this section, we prove the following theorem, which sepa-

rates MAX DI-CUT from MAX CUT.

Theorem III.1. Assuming the Unique Games Conjecture, it

is NP-hard to approximate MAX DI-CUT within a factor of

0.87461.

To prove Theorem III.1 we construct a distribution of posi-

tive configurations Θ̃, compute its completeness, and show that

no T HRESH− rounding scheme can achieve a performance

ratio of 0.87461 on it. The UG-hardness result then follows

from a slight generalization of a reduction of Austrin [24]. 4

(We describe this reduction in the full version.)

The distribution Θ̃ used to obtain the upper bound is

extremely simple. Let p1, p2, b, c be some parameters to be

chosen later. We will choose them so that b, p1, p2 ∈ (0, 1),
c ∈ (−1,−b2), and 2p1 + p2 = 1. Consider the following

distribution of configurations Θ̃ = {θ1, θ2, θ3}:

θ1 = (−b,−b,−1 + 2b) with probability p1
θ2 = (b,−b, c) with probability p2
θ3 = (b, b,−1 + 2b) with probability p1

Note that in the θ1 and θ3 one of the triangle inequalities

is tight, while in θ2 none of the triangle inequalities are tight,

as was mentioned earlier. Also, this distribution is symmetric

with respect to flip, since flip(θ1) = θ3 and flip(θ2) = θ2.

We first verify that Θ̃ satisfies the positivity condition.

Proposition III.2. Θ̃ is a distribution of positive configura-

tions.

Proof. In θ1 and θ3, the relative pairwise bias is equal to ρ1 =
−1+2b−b2

1−b2
= − 1−b

1+b
< 0. In θ2, the relative pairwise bias is

equal to ρ2 = c+b2

1−b2
< 0 since we choose c < −b2.

4Since the distribution is fixed, the optimal T HRESH− rounding scheme
for it is also the best T HRESH rounding scheme.

The completeness of this instance can be easily computed.

Proposition III.3.

Comp(Θ̃) = p1 · (1− b) + p2 ·
1 + 2b− c

4
.

Proof. We have

Comp(Θ̃)

= p1 ·
1 + (−b)− (−b)− (−1 + 2b)

4

+ p2 ·
1 + b− (−b)− c

4
+ p1 ·

1 + b− b− (−1 + 2b)

4

= p1 ·
2− 2b

4
+ p2 ·

1 + 2b− c

4
+ p1 ·

2− 2b

4

= p1 · (1− b) + p2 ·
1 + 2b− c

4
.

We now give an upper bound on the performance of any

T HRESH− rounding scheme on this distribution. Let t1 =
f(−b) and t2 = f(b) be the thresholds for −b, b respectively.

Let s(t1, t2) be the soundness of this rounding scheme on Θ̃.

By definition of T HRESH−, we have

s(t1, t2) = p1 · Φ−ρ1
(t1,−t1) + p2 · Φ−ρ2

(t2,−t1)
+ p1 · Φ−ρ1

(t2,−t2) ,

where ρ1, ρ2 < 0 are computed in Proposition III.2. We first

look at the case where −∞ < t1, t2 < ∞. The case where

t1 = ±∞ or t2 = ±∞, which corresponds to always setting

one or both variables to 1 or −1, can be dealt with separately

via a simple case analysis.

As we discussed in the introduction, a T HRESH− round-

ing scheme for MAX DI-CUT is not necessarily odd, but as the

following lemma shows, the simple and symmetric structure

of our construction ensures that any finite critical point of s
is necessarily symmetric around the origin.

Lemma III.4. Let x, y ∈ R. If (x, y) is a critical point of

s(t1, t2), then x+ y = 0 with y ≥ 0 and x ≤ 0.

Proof. Recall that by Proposition II.14

∂

∂t1
Φρ(t1, t2) = φ(t1) · Φ

(

t2 − ρt1
√

1− ρ2

)

.

The partial derivatives of s(t1, t2) are

∂s

∂t1
= p1

(

φ(t1)− 2φ(t1) · Φ
(
√

1− ρ1
1 + ρ1

t1

))

+ p2

(

−φ(t1) · Φ
(

t2 − ρ2t1
√

1− ρ22

))

,

∂s

∂t2
= p1

(

φ(t2)− 2φ(t2) · Φ
(
√

1− ρ1
1 + ρ1

t2

))

+ p2

(

φ(t2)− φ(t2) · Φ
(

t1 − ρ2t2
√

1− ρ22

))

.

In the above computation, we used Proposition II.14 and

the chain rule. Since (x, y) is a critical point of s and φ is

strictly positive, we have

p1

(

1− 2Φ

(
√

1− ρ1
1 + ρ1

x

))

+ p2

(

−Φ
(

y − ρ2x
√

1− ρ22

))

= 0 ,

p1

(

1− 2Φ

(
√

1− ρ1
1 + ρ1

y

))

+ p2

(

1− Φ

(

x− ρ2y
√

1− ρ22

))

= 0 .

The first equation can be rewritten as

p1

(

1− 2Φ

(
√

1− ρ1
1 + ρ1

x

))

= p2 · Φ
(

y − ρ2x
√

1− ρ22

)

. (1)

Since Φ is a positive function, the right hand side of (1) is

positive and therefore we have 1−2Φ
(√

1−ρ1

1+ρ1
x
)

> 0, which

implies that x < 0.

Since 1 − Φ(t) = Φ(−t), the second equation can be

rewritten as

p1

(

1− 2Φ

(
√

1− ρ1
1 + ρ1

y

))

= −p2·Φ
(

−x+ ρ2y
√

1− ρ22

)

. (2)

By similar logic we can deduce that y > 0. We now show that

we must have |x| = |y|. Assume for the sake of contradiction

that |x| ≠ |y|. We have two cases:

• |x| > |y|. It follows that

p1 ·
∣

∣

∣

∣

1− 2Φ

(
√

1− ρ1
1 + ρ1

x

)∣

∣

∣

∣

= p1 ·
∣

∣

∣

∣

Φ

(

−
√

1− ρ1
1 + ρ1

x

)

− Φ

(
√

1− ρ1
1 + ρ1

x

)
∣

∣

∣

∣

> p1 ·
∣

∣

∣

∣

Φ

(

−
√

1− ρ1
1 + ρ1

y

)

− Φ

(
√

1− ρ1
1 + ρ1

y

)∣

∣

∣

∣

= p1 ·
∣

∣

∣

∣

1− 2Φ

(
√

1− ρ1
1 + ρ1

y

)
∣

∣

∣

∣

.

Note that here we again used 1−Φ(t) = Φ(−t), as well

as the fact that |Φ(t)− Φ(−t)| is an increasing function

in |t|. On the other hand, by (1) and (2) this implies that
∣

∣

∣

∣

∣

p2 · Φ
(

y − ρ2x
√

1− ρ22

)
∣

∣

∣

∣

∣

>

∣

∣

∣

∣

∣

−p2 · Φ
(

−x+ ρ2y
√

1− ρ22

)
∣

∣

∣

∣

∣

.

Since Φ is a positive and monotone function, this implies

that
y − ρ2x
√

1− ρ22
>
−x+ ρ2y
√

1− ρ22
,

Rearranging the terms, we obtain

(1− ρ2)y > (1− ρ2) · (−x) .

But this would imply that |y| > |x|, which contradicts

our assumption.

• |y| > |x|. This can be dealt with in a similar manner.

We conclude that we must have then x + y = 0 with y ≥ 0
and x ≤ 0.

Lemma III.5. If p1 > p2, then s(t1, t2) has a unique critical

point.

Proof. Assume (x, y) is a critical point. In the previous

lemma, we established that x = −y < 0, so we can now

plug y = −x into (1) and get

p1

(

1− 2Φ

(
√

1− ρ1
1 + ρ1

x

))

= p2 Φ

(

−1− ρ2
√

1− ρ22
x

)

= p2 Φ

(

−
√

1 + ρ2
1− ρ2

x

)

.

We need to show the equation above has only one solution

when p1 > p2. To this end, define

g(t) = p1

(

1− 2Φ

(
√

1− ρ1
1 + ρ1

t

))

− p2 Φ

(

−
√

1 + ρ2
1− ρ2

t

)

.

We have g(0) = −p2/2 < 0 and limt→−∞ g(t) = p1 −
p2 > 0, so g(t) = 0 has at least one solution in (−∞, 0)
by Intermediate Value Theorem. To show that the solution is

unique, we compute the derivative of g:

g′(t) = p1

(

−2
√

1− ρ1
1 + ρ1

· φ
(
√

1− ρ1
1 + ρ1

· t
))

+ p2 ·
√

1 + ρ2
1− ρ2

· φ
(

−
√

1 + ρ2
1− ρ2

· t
)

.

By setting g′(t) = 0, we obtain

2p1 ·
√

1− ρ1
1 + ρ1

· φ
(
√

1− ρ1
1 + ρ1

· t
)

= p2 ·
√

1 + ρ2
1− ρ2

· φ
(

−
√

1 + ρ2
1− ρ2

· t
)

.

Plugging in the definition of φ, we get

2p1 ·
√

1− ρ1
1 + ρ1

· 1√
2π

exp

(

−1− ρ1
1 + ρ1

· t
2

2

)

= p2 ·
√

1 + ρ2
1− ρ2

· 1√
2π

exp

(

−1 + ρ2
1− ρ2

· t
2

2

)

,

which is equivalent to

2p1 ·
√

1− ρ1
1 + ρ1

· exp
(

−
(

1− ρ1
1 + ρ1

− 1 + ρ2
1− ρ2

)

· t
2

2

)

= p2 ·
√

1 + ρ2
1− ρ2

.

Since ρ1, ρ2 < 0 and exp is monotone, this equation has

exactly one solution t∗ ∈ (−∞, 0). Furthermore, g′(t) > 0 for

t ∈ (−∞, t∗) and g′(t) < 0 for t ∈ (t∗, 0). It follows that g
has no root in (−∞, t∗) and has a unique root in (t∗, 0).

We now deal with the boundary cases. Since our distribution

is symmetric with respect to flip, it is sufficient to look at the

case where t1 = ±∞.

Lemma III.6. We have s(+∞,+∞) = s(−∞,−∞) =
s(+∞,−∞) = 0, s(−∞,+∞) = p2. For t2 ∈ R, we

have s(−∞, t2) > s(+∞, t2). Furthermore, if p1 > p2,

then s(−∞, t2) is maximized when t2 = t∗ =
√

1+ρ1

1−ρ1
·

Φ−1(p1+p2

2p1
).

Proof. Setting a threshold to +∞ corresponds to always

setting a variable to false, and −∞ corresponds to always

true. When (t1, t2) ∈ {(+∞,+∞), (−∞,−∞), (+∞,−∞)},
none of the configurations are satisfied, giving a soundness

of 0. When (t1, t2) = (−∞,+∞), only the second configu-

ration is satisfied and this gives a soundness of p2. For aim,

we have

s(−∞, t2) = p2 · Φ(t2) + p1 · Φ−ρ1
(t2,−t2)

>p1 · Φ−ρ1
(t2,−t2) = s(+∞, t2) ,

and

∂s(−∞, t2)

∂t2
= φ(t2)

(

p2 + p1

(

1− 2Φ

(
√

1− ρ1
1 + ρ1

t2

)))

.

When p1 > p2, we have
∂s(−∞,t2)

∂t2
> 0 on (−∞, t∗) and

∂s(−∞,t2)
∂t2

< 0 on (t∗,∞).

With Lemma III.5 and Lemma III.6, it becomes very easy to

determine the maximum of s by simply computing the unique

critical point and comparing it with the boundary cases. It

turns out that when b = 0.1757079776, c = −0.6876930116,

p1 = 0.3770580295, the unique critical point of s(t1, t2) is at

(−t0, t0) where t0 ≃ 0.1887837358, which is also a global

maximum whose value is about 0.8746024732. A plot of

s(t1, t2)/Comp(Θ̃) with these parameters can be found in Fig-

ure 1. It follows that with these parameters, any T HRESH−

rounding scheme achieves a ratio of at most 0.87461. This can

then be converted into Unique Games hardness, with the help

of the following theorem.

Theorem III.7 ([24]). Let P be a predicate of arity 2. Let Θ̃
be a distribution of positive configurations for MAX CSP

+(P)
such that Comp(Θ̃) = c. If Sound(Θ̃, f) ≤ s for every f :
[−1, 1]→ R, then it is UG-hard to approximate MAX CSP

+(P)
within a ratio of s/c+ ϵ for any ε > 0.

The above theorem was originally stated in terms of

MAX CSP(P) in [24], but the proof is essentially the same for

MAX CSP
+(P). We include a proof in the appendix of the full

version for completeness.

B. Intuition for the upper bound

While we found this integrality gap instance with a computer

search, we now give some intuition for why this integrality

gap instance works well. Previously, the best algorithm for

2 1 0 1 2
t1

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

t2

Approximation Ratio

0.0000

0.3398

0.5642

0.7123

0.8101

0.8746

0.4 0.2 0.0 0.2 0.4
t1

0.4

0.2

0.0

0.2

0.4

t2

Approximation Ratio

0.5000

0.5794

0.6462

0.7024

0.7496

0.7894

0.8228

0.8509

0.8746

Fig. 1. Contour plots of s(t1, t2)/Comp(Θ̃) with optimal parameters. The black dot represents the global maximum (−t0, t0) where t0 ≃ 0.1887837358.
All plots in this paper are made with Matplotlib [30].

MAX DI-CUT was the LLZ algorithm [4] which works equally

well for MAX 2-AND.

If we restrict our attention to points (b1, b2,−1+ |b1 + b2|)
where the triangle inequality is tight (so the completeness

is as large as possible given b1 and b2), using experimental

simulations, the performance of LLZ in terms of b1 and b2 is

shown in Figure 2.

We observe that there is a strip where b1 + b2 ≈ .35 and

a strip where b1 + b2 ≈ −.35 where the LLZ algorithm does

poorly. In order to reduce the degrees of freedom for rounding

schemes for our instance, it makes sense to choose b2 = b1 =
±b. With this choice, there are only two degrees of freedom,

the threshold for b and the threshold for −b. b ≃ 0.1757079776
puts us right in the middle of the hard strips for LLZ.

Once we have these two points, we can also add points of

the form (b,−b, c) and (−b, b, c′) without additional degrees

of freedom. While we originally thought that points where the

triangle inequality is tight may be optimal, this turned out to

not be the case. Instead, we found experimentally that adding

the point (b,−b, c) with c ≃ −0.6876930116 worked best. The

completeness for (−b, b, c′) is too low, so adding this kind of

point does not help.

C. Possibly improved upper bounds

We believe that slightly improved upper bounds for MAX DI-CUT

can be obtained using more than one pair of biases. In the

full version, we give more complicated distributions that use

up to 4 pairs of biases that seem to indicate that αDI-CUT ≤
0.8745794663 (not verified rigorously). It would probably be

very hard to prove this inequality analytically. It is probably

possible to prove that, say, αDI-CUT ≤ 0.8745795, using

interval arithmetic, but we have not done so yet.

IV. A NEW APPROXIMATION ALGORITHM FOR MAX DI-CUT

In this section, we present the techniques used for proving

Theorem I.3. We first briefly give some intuition for why a

rounding scheme for MAX DI-CUT better than those possible for

MAX 2-AND should exist. Then, after describing the rounding

scheme, we explain how this rounding scheme was discovered

experimentally. Finally, we discuss how we rigorously verify

the approximation guarantees of this rounding scheme using

interval arithmetic.

A. Intuition for the separation between MAX 2-AND and

MAX DI-CUT

We now try to give some intuition for why there is a gap

between MAX 2-AND and MAX DI-CUT. We first observe that

Austrin’s hard distributions of configurations for MAX 2-AND

(see Section 6 of [24]) can be easily beaten for MAX DI-CUT. For

simplicity, we consider Austrin’s simpler two-configuration

distribution which is as follows

1) (0,−b, b− 1) with probability 0.64612
2) (0, b, b− 1) with probability 0.35388

where b = 0.33633. This gives an inapproximability of

0.87451 for MAX 2-AND.

For MAX 2-AND, since variables can be negated, we can

assume without loss of generality that when b = 0, for each

rounding scheme in our distribution the variable has an equal

probability of being rounded to true or false.

For MAX DI-CUT, we only have the symmetry of θ 7→ flip(θ).
When we add this symmetry to the integrality gap instance,

we obtain:

1) (0,−b, b− 1) with probability 0.32306
2) (b, 0, b− 1) with probability 0.32306
3) (0, b, b− 1) with probability 0.17694

0.5 0.0 0.5
b1

0.75

0.50

0.25

0.00

0.25

0.50

0.75

b2
approx ratio for max dicut

0.872

0.876

0.880

0.884

0.888

0.892

0.896

0.900

0.4 0.2 0.0 0.2
b1

0.6

0.5

0.4

0.3

0.2

0.1

0.0

0.1

b2

approx ratio for max dicut

0.8740

0.8745

0.8750

0.8755

0.8760

0.8765

0.8770

0.8775

0.8780

Fig. 2. Contour plots of the performance of the LLZ function [4] for MAX 2-AND and MAX DI-CUT.

4) (−b, 0, b− 1) with probability 0.17694

where b = 0.33633.

The following distribution of rounding functions trivially

satisfies 1
2 of the configurations of this MAX DI-CUT instance.

1) With probability 1
2 , round all variables with bias 0 to 1

and round all variables with bias −b or b to −1.

2) With probability 1
2 , round all variables with bias 0 to

−1 and round all variables with bias −b or b to 1.

Since the completeness of these configurations are all at

most 1
2 , we obtain a ratio which is at least 1.

While this is an extreme example, this shows that making

the variables with zero or low bias more likely to be rounded

to 1 or more likely to be rounded to −1 can help round other

variables more effectively as the behavior of these variables is

more predictable.

This means that configurations where one or more variables

have bias 0 are easier for MAX DI-CUT. Instead, the configura-

tions in our simple distribution (i.e., (b, b,−1 + 2b) where

b ≃ 0.1757079776) are hard configurations and all rounding

schemes in the distribution have essentially the same behavior

at these configurations.

B. The rounding scheme

We now describe a T HRESH scheme, that separates

MAX DI-CUT from MAX 2-AND. As mentioned, a T HRESH
scheme is a distribution over T HRESH− schemes. We

use discrete distributions over a relatively small number of

T HRESH− schemes. For computational convenience, we

choose the T HRESH− functions to be piecewise linear

functions. More precisely, to build a piecewise linear function

f , we pick a finite set S ⊂ [−1, 1] of control points with

−1, 1 ∈ S. For each of these control points s ∈ R, we assign

a real threshold f(s) such that the breakpoints of the graph of

f are at (s, f(s)) for s ∈ S. Then, for every x ∈ (−1, 1) \ S,

we identify x− = max(S∩[−1, x)) and x+ = min(S∩(x, 1]),
and set

f(x) = f(x−) +
x− x−

x+ − x−
(f(x+)− f(x−)) .

We use the same set of control points for every function in

our T HRESH scheme.

For our application to MAX DI-CUT, we picked a set S of 17
control points: 0, ±0.1, ±0.164720, ±0.179515, ±0.25, ±0.3,

±0.45, ±0.7, ±1. The choice of most control points is fairly

arbitrary. It seemed important, however, to choose the four

control points ±0.164720 and ±0.179515 as they seem to be

situated in regions in which very fine control over the values of

the rounding functions is needed. Further small improvements

are probably possible by slightly moving some of the control

points or by adding new control points.

Then, using the algorithm presented in Section IV-C, we

produced a ªrawº T HRESH rounding scheme which is

a probability distribution over 39 piecewise-linear rounding

functions. After a careful ad-hoc analysis, we were able to

simplify the distribution to a ªcleanº T HRESH scheme with

only 7 piecewise rounding functions, which we summarize in

Table I and Figure 3.

It is interesting to note that the function f1, which is used

in about 99.7% of the time, is very close to the single function

used by Lewin, Livnat and Zwick [4]. We do not yet have a

satisfactory explanation of the shape of the other functions.

Some of the values of the functions, especially at control

points ±0.45, ±0.7 and ±1 can be changed slightly without

affecting the performance ratio obtained. We also note that the

last two functions do not seem to contribute much. We have a

scheme with only 5 functions with only a very slightly smaller

performance ratio.

f1 f2 f3 f4 f5 f6 f7
prob 0.996902 0.000956 0.000956 0.000393 0.000393 0.000200 0.000200

−1.000000 −1.601709 −2.000000 −2.000000 −0.034381 −0.430994 −2.000000 2.000000
−0.700000 −0.853605 −2.000000 −2.000000 −0.034381 −0.430994 −2.000000 2.000000
−0.450000 −0.517014 −2.000000 −0.629564 −0.440988 −0.896878 −2.000000 2.000000
−0.300000 −0.333109 −1.520523 1.711824 −1.406591 1.643936 −2.070000 1.970000
−0.250000 −0.274589 −0.687582 2.019266 −0.622399 −0.127984 −1.629055 2.070000
−0.179515 −0.192926 −0.195474 −0.229007 −0.268471 −0.339566 −0.544957 −0.103307
−0.164720 −0.175942 −0.381789 −0.649998 −0.116530 −0.073069 −0.361234 −0.575047
−0.100000 −0.105428 −0.026636 −1.175439 0.066139 −0.123693 2.070000 −1.351740
0.000000 0.000000 2.046025 −2.046025 1.728858 −1.728858 2.050000 −2.050000
0.100000 0.105428 1.175439 0.026636 0.123693 −0.066139 1.351740 −2.070000
0.164720 0.175942 0.649998 0.381789 0.073069 0.116530 0.575047 0.361234
0.179515 0.192926 0.229007 0.195474 0.339566 0.268471 0.103307 0.544957
0.250000 0.274589 −2.019266 0.687582 0.127984 0.622399 −2.070000 1.629055
0.300000 0.333109 −1.711824 1.520523 −1.643936 1.406591 −1.970000 2.070000
0.450000 0.517014 0.629564 2.000000 0.896878 0.440988 −2.000000 2.000000
0.700000 0.853605 2.000000 2.000000 0.430994 0.034381 −2.000000 2.000000
1.000000 1.601709 2.000000 2.000000 0.430994 0.034381 −2.000000 2.000000

TABLE I
A T HRESH ROUNDING SCHEME THAT GIVES A RIGOROUSLY VERIFIED APPROXIMATION RATIO OF AT LEAST 0.874473 FOR MAX DI-CUT. (THE ACTUAL

RATIO IS PROBABLY ABOUT 0.874502.) THE SCHEME USES 7 PIECEWISE-LINEAR ROUNDING FUNCTIONS f1, f2, . . . , f7 DEFINED ON 17 CONTROL

POINTS. THE FUNCTION f1 IS ODD AND IS VERY CLOSE TO THE SINGLE FUNCTION USED BY LEWIN, LIVNAT AND ZWICK [4]. THE OTHER SIX

FUNCTIONS COME IN PAIRS. THE TWO FUNCTIONS IN EACH PAIR ARE FLIPS OF EACH OTHER.

C. Discovery of the T HRESH scheme

In this section, we discuss the process of experimentally

discovering the ªrawº T HRESH scheme described in Sec-

tion IV-B. For now, we will make a couple of assumptions,

which will be fully worked out in Section IV-C4.

(1) Instead of optimizing over all valid configurations of

MAX DI-CUT, we restrict to optimizing over a finite set Θ
of configurations, where Comp(θ) > 0 for all θ ∈ Θ.

(2) Let F be a restricted family of T HRESH− schemes

(e.g., the piecewise linear functions). We shall further

assume throughout this discussion that we have access to

an oracleOF which, when given a probability distribution

Θ̃ ∈ Dist(Θ), identifies a function f ∈ F which

maximizes Sound(Θ̃, f).

1) Finite F : a game-theoretic approach

Assume further we have found a finite set F ⊂ F of

candidate rounding functions. We would like to identify the

following:

(a) An optimal (worst) distribution Θ̃ over Θ such that

Θ̃ = argmin
Θ̃∈Dist(Θ)

max
f∈F

Sound(Θ̃, f)

Comp(Θ̃)
.

(b) An optimal (best) distribution F̃ over F such that

F̃ = argmax
F̃∈Dist(F)

min
θ∈Θ

E
f∼F̃

[

Sound(Θ̃, f)

Comp(Θ̃)

]

.

It turns out that both of these objectives can be solved by

mutually dual LPs. This is best seen by casting both questions

as a zero-sum game. Fix a real number α, which should be

thought of as an estimate of the approximation ratio of this

restricted MAX DI-CUT problem. In our game, which we call

the α-game, there are two players Alice and Bob that play

simultaneously: Alice picks θ ∈ Θ and Bob picks f ∈ F . We

then have the following payoffs

Alice: aliceα(θ, f) := αComp(θ)− Sound(θ, f)

Bob: bobα(θ, f) := Sound(θ, f)− αComp(θ)

Note that this game is a finite zero-sum game and thus by

standard theory (e.g., Von Neumann’s minimax theorem [31]

and Nash equilibria [32]), there is a single5 Nash-equilibrium

(Θ̃α, F̃α) which is the optimal mixed strategy for both players.

Let v(α) be the expected payoff of this optimal strategy for

Alice (i.e., the value of the game). We now make the following

simple observation.

Proposition IV.1. The function v(α) is strictly increasing in α.

Proof. Fix α < α′. Assume for the α′-game that Alice

plays Θ̃α. Assume Bob plays an arbitrary mixed strategy F̃ .

Then, Alice’s expected payoff is

E
θ∼Θ̃α,f∼F̃

[aliceα′(θ, f)]

= E
θ∼Θ̃α,f∼F̃

[aliceα(θ, f) + (α′ − α)Comp(θ)]

= E
θ∼Θ̃α,f∼F̃

[aliceα(θ, f)] + (α′ − α) E
θ∼Θ̃α

[Comp(θ)]

> v(α) ,

where we use the fact that Θ̃α is the Nash equilibrium for the

α-game and that Comp(θ) > 0 for all θ ∈ Θ. In other words,

Alice can assure for the α′-game a payoff strictly greater

than v(α). Thus, v(α′) > v(α).

It is easy to see that v(0) ≤ 0 (as alice0 ≤ 0). Further

aliceα(θ, f)→∞ as α→∞. Thus, by Proposition IV.1, there

5Depending on the singular values of the payoff matrices, there may be
multiple Nash-equilibrium, but they all have the same value. In that situation,
we pick one of the Nash equilibriums arbitrarily to be representative Nash
equilibrium.

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

f1 with probabilities 0.996902 f2 and f3 each with probability 0.000956

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

f4 and f5 each with probability 0.000393 f6 and f7 each with probability 0.000200

Fig. 3. Plots of the seven rounding functions used in the T HRESH rounding scheme given in Table I that achieves a verified approximation ration of at
least 0.87446 for MAX DI-CUT.

is a unique αΘ,F for which v(αΘ,F) = 0 with a corresponding

Nash equilibrium of Θ̃F and F̃Θ. Unpacking the definition of

Nash equilibrium and using the fact that Sound(Θ̃, f) is an

affine function in Θ̃, we have that

(a) For all f ∈ F , we have that

Sound(Θ̃F , f)

Comp(Θ̃)
≤ α .

(b) For all θ ∈ Θ, we have that

E
f∼F̃Θ

[

Sound(θ, f)

Comp(θ)

]

≥ α .

Thus, Θ̃F and F̃Θ are the optimal distributions for problems

(a) and (b) from before. We can efficiently compute these

distributions through a suitable linear program. Let wθ be

the weights of the optimal distribution Θ̃F and let pf be the

weights of the optimal distribution F̃Θ. By definition of the

Nash equilibrium, we have that

∑

θ∈Θ

wθ(αΘ,F Comp(θ)− Sound(θ, f)) ≥ 0 , ∀f ∈ F

(3)
∑

f∈F

pf (Sound(θ, f)− αΘ,F Comp(θ)) ≥ 0 , ∀θ ∈ Θ

(4)

To formulate this as a pair of linear programs, we will have

αΘ,F be our objective. Since v(α) ≥ 0 for all α ≥ αΘ,F we

will have a ªminimizeº objective to compute the wθ’s and a

ªmaximizeº objective to compute the pf ’s.

However, neither set of constraints is currently an LP as

αΘ,F is also a variable of our LP (in fact the objective

function). This is easy to fix for (4), as
∑

f∈F pf = 1, so

0.5 0.0 0.5
b1

0.75

0.50

0.25

0.00

0.25

0.50

0.75

b2
Approx Ratio for MAX-DICUT

0.8741
0.8743
0.8745
0.8747
0.8750
0.8760
0.8780
0.8800
0.9000
1.0000

Fig. 4. This plot is a contour plot of the performance of the T HRESH
scheme with 7 piecewise-linear rounding functions for various choices of b1
and b2 (with an approximately worst-case choice of b12) selected.

we can rewrite (4) as
∑

f∈F

pfSound(θ, f) ≥ αΘ,F Comp(θ) .

For (3), we use a ‘clever’ trick. We renormalize the weights

so that
∑

θ ŵθ Comp(θ) = 1 instead of
∑

θ wθ = 1, and use

the ŵθ’s as the variables of the LP. With this normalization,

we then get the linear constraints
∑

θ∈Θ

ŵθ Sound(θ, f) ≤ αΘ,F .

After solving the LP, We can find the original weights by

setting wθ = ŵθ/
∑

θ′∈Θ ŵθ′ . Formally, the two LPs we solve

are as follows.

Primal LP (finding Θ̃F)

minimize: α

subject to:
∑

θ∈Θ

Sound(θi, f)ŵθ ≤ α , ∀f ∈ F

∑

θ∈Θ

Comp(θi)ŵθ = 1

ŵθ ≥ 0 , ∀θ ∈ Θ

Dual LP (finding F̃Θ)

maximize: α

subject to:
∑

f∈F

Sound(θ, fj)pf

≥ αComp(θ) , ∀θ ∈ Θ
∑

f∈F

pf = 1

pf ≥ 0 , ∀f ∈ F

It is straightforward to prove that these two LPs are dual

to each other and thus will both achieve the same objective

value αΘ,F

2) Extending to infinite F
Since the full family of functions we optimize over is

infinite, we cannot hope to find a (near) optimal distribution

over F by just solving a suitable finite linear program. Instead,

we work with a small set of candidate functions F which we

iteratively improve. In particular, for a fixed F , we can com-

pute the hardest distribution Θ̃F for this family of functions

and then use the oracle to find the function f = OF (Θ̃F)
which does the best on this hard distribution. (Note that

OF (Θ̃F) needs to solve a non-linear, and probably non-

convex, optimization problem.) We add f to F and continue

for some fixed number T of steps. We note that similar

minimax algorithms are prevalent in machine learning, such

as in generative adversarial networks [33]. See Algorithm 1

for the formal details.

Algorithm 1 T HRESH discovery algorithm (fixed Θ)

1: procedure FINDTHRESH(Θ, T)

2: Pick an initial distribution Θ̃0 ∈ Dist(Θ)
3: f1 ← OF (Θ̃0)
4: F1 ← {f1}.
5: for i ∈ {1, 2, . . . , T − 1} do

6: Find the hardest Θ̃i for Fi using the Primal LP

with objective value αi

7: fi+1 ← OF (Θ̃i)
8: Fi+1 ← Fi ∪ {fi+1}
9: end for

10: Find the optimal distribution F̃T over FT for Θ using

the Dual LP

11: return F̃T

12: end procedure

It is easy to see that the objective value αi of the Primal

LP in Algorithm 1 increases at each step of the loop. Further,

it is not hard to prove that αi ≤ 1/minθ∈Θ Comp(θ). Thus,

as T → ∞, the objective value of the Primal LP tends to a

limit αlim. Our main correctness guarantee of our algorithm

is that we converge to this limit at an effective rate and that

this limit is the best we can hope for.

Theorem IV.2. Fix ε > 0 and assume C :=
1/minθ∈Θ Comp(θ) is finite. Let αT be the objective value

of the Dual LP computing F̃T . Assume that T > (C/ε)|Θ|,

then αT ≥ αlim − ε. Further, for every finite distribution F̃
over functions in F ,

E
f∼F̃

[

Sound(Θ̃, f)

Comp(Θ̃)

]

≤ αlim .

Proof. Observe that for all j > i ≥ 1, we have that

Sound(Θ̃i, fi+1)

Comp(Θ̃i)
≥ Sound(Θ̃j , fj)

Comp(Θ̃j)
,

because the distribution Θ̃i certifies that no finite distri-

bution of rounding functions over Fj can do better than
Sound(Θ̃i,OF (Θ̃i))

Comp(Θ̃i)
. In particular, by taking the limit as j →∞,

this implies that for all i ≥ 1,

Sound(Θ̃i, fi+1)

Comp(Θ̃i)
≥ αlim . (5)

Assume for sake of contradiction that αT < αlim−ε. Thus,

αi < αlim − ε for all i ∈ {1, . . . , T − 1}. Pick δ = ε/C.

Define the function sΘ : F → [0, 1]Θ as

sΘ(f) = (Sound(θ, f) : θ ∈ Θ) .

Observe that if f and f ′ are such that ∥sΘ(f)−sΘ(f ′)∥∞ ≤ δ,

then for any fixed distribution Θ̃, we have that
∣

∣

∣

∣

∣

Sound(Θ̃, f)

Comp(Θ̃)
− Sound(Θ̃, f ′)

Comp(Θ̃)

∣

∣

∣

∣

∣

≤ δ

minθ∈Θ Comp(θ)
= ε .

(6)

Divide [0, 1]Θ in (1/δ)|Θ| hypercubes with ℓ∞-diameter δ.

Let H be the this family of hypercubes. Since T > (C/ε)|Θ|,

by the pigeonhole principle there exists i, j ∈ {1, . . . , T}
with fi and fj in the same hypercube but i < j. In particular,

we have by the minimax guarantee of Θj−1, (6), and (5),

αT ≥ αj−1 ≥
Sound(Θ̃j−1, fi)

Comp(Θ̃j−1)

≥ Sound(Θ̃j−1, fj)

Comp(Θ̃j−1)
− ε ≥ αlim − ε , (7)

as desired.

For the claim about F̃ , assume for sake of contradiction that

there is a ε′ > 0 such that

E
f∼F̃

[

Sound(Θ̃, f)

Comp(Θ̃)

]

≥ αlim + ε′ .

Then, we must have that for all i ≥ 1,

Sound(Θ̃i, fi+1)

Comp(Θ̃i)
≥ αlim + ε′ .

However, if we take the limit in (7) as ε → 0 and T ≥
(C/ε)|Θ|, we obtain that α ≥ αlim + ε′, a contradiction.

Remark IV.3. The second claim of Theorem IV.2 can also

be proved for continuous distributions F̃ over F . In that case,

we can approximately discretize F̃ by picking representative

functions which cover the space of functions in the ℓ∞ metric

with respect to sΘ. We omit further details.

Remark IV.4. Although this proof only gives correctness

when T is exponential in the size of Θ, in practice our

simulation only requires T = |Θ|O(1) rounds to converge with

ε ≈ 10−6. Perhaps this suggests that the theoretical analysis

can also be improved.

3) Extension to infinite Θ

We now briefly discuss how to extend Algorithm 1 to

allow Θ to grow. Let Θvalid,ε be the space of all valid

configurations of MAX DI-CUT with completeness at least ε.

Assume we also have an oracle OΘ which when given a

distribution of rounding functions F̃ outputs the configuration

θ ∈ Θvalid,ε on which F̃ performs the worst. We can then

dynamically grow our ªworking setº of configurations Θ using

the following procedure.

Algorithm 2 T HRESH discovery algorithm (growing Θ)

1: procedure FINDTHRESHFULL(T , T ′)

2: Pick Θ0 arbitrarily.

3: for i ∈ {1, 2, . . . , T ′ − 1} do

4: F̃i ← FindThresh(Θi−1, T).
5: θi ← OΘ(F̃i)
6: Θi ← Θi−1 ∪ {θi}.
7: end for

8: return FindThresh(ΘT ′ , T)
9: end procedure

Let αi the performance guarantee of F̃i over Θi−1 and let α̂i

be optimal approximation ratio if T were to tend to ∞. Note

that α̂i must monotonically decrease (although non-necessarily

strictly). Since each α̂i is nonnegative, they must have a

limit α̂lim. Via an argument similar6 to Theorem IV.2, we

can take an δ-net over the configuration space Θvalid,ε and

argue that if both θi and θj are in the same region of the δ-

net, then F̃j must perform with a ratio at least α̂lim − ε on

all configurations7 in Θvalid,ε. In particular, we can guarantee

that when T ′ is sufficiently large, then nearly all F̃i’s with

i ∈ {T ′/2, . . . , T ′} are near-optimal distributions. This proves

to be an adequate guarantee for practical simulation.

4) Implementation details

We now discuss the implementation details for how the

ªrawº T HRESH scheme was generated as well as details

of how the ªcleanº T HRESH scheme was derived from it.

a) The raw distribution.

Overall, the algorithm for discovering the ªrawº T HRESH
distribution was implemented in Python (version 3.10).

The oracle OF is computed using the SciPy library’s

minimize routine [34] which finds a locally maximal rounding

function f when given a starting function f̂ : S → (−∞,∞)
as input. For numerical stability, we assume that all thresholds

are in the range [−2, 2]. We compute OΘ by computing

Sound(θ, F̃) for θ’s in a suitably spaced grid and then calling

minimize on the worst grid point to further tune the parame-

ters.

6This further requires that the family of functions F is uniformly con-
tinuous: that is small changes in the configurations imply that the rounding
functions do not change much. This is true for uniformly bounded, piecewise
linear functions.

7In practice, the distribution of functions also does well on instances with
completeness less than ε.

The Sound routine was computed using Genz’s numerical

algorithms for approximate multivariate normal integration

[35], [36] which is bundled with SciPy. The linear program-

ming routines were implemented using CVXPY [37], [38] as

a wrapper around the ECOS solver [39].

In practice, we found that the convergence was more stable

by additionally adding flip(fi) to Fi in Algorithm 1. Likewise,

in Algorithm 2, it was best to add flip(θi) along with θi.

Perhaps the most sensitive part of this algorithm is the

choice of the initial Θ0 in Algorithm 2. We found it best

to set Θ0 to be a near-optimal hard distribution. With this

choice, it only took T ′ ≈ 150. In practice, we did not aim for a

fixed T in Algorithm 1, but rather a more complicated stopping

criteria based on how fast αi is stabilizing. This roughly

translates to T ≪ 100. In total, it took a few hours of single-

core computation on a standard desktop computer to find the

T HRESH function described in Section IV-B. However, as

mentioned in Section IV-C3, the worst-case performance of the

distribution F̃i is not monotone in i, so it took a few instances

of trial and error (i.e., run for a few more iterations) until the

worst-case performance was satisfactory.

We further remark that routines similar to the ones described

in this section were used to discover (approximately) the

configurations used to prove the upper bound on MAX DI-CUT in

Section III (in this case Θ0 was seeded to be a fixed ε-spaced

grid).

b) The clean distribution.

Inspecting the 39 functions of the raw distribution revealed

that they naturally divide into 7 families of functions, with

the functions in each family being fairly similar to each other.

Taking a weighted average of the functions in each family

yielded a scheme with only 7 functions that did almost as

well as the original scheme. Further inspection revealed that

one of these 7 functions was almost odd, and that the other

six functions divide into three pairs in which functions are

close to being flips of each other. The first function was

made odd by taking the average of the function and its flip.

Similarly, the functions in each pair were made flips of each

other. This slightly improved the performance ratio obtained.

Finally, numerical optimization was used to perform small

optimizations. The resulting 7 functions are the ones given

in Table I. The final performance ratio obtained was slightly

better than the one achieved by the raw distribution. The

computations and optimizations were done using MATLAB.

D. Verification using interval arithmetic

1) Sketch of the algorithm

From now on, we use F̃ to refer to the clean distribution

of 7 functions from the previous subsection. To prove that

the claimed distribution F̃ of rounding functions achieves an

approximation ratio of at least α for MAX DI-CUT, we need to

show that

∀θ,Comp(θ) ̸= 0

=⇒ Ef∼F̃ [Sound(θ, f)]

Comp(θ)
≥ α,

or equivalently

∀θ, E
f∼F̃

[Sound(θ, f)]− α · Comp(θ) ≥ 0 .

Note that in the above expression, Comp(θ) only involves

simple arithmetic operations, and E[Sound(θ, f)] is a weighted

sum of two-dimensional Gaussian integrals, while θ takes

value in [−1, 1]3, modulo the triangle inequalities.

To rigorously verify the inequality for all configurations, we

deploy the technique of interval arithmetic. In interval arith-

metic, instead of doing arithmetics with numbers, we apply

arithmetic operations to intervals. Let op be a k-ary operation

and I1, I2, . . . , Ik be k intervals, then the interval arithmetic

on op(I1, I2, . . . , Ik) will produce an interval Iop with the

following rigorous guarantee: op(x1, x2, . . . , xk) ∈ Iop for

every (x1, x2, . . . , xk) ∈ I1 × I2 × · · · × Ik. By transitivity of

set inclusion, if we implement a function g as a composition

of such operations in interval arithmetic, then it is guaranteed

that the range of g is included in the output interval Ig .

This property is useful when it comes to certifying the

nonnegativity of g. Indeed, if the output interval Ig lies entirely

in [0,∞), then we can establish that g is a nonnegative

function on the given input intervals. However, since the

computation is usually not exact, to maintain correctness, Ig
will also contain elements that are not in the range of g. In

particular, if g attains 0, then we cannot hope to certify the

nonnegativity of g with interval arithmetic unless some very

special conditions on g allow for exact evaluation.

Even in the case where inf(g) > 0, Ig may still contain

negative elements. For example, if g = g1 + g2, then Ig
might be obtained by adding Ig1 and Ig2 . This will imply

that sup(Ig1)+ sup(Ig2) ∈ Ig , while in reality g1 and g2 may

attain maximum/supremum on very different inputs. This issue

can be resolved via a simple divide-and-conquer algorithm.

Whenever the check on Ig is inconclusive, i.e., it contains

both positive and negative numbers, then we split one of the

input intervals into halves, and recursively apply the same

computation to each half. This is like using a microscope:

if we cannot see a region clearly, we zoom in to get a better

view.

The pseudocode of the algorithm is presented in Algo-

rithm 3. The CHECKVALIDITY function checks if there exists

a valid configuration in I1 × I2 × I1,2, i.e., a configuration

that satisfies all triangle inequalities, and returns true if it

does. If CHECKVALIDITY returns false, then the algorithm

returns true, since in this case the region consists entirely of

invalid configurations and there is nothing to check. Otherwise,

Algorithm 3 Interval arithmetic verification algorithm

1: procedure CHECKRATIO(I1, I2, I1,2)

2: if CHECKVALIDITY(I1, I2, I1,2) = FALSE then

3: return TRUE

4: end if

5: I ← INTERVALARITHMETICEVALUATE(I1, I2, I1,2).
6: if I ⊆ [0,∞) then

7: return TRUE

8: else if I ⊆ (∞, 0) then

9: return FALSE

10: else

11: if |I1| = max(|I1|, |I2|, |I1,2|) then

12: Split I1 into two equal-length sub-intervals

I1 = I l1 ∪ Ir1 .

13: return CHECKRATIO(I l1, I2, I1,2) ∧
CHECKRATIO(Ir1 , I2, I1,2)

14: else if |I2| = max(|I1|, |I2|, |I1,2|) then

15: Split I2 into two equal-length sub-intervals

I2 = I l2 ∪ Ir2 .

16: return CHECKRATIO(I1, I
l
2, I1,2) ∧

CHECKRATIO(I1, I
r
2 , I1,2)

17: else

18: Split I1,2 into two equal-length sub-intervals

I1,2 = I l1,2 ∪ Ir1,2.

19: return CHECKRATIO(I1, I2, I
l
1,2) ∧

CHECKRATIO(I1, I2, I
r
1,2)

20: end if

21: end if

22: end procedure

the algorithm continues to compute an interval I , using the

INTERVALARITHMETICEVALUATE subroutine, such that

∀θ ∈ I1 × I2 × I1,2, E
f∼F̃

[Sound(θ, f)]− α · Comp(θ) ∈ I.

The algorithm then checks if I is entirely non-negative or

entirely negative, in which cases we can decide that either

the ratio is achieved over the entire region, or there exists

a valid configuration that violates the ratio, and exit the

algorithm accordingly. Otherwise, I consists of both positive

and negative values, but the negative values may come from

evaluation of invalid configurations, or more intrinsically the

error produced by interval arithmetic itself. In this case,

we subdivide the longest interval into two equal-length sub-

intervals and recursively apply the algorithm, as explained

earlier.

We implemented this verification algorithm in C using the

interval arithmetic library Arb [40]. Specific advantages of

this library is that it has rigorous implementations of the

error function [41] as well as a routine for rigorous numerical

integration [42]. To speed up the computation, we split the

various tasks between cores using GNU Parallel [43]. We

obtain the following lemma.

Lemma IV.5. F̃ achieves an approximation ratio of 0.87447

on all MAX DI-CUT configurations with completeness at least

10−6.

We address the requirement on completeness in the next

subsection.

2) Removing the completeness requirement and a proof of

Theorem I.3

As we discussed, interval arithmetic in general cannot cer-

tify nonnegativity of a function which attains 0. Unfortunately,

the function that we care about, Ef∼F̃ [Sound(θ, f)] − α ·
Comp(θ), does attain 0, regardless of the choice of r, as the

following proposition shows.

Proposition IV.6. Let θ = (bi, bj , bij) be a configuration with

bi = bj = b and ρ(θ) = 1. Then for any f ,

Sound(θ, f) = Comp(θ) = 0 .

Proof. Since ρ(θ) = 1, we have

bij = bibj + ρ
√

1− b2i

√

1− b2j = b2 + (1− b2) = 1

and

Comp(θ) =
1 + bi − bj − bij

4
=

1 + b− b− 1

4
= 0 .

For soundness, we have Sound(θ, f) = Φ−ρ(f(bi),−f(bj)) =
Φ−ρ(f(b),−f(b)). Since ρ = 1, this is equal to

PrX∼N(0,1)[X ≤ f(b) ∧ −X ≤ −f(b)] = PrX∼N(0,1)[X =
f(b)] = 0.

Luckily, on configurations with small completeness, it is

known that independent rounding, which assigns true to

each variable independently with probability 1/2, does very

well. Indeed, this rounding scheme satisfies each MAX DI-CUT

constraint with probability 1/4 on every configuration. This

implies that F̃ combined with the independent rounding will

achieve a good approximation ratio over all DI-CUT configura-

tions.

Proof of Theorem I.3. Consider the rounding algorithm where

we use the T HRESH rounding scheme F̃ with probability

(1− 10−5) and independent rounding with probability 10−5.

We show that this algorithm achieves a ratio of 0.87446 on

all configurations of MAX DI-CUT.

Let θ be a DI-CUT configuration. If Comp(θ) ≥ 10−6, then

by Theorem IV.5, we achieve a ratio of at least 0.87447 ×
(1− 10−5) > 0.87446. If Comp(θ) < 10−6, then independent

rounding contributes a soundness of 0.25 × 10−5 = 2.5 ×
10−6 > 0.87446 · Comp(θ).

3) Further optimizations

To further speed up the computation, we compute partial

derivatives of Ef∼F̃ [Sound(θ, f)]− α · Comp(θ), and reduce

an interval to its boundary point if the corresponding partial

derivative is nonnegative or nonpositive.

For example, if we have for every θ ∈ I1 × I2 × I1,2

∂

∂b1

(

E
f∼F̃

[Sound(θ, f)]− α · Comp(θ)

)

≥ 0 ,

and I1 = [l, r], then to certify the nonnegativity of

Ef∼F̃ [Sound(θ, f)]− α · Comp(θ), it is sufficient to check

∀θ ∈ {l}×I2×I1,2, E
f∼F̃

[Sound(θ, f)]−α ·Comp(θ) ≥ 0 .

We remark that we only perform this optimization in regions

that are entirely valid, i.e., consisting only of valid configu-

rations. This is because otherwise we may reduce the region

to an invalid subregion, on which the program returns true

without checking the ratio.

4) Implementation details

To compute the soundness, we need to evaluate bivariate

Gaussian distributions of the form Φρ(t1, t2). However, Arb

only has implementation of one-dimensional integration. To

overcome this, we use the following formula from Drezner

and Wesolowsky [29], which transforms Φρ(t1, t2) into a one-

dimensional integral:

Φρ(t1, t2) =
1

2π

∫ ρ

0

1√
1− r2

exp

(

− t21 − 2rt1t2 + t22
2(1− r2)

)

dr

+Φ(t1)Φ(t2) .

Another potential issue is numerical stability. Computing ρ

from (bi, bj , bij) involves division by
√

(1− b2i)(1− b2j),

which can be unstable when bi or bj is close to ±1. In the

actual implementation, we overcome this by representing a

configuration using (bi, bj , ρ).

V. A NEW APPROXIMATION ALGORITHM FOR MAX 2-AND

Recall that T HRESH rounding schemes for MAX 2-AND are

nearly identical to those for MAX DI-CUT, except that the

rounding schemes for MAX 2-AND are required to be odd

functions. It is easy to enforce in the discovery algorithm

that the family of piecewise-linear functions we consider are

odd (in fact, the oracle runs quicker as the number of free

parameters is cut in half). Empirically, we found a ªrawº

distribution of 15 rounding functions which attains a ratio of

approximately 0.8741. Using a clean-up procedure similar to

that for MAX DI-CUT, we were able to simplify it to another

distribution F̃ ′ with only 3 functions. See Table II for details.

Using the same interval arithmetic algorithm used for

MAX DI-CUT, we obtain the following result.

Lemma V.1. F̃ ′ achieves an approximation ratio of 0.87415
on all MAX 2-AND configurations with completeness at least

10−6.

We can then use the same proof idea as that in Sec-

tion IV-D2 to get rid of the completeness requirement and

obtain the lower bound of 0.87414 for MAX 2-AND, as claimed

in Theorem I.4.

0.5 0.0 0.5
b1

0.75

0.50

0.25

0.00

0.25

0.50

0.75

b2

Approx Ratio for MAX-2AND

0.8741
0.8743
0.8745
0.8747
0.8750
0.8760
0.8780
0.8800
0.9000
1.0000

Fig. 5. This plot is a contour plot of the performance of the T HRESH
scheme for MAX 2-AND with 3 piecewise-linear rounding functions for various
choices of b1 and b2 (with an approximately worst-case choice of b12)
selected.

VI. CONCLUSION

We used a ªcomputational lensº to obtain a much better,

and an almost complete, understanding of the MAX DI-CUT

and MAX 2-AND problems. Insights gained from numerical

experiments yielded a completely analytical new upper bound

for MAX DI-CUT that can be verified by hand (see Section III), as

well as new lower bounds, i.e., new approximation algorithms,

for MAX DI-CUT and MAX 2-AND, for which we obtain a rigorous

computer-assisted analysis (see Section IV and Section V).

We have established that the MAX DI-CUT problem has

its own approximation ratio by strictly separating it from

MAX 2-AND and MAX CUT (assuming the unique games conjec-

ture). Fundamental to our approach was the use of algorithmic

discovery to identify both difficult instances of MAX DI-CUT

and MAX 2-AND as well as discovering T HRESH rounding

schemes which improve on the 20+ year state of the art.

As discussed in Section IV, assuming the unique games

conjecture and Austrin’s positivity conjecture, the opti-

mal T HRESH schemes8 achieve αDI-CUT and α2AND for

MAX DI-CUT and MAX 2-AND, respectively. We demonstrated

a computational procedure which helps us to approximate

αDI-CUT and α2AND to greater precision than previously known.

However, a proper theoretical understanding is still missing.

In particular:

Theoretical understanding of the optimal T HRESH
scheme. Currently, we lack a satisfactory explanation of

why the secondary functions in the currently best-known

MAX DI-CUT and MAX 2-AND T HRESH schemes take on the

shapes they do. Perhaps one can prove that the optimal func-

tions must satisfy particular constraints (such as in the calculus

8Or more precisely a limiting sequence of finite, bounded T HRESH
schemes.

f1 f2 f3
prob 0.998105 0.001126 0.000769

−1.000000 −1.585394 0.934459 0.163540
−0.700000 −0.870350 0.443616 −0.212976
−0.450000 −0.512239 0.675617 −1.435794
−0.300000 −0.332896 −1.446206 0.289432
−0.250000 −0.274526 −1.495506 2.000000
−0.179515 −0.193131 −0.382870 −0.492446
−0.164720 −0.176869 0.015196 −0.933550
−0.100000 −0.107901 2.000000 −1.568231
0.000000 0.000000 0.000000 0.000000
0.100000 0.107901 −2.000000 1.568231
0.164720 0.176869 −0.015196 0.933550
0.179515 0.193131 0.382870 0.492446
0.250000 0.274526 1.495506 −2.000000
0.300000 0.332896 1.446206 −0.289432
0.450000 0.512239 −0.675617 1.435794
0.700000 0.870350 −0.443616 0.212976
1.000000 1.585394 −0.934459 −0.163540

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

TABLE II
A T HRESH ROUNDING SCHEME THAT GIVES A RIGOROUSLY VERIFIED APPROXIMATION RATIO OF AT LEAST 0.87414 FOR MAX 2-AND. (THE ACTUAL

RATIO IS PROBABLY ABOUT 0.874202.) THE SCHEME USES THREE PIECEWISE-LINEAR ODD ROUNDING FUNCTIONS f1, f2, f3 DEFINED ON 17 CONTROL

POINTS. A PLOT OF THE FUNCTIONS IS GIVEN ON THE RIGHT.

of variations), or at least provide a satisfactory understand of

the second-order affect these functions have.

Theoretical understanding of the hardest configurations.

Likewise, we do not understand the structure of the hardest

distributions of configurations for MAX DI-CUT and MAX 2-AND.

In the full version, we demonstrate that some rather complex

distributions appear to give increasingly better upper bounds

for αDI-CUT and α2AND. Would it be possible to theoretically

describe what the hardest configurations are? It is not clear

whether the hardest distribution should even have finite sup-

port. Properly describing the hardest distributions would also

resolve Austrin’s positivity conjecture.

REFERENCES

[1] M. X. Goemans and D. P. Williamson, ªImproved approximation algo-
rithms for maximum cut and satisfiability problems using semidefinite
programming,º Journal of the ACM, vol. 42, no. 6, pp. 1115±1145, 1995.

[2] U. Feige and M. Goemans, ªApproximating the value of two prover
proof systems, with applications to MAX 2SAT and MAX DICUT,º in
Proceedings Third Israel Symposium on the Theory of Computing and

Systems. IEEE, 1995, pp. 182±189.

[3] S. Matuura and T. Matsui, ªNew approximation algorithms for MAX
2SAT and MAX DICUT,º Journal of the Operations Research Society

of Japan, vol. 46, no. 2, pp. 178±188, 2003.

[4] M. Lewin, D. Livnat, and U. Zwick, ªImproved rounding techniques
for the MAX 2-SAT and MAX DI-CUT problems,º in International

Conference on Integer Programming and Combinatorial Optimization.
Springer, 2002, pp. 67±82.

[5] H. Karloff and U. Zwick, ªA 7/8-approximation algorithm for MAX
3SAT?º in Proc. of 38th FOCS. IEEE, 1997, pp. 406±415.

[6] U. Zwick, ªApproximation algorithms for constraint satisfaction prob-
lems involving at most three variables per constraint.º in Proc. of 9th

SODA, 1998, pp. 201±210.

[7] G. Andersson and L. Engebretsen, ªBetter approximation algorithms
for set splitting and not-all-equal SAT,º Information Processing Letters,
vol. 65, no. 6, pp. 305±311, 1998.

[8] U. Zwick, ªOutward rotations: A tool for rounding solutions of
semidefinite programming relaxations, with applications to MAX CUT

and other problems,º in Proc. of 31th STOC. ACM, 1999, pp.
679±687. [Online]. Available: https://doi.org/10.1145/301250.301431

[9] E. Halperin and U. Zwick, ªApproximation algorithms for MAX 4-
SAT and rounding procedures for semidefinite programs,º Journal of

Algorithms, vol. 40, no. 2, pp. 184±211, 2001.

[10] T. Asano and D. P. Williamson, ªImproved approximation algorithms
for MAX SAT,º Journal of Algorithms, vol. 42, no. 1, pp. 173±202,
2002.

[11] J. Zhang, Y. Ye, and Q. Han, ªImproved approximations for max set
splitting and max NAE SAT,º Discrete Applied Mathematics, vol. 142,
no. 1-3, pp. 133±149, 2004.

[12] A. Avidor, I. Berkovitch, and U. Zwick, ªImproved approximation
algorithms for MAX NAE-SAT and MAX SAT,º in Approximation and

Online Algorithms, Third International Workshop, WAOA 2005, ser.
Lecture Notes in Computer Science, vol. 3879. Springer, 2005, pp.
27±40. [Online]. Available: https://doi.org/10.1007/11671411 3

[13] J. Brakensiek, N. Huang, A. Potechin, and U. Zwick, ªOn the mysteries
of MAX NAE-SAT,º in Proc. of 32nd SODA. SIAM, 2021, pp. 484±
503. [Online]. Available: https://doi.org/10.1137/1.9781611976465.30

[14] S. Abbasi-Zadeh, N. Bansal, G. Guruganesh, A. Nikolov, R. Schwartz,
and M. Singh, ªSticky brownian rounding and its applications to
constraint satisfaction problems,º ACM Trans. Algorithms, vol. 18,
no. 4, oct 2022. [Online]. Available: https://doi.org/10.1145/3459096

[15] R. Eldan and A. Naor, ªKrivine diffusions attain the Goemans±
Williamson approximation ratio,º 2019.

[16] K. Makarychev and Y. Makarychev, ªApproximation Algorithms
for CSPs,º in The Constraint Satisfaction Problem: Complexity

and Approximability, ser. Dagstuhl Follow-Ups, A. Krokhin and
S. Zivny, Eds. Dagstuhl, Germany: Schloss Dagstuhl±Leibniz-Zentrum
fuer Informatik, 2017, vol. 7, pp. 287±325. [Online]. Available:
http://drops.dagstuhl.de/opus/volltexte/2017/6968

[17] J. Håstad, ªSome optimal inapproximability results,º Journal of the

ACM, vol. 48, no. 4, pp. 798±859, 2001.

[18] S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy, ªProof
verification and the hardness of approximation problems,º Journal of

the ACM, vol. 45, no. 3, pp. 501±555, 1998.

[19] L. Trevisan, G. B. Sorkin, M. Sudan, and D. P. Williamson, ªGadgets,
approximation, and linear programming,º SIAM Journal on Computing,
vol. 29, no. 6, pp. 2074±2097, 2000.

[20] S. Khot, ªOn the power of unique 2-prover 1-round games,º in FOCS

2002, 2002, pp. 767±775.

[21] S. Khot, G. Kindler, E. Mossel, and R. O’Donnell, ªOptimal inap-
proximability results for MAX-CUT and other 2-variable CSPs?º SIAM

Journal on Computing, vol. 37, no. 1, pp. 319±357, 2007.

[22] E. Mossel, R. O’Donnell, and K. Oleszkiewicz, ªNoise stability of
functions with low influences: Invariance and optimality,º Annals of

Mathematics, pp. 295±341, 2010.
[23] P. Austrin, ªBalanced MAX 2-SAT might not be the hardest,º in Proc.

of 39th STOC, 2007, pp. 189±197.
[24] ÐÐ, ªTowards sharp inapproximability for any 2-CSP,º SIAM Journal

on Computing, vol. 39, no. 6, pp. 2430±2463, 2010.
[25] P. Raghavendra, ªOptimal algorithms and inapproximability results for

every CSP?º in Proc. of 40th STOC, 2008, pp. 245±254.
[26] ÐÐ, ªApproximating NP-hard problems - efficient algorithms and their

limits,º Ph.D. dissertation, University of Washington, 2009.
[27] P. Raghavendra and D. Steurer, ªHow to round any CSP,º in Proc. of

50th FOCS. IEEE, 2009, pp. 586±594.
[28] U. Zwick, ªComputer assisted proof of optimal approximability results.º

in Proc. of 13th SODA, 2002, pp. 496±505.
[29] Z. Drezner and G. O. Wesolowsky, ªOn the computation of the bivariate

normal integral,º Journal of Statistical Computation and Simulation,
vol. 35, no. 1-2, pp. 101±107, 1990.

[30] J. D. Hunter, ªMatplotlib: A 2d graphics environment,º Computing in

Science & Engineering, vol. 9, no. 3, pp. 90±95, 2007.
[31] J. v. Neumann, ªZur theorie der gesellschaftsspiele,º Mathematische

annalen, vol. 100, no. 1, pp. 295±320, 1928.
[32] J. Nash, ªNon-cooperative games,º Annals of mathematics, pp. 286±295,

1951.
[33] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,

S. Ozair, A. Courville, and Y. Bengio, ªGenerative adversarial networks,º
Communications of the ACM, vol. 63, no. 11, pp. 139±144, 2020.

[34] P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy,
D. Cournapeau, E. Burovski, P. Peterson, W. Weckesser, J. Bright, S. J.
van der Walt, M. Brett, J. Wilson, K. J. Millman, N. Mayorov, A. R. J.
Nelson, E. Jones, R. Kern, E. Larson, C. J. Carey, İ. Polat, Y. Feng, E. W.
Moore, J. VanderPlas, D. Laxalde, J. Perktold, R. Cimrman, I. Henrik-
sen, E. A. Quintero, C. R. Harris, A. M. Archibald, A. H. Ribeiro,
F. Pedregosa, P. van Mulbregt, and SciPy 1.0 Contributors, ªSciPy 1.0:
Fundamental Algorithms for Scientific Computing in Python,º Nature

Methods, vol. 17, pp. 261±272, 2020.
[35] A. Genz, ªNumerical computation of multivariate normal probabilities,º

J. Comp. Graph Stat., vol. 1, pp. 141±149, 1992.
[36] ÐÐ, ªComparison of methods for the computation of multivariate

normal probabilities,º Computing Science and Statistics, vol. 25, pp.
400±405, 1993.

[37] S. Diamond and S. Boyd, ªCVXPY: A Python-embedded modeling lan-
guage for convex optimization,º Journal of Machine Learning Research,
vol. 17, no. 83, pp. 1±5, 2016.

[38] A. Agrawal, R. Verschueren, S. Diamond, and S. Boyd, ªA rewriting
system for convex optimization problems,º Journal of Control and

Decision, vol. 5, no. 1, pp. 42±60, 2018.
[39] A. Domahidi, E. Chu, and S. Boyd, ªEcos: An socp solver for embedded

systems,º in 2013 European Control Conference (ECC). IEEE, 2013,
pp. 3071±3076.

[40] F. Johansson, ªArb: efficient arbitrary-precision midpoint-radius interval
arithmetic,º IEEE Transactions on Computers, vol. 66, no. 8, pp. 1281±
1292, 2017.

[41] ÐÐ, ªComputing hypergeometric functions rigorously,º ACM Trans-

actions on Mathematical Software (TOMS), vol. 45, no. 3, pp. 1±26,
2019.

[42] ÐÐ, ªNumerical integration in arbitrary-precision ball arithmetic,º in
International Congress on Mathematical Software. Springer, 2018, pp.
255±263.

[43] O. Tange, ªGnu parallel - the command-line power tool,º ;login: The

USENIX Magazine, vol. 36, no. 1, pp. 42±47, Feb 2011. [Online].
Available: https://www.gnu.org/s/parallel

	Introduction
	Our results
	Organization of the paper

	Preliminaries
	MAX CSP and canonical SDP relaxations
	Unique Games Conjecture
	Configurations of biases and pairwise biases
	The THRESH and THRESH- families of rounding functions

	Upper bounds for MAX DI-CUT
	Separating MAX DI-CUT from MAX CUT
	Intuition for the upper bound
	Possibly improved upper bounds

	A new approximation algorithm for MAX DI-CUT
	Intuition for the separation between MAX 2-AND and MAX DI-CUT
	The rounding scheme
	Discovery of the THRESH scheme
	Finite F: a game-theoretic approach
	Extending to infinite F
	Extension to infinite Theta
	Implementation details

	Verification using interval arithmetic
	Sketch of the algorithm
	Removing the completeness requirement and a proof of Theorem I.3
	Further optimizations
	Implementation details

	A new approximation algorithm for MAX 2-AND
	Conclusion
	References

