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Abstract—Concentric push-pull robots (CPPR) operate
through the mechanical interactions of concentrically nested,
laser-cut tubes with offset stiffness centers. The distal tips of
the tubes are attached to each other, and relative displacement
of the tube bases generates bending in the CPPR. Previous CPPR
kinematic models assumed two tubes, planar shapes, no torsion,
and no external loads. In this paper, we develop a new, more gen-
eral CPPR model accounting for any number of tubes, describing
their variable-curvature 3D shape when actuated, including the
effects of torsion and external loads. To accomplish this, we
employ a modified Kirchhoff rod model for each tube (with offset
stiffness center) and embed the constraints of concentricity. We
use an energy method to determine robot shape as a function
of actuation and external loading. We experimentally validate
this kinetostatic model on prototype CPPRs with two tubes
and three tubes and non-constant laser-cut patterns that create
variable curvature and stiffness. Experimental results agree with
the model, paving the way for use of this model in design
optimization, planning, and control of CPPRs.

I. INTRODUCTION

Concentric push-pull robots (CPPR) are continuum manipu-
lator that consist of concentrically nested tubes, each of which
is laser cut with an asymmetric pattern, and the tips of which
are fixed together at their distal ends as shown in Figure
1. Relative translations of the tubes generate bending in the
overall CPPR structure, while the entire collection can be
additionally rotated and translated axially as a group. Such
asymmetrically patterned tube actuators have been studied
over the past few years, demonstrating constant-curvature
modeling, ex-vivo tissue resection, variable curvature kine-
matic design, and workspace optimization [1]–[3]. They can be
fabricated using a number of different methods, including laser
machining [1], [4]–[7], conventional milling [8]–[10], and 3D
printing [2], [1].

The actuation tubes in a CPPR can carry both tension and
extension, enabling active bending in the positive and negative
directions through relative translation (i.e. pushing and pulling)
of the tubes (in contrast to conventional uni-directional pull-
wire actuation). Using thin-walled tubes also enables a large
inner lumen space for passing through surgical tools such as
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Fig. 1. Actuation concept and construction of CPPRs. (a) Two or more tubes
are laser patterned to create offset stiffness centers. (b) The collection of tubes
is nested concentrically, and the tube tips are fixed to each other at their distal
ends. (c) Bending actuation is achieved by relative translations of the tubes.
(d) A 3 DOF workspace can be achieved for a two-pair CPPR by including
collective rotations and insertions of both tubes.

grippers, cameras, and illumination. The multi-tube structure
also increases the overall stiffness of the manipulator, enhanc-
ing its strength and capabilities for load-bearing surgical tasks
such as tissue traction. Additional sets of push-pull tubes can
also be deployed through the inner lumen of a first set of tubes
to further increase the degrees of freedom (DOF) by adding
more independent bending segments in series. An example of
this is shown in the attached video and Figure 2.

CPPRs are similar to pre-curved concentric tube robots
(known as CTRs) in some ways. They are both constructed
from concentric tubes, have an open inner lumen, can be
fabricated at millimeter scales and are capable of traversing
complex and tortuous pathways, making them suitable ma-
nipulators for minimally invasive surgery (MIS) applications
[11]. However, Table I summarizes the main differences.
Unlike most CTR designs, CPPRs can achieve a fully straight
configuration, and do so trivially. They are less stiff because
of the selective material removal, but are consequently able
to achieve a wider range of curvatures without hitting strain
limits. The maximum degrees of freedom available per tube is
slightly less because the tips are attached together. However,
the elastic instabilities experienced by CTRs (e.g. [12], [13])
are not present in CPPRs. Thus, while the torsional instabilities
of CTRs strongly limits their ability to be actuated remotely
over lengthy transmissions, CPPRs are less limited and can
be deployed through longer flexible endoscopes. Thus CTRs
and CPPRs are lend themselves to different surgical applica-
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TABLE I
COMPARISON OF CHARACTERISTICS BETWEEN CPPRS AND CTRS

CTR CPPR
Ability to In Special Always

Fully Straighten Cases
Passive Stiffness Higher Lower
Curvature Range Lower Higher

Degrees of max 2 per max 3 per
Freedom tube (2n) tube pair (1.5n)

Elastic Stability Design Dependent Stable
Remote Often Limited Less

Actuation by Torsion Limited

tions. CTRs are more suited to procedures that require higher
stiffness and shorter transmission lengths. This facilitates
urological surgeries such as uterine dissection and prostate
tissue resection. CPPRs are better positioned as dexterous
wrists, devices for precise aiming of lasers, and soft tissue
manipulation through longer flexible endoscopic channels.

In previous research, CPPRs were made with large rectan-
gular notches cut out of the tubes [2], [3], and a constant-
curvature beam model was used to describe the bending in
the notched sections to create a forward kinematics model for
CPPRs [1]. The parameters of the design (the spacing and
size of the rectangular notches) dictate the overall bending
shape of the CPPR when actuated, and inverse design can be
performed [1]. However, this existing work is limited to large
rectangular notches, planar actuated shapes, pairs of tubes (not
more than two attached together), torsionless configurations,
and scenarios without external loads.

Instead of large rectangular notches, CPPRs can also be
made with very narrow interleaved slots (on the order of
50-150 microns wide) or even more exotic patterns [14].
The “small slot” paradigm can improve desired structural
properties such as torsional rigidity and helps to eliminate
any mechanical interference, pinching hazards, and localized
buckling that can occur with large notches, but it necessitates
a more continuous modeling approach, such as elastic rod
theory. In addition, we would like to be able to model scenarios
in which CPPRs apply forces to tissue (tumor resection has
already been demonstrated in ex vivo models [3]), and to
explore new design possibilities such as using more than two
tubes attached at their tips to enable more degrees of freedom.

A. Related Modeling Work

Mechanics models such as Kirchhoff rod and Cosserat rod
models have been used to create kinetostatic models (i.e.
kinematics and statics) for many continuum robot designs.
This modeling paradigm has been used to accurately model
tendon-driven continuum robots [15]–[18], CTRs [12], [19]–
[22], parallel continuum robots [23], [24], fluid-actuated con-
tinuum robots [25], [26] and new eccentric tube robots [27],
[28]. Kinetostatic models are useful in that the kinematics can
be efficiently computed [24] and can capture external loading
and arbitrary numbers of tubes and rods. Energy methods
related to our approach have also been used on tendon-driven
[15], concentric tube [29], and parallel continuum robots [30],
[31].

Fig. 2. Dual CPPR system, consisting of a larger proximal CPPR and a
smaller distal CPPR that is housed within the proximal CPPR (a). Using two
two-tube CPPRs, 5-DOF can be controlled (b).

However, the CPPR actuation paradigm presents a chal-
lenge that previous models do not account for, namely that
the stiffness center of an asymmetrically patterned tube is
not coincident with the geometric center of the tube. This
complicates the description and enforcement of multi-tube
concentricity constraints because the individual tube reference
frames are offset from one another instead of coincident.

B. Organization and Contributions

Our contribution in this paper is to derive and experimen-
tally validate a new general CPPR kinetostatic model that
overcomes the above challenge of offset stiffness centers in
a concentric tube collection and accounts for external loading,
general slot cut patterns with variable stiffness, 3D bending
and torsion, and any number of tubes. Each tube is modeled
as a classical Kirchhoff rod with an offset stiffness center, and
constraints of concentricity are derived and embedded in the
model. A series of polynomial basis functions at the curvature
level is then used to parameterize the configuration of the tube
collection. The coefficients of this polynomial series are then
found via energy minimization (accounting for external loads)
and used to construct the tube shapes and robot pose.

Section II details the derivation of our energy-based
kinematics-statics model, beginning with the derivation of the
kinematics of a single tube constrained to a centerline and
ending with the implementation of the full kinematic model.
Section III details an example design of a narrow laser cut slot
pattern that offsets the stiffness center of the tubes and demon-
strates our FEA-based parameter characterization process for
estimating the mechanical properties of the tubes, which are
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Fig. 3. Illustration of a single tube with offset stiffness center with pertinent
kinematic parameters labeled.

parameters of the model. Section IV covers our experimental
validation of the full model, in which we compare model
kinematics and loaded deflection predictions with experimental
prototypes. We investigate three relevant CPPR design cases:
(1) a two-tube, constant-curvature CPPR where the stiffness
centers of each tube run parallel with the centerline, (2) a two-
tube, ‘converging’ CPPR in which the stiffness centers taper
toward the center of the tube down the length, and (3) a three-
tube CPPR that can achieve 3D translational positioning of the
tip without rotating the tubes. Section V discusses future work
and Section VI concludes with a discussion on our validation
results. The work in this paper is based on Chapter 4 of the
first author’s dissertation [32].

II. MODELING

In this section, we derive our mechanics-based kinematic
model for CPPRs. First we outline the overall model frame-
work, mathematical conventions, and the assumptions used in
the model. Then, we detail the modified Kirchhoff kinematic
equations that can accommodate the kinematics of patterned
tubes used for CPPRs. We show how the concentricity con-
straints between the tubes are embedded into the model,
revealing the independent unconstrained variables that can
be parameterized. We then detail an energy minimization
procedure that accounts for external loading and actuation,
and summarize the full model implementation.

A. Conventions and Modeling Assumptions

Each tube is kinematically modeled as a Kirchhoff rod in
which the tube can only deform through bending and torsion.
The Kirchhoff kinematic equations are a set of differential
equations that describe how the tube position and orientation
evolves down the length of the tube. We parameterize the
curvature components of each tube, and these components
are determined by applying the principal of minimal potential
energy, which includes external loading.

For our model, the following assumptions are made:

1) Only conservative loads are applied. This includes point
forces and distributed forces along the length, expressed
in the global frame.

2) The stiffness center offsets are continuous for each tube
in the CPPR system.

3) We assume friction is negligible in our model. To
mitigate the effects of friction, each tube is sanded after
being laser machined.

4) Under the Kirchhoff tube assumption, axial and shear
deformations are neglected.

5) Tubes are nested in perfect concentricity.

B. Kinematics of Tubes with Offset Stiffness Centers

We define the stiffness center as follows: considering an
arbitrary section plane orthogonal to a tube’s longitudinal axis,
the stiffness center is the location within that plane where a
hypothetical applied point force in the axial direction would
generate no bending deformation. In the construction of a
CPPR using laser patterned tubes, the material is technically
discontinuous along the length, due to the intermittent slots,
such that the stiffness center would also be discontinuous along
the length. However, the slots in the prototypes used herein
are very small and close together, such that it is reasonable to
consider the tube as homogeneous with a constant or smoothly
varying effective stiffness center for modeling purposes. In the
case of a uniform pattern, we determine the constant effective
stiffness center by finite-element analysis, as described later
in Section III-C. In the cases with nonuniform patterns, we
determine a smoothly varying stiffness center by interpolating
several sampled points of finite-element-generated data from
uniform patterns.

In any case, the collection of stiffness centers forms a path
in space, pi(si) ∈ R3 as a function of si, a material reference
parameter corresponding to length along the undeformed tube
(Subscript i denotes the tube number, with tube 1 being the
outermost tube). Note that throughout the paper, the variable
si is used to refer to specific material points on tube i (i.e.
si = 5mm always locates the same material point, namely
the material that existed 5mm along the tube when it was
undeformed). This allows us to write mechanical properties as
functions of si consistently. Along the path pi(si), we assign
material-attached reference frames (body-frames) containing
position pi ∈ R3 and orientation Ri ∈ SO(3), where the z-
axis of Ri is assigned parallel to the tube center axis, and
its x-axis passes through the tube center, as shown in the
subset in Figure 3. The choice of how to assign the material-
attached reference frames is somewhat arbitrary. In general,
other choices could be made (such as z-axis parallel to the
stiffness center path) which would lead to different expressions
of the kinematic relationships in the model. The choice made
in this paper simplifies considerably the subsequent kinematic
expressions and concentric-tube constraint enforcement.

The location of the tube center relative to the stiffness center
is expressed in body-frame coordinates by a vector ri(si) ∈ R3

in the cross section of the tube:

ri = [xi(si) 0 0]⊤ (1)



4

where xi is the displacement from the ith tube’s stiffness
center (origin of the body frame) to the centerline origin in
the local frame coordinates. In this model, xi can vary along
si, the length along the undeformed tube centerline. Note that
defining ri with zero y component does not limit the generality
of this model, because ri is expressed in coordinates of Ri.
Stiffness centers that form helical paths, or even more general
paths can be described simply by attaching the stiffness center
reference frame such that its x axis passes through the tube
center. The stiffness center location can vary down the length
of the tube, as shown in Figure 4, where we can see examples
of constant and varying ri.

The differential equations defining the evolution of the tube
stiffness center frame (a function of the reference parameter si
which denotes the arc length along the undeformed centerline
of the tube) are

dpi(si)

dsi
= Ri(si)

(
e3 −

dri
dsi

)
dRi(si)

dsi
= Ri(si)ûi(si)

(2)

where e3 = [0 0 1]⊤, ui ∈ R3 is the angular rate of change
of Ri with respect to si, and thêoperator maps R3 to so(3),
the Lie Algebra of SO(3) [33] (also note that ()∨ denotes the
inverse mapping of ̂, i.e., (û)∨ = u).

C. Model Structure Overview

Our goal in the following subsections is to determine
the kinematic constraints imposed by the enforcement of
concentricity on multiple tubes with offset stiffness centers.
While tubular concentricity constraints are well-understood
for precurved concentric-tube robots (e.g. as detailed in [22],
[21]), the concentricity constraints become more complex
when the tubes have stiffness centers that are not located at the
common tube center. Our high-level modeling approach will
be to parameterize a framed curve along the common tube
centerline (i.e. with a set of basis functions that determines
centerline curvature), and then use the constraints of concen-
tricity to determine certain components of curvature for the
individual tubes. If there are remaining components of the
individual tube curvatures that are not fully determined by
the concentric constraints, we will additionally parameterize
them with a set of basis functions. Thus, we aim to arrive at
a set of free parameters (basis-function coefficients) that fully
determines the multi-tube configuration with the constraints of
concentricity embedded. After determining the free variables
to be parameterized and embedding the constraints, we will
use the principle of minimum potential energy to determine
the basis function coefficients, thus predicting the mechanical
response of the collection of tubes to actuation and external
loading, which come into the energy minimization framework
as global constraints and work-energy terms respectively.

D. Embedding the Constraints of Concentricity

When two or more tubes are concentrically nested within
one another and fixed at their distal ends, the tubes will share a
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Fig. 4. Examples of constant and varying stiffness center along the unde-
formed tube length with locations in relation to the tube profile.

common centerline position in global coordinates p(s) ∈ R3,
parameterized as a function of arc length s along the curve.
For modeling convenience we attach a reference orientation
R ∈ SO(3) along this centerline curve. The centerline frame is
fixed at the robot base and slides along the centerline without
torsion, forming what is known as a “Bishop Frame” [34],
[12]. The equations governing the centerline Bishop frame are
then:

p′(s) = t(s) = R(s)e3

R′(s) = R(s)û(s)
(3)

where s is the arc length along the centerline curve, t(s)
denotes the tangent vector of the centerline, and (′) denotes
a derivative with respect to s. It should be noted that u =
[ux uy 0]⊤ since the frame is a Bishop frame and has no
torsion by definition. The centerline curvature functions ux(s)
and uy(s) will eventually be parameterized by a set of basis
function coefficients. We next seek to constrain the individual
tubes to follow this common reference centerline. In the tube
material cross section located at si, the position of the stiffness
center pi and the centerline position p are related by

p = pi(si) +Ri(si)ri(si) (4)

To determine how this concentric constraint determines the
individual tube curvatures, we first take the derivative of (4)
with respect to si (i.e. perform index reduction):

dp

dsi
= Ri

(
e3 −

dri
dsi

)
+Riûiri +Ri

dri
dsi

= Ri (e3 + ûiri)

(5)

The differential relationship between the centerline arc length
s and the individual tube reference parameter si is by defini-
tion

ds

dsi
=

∥∥∥∥ dpdsi
∥∥∥∥ (6)
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Because the rotation of a vector does not affect its magnitude,
the norm of dp

dsi
is equivalent to

ds

dsi
= ∥e3 + ûiri∥ (7)

Now knowing the differential relation in equation (7), we can
use the definition of t in (3) to write the constraint as:

t =
dp

dsi

dsi
ds

= Ri(e3 + ûiri)
dsi
ds

= Ri
(e3 + ûiri)

∥(e3 + ûiri)∥

(8)

Upon further inspection of the ûiri term in equation (7)
and (8), we find:

ûiri =

 0 −ui,z ui,y
ui,z 0 −ui,x
−ui,y ui,x 0

xi0
0

 =

 0
ui,zxi
−ui,yxi


where we see that ui,x does not affect the concentricity con-
straint equation at all. Therefore, we are free to parameterize
the function ui,x(si) as a configuration variable along with the
centerline curvature functions ux(s) and uy(s). The remaining
curvature components ui,y(si) and ui,z(si) should then be
determined by the concentricity constraint (4).

At first glance, it might seem that given t and Ri, ui,y and
ui,z could be straightforwardly determined from (8). However,
taking the dot product of (8) with Riri we find:

t⊤Riri =
(e3 + ûiri)

∥e3 + ûiri∥

⊤
ri = 0 (9)

Interpreted geometrically, this result says that the x axis of
Ri is orthogonal to the centerline tangent t. This result
presents a difficulty because neither ui,y nor ui,z appear in this
component of the constraint. Considering this, combined with
the fact that (8) is normalized, we find that (8) by itself cannot
be used to directly determine both ui,y and ui,z . Further, (9)
reveals a constraint on Ri itself which must be true for all si.
Both these challenges are resolved by performing an additional
index reduction by taking a derivative. This provides the
additional information needed to solve for both ui,y and ui,z ,
while also satisfying (9) (i.e. it’s derivative will be satisfied
everywhere, and Ri can be chosen to satisfy (9) at si = 0 as
a boundary condition). Thus, differentiating (9) with respect
to si,

ds

dsi
(t′)⊤Riri+t⊤Riûiri + t⊤Ri

dri
dsi

= 0 (10)

where t′ = Rûe3. Furthermore, we can use the original
constraint equation (8) and the fact that t is a unit vector
to write

t⊤t = 1

t⊤Ri (e3 + ûiri) =
ds

dsi

t⊤Rie3 + t⊤Riûiri =
ds

dsi

(11)

Substituting (10) into (11), we can then eliminate ui from
equation (11):

t⊤Rie3 −
ds

dsi
(Rûe3)

⊤Riri − t⊤Ri
dri
dsi

=
ds

dsi

which enables us to express ds
dsi

in terms of the stiffness center
and centerline kinematic variables:

ds

dsi
=

t⊤Ri

(
e3 − dri

dsi

)
1− e⊤3 ûR

⊤Riri
(12)

Substituting this result into (8), we find that we can now
determine the remaining curvature components ui,y and ui,z
of the stiffness center in terms of the centerline curvature u,
the known stiffness center ri and other integrated quantities
such as R, Ri, and t.

ui,y =
1

xi

1−
e⊤3 R

⊤
i tt

⊤Ri

(
e3 − dri

dsi

)
1− e⊤3 ûR

⊤Riri


ui,z =

e⊤2 R
⊤
i tt

⊤Ri

(
e3 − dri

dsi

)
xi

(
1− e⊤3 ûR

⊤Riri
)

(13)

As previously discussed, ui,x is not constrained by the con-
centricity relationship.

E. Parameterization of Free Variables

Now that we have determined the free variables and em-
bedded the constraints of concentricity, we now outline our
parameterization of these free variables and how they are
implemented in our energy minimization framework. The
parameterization provides an approximation of the two com-
ponents of the centerline curvature u and the free curvature
component ui,x of each tube frame. We parameterize these
functions as polynomials of order N in the variable s1. For
the centerline curvature u = [ux uy 0]⊤, we have

ux =

N∑
k=0

aks
k
1 uy =

N∑
k=0

bks
k
1 (14)

where ak and bk are the polynomial coefficients for the
parameterized ux and uy respectively. Similarly for ui,x, we
have

ui,x =

N∑
k=0

ci,ks
k
1 (15)

where ci,k are the polynomial coefficients for the ith tube.
Thus, starting with a set of polynomial coefficients for ak and
bk for the centerline and ci,k for each tube, we can construct
the entire robot configuration by integrating the stiffness center
kinematic equations in (2) (using (13) to enforce the concen-
tricity) and the centerline kinematic equations (3). A detailed
solution procedure including boundary conditions is discussed
in the following subsections. It should be noted that other
functional bases, such as Fourier series, could alternatively be
used to parameterize the curvature, and the results should not
change much as long as there is sufficient resolution in the
basis representation.
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F. Principal of Minimal Potential Energy
To determine the robot configuration, we employ the prin-

ciple of minimum potential energy. The potential energy
sources we take into account include the potential energy from
elastic bending and twisting of the tubes and the energy from
conservative external loads. Specifically, these include (1) total
elastic potential energy, (2) the work of point forces, and (3)
the work of distributed forces applied to the outer most tube.
The elastic potential energy Ee from bending and torsion of
the ith tube can be found by integrating its derivative:

dEe
dsi

=
1

2
(u⊤
i (si)− u∗⊤

i )Ki(si)(ui(si)− u∗
i ) (16)

where u∗
i =

(
R∗⊤
i dR∗

i /dsi
)∨

is the curvature associated
with the stiffness center frame when the tube is straight (and
R∗
i is the orientation when the tube is straight), and Ki is

the stiffness matrix. If the axes of R∗
i are aligned with the

effective principal axes of the cross section material, then Ki is
diagonal and contains the conventional flexural rigidity values
(EI)i,x(si) and (EI)i,y(si) about the x and y axes and the
torsional rigidity (GJ)i(si) of each tube:

Ki(si) =

(EI)i,x(si) 0 0
0 (EI)i,y(si) 0
0 0 (GJ)i(si)

 (17)

In Sections III and IV, we will outline our process of estimat-
ing the components of (17) for laser cut tubes. It should be
noted that because the rigidity parameters can vary down the
length of each tube based on the slot patterning, (EI)i,x(si),
(EI)i,y(si), and (GJ)i(si) can be evaluated as functions of
si.

The elastic energy derivative in (16) for each tube is written
with respect to its respective arc parameter si. When the
tube collection undergoes deformation, previously coincident
material locations on the tubes will slide past one another.
Thus, we need a way to express the new values of the si
variables that are coincident in the deformed state. To do this,
we express each coincident si as a function of s1, and we find
the si corresponding to s1 by integrating si as a state variable
using its derivative

dsi
ds1

=
dsi
ds

ds

ds1
(18)

where where Equation (12) defines both ds
ds1

and dsi
ds . Thus,

we use s1 as a common integration variable, and integrate all
differential equations with respect to it. Each tube’s energy
derivative can be written with respect to s1 by multiplying
(16) by dsi

ds1
given above. Thus, we write the derivative of

total elastic energy with respect to s1 as

Ėe =

n∑
i=1

dEe(si)

dsi

dsi
ds1

(19)

Next we consider the work done by conservative external
point forces and distributed forces along the length of the
tubes. For both types of loading, we assume they are applied
to the outermost tube in the collection (i.e. tube 1). The energy
associated with the distributed loading can be written as

Ėf = −f⊤(s1)p1(s1) (20)

where f(s1) ∈ R3 is the force per unit s1. Similarly, the energy
associated with the work done by an external point force F ∈
R3 applied at s1 on tube 1 can be written as:

EF = −F⊤p1(s1) (21)

where F = [Fx Fy Fz]
⊤ is expressed in global coordinates.

Thus, the total potential energy E of the CPPR system is

E = EF +

∫ L

0

(
Ėe + Ėf

)
ds1 (22)

and (22) serves as the objective function in the minimization
problem that defines the robot kinetostatic model.

G. Model Boundary Conditions

Model boundary and initial conditions are used to express
the physical constraints of CPPRs imposed by actuator dis-
placements and tube arrangements.

1) Proximal Boundary Conditions: As shown in Figure 5,
the variable s1 is taken to be zero at the proximal end of the
laser cut potion of tube 1, and L is the length from s1 = 0 to
the tip where all tubes are attached. When all tubes are straight
and attached at their tips, si is also defined as zero when s1
is zero, even though tube i may contain additional laser cut
length in the proximal direction. The displacement of the base
of tube i away from this reference state is denoted qi.

The initial arc lengths along the stiffness center of the ith

tube and the centerline are then

si(0) = qi − q1, i = 2, ..., n

s(0) = −q1
(23)

considering both si and s to be functions of s1. The arc length
along the centerline s is attached at the base of the slotted
section of tube 1. As shown in Figure 5, a positive actuation
displacement qi is in the global -z-direction.

The initial position and orientation of each tube at its
proximal base are implemented into the model as initial
conditions to the kinematic equations for (2) and (3) as

pi(si(0)) = −Rz(αi)ri(si(0))− [0 0 q1]
⊤

Ri(si(0)) = Rz(αi)
(24)

for i = 1, ..., n where Rz(αi) ∈ SO(3) is a rotation matrix
about the z-axis by an angle αi:

Rz(αi) =

cos(αi) − sin(αi) 0
sin(αi) cos(αi) 0

0 0 1

 (25)

For the centerline, the initial position and orientation is aligned
with the global reference frame:

p(0) = [0 0 − q1]
⊤

R(0) = I3×3

(26)

where I3×3 is a 3× 3 identity matrix.



7

Fig. 5. Actuation and arc length variables for a two tube CPPR. The base
of the slotted section of Tube 1, the outermost tube, is considered s1 = 0.
The distal arc length s1 = L is set to where the slotted section of Tube 1
terminates.

2) Distal Orientation Boundary Constraint: Because the
distal ends of the tubes are fixed together in CPPRs, this
creates a distal orientation constraint for each tube. The
relationship between the distal orientation of the ith tube and
tube 1 can be described as

Ri(L) = Rz(βi)R1(L) (27)

where Rz(βi) is the prescribed distal orientation offset for
the ith tube relative to the distal orientation of tube 1. These
distal constraints are implemented as boundary conditions on
the kinematic equations. To eliminate redundant equations, and
exploit the structure of SO(3) each distal orientation constraint
can be written as a minimal set of three equations as

[log(R1(L)
⊤Rz(βi)

⊤Ri(L)]
∨ = 0, i = 2, ..., n (28)

where log() is the matrix natural logarithm, which maps SO(3)
to so(3) [35] and the ∨ operator subsequently maps so(3) to
R3. In Section II-I, we will show how (28) is implemented in
our energy minimization.

Because the tips of all tubes are attached at the tip, and
because of our definition of the si zero position, si must be
to L at the tip s1 = L, thus we have an additional distal
constraint enforcing the fact that the tube tips never translate
in and out of each other:

si(L)− L = 0, i = 2, ..., n (29)

H. Model Optimization Problem Statement

We now detail the state variables and optimization problem
statement to be solved using all of the previously derived
model equations. First, the kinematic derivatives of the stiff-
ness centers and the centerline need to be expressed with
respect to s1 to facilitate simultaneous integration of all
variables. Expressing the centerline differential equations in
(3) with respect to s1 can be achieved by multiplying equation
(12) to the set of equations:

ṗ =
dp

ds

ds

ds1
= Re3

ds

ds1

Ṙ =
dR

ds

ds

ds1
= Rû

ds

ds1

(30)

Expressing the kinematic differential equations of the stiff-
ness centers with respect to s1 is achieved by multiplying
equation (18):

ṗi = Ri(si)

(
e3 −

dri
dsi

)
dsi
ds1

i = 1, ..., n

Ṙi = Ri(si)ûi(si)
dsi
ds1

i = 1, ..., n

(31)

For our model implementation, we define a state vector
y = {p,R,p1,R1, ...,pn,Rn, s2, ..., sn} that contains the
kinematic state variables of the CPPR system. The derivatives
of these state variables are given by equations (18), (30), and
(31) and integrated over s1. The polynomial coefficients for the
free variables in (14) and (15) and the curvatures associated
with the stiffness center frames of the tubes when straight
(used in equation (16)) are concatenated into a single vector
x as

x = [a,b, c1, ..., cn]
⊤ (32)

where a = [a0, a1, ..., ak], b = [b0, b1, ..., bk], and ci =
[c(0,i), c(1,i), ..., ci,k] for i = 1, ..., n. Using the principal of
minimum potential energy, the curvatures of the centerline and
the tube stiffness centers along s1 can be found by finding
x that minimizes E, the total potential energy in the CPPR
system. Thus, we have a minimization problem subject to
nonlinear constraints:

min
X

E = EF (yL) +

∫ L

0

(
Ėe(x,y, s1) + Ėf (x,y, s1)

)
ds1

subject to g(yL) = 0
(33)

where yL = y(L) is the final state vector at L which is
a function of x, and g(yL) is the constraint function that
contains the the distal orientation boundary condition of (28)
and the actuation boundary constraints (29), which implicitly
is a function of x.

I. Numerical Solution Procedure

In our model implementation, we used MATLAB’s
fmincon(), a packaged numerical solver for general con-
strained nonlinear optimization problems, using the interior-
point method. To reproduce our model using fmincon() or
any other packaged routine for constrained optimization, one
only needs to write functions which evaluate the objective
function and the constraint residuals. The following steps
are needed to do this, given tube actuator displacements qi,
external tip force F, and the current iteration’s guess for the
parameterized curvature x.

Evaluate Objective Function:
1) Define initial conditions y0 based on actuation variables

q1...qn, and α1...αn, using equations (23)-(26).
2) Integrate the state derivative ẏ along the arc length s1.

The equations to be integrated are (18), (30), and (31),
(which are calculated using equations (2), (3), (12),
(13), and (18)). These are integrated for s1 ∈ [0 L]
to determine y. To do this, our implementation uses a
fourth-order, adaptive stepsize, Runge-Kutta integration
routine, ode45(), but other solvers could equally be used.
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Fig. 6. Demonstration of a two-tube CPPR bending segment with a proximal
transmission section, intended for use within a multi-segment CPPR system.
The distal CPPR segment actuation is identical whether it is actuated in free
space (on the left) or when constrained by a curved overtube (on the right),
and the actuation does not exert significant forces on the overtube.

3) Calculate the total energy E by (22) where elastic energy
Ee and distributed load energy Ef are computed by
integrating (19) and (20) over the range s1 ∈ [0 L],
and point load energy EF is calculated by (21). The
energy integrals can either be evaluated numerically after
the main kinematic integration, or simultaneously by
including the energy terms as state variables.

Evaluate Constraint Residuals:
1) Do steps 1 and 2 of the objective function evaluation

above, to calculate the state variables along the length.
2) Evaluate the residuals of the orientation constraints and

actuation constraints as the left-hand sides of (28) and
(29). In our MATLAB implementation, this defines a
constraint function which is used by the fmincon()
algorithm.

Given an initial guess of the unknown curvature parameters x,
the optimization algorithm iteratively evaluates the objective
function, constraints, their gradients and Hessians, and chooses
new guesses for x improving the objective function while
satisfying the constraints, until the termination criteria of opti-
mality are met. For our kinetostatic simulations, we provided
an initial guess of x = 0 for the polynomial coefficients and
used 3rd degree polynomials in our parameterization. Higher
order polynomials produced essentially the same solution as
the 3rd degree polynomial but increased solution computation
times. A Dell Precision 5820 Precision tower using an Intel(R)
Xeon(R) W-2235 CPU was used for all kinetostatic model
calculations.

J. Modeling Robots with Multiple Independent Segments

While a single bending segment of tip-attached tubes pos-
sesses 3 actuatable DOF, and a triplet of tubes can achieve
4 DOF, we anticipate combining multiple of these bending
sections in series to enable higher-DOF robotic devices. This
is demonstrated in the video attachment associated with the
paper, a still image of which is shown in Figure 2 (b).

To enable independent actuation of the two bending seg-
ments, the patterns of the distal tube segment are placed at the

end of a transmission portion of tube that has a different cut
pattern which is symmetric (no offset stiffness center), flexible
(low bending rigidity), and axially and torsionally stiff. Thus,
when this pair is actuated, only the distal segment bends, as
shown in Figure 6. The flexible transmission portion can be
simultaneously curved in any shape without affecting the distal
segment actuation, and the distal segment actuation does not
affect the reaction forces on the transmission portion. In this
way, a CPPR segment can be deployed through the working
channel of a long, flexible endoscope, or through the inner
lumen of another CPPR segment to create a higher-DOF robot,
as shown in Figure 2 and the supplemental video.

Toward modeling multi-segment robots like this, if the trans-
mission portion of the distal segment is assumed to be axially
and torsionally rigid, then each segment’s kinematics can
be calculated in series. First, the proximal segment segment
kinematics are calculated as described above, with the addition
of the bending energy of the transmission portion (which is
bent according to the backbone curvature) to the total elastic
energy. Then, the distal segment kinematics are calculated
independently and transformed by the centerline frame at the
end of the proximal segment to obtain the final end effector
pose. This approach appears useful because the transmission
sections are designed with high axial and torsional rigidity
compared to their bending rigidities. Future work may include
combined modeling of torsional and axial deformation in the
transmission lines.

III. TUBE PATTERN DESIGN AND PARAMETER
CHARACTERIZATION

In this section we discuss the design of the laser cut tubes
with offset stiffness centers and characterization of their elastic
parameters. For our parameter characterization, we use static
finite element analysis (FEA) simulations to calculate the
rigidity parameters used in the stiffness matrix Ki of equation
(17) and the stiffness center locations xi of the patterned tubes.

A. Tube Pattern Designs

We use a pattern of narrow slots cut into the tube walls with
a fiber laser to shift the stiffness center away from the center
of the tube cross-section and alter the flexural and torsional
rigidity of the tube. The slot pattern contains interleaved slots
such that a winding path of solid material remains, similar
to so-called “serpentine” beams in MEMs literature [36]. The
slotted pattern can vary along the length in order to change
the mechanical properties. Three slot patterns, one designed
for two-tube CPPRs with constant ri (Figure 7), one designed
for two-tube CPPRs with varying ri (Figure 8) and another
designed for 3D three-tube CPPRs with constant ri (Figure
9) were used for our validation experiments. In Figures 7(a)
and 9(a), the dark regions in the cross-section views represent
solid, uncut material.

For the two tube CPPRs, we use a linear pattern of over-
lapping slots, forming a single serpentine pattern along the
length of the tube as shown in Figure 7. The slot dimensions
include the slot overlap angle ψi, backbone angle ϕi, slot pitch
hi, kerf λ and the length of tube that contains the slotted



9

(c)(b)(a)
𝜙!

2𝜋𝑟"
𝜓!𝑟"

𝜆

𝜙!𝑟"
2

𝜓!

ℎ

𝜙!𝑟"
2

‘Unrolled’ Pattern Segment

Effective
Stiffness 
Center

Uncut
Material

𝑥!

𝐿!

‘Unrolled’
Tube View

Top
View

Side
View

Bottom
View

Tube Axial
View

Intermittently 
Cut Material 

Fig. 7. Slotted-tube pattern used for two-tube CPPR validation experiments.
Slot parameters are designed using an ’unrolled’ pattern segment that is
wrapped over the tube (a). This pattern generates an effective stiffness center
along the patterned tube segment and leaves an uncut material ’backbone’
region with intermittently cut material along the segment length. Linearly
patterning the segment design down the length of an unrolled tube generates
the slotted pattern length Li (b). The resultant patterned tube is shown from
top, side, and bottom views (c).
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Fig. 8. Converging tube design used for the Case 2 CPPR in which the
backbone angle ϕi of each tube linearly tapers down the length of each tube
as a function of si.

pattern Li. In general, increasing the slot overlap angle ψi,
decreasing the backbone angle ϕi, and decreasing the slot
pitch hi decreases the flexural and torsional rigidity of the
patterned tube. The backbone angle ϕi is the primary variable
that affects the stiffness center offset; the smaller the backbone
angle, the greater the stiffness center offset is from the center.
The kerf λ dictates the amount of tube angulation before the
slots close together, such that a larger kerf enables a larger
max angulation.

When compared with the larger, rectangular slots used in
previous CPPR designs [1], the smaller slot serpentine pattern
enables a more homogeneous material response that reduces
stress concentrations and prevents mechanical interference
of slot edges. While uniform various patterns have been
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Fig. 9. Slotted-tube pattern used for three-tube CPPR validation experiments.
Slot parameters for a unit cell are shown in (a) with the ‘unrolled’ pattern
design that is wrapped onto a nitinol tube (b). The patterned tube is shown
from a top, side, and bottom views in (c). Note that the additional overlaps
from γi create additional slots on the side of the tube, thus enabling improved
design of both flexural rigidity values of the tube.

investigated for optimal flexural and torsional properties [37],
[38], the serpentine pattern enables us to parametrically and
smoothly vary mechanical properties (like stiffness center)
down the length of the tube. Furthermore, less material is
removed overall, which increases robustness, and the slots
can be designed to close at a specific curvature to protect
the material (see Section III-D). Finally, the interleaved nature
of the slots generally helps to preserve torsional stiffness to
a greater degree than patterns with identical slits down the
length.

For the tube pattern used in our three tube robot, we used
additional overlapping sections in the unit cell pattern that
generate serpentine sections on three sides of the tubes. As
each tube is required to bend in more than one plane in a
three-tube CPPR, having large stiffness asymmetries can make
actuation difficult, thus a tube pattern that can achieve near
symmetric flexural rigidity values for each tube (i.e. (EI)x,i ≊
(EI)y,i) alleviates this issue. For all tube designs, a pulsed
fiber laser was used to machine the slot patterns onto the tubes.
The tubes in each prototypes were glued together to their tips
using an industrial adhesive (Loctite 430). Laser welding can
also provide a strong weld for bonding the tubes together at
their distal tips.

B. Young’s modulus calibration

In order to provide accurate FEA results for parameter
characterization, we calibrated the Young’s modulus of each
tube. The Young’s modulus is found by fitting small deflection
force-displacement data from a three-point flexural setup,
as shown in Figure 10 and using the Euler-Bernoulli beam
equation for a simply supported beam with a midpoint load
applied:

δ =

(
1

Ei

)
FEL

3
E

48I
(34)
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Fig. 10. Three point flexural test setup used to calibarate the Young’s
modulus E of each nitinol tube. The moduli values are then used in our FEA
simulations to determine the flexural and torsional properties of our patterned
tubes.

TABLE II
NITINOL TUBE DIMENSIONS AND CALIBRATED MECHANICAL

PROPERTIES

ro ri Ei ν Gi

(mm) (mm) (GPa) (GPa)
Tube 1 1.25 1.18 56.27 0.33 21.15
Tube 2 1.095 1.016 73.43 0.33 27.61
Tube 3 0.900 0.811 68.48 0.33 25.74

where Ei is the Young’s modulus of the ith tube, FE is
the applied midpoint force, LE is the length of the simply
supported beam, I is the second moment of area of the
tube, and δ is the midpoint displacement of the beam. For
our validation experiments, we use three different tube sizes,
which are tabulated in Table II. The length LE used for all tube
cases was 90mm. Each tube is simply supported with rollers at
each end. A linear actuator (Thorlabs MTS50-Z8), controlled
by a DC servo motor controller (Thorlabs KDC101), is used
to apply a displacement δ at the midpoint along the beam.
The midpoint force FE at each displacement is recorded with
a force gauge (ATI Mini40) at each applied displacement. A
displacement range from 0 to 2mm in 0.1mm increments was
used for the modulus calibration. A linear fit is performed on
the dictated midpoint displacements as the dependent variable
and FEL

3
e/48I as the independent variable. The slope of

the linear fit corresponds to (1/Ei). The calibrated Young’s
moduli for each tube is tabulated in Table II, which are
within the expected Young’s modulus range for nitinol. The
coefficient of determination for each fit of (34) was 0.99,
ensuring displacements to the tubes were within the linear
elastic region of deflection. The experimentally determined

Fig. 11. FEA Setups for calculating the flexural rigidity about x (EI)i,x (a),
flexural rigidity about y (EI)i,x (b), and torsional rigidity (GJ)i) (c). The
limits of the colorbar in (a) and (b), Zmax and Zmin, represent the max. and
min. displacements in the z-direction and in (c), Umax represents the max.
resultant displacement in the simulation.

Young’s moduli are then implemented into the FEA material
model for each tube.

C. Parameter Characterization

This subsection details our procedure for calculating the
flexural and torsional rigidity values used in (17) and the
stiffness center offset ri for each patterned tube using FEA.
Solidworks Simulation Premium was used as our FEA pack-
age, using a linear elastic material model and shell elements. A
curvature-based mesh with a maximum element size of 0.1mm
and a minimum element size of 0.005mm was used for each
simulation. The proximal base of the tube is rigidly fixed in
translation and rotation while tip moments are applied at the
tip, as shown in Figure 11.

To calculate the effective flexural rigidity values (EI)i,x
and (EI)i,y in FEA, we apply moments at the distal tip of
the patterned tube of length LFEA and record the resultant
bend angle:

(EI)i,x =
MxLFEA

θx

(EI)i,y =
MyLFEA

θy

(35)
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where LFEA is the length of the patterned tube used in
the FEA simulation, Mx and My are applied tip moments
about the global x- and y-axes respectively, and θx and
θy are the resultant bend angles about the x- and y-axes
respectively. Moments at the tip are created by applying
two point forces at the tip, each with equal magnitude but
opposite directions, separated by a distance of outer diameter
of the tube, (i.e. Mx = 2Fxro and My = 2Fyro). The
value of each point force was 0.01N and the bend angle
is calculated using a small angle approximation from the
maximum and minimum z-displacements from the applied
moment, θx = (Zmax − Zmin)/(2ro). We should note that
while 3-point bending tests can easily be used to determine the
flexural rigiditiy of uniformly patterned tubes, experimental
characterization would be much more involved and error prone
in the case of variable stiffness (as will be shown in Section
IV-C).

To estimate the effective torsional rigidity (GJ)i, we apply
a torque Mz about the global z-axis at the tip of the patterned
tube and record the resultant rotation θz:

(GJ)i =
MzLFEA

θz
(36)

To generate the torque Tz , we apply four distal forces at the
tip to generate a torque about the tube z-axis. Each point
force has a magnitude of 0.01N and the proximal base is
fixed in translation and rotation. The rotation angle θz is
similarly calculated using the resulting displacements (i.e.
θz = Umax/OD where Umax is the maximum resultant
displacement in the FEA simulation).

To calculate the stiffness center location xi, we use the
maximum and minimum z-displacements, Zmax and Zmin
respectively, from the (EI)y,i test:

xi = ro −
2ro

1 + |Zmax

Zmin
|

(37)

After establishing all the stiffness parameters through the
FEA tests, we use these parameters in the kinetostatic model.
Figure 12 shows a high level overview of the relationship
between the FEA characterization and the kinetostatic model.

D. Maximum Curvature and Slot Closure

As the bending increases, the curvature will eventually be
limited by either material strain or the closure of slots on one
of the tubes. Based on the simple geometric assumption that
slot contact will happen first at the edges of the overlapped
region (spanned by the angle ψi), an approximate analytical
relationship between slot design parameters and maximum
absolute curvature of a component tube was derived in [39]
Equation 4.7, which when solved for curvature gives

κi,max =
λ

h|xi|+ roh cos(
ψi

2 )− |xi|λ
(38)

This is a useful heuristic in the design of the slot pattern
because we would ideally want to limit the curvature to
avoid material strain limits and protect the device, while also
ensuring that the slot design will allow the designer’s desired

range of curvature. The max curvature according to a material
strain limit ϵmax can be approximated as:

κi,max =
ϵmax

ro − |xi|
(39)

As long as the slot-closure curvature given by (38) is less than
the strain-limit curvature (39), the segment will be somewhat
protected from material failure due to accidental overstraining.

IV. EXPERIMENTAL VALIDATION

To validate our kinetostatic model, we compare our model
predictions with laser cut nitinol CPPRs for three design cases.
Case 1 uses a pair of patterned tubes with constant stiffness
center locations along the length of the tube, Case 2 uses
a pair of patterned tubes with varying stiffness center and
mechanical properties down the length of the tube, and Case
3 uses three tubes with constant stiffness center locations as
shown in Figure 9. The rough design goals we had for these
prototypes include (1) being able to angulate the device at
least 90 degrees for the constant ri CPPR design (Case 1), (2)
shift the stiffness centers by at least 0.5 mm for a variable tube
pattern (Case 2), and (3) maintain reasonably high stiffness.
The tube alignment for each design case is shown in Figure 13.
For the two tube designs, the backbones are aligned 180° apart
from each other about the center of tube pair. For the three tube
design, the stiffness centers are 120° apart in the cross-section.
For all CPPR prototypes, we weld the distal tips together using
an industrial adhesive (Loctite 430). We actuate each CPPR
design across its workspace and compare model predictions
with the tip positions from the physical robots. For Cases 1
and 2, we also compare model predictions with point loads
applied at the distal tip and midpoint along the robot, as well
as planar shape experiment comparisons. For our loaded pose
experiments, we informally evaluated a range of loads and
picked 50g as a representative load that generated significant
displacement, but which was well within the payload capacity.
During informal tests, we subjected the robot to loads of up to
100g with no adverse effects other than greater displacement
at the end-effector.

A. Experimental Setups

We developed two actuation setups for our model validation
experiments: a motorized setup for 2-tube CPPRs and a
manual setup for the 3-tube CPPR. The 2-tube CPPR setup
uses a motorized linear stage (Thorlabs MTS50-Z8) to actuate
the inner tube while the outer tube remains fixed. Through-hole
drill chucks (Accupro 55162614) are used to grip the inner
and outer tubes to the actuation setup. The distal tip positions
of the CPPR prototypes are tracked using an electromagnetic
(EM) tracker system (NDI Aurora).

For our 3-tube CPPR experiments, we use manual linear
stages (Optics Focus MDX-4090-60) to translate tubes 2 and
3 while keeping tube 1 fixed. The drill chucks and electro-
magnetic tracker system from the 2-tube actuation setup are
also used in the 3-tube setup. For each of our experiments,
we perform a rigid point-set registration of corresponding
experimental and model actuation poses for each case.



12

FEA Parameter 
Characterization

(Section III)

Kineto-static model
(Section II)

Tube Parameters
𝐸𝐼 !,#, 𝐸𝐼 !,$ , 𝐺𝐽 !

and 𝑥! for 𝑖 = 1, … , 𝑛

Tube Size
𝑟%, 𝑟!

Slot 
Parameters
ℎ, 𝜆, 𝜙! , 𝜓! , 𝛾! 	

Actuation 
Inputs
𝑞! and 𝛼!

for 𝑖 = 1, … , 𝑛

Material 
Properties
𝐸! , 𝜈, 𝐺!

External 
Loads
𝑭, 𝒇

Shape and Pose of 
CPPR

𝒑, 𝑹, 𝒑! , 𝑹!
for 𝑖 = 1, … , 𝑛

Fig. 12. High-level flowchart the overall modeling paradigm. The dimensions, slot pattern, and material of the tubes are inputs to the FEA-based Parameter
Characterization from Section III which outputs the bulk parameters of the slotted pattern. The tube parameters are used in the kinetostatic model derived in
Section II. Actuation and external loads are inputs into the kinetostatic, which outputs the resultant shape and pose of the CPPR.
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Fig. 13. Tube alignments for the two-tube CPPRs (top) and three tube CPPRs
(bottom). The principal axes at the center for both alignments indicate the
origin of the centerline in relation to the stiffness center locations of each
tube.

TABLE III
SLOT PARAMETERS USED FOR CASE 1 CPPR

ϕi ψi λ h Li

(deg) (deg) (mm) (mm) (mm)
Tube 1 90 120 0.15 1.5 30
Tube 2 90 90 0.15 1.5 37.5

B. Case 1: Two-Tube, Constant Stiffness Center Location

Tube 1 serves as the outer tube and Tube 2 is the inner tube
from Table II. The slot parameters of the design are shown in
Table III and the resultant mechanical properties of both tubes
are listed in Table IV. An additional 3mm uncut section is
added to the tip of the tube pair to accommodate the EM sensor
attachment. We assess the model accuracy by actuating the
robot across its planar bending workspace and recording the
tip pose at each actuation pose. We compare model predictions
with experimental results in (1) free space, (2) distal tip loads
applied in the plane of bending, (3) distal tip loads applied
out of the plane of bending, and (4) midpoint loads applied in
the plane of bending.

For the unloaded pose data sets, we actuate the robot across
a ±3mm displacement range of the inner tube, actuating the
inner tube in 0.25mm increments and recording the distal tip
position at each pose. Figure 15(a) shows the range of motion

Fig. 14. Actuation setups for 2-tube CPPRs (top) and 3-tube CPPRs (bottom).

TABLE IV
MECHANICAL PROPERTIES OF CASE 1 SHEATHS

(EI)i,x (EI)i,y (GJ)i xi(si) αi βi
(Ncm2) (Ncm2) (Ncm2) (mm) (deg) (deg)

Tube 1 17.83 1.25 1.08 -1.09 0 0
Tube 2 20.70 1.85 1.71 0.94 0 0

at ±3mm actuation limits and in the straight, unactuated case.
We performed a rigid registration of the experimental data
to the model data. The largest pose error in the unloaded
case occurred at q = −3mm, where the error was 1.12mm,
approximately 3.6% of the overall active length of the robot.
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Fig. 15. Case 1 CPPR (constant ri) actuated while unloaded (a), a tip load applied in the plane of bending (b), a midpoint load applied in the plane of
bending (c), and a tip load applied out of the plane of bending (d). A 50g mass was used for the point load cases. The inner tube actuation q2 ranges tested
for each case are labeled. Distal tip positions of the CPPR are recorded at each pose and compared with model predictions.

To assess the repeatability of the actuation system, the Case 1
CPPR was actuated up to ±2mm in 0.25mm increments five
times. We record the pose error at each actuated configuration,
for each registered pose data set. The standard deviation is
taken at each actuation pose across the 5 repeated pose data
sets. We found that the maximum standard deviation in the
error position was 0.04mm, the smallest was 0.007mm, and
the mean standard deviation was 0.0207mm. To generate a
point force, we attach a 50g weight (∼0.49N) and record the
tip position at each pose. The distal tip load applied in-plane
case uses an inner tube displacement range of ±1.25mm in
0.25mm increments. The in-plane loading data set is shown in
Figure 15(b). The maximum error occurred at the maximum
pulling displacement of tube 2, q2 = 1.25mm, which had a
tip error of 0.9mm, approximately 3% of the robot length.
The midpoint load applied in the plane of bending used an
inner tube displacement range from 0 to 1.5mm and the result
is shown in Figure 15(c). The out-of-plane tip loading cases
used an inner tube displacement range of ±1mm, recorded
poses in 0.25mm increments. The out-of-plane loading data
set is shown in Figure 15(d). The tip position error statistics
and computation times for the unloaded and loaded cases are
recorded in Tables V and VI respectively. As we can see from
comparing the results of the in-plane and out-of-plane loading
results, the stiffness of the CPPR is much greater in the out-of-
plane bending direction. In the straight, cantilevered cases for
each loading case (q2 = 0), the transverse deflection while
loaded in-plane was 3.72mm and the transverse deflection
while loaded out-of-plane was 1.36mm.

TABLE V
TIP POSITION ERROR STATISTICS OF CASE 1

Loading Max. Error Min. Error Mean Error Std. Dev.
Case (mm) (mm) (mm) (mm)

Unloaded 1.12 0.07 0.54 0.24
Tip Load IP 0.90 0.14 0.47 0.29
Mid Load IP 0.44 0.10 0.26 0.14

Tip Load OOP 2.81 0.36 1.24 0.7

TABLE VI
CASE 1 KINETOSTATIC MODEL COMPUTATION TIME STATISTICS

Loading Max. Time Min. Time Mean Time
Case (s) (s) (s)

Unloaded 0.859 0.3594 0.586
Tip Load IP 3.469 2.094 2.537
Mid Load IP 7.469 2.594 4.527

Tip Load OOP 7.266 4.125 5.734

C. Case 2: Two Tube, Varying Stiffness Center Location

In this design case, we analyze the accuracy of the kine-
tostatic model over a wide range of actuation values, with
and without tip loads, on a CPPR with tubes having varying
stiffness center locations and mechanical properties along the
length of the tube. The tube pattern begins with a stiffness
center offset from the center at the base and linearly converges
toward the centerline at the distal tip. The rationale behind
this design choice stems from the results of [40] and [41]
in which a tendon-actuated continuum robot uses converging
tendon routing to improve its resistance to tip loads. To
create a patterned tube with a varying stiffness center, we
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TABLE VII
CONSTANT SLOT PARAMETERS USED FOR CASE 2 CPPR

ψi λ h Li

(deg) (mm) (mm) (mm)
Tube 1 90 0.15 1.0 30
Tube 2 90 0.15 1.0 35

use the slotted serpentine pattern shown in Figure 8 and vary
the backbone angle ϕi down the length of each tube. The
remaining slot parameters are kept constant down the length
of the tube as tabulated in Table VII.

We use the following linear function to taper the backbone
angle down the length of the tubes:

ϕi(si) =

(
ϕf − ϕo
Li

)
si + ϕo (40)

where ϕo is the backbone angle at si = 0, ϕf is the back-
bone angle at si = Li. Tubes 1 and 2 use ϕo = 80° and ϕf =
120° in this design case. In addition, the rigidity parameter
values will also be affected by the changing backbone design
and will need to be functions of si as well. To characterize
(EI)i,x, (EI)i,y , (GJ)i, and xi over the range of backbone
overlap angles, we perform a parameter sweep of the constant
slotted tube design in Figure 7 using a constant ϕi using the
calibration process used in Section III for Tubes 1 and 2. In
these parameter sweeps, ϕi is the only varied parameter while
the remaining slot parameters remained unchanged, as listed
in Table VII. The parameter sweep results are plotted in Figure
16 for the flexural and torsional rigidity values and stiffness
center locations. A polynomial regression of the parameter
sweep data is performed to generate polynomial functions of
the rigidity parameters and the stiffness center locations as
functions of the backbone angle of the tube. For the rigidity
parameters, we use a quadratic polynomial and use a linear fit
for the stiffness center locations.

The coefficient of determination of all fits was greater
the 0.98, confirming our polynomial order for each case is
a good fit for the data. The quadratic fits for the rigidity
parameters are implemented into the stiffness matrix Ki for
each tube in equation (17) and the stiffness center linear fits
are implemented into ri for each tube in equation (1) for the
energy minimization in (33).

For the free and in-plane loaded pose data sets of the Case
2 CPPR, we actuated the inner tube ±1.25mm in 0.25mm
increments. Like the Case 1 CPPR, we use a 50g weight at the
tip. The unloaded pose data set is shown in Figure 17(a) and
the loaded pose data set in Figure 17(b). The tip error statistics
of the free and loaded data sets are tabulated in Table VIII.
The statistics on computation time are shown in Table IX. In
free space, the largest error occurred at q2 = −1.25mm and
while loaded, the largest error occurred at q2 = 1.25mm; the
second largest error for the loaded pose was q2 = 1.25mm.
In future applications and designs, the mechanical properties
could vary down the length either as a means for increasing
the strength of the overall structure or for making the tip more
flexible to enable tip-first bending.
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Fig. 16. Parameter sweep of flexural, rigidity, torsional rigidity, and stiffness
center location of tubes 1 and 2 for Case 2 CPPR.

TABLE VIII
TIP POSITION ERROR STATISTICS OF CASE 2

Loading Max. Error Min. Error Mean Error Std. Dev.
Case (mm) (mm) (mm) (mm)

Unloaded 1.05 0.06 0.35 0.26
Loaded 1.21 0.13 0.51 0.36

D. Computational Speed

While our Matlab implementation of the model prioritizes
convenience over speed, we recorded statistics on the compu-
tational times required for all experiments on the Case 1 and
Case 2 prototypes. These times are recorded in Tables VI and
IX. In the case of no-loads, the model could likely be used for
real-time control through an optimized C++ implementation.
External loading causes an increase in computation likely
because the initial guess is farther away from the solution,
and the objective function landscape may be more difficult
for the solver.

E. Shape Validation Experiments

To assess the model accuracy of predicting the centerline
shape of the CPPR, we perform a series of shape validation
experiments on the Case 1 and 2 CPPR prototypes in un-
loaded and tip-loaded configurations. Our experimental setup
is shown in Figure 18. We utilize a 24.1 Megapixel DSLR
camera (Canon EOS Rebel T8i) and a macro lens (Canon EF
100mm f/2.8L Macro IS USM) for taking images of the proto-
types at each pose. For each pose and design case, the camera
is placed approximately 2.5m from the CPPR bending plane
to mitigate perspective distortion. To convert between pixel
coordinates and distances in millimeters, a calibration grid is
placed within the bending plane. Shape comparisons of Case
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Fig. 17. Case 2 (varying ri) prototype actuated to ±1.25mm in 0.25mm increments in unloaded (a) and tip loaded (b) poses, compared with model predictions.

TABLE IX
CASE 2 KINETOSTATIC MODEL COMPUTATION TIME STATISTICS

Loading Max. Time Min. Time Mean Time
Case (s) (s) (s)

Unloaded 5.125 0.234 3.526
Tip Load IP 5.687 3.531 4.273

1 and 2 CPPRs in unloaded and tip loaded configurations are
compared with the kinetostatic model. Our shape registration
process is as follows:

1) For each CPPR case and loading scenario, images are
captured for each actuated pose.

2) Each actuation pose image is imported into Matlab and
using ginput(), the scaling between pixel and millime-
ter distances is calculated by placing 2 points on the
calibration grid in the image.

3) Using ginput(), points are manually placed along the
centerline of the CPPR at each slot location for each
pose image.

4) A rigid point-to-point registration is performed on the
centerline points of the q2 = 0 image with the corre-
sponding points along the model centerline.

5) The registration transformation is then applied to the
other actuation poses. The RMSE is calculated using
the experiment and model points along the centerline of
the CPPR.

Because the slots have a constant spacing h along the length,
for CPPR Cases 1 and 2, corresponding points along the
length within the model can easily be extracted for registration
and calculated RMSE of each pose. The results of the shape
validation are shown in Figure 19 and the RMSE of each case
are tabulated in Table X.

F. Case 3: Three Tube, Constant Stiffness Center Location

For our patterned tubes, we use the three serpentine pattern
shown in Figure 9 with the design parameters tabulated in
Table XII and mechanical properties for each tube are listed
in Table XI. The stiffness center locations of each tube are
120o apart from one another about the global z-axis which is

DSLR 
Camera

Calibration Grid 
(in bending plane)

5mm

Bending Plane

Camera is parallel to 
bending plane

Conditional 
Acceptance Edit

10/5/23

DSLR Image View

Fig. 18. Experimental setup used in shape validation experiments. The camera
is parallel to the bending plane and is placed approximately 2.5m from the
bending plane to mitigate any perspective distortion. A calibration grid (with
5mm line spaces) lies within the bending plane of the CPPR prototypes and is
used to convert between the pixel distance in the camera images to millimeter
distances in order to compare the prototype shape with the centerline of the
model.

inspired by the actuation setups of many tendon-driven [42]
and pressure-driven [43] continuum robot designs.

Tube 1 remains fixed for all workspace poses. When either
tube 2 or 3 is actuated and the two other tubes remain fixed, the
robot bends in the direction of the stiffness center location of
the actuated tube. When tubes 2 and 3 are actuated at the same
magnitude and direction, the robot undergoes bending in the
direction of tube 1. These actuation poses are shown in Figure
20. For our model validation, we actuate tubes 2 and 3 over
a ±1mm range in 0.5mm increments. The result comparing
the three tube prototype with the model prediction is shown in
Figure 21. The tip error statistics are tabulated in Table XIII.
The largest tip error occurred for the q2 = 0mm, q3 = 1mm
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Fig. 19. Shape validation results performed for Cases 1 and 2 in unloaded and tip loaded scenarios. (a) represents Case 1 in free space and actuated to
±3mm, and with a tip load unactuated (q2 = 0) and actuated to q2 = 1mm (b). Case 2 in unloaded (c) and tip-loaded configurations (d).

𝒒𝟑 = −𝟏𝒎𝒎

𝒒𝟑 = 𝟏𝒎𝒎𝒒𝟐 = −𝟏𝒎𝒎

𝒒𝟐 = 𝟏𝒎𝒎

𝒒𝟐 = 𝒒𝟑 = −𝟏𝒎𝒎

𝒒𝟐 = 𝒒𝟑 = 𝟏𝒎𝒎

Fig. 20. Three tube robot actuation poses showing displacements of just tube 2 (left), just tube 3 (middle) and both tubes in equal direction and displacement
(right).

TABLE X
SHAPE VALIDATION RMSE

CPPR 
Case

Loading 
Case

Actuation 
Configuration

RMSE 
(mm)

Case 1

Unloaded

𝑞! = 0𝑚𝑚 0.127

𝑞! = 3𝑚𝑚 0.424

𝑞! = −3𝑚𝑚 0.564

Tip Load
𝑞! = 0𝑚𝑚 0.450

𝑞! = 1𝑚𝑚 0.543

Case 2

Unloaded

𝑞! = 0𝑚𝑚 0.466

𝑞! = 1𝑚𝑚 0.469

𝑞! = −1𝑚𝑚 0.300

Tip Load
𝑞! = 0𝑚𝑚 0.360

𝑞! = 1𝑚𝑚 0.366

configuration and the second largest tip error occurred for the
q2 = 1mm, q3 = 0mm configuration (which was a 1.21mm
error). The largest computation time was 47.74s, the smallest
was 0.687s, and the mean was 18.605s. These are much larger
times than those seen in the two-tube prototypes, which may

TABLE XI
SLOT PARAMETERS USED FOR CASE 3 CPPR

ϕi ψi γi λ h Li

(deg) (deg) (deg) (mm) (mm) (mm)
Tube 1 10 70 30 0.15 1.0 30
Tube 2 10 70 40 0.15 1.0 34
Tube 3 10 70 40 0.15 1.0 34

TABLE XII
TUBE PARAMETERS OF CASE 3 SHEATHS

(EI)i,x (EI)i,y (GJ)i xi(si) αi βi
(Ncm2) (Ncm2) (Ncm2) (mm) (deg) (deg)

Tube 1 1.96 1.78 2.73 -1.12 0 0
Tube 2 1.81 1.78 2.78 -0.983 120 120
Tube 3 1.83 1.89 2.91 -0.764 240 240

be due to larger amounts of stored energy since the tubes in the
3-tube prototype must bend partially about their stiffer axes.

G. Error Sources

As in the case for CTRs, friction can play a role in model
accuracy. As the clearance between the tubes gets smaller
and the length of the tubes is larger, it’s more likely to see
the effects of friction. In addition to friction, other sources
of model error can occur in the parameter characterization
process, the CPPR fabrication process, and in unmodeled
physical effects such as shear and axial deformations.
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Fig. 21. Workspace of three tube CPPR showing model predictions compared
with experimental pose points.

TABLE XIII
TIP POSITION ERROR STATISTICS OF CASE 3

Max. Error Min. Error Mean Error Std. Dev.
(mm) (mm) (mm) (mm)

Unloaded 1.98 0.22 0.83 0.44

Errors in the actual span length LE used to calibrate the
Young’s modulus plays an important role, as the span length
term in equation (34) is cubed. Tube mis-alignment, which
can occur from the gluing process, can also cause errors. If
the clearance between the tubes is too large, the inner tube(s)
may be glued to the walls of the outer tube during the glueing
process, nullifying the concentricity constraint.

Thermal effects from laser machining have also been found
to play a role in altering the microstructure and mechanical
properties of Nitinol [44], thus the actual Young’s modulus
of the laser patterned tubes may be slightly altered from the
uncut tube. In addition, the Kirchhoff tube assumption used in
the model does not account for shear and axial deformations.
The role of these effects should be further studied in future
work as model accuracy would decrease for CPPRs with
low axial stiffness and under large axial forces, either from
actuation or from external loads. Some of these errors could
be mitigated through simultaneous calibration of the rigidity
and stiffness offsets of the tubes with the registration of
the experimental pose data. Furthermore, these errors can be
mitigated, depending on the operation of the CPPR. In robotic
applications, errors can be mitigated from the operator in a
tele-operated system or through a model-based controller in
closed-loop control. However, based on the low errors in the
current set of experiments, the influence of these error sources
are negligible in the calibration and experimental setups.

V. DISCUSSION AND FUTURE WORK

We envision that this model will be useful for the design
of CPPRs toward future surgical applications, providing kine-

matic analysis that can account for manipulator interactions
with the environment and allow the design optimization of
generally patterned tubes for procedure-specific workspaces
and force requirements. Furthermore, the model we developed
here can be the basis for the development of intrinsic force
sensing and control algorithms in future robotic implementa-
tions of CPPRs.

There are several areas of future work. In terms of model
additions, explicit modeling of transmission shaft compliance,
as well as axial and shear deformations in bending segments
could be further explored for future CPPR designs. Also, it
will be necessary to increase numerical solution speed for use
in real-time control and sensing. In design, optimization of
tube patterns, both in the bending segments and the flexible
transmissions should be further explored, as well as procedure
specific designs of surgical manipulators. Multi-segment CP-
PRs, such as the example shown in Figure 2 and in the video
attachment, could be used for robotic surgical applications
such as endoscopic submucosal dissection of upper or lower
GI cancer. Furthermore, the three-tube CPPR demonstrated
from Case 3 also shows potential for robotic actuation since
3D position control can be achieved purely from translations of
the tubes, thus enabling an additional “roll” DOF or potentially
simplifying actuator design if roll is not desired.

VI. CONCLUSION

In this paper, we developed a general kinematics model
for CPPRs, expanding the capabilities for design and analysis
of these tubular robot actuators. The kinetostatic model was
derived, starting with the kinematics of a single tube and
culminating with the solution of the overall CPPR kinemat-
ics using the principal of minimal energy. An FEA-based
parameter characterization was demonstrated to estimate the
mechanical properties of patterned tubes with offset stiffness
centers. Two- and three-tube CPPR design cases were created
to test the capabilities of the model. The model shows good
agreement for all case designs and has similar levels of
accuracy to the state of the art models for other types of
continuum robots.
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APPENDIX

NOMENCLATURE
Kinematic nomenclature – 7/18/23 Update 
 

 ( ̇ ) Derivative with respect to $6 
(	′	) Derivative with respect to $ 
( ' ) Mapping that converts ℝ7 to	)*(3) 
∨ Inverse	of	the		( ' )	operation,  (:;)∨ = : 
$ Arc length along common centerline 
$9 Arc length along undeformed length of =:; tube 
> Number of tubes in CPPR 
? Highest polynomial order in parameterization 
@< Global position of stiffness center of the =:; tube 
A< Orientation of tube material section plane of =:; tube 
B< Stiffness center in cross-section in body-frame  
C9 Local C-coordinate of stiffness center location 
D< Angular rate of change of E9 with respect to $9 
@ Centerline position in global coordinates 
A Orientation of Bishop frame attached to centerline 
F Tangent vector of centerline position G  
D Angular rate of change of E 
H Index of polynomial for parameterized curvatures 
I= Coefficients for x-component of parameterized :  
J= Coefficients for y-component of parameterized :  
K9,= Coefficients of =:; tube parameterized curvature 
L Vector of polynomial coefficients of I= 
M Vector of polynomial coefficients of J= 
N@ Vector of polynomial coefficients of K9,= 
O Coefficients vector of parameterized curvatures 
P Length of outermost tube (tube 1) 
Q9 Actuated linear displacement of =:; tube  
R Vector of state variables 
SA Elastic energy of Kirchhoff tube 
SB Energy from applied point force 
T Applied point load in global coordinates 
SC Energy from distributed force  
U Distributed force applied to tube 1 
S Total potential energy of CPPR  
V9 Initial angular offset of =:; tube at base in CPPR 
W9 Distal angular offset of =:; tube at tip in CPPR 
X Nonlinear constraint function  

(SY)9,D Flexural rigidity of =:; tube about tube x-axis 
(SY)9,E Flexural rigidity of =:; tube about tube y-axis 
(Z[)9 Torsional rigidity of =:; tube 
\9 Stiffness matrix of =:; tube 

 

REFERENCES

[1] K. Oliver-Butler, J. A. Childs, A. Daniel, and D. C. Rucker, “Concentric
Push–Pull Robots: Planar Modeling and Design,” IEEE Transactions on
Robotics, pp. 1–15, 9 2021.

[2] K. Oliver-Butler, Z. H. Epps, and D. C. Rucker, “Concentric agonist-
antagonist robots for minimally invasive surgeries,” in Medical Imaging
2017: Image-Guided Procedures, Robotic Interventions, and Modeling,
R. J. Webster and B. Fei, Eds., vol. 10135. SPIE, 3 2017, p. 1013511.

[3] M. Rox, K. Riojas, M. Emerson, K. Oliver-Butler, C. Rucker, and
R. J. W. Iii, “Luminal Robots Small Enough to Fit Through Endoscope
Ports: Initial Tumor Resection Experiments in the Airways,” in Hamlyn
Symposium on Medical Robotics, 2018.

[4] J. Kim, W. Y. Choi, S. Kang, C. Kim, and K. J. Cho, “Continuously
Variable Stiffness Mechanism Using Nonuniform Patterns on Coaxial
Tubes for Continuum Microsurgical Robot,” IEEE Transactions on
Robotics, vol. 35, no. 6, pp. 1475–1487, 12 2019.

[5] C. Rucker, J. Childs, P. Molaei, and H. B. Gilbert, “Transverse
Anisotropy Stabilizes Concentric Tube Robots,” IEEE Robotics and
Automation Letters, vol. 7, no. 2, pp. 2407–2414, 4 2022.

[6] D.-Y. Lee, J. Kim, J.-S. Kim, C. Baek, G. Noh, D.-N. Kim, K. Kim,
S. Kang, and K.-J. Cho, “Anisotropic Patterning to Reduce Instability
of Concentric-Tube Robots,” IEEE Transactions on Robotics, vol. 31,
no. 6, pp. 1311–1323, 12 2015.

[7] H. Azimian, P. Francis, T. Looi, and J. Drake, “Structurally-redesigned
concentric-tube manipulators with improved stability,” in 2014 IEEE/RSJ
International Conference on Intelligent Robots and Systems. IEEE, 9
2014, pp. 2030–2035.

[8] P. J. Swaney, P. A. York, H. B. Gilbert, J. Burgner-Kahrs, and R. J.
Webster, “Design, fabrication, and testing of a needle-sized wrist for
surgical instruments,” Journal of Medical Devices, Transactions of the
ASME, vol. 11, no. 1, pp. 0 145 011–145 019, 3 2017.

[9] P. A. York, P. J. Swaney, H. B. Gilbert, and R. J. Webster, “A wrist
for needle-sized surgical robots,” in Proceedings - IEEE International
Conference on Robotics and Automation, vol. 2015-June, no. June.
Institute of Electrical and Electronics Engineers Inc., 6 2015, pp. 1776–
1781.

[10] K. W. Eastwood, H. Azimian, B. Carrillo, T. Looi, H. E. Naguib,
and J. M. Drake, “Kinetostatic design of asymmetric notch joints for
surgical robots,” IEEE International Conference on Intelligent Robots
and Systems, vol. 2016-November, pp. 2381–2387, 11 2016.

[11] J. Burgner-Kahrs, D. C. Rucker, and H. Choset, “Continuum Robots
for Medical Applications: A Survey,” IEEE Transactions on Robotics,
vol. 31, no. 6, pp. 1261–1280, 12 2015.

[12] P. Dupont, J. Lock, B. Itkowitz, and E. Butler, “Design and Control
of Concentric-Tube Robots,” IEEE Transactions on Robotics, vol. 26,
no. 2, pp. 209–225, 4 2010.

[13] H. B. Gilbert, R. J. Hendrick, and R. J. Webster III, “Elastic Stability of
Concentric Tube Robots: A Stability Measure and Design Test,” IEEE
Transactions on Robotics, vol. 32, no. 1, pp. 20–35, 2 2016.

[14] J. M. Hur, D. S. Seo, K. Kim, J. K. Lee, K. J. Lee, Y. Y. Kim, and
D. N. Kim, “Harnessing distinct deformation modes of auxetic patterns
for stiffness design of tubular structures,” Materials and Design, vol.
198, p. 109376, 1 2021.

[15] Q. Lu and B. He, “Kinematics and energy minimization approach for
continuum robot,” Mechanisms and Machine Science, vol. 36, pp. 817–
827, 2016.

[16] D. C. Rucker and R. J. Webster III, “Statics and Dynamics of Continuum
Robots With General Tendon Routing and External Loading,” IEEE
Transactions on Robotics, vol. 27, no. 6, pp. 1033–1044, 12 2011.

[17] F. Renda, M. Giorelli, M. Calisti, M. Cianchetti, and C. Laschi,
“Dynamic Model of a Multibending Soft Robot Arm Driven by Cables,”
IEEE Transactions on Robotics, vol. 30, no. 5, pp. 1109–1122, 10 2014.

[18] B. A. Jones, R. L. Gray, and K. Turlapati, “Three dimensional statics
for continuum robotics,” in 2009 IEEE/RSJ International Conference on
Intelligent Robots and Systems. IEEE, 10 2009, pp. 2659–2664.

[19] D. C. Rucker, R. J. Webster, G. S. Chirikjian, and N. J. Cowan,
“Equilibrium Conformations of Concentric-tube Continuum Robots,”
The International Journal of Robotics Research, vol. 29, no. 10, pp.
1263–1280, 4 2010.

[20] J. Till, V. Aloi, and C. Rucker, “Real-time dynamics of soft and
continuum robots based on Cosserat rod models,” The International
Journal of Robotics Research, vol. 38, no. 6, pp. 723–746, 5 2019.

[21] D. C. Rucker, B. A. Jones, and R. J. Webster III, “A Geometrically Exact
Model for Externally Loaded Concentric-Tube Continuum Robots,”
IEEE Transactions on Robotics, vol. 26, no. 5, pp. 769–780, 10 2010.

[22] P. Dupont, J. Lock, and E. Butler, “Torsional kinematic model for
concentric tube robots,” in 2009 IEEE International Conference on
Robotics and Automation. IEEE, 5 2009, pp. 3851–3858.

[23] C. B. Black, J. Till, and D. C. Rucker, “Parallel Continuum Robots:
Modeling, Analysis, and Actuation-Based Force Sensing,” IEEE Trans-
actions on Robotics, vol. 34, no. 1, pp. 29–47, 2 2018.

[24] J. Till, C. E. Bryson, S. Chung, A. Orekhov, and D. C. Rucker, “Efficient
computation of multiple coupled Cosserat rod models for real-time simu-
lation and control of parallel continuum manipulators,” in Proceedings -
IEEE International Conference on Robotics and Automation, vol. 2015-
June, no. June. Institute of Electrical and Electronics Engineers Inc.,
6 2015, pp. 5067–5074.

[25] K. M. de Payrebrune and O. M. O’Reilly, “On the development of
rod-based models for pneumatically actuated soft robot arms: A five-
parameter constitutive relation,” International Journal of Solids and
Structures, vol. 120, pp. 226–235, 8 2017.

[26] D. Trivedi, D. Dienno, and C. D. Rahn, “Optimal, model-based design of
soft robotic manipulators,” Journal of Mechanical Design, Transactions
of the ASME, vol. 130, no. 9, pp. 0 914 021–0 914 029, 9 2008.

[27] J. Wang, J. Ha, and P. E. Dupont, “Steering a multi-armed robotic sheath
using eccentric precurved tubes,” in Proceedings - IEEE International



19

Conference on Robotics and Automation, vol. 2019-May. IEEE, 5 2019,
pp. 9834–9840.

[28] L. Wang, F. C. Pedrosa, and R. V. Patel, “Eccentric-Tube Robot (ETR)
Modeling and Validation,” in Proceedings of the IEEE RAS and EMBS
International Conference on Biomedical Robotics and Biomechatronics,
vol. 2020-November. IEEE Computer Society, 11 2020, pp. 866–871.

[29] R. Webster, J. Romano, and N. Cowan, “Mechanics of Precurved-Tube
Continuum Robots,” IEEE Transactions on Robotics, vol. 25, no. 1, pp.
67–78, 2 2009.

[30] J. Till and D. C. Rucker, “Elastic stability of cosserat rods and parallel
continuum robots,” IEEE Transactions on Robotics, vol. 33, no. 3, pp.
718–733, 6 2017.

[31] S. Lilge and J. Burgner-Kahrs, “Kinetostatic Modeling of Tendon-Driven
Parallel Continuum Robots,” IEEE Transactions on Robotics, 4 2022.

[32] J. A. Childs, “Improving Strength and Stability in Continuum Robots,”
Ph.D. dissertation, The University of Tennessee, Knoxville, 12 2022.

[33] R. M. Murray, Z. Li, and S. Shankar Sastry, A Mathematical Introduction
to Robotic Manipulation. CRC Press, 12 1994.

[34] R. L. Bishop, “There is More than One Way to Frame a Curve,” The
American Mathematical Monthly, vol. 82, no. 3, p. 246, 3 1975.

[35] K. M. Lynch and F. C. Park, Modern Robotics: Mechanics, Planning,
and Control, 1st ed. Cambridge University Press, 7 2017, no. 435.

[36] G. Barillaro, A. Molfese, A. Nannini, and F. Pieri, “Analysis, simulation
and relative performances of two kinds of serpentine springs,” Journal
of Micromechanics and Microengineering, vol. 15, no. 4, pp. 736–746,
4 2005.

[37] K. Ai Xin Jue Luo, J. Kim, T. Looi, and J. Drake, “Design Optimization
for the Stability of Concentric Tube Robots,” IEEE Robotics and
Automation Letters, vol. 6, no. 4, pp. 8309–8316, 10 2021.

[38] S. Park, J. Kim, C. Kim, K. J. Cho, and G. Noh, “Design Optimization
of Asymmetric Patterns for Variable Stiffness of Continuum Tubular
Robots,” IEEE Transactions on Industrial Electronics, vol. 69, no. 8,
pp. 8190–8200, 8 2022.

[39] P. Anderson, “Compliance Characterization and Specification for Sur-
gical Continuum Robots via Modeling, Control, and Design,” Ph.D.
dissertation, Vanderbilt University, Nashville, 1 2021.

[40] K. Oliver-Butler, J. Till, and C. Rucker, “Continuum Robot Stiffness
under External Loads and Prescribed Tendon Displacements,” IEEE
Transactions on Robotics, vol. 35, no. 2, pp. 403–419, 4 2019.

[41] J. A. Childs and C. Rucker, “Leveraging Geometry to Enable High-
Strength Continuum Robots,” Frontiers in Robotics and AI, vol. 8, no.
629871, 2 2021.

[42] S. Neppalli, M. Csencsits, B. Jones, and I. Walker, “A Geometrical
Approach to Inverse Kinematics for Continuum Manipulators,” in IEEE
International Conference on Intelligent Robots and Systems, 2008, pp.
3565–3570.

[43] E. H. Skorina and C. D. Onal, “Soft Hybrid Wave Spring Actuators,”
Advanced Intelligent Systems, vol. 2, no. 1, p. 1900097, 1 2020.

[44] C. A. Biffi and A. Tuissi, “Nitinol laser cutting: microstructure and func-
tional properties of femtosecond and continuous wave laser processing,”
Smart Materials and Structures, vol. 26, no. 3, p. 035006, 2 2017.

Jake A. Childs (Member, IEEE) received the B.S.,
M.S., and Ph.D. degrees in mechanical engineering
from the University of Tennessee, Knoxville, TN,
USA, in 2017, 2020, and 2022, respectively. He is
currently a mechanical engineer at EndoTheia, Inc.,
Nashville, TN, USA, a medical device startup com-
mercializing concentric push-pull robots for flexible
endoscopy. His research interests include design,
modeling, and control of soft/continuum robots and
medical devices.

D. Caleb Rucker (Member, IEEE) received the B.S.
degree in engineering mechanics and mathematics
from Lipscomb University, Nashville, TN, USA, in
2006, and the Ph.D. degree in mechanical engineer-
ing from Vanderbilt University, Nashville TN, USA
in 2010.

From 2011 to 2013, he was a Postdoctoral Fel-
low in biomedical engineering with Vanderbilt Uni-
versity. He is currently an Associate Professor in
mechanical engineering with the University of Ten-
nessee, Knoxville, TN, USA, since 2013, where he

directs the Robotics, Engineering, Applied continuum mechanics, and Health-
care Laboratory (REACH Lab). His research interests include mechanical
design, modeling, sensing, and control of medical robots and soft/continuum
robots.

Dr. Rucker was a recipient of the NSF CAREER award in 2017.


