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have recently explored how within-host dynamics contribute to shaping population
transmission, fewer have explored how ongoing circulation of an epidemic infectious
disease can impact within-host immunological dynamics. We present a simple, influenza-
inspired model that explores the potential for re-exposure during a single, ongoing
outbreak to shape individual immune response and epidemiological potential in non-
trivial ways. We show how even a simplified system can exhibit complex ongoing dy-
namics and sensitive thresholds in behavior. We also find epidemiological stochasticity
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1. Introduction

For the majority of their development and analysis, epidemiological models have treated the process of replication of a
pathogen within individuals as a black-box (Anderson & May 1992). The fundamental insight of epidemiological models is
that outbreaks are emergent properties of populations. They result from individual transmission and infection dynamics
(Anderson & May 1992; Brauer et al., 2008; Castillo-Chavez et al., 2002; Keeling & Rohani, 2011). In this context, treating
replication as a black box is a reasonable simplification and has allowed for profoundly beautiful and important insights into
the dynamics of outbreaks (Lofgren et al., 2014). However, recent work has begun to pay more attention to the explicit role of
the individual within these epidemiological processes: behavioral models have looked at contact networks (Hock &
Fefferman, 2012; Keeling & TD Eames, 2005; Silk & Fefferman, 2021); pathogen models have considered heterogeneity in
individual rates of viral shedding that could lead to “superspreaders” (Allen et al., 2012; Lloyd-Smith et al., 2005); and
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immuno-epidemiological models have considered the coupled dynamics of within-host replication and among-host trans-
mission (to understand temporal patterns (Kostova, 2007) or to consider strain competition for pathogens where there may
be trade-offs in fitness (Saad-Roy et al., 2022)). These models have greatly enhanced our epidemiological understanding.
However, they have not provided a complete understanding of the interplay between individually infected hosts and
population-wide outbreaks. Such outbreaks emerge from the interactions of infected hosts and their community. In this
paper, we will focus on within-host dynamics of short-term immune function under conditions of frequent re-exposure that
might be expected during the circulation of a pathogen during an outbreak.

The study of drivers of ongoing transmission of infection during an outbreak focuses on characterizing the role of iden-
tifiably unwell individuals (Cope et al., 2018; Hart et al., 2019; Kretzschmar & Wallinga, 2009). However, sources of infection
can be hard to identify. Infectious people can shed pathogen into their environment to be picked up later (e.g., fomite or
aerosol transmission) (NM Kraay et al., 2018). Some diseases can cause active infection without symptoms (asymptomatic
cases), meaning that identification of sources of infection is not always possible (Saad-Roy et al., 2020). For some diseases,
some asymptomatic shedders may be carriers (e.g. Gunn et al.,, 2014). Carriers, unlike typical asymptomatic infection-
shedding hosts, do not clear the infection. Instead, they remain in a long-term state of active, albeit sometimes low-level,
infection (e.g. Villa et al., 2011). Infection processes also depend critically on the pathogen exposure dose (Brooke et al.,
2013; Buchanan et al., 2000). Some pathogens can successfully infect a susceptible host with only a few viri or microbes
(Teunis et al., 2008), where others require exposure to massive doses of infection to transmit (Gale, 2001, 2005). This
complexity is the result of interactions between pathogen biology and host immune function (Maul, 2014).

Human immune function is the combination of a diverse and complicated set of physiological responses to external stimuli
(Brodin & Davis, 2017; Peter Parham, 2014). The most rapid responsive component of immune function is the innate immune
system (Beutler, 2004), with adaptive immunity ramping up more slowly, allowing a more specific and durable response
(Bonilla & Oettgen, 2010). This is observable as short bursts of broad innate protection, yielding its function to longer, targeted
(and potentially multifaceted) protection (Bonilla & Oettgen, 2010). As a result, for a particular host and pathogen, the timing
of viral exposure relative to the state of immune function may affect the potential for that exposure to cause infection.

When considering the dynamics within a single outbreak of an infectious disease in a population under traditional
epidemiological modeling assumptions, uninfected hosts are either susceptible to infection from exposure to an infective
individual (the “S” compartment), or not (the “R” compartment) (Anderson & May 1992). However, as we have just discussed,
individual susceptibility relies on a variety of interacting, ongoing processes. This means that re-exposure of previously
infected people may play a critical boosting role in the maintenance of immune protection. While this has been studied in
longer-term dynamics of adaptive immunity over multiple outbreaks (Lavine et al., 2013), we will focus our attention on the
short-term interplay of re-exposure during a single, initial epidemic.

One potentially interesting short-term impact of re-exposure is that recovered individuals might hover in an epidemio-
logical gray zone. In this state they are protected from becoming newly symptomatic from sequential exposures themselves,
but may still be able to replicate pathogen for a few days of subclinical or asymptomatic infection, which may be enough to
continue spreading low-dose exposure to others. This has the intriguing possibility of propagating ongoing protection to
immune or partially immune individuals without requiring true reinfection of those individuals. This is the equivalent of a
natural, transmissible booster shot. Of course, if a susceptible individual is exposed to a sufficient number of low-dose
shedders within a short time period, this may be the cumulative equivalent of one high-dose exposure to an active, symp-
tomatic infection in ways that might never be differentiable by observation.

The outcome of individual re-exposure to a pathogen during an outbreak may critically rely on current population-level
prevalence of both active infection and subclinical early-stage infections that will never blossom into full replication due to
effective immune containment. The frequency of cases that “tip over” into active, replicating, clinical infection constitutes the
observable outbreak. This transition to active infection may be due to heterogeneity of immune function or due to cumulative
stochastic exposure exceeding some critical individual threshold. Ongoing epidemics would be the result of both subclinical
re-exposure and larger dose exposure from actively, symptomatically infected individuals. This complexity cannot be fully
understood by tracking case counts.

This more nuanced epidemiological reality calls for more nuanced mathematical modeling. Where standard compart-
mental models and systems of ordinary differential equations are excellent for examining population level epidemic pro-
cesses, flow-kick systems are appropriate for extending these models to explore the potential impact of regular re-exposure of
infection. In a flow-kick model, periods of continuous flow, such as immune system response to an exposure event (modeled
by a differential equation), repeatedly alternate with discrete kicks, such as re-exposure events (modeled by discrete increases
in pathogen). Previous studies of flow-kick dynamics have provided insight into fishery systems subject to regular harvesting
events (Zeeman et al., 2018; Meyer et al., 2018), eutrophication in lakes subject to pulses of nutrients (Meyer et al., 2018), coral
reefs subject to hurricane damage (Stephen et al., 2016), tick spread in an ecosystem subject to fire (Alexander et al., 2022),
neurobiology of drug addiction (Chou & D'Orsogna, 2022), and savanna systems subject to regular fire events (Hoyer-Leitzel &
lams, 2021; Tamen et al., 2016, 2017).

Using a flow-kick model, we study how transmissible “boosting” exposure and how the relative frequency of exposure at
various magnitudes (whether from active infection or from immune-contained reinfection) may affect individuals in pop-
ulations during an ongoing epidemic outbreak. We build on a published model of immune function (Cao et al., 2015),
designed and parameterized with influenza infection in mind. We do not mean for these first investigations to be understood
as an accurate model of influenza dynamics. Instead, we use this formulation and parameterization to provide proof of
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concept in a single case study. The functional forms and parameter set we assume in our system of equations are reasonable
but are not actually known in most cases. The exact choices are likely to significantly impact the studied behaviors of our
system. In addition, the model on which we build is itself a specialized choice, focusing on the local availability of invasible
tissue for pathogen to infect (e.g., lung tissue targeted by respiratory infections), and therefore would be inappropriate for
pathogens that are not tissue-limited. We leave it to future work to investigate the sensitivity of our particular results to these
choices. Instead, we present this model and our current results to highlight the importance of these types of dynamics in
understanding epidemics, and to invite additional attention to the study of such systems.

2. Methods

Within-host immune system model: To simulate within-host immune response to an influenza-like respiratory virus, we
use a modification of the model proposed by Cao et al. (Cao et al., 2015). The model, conceptually depicted in Fig. 1, consists of
six ordinary differential equations which account for the dynamics of virus (V), target cells (T), infected cells (I), interferon (F),
B-cells (B), and antibodies (A). In the model, interferon kills infected cells and antibodies (produced by B-cells in the presence
of virus) inhibit virus. This model arises by setting ¢ = p = ¢ =s = 0 in (Cao et al., 2015), to effectively remove virus-resistant
cells from their model (R = 0). Of note, there is an infection-free equilibrium when the target cells are at capacity (T = Cr), and
all other variables are zero.

We have also modified the virus-target cell interactions by introducing a unitless switching function (V/(Vy, + V)), which is
zero when V = 0, 1/2 when V = V;; and approaches 1 as V increases. The result is that the virus-target cell interaction is
primarily the same as in (Cao et al., 2015), but the interaction turns off as the number of virions falls below a threshold, as in
(Pascucci & Pugliese, 2021). The modification by this term stabilizes the infection-free equilibrium for very small levels of
virus (V < Vp,). This reflects a realistic dose-response behavior, which is well-approximated by continuous dynamics under
sufficient viral presence, but for which tiny discrete (or even fractional) numbers of viri cannot cause cascading replication
leading to active infection. The model is given by Equation (1). The parameters are specified in Table 1.

. 1%

V= pI—cV—,uVA—ﬁ\/Tivm+v

L T+1 , Vv

T = gT(l—C—T) ’ﬁwvnﬁv

I = ﬁ’VTL—(SI—KIF (1)
Vi +V

F = ql —dF

B = m;V(1 —B)—myB
A = msB—rA— W/'VA

Viral exposures: We model a sequence of viral exposures of size k, at times t, (n =1, 2, 3, ..., N < o) by impulses making
instantaneous changes to V. Thus

Target cells (T)
(host organism)

Cell death

Infected
cells ()

Antibodies

(A)

Fig. 1. The virus (V), target cells (T), and infected cells (I) constitute a three-variable subsystem wherein virus infects target cells to produce infected cells and
infected cells produce more virus. The innate immune function is represented by interferon (F) which is produced in the presence of infected cells and inhibits
viral production by killing infected cells. Adaptive immunity in the model consists of B-cell (B) activation in the presence of virus, antibody (A) production in the
presence of B-cells, and neutralization of viri by antibody.
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Table 1

Default parameter values for the model. Units of V, F, and A are denoted uy (number of viri), ur and u, respectively. T and I have the same units, ur (number of
cells). Bis a unitless number between 0 and 1. Time is measured in units of days (d). All parameter values are from (Cao et al., 2015), with the exception of V;,
and k. The threshold, V,,, is set to 10 viri, and is orders of magnitude smaller than k.

Par Description value units

P viral production rate 0.35 uy/(urd)

C viral clearance rate 20 1/d

M rate of viral loss per unit of antibodies 0.2 1/(uad)

w rate of antibody loss per virion 0.04 1/(uvd)

B rate of viral loss per target cell 5x 1077 1/(urd)

' rate of conversion from target cells to infected cells per virion 2 x107° 1/(uyd)

Vin half-activation for viral growth 10 uy

G basal growth rate of healthy target cells 0.8 1/d

Cr maximum cell capacity of the target tissue 7 x 107 ur
death/removal rate of infected cells 3 1/d
killing rate of infected cells per unit of interferon 3 1/(upd)

q interferon production rate 1x 1077 ug/(urd)

d interferon degradation rate 2 1/d

m rate of B-cell activation per virion 1x10% 1/(uyd)

my rate of B-cell deactivation 0.01 1/d

ms antibody production rate from B-cells 12000 ua/d

r antibody degradation rate 0.2 1/d

k kick size representing viral exposure order 10* uy

V(ty) = V(ty) + kn (2)

where V(t;) and V(t;}) represent the value of V immediately before and after the kick at time ¢;,, respectively.

Define 7, = t; — t;_1 to be the flow-time between kicks k; 1 and k,. We call the sequence {(7p, k), n = 1, ..., N} the
disturbance regime, and (7, k)-space the disturbance space. We call the disturbance regime deterministic or periodic if (7, kn) =
(7, k) for all n = 1, ..., N, and stochastic if (7, k;) are drawn randomly from a probability distribution.

The response of the host to the sequence of viral exposures is given by the flow (or solutions) of Equation (1) after each
kick. We simulate this in Matlab using ode15s to numerically solve Equation (1) between the kicks. To simulate the viral
exposure events, at each kick time t, we increase the viral state by the kick size k,. Then we continue to solve Equation (1),
with the new viral state, until the next kick time tp, 1.

See (Zeeman et al., 2018; Meyer et al., 2018) for alternative formulations of flow-kick models based on the time-7, maps of
Equation (1). For this paper, we prefer the impulsive differential equation formulation, as our focus is on the transient
behavior of the V excursions in the immune response between the kicks, which is too fast to be captured by the time-7,, maps
for realistic re-exposure time intervals 7,,. Note that consequences of these excursions can be captured by the time-7, map in
the slower variables, A and B.

Single exposure simulations: We are interested in identifying viral exposure sizes, k, applied to the infection-free equi-
librium at time t = 0, that cause excursions corresponding to symptomatic infections. Since there are no infected cells at the
time of exposure (I = 0), V will initially decrease immediately after exposure, as V <0 in Equation (1). An excursion is defined
as a subsequent increase in the amount of virus to an amount bigger than the size of a kick during the flow period and can be
thought of as detectable illness in the host. We use a bisection method to determine, to within 1 virion, the maximum size of
viral exposure that does not produce an excursion.

Second exposure simulations: We use a similar method to find the maximum size of a second exposure that avoids an
excursion, with the timing, t = 7, of the second exposure set to values 5 < 7 < 400. See Fig. 3. Here, an excursion is defined as
an increase in V to an amount greater than immediately after the kick (V > V(7)) during the flow period. Each initial viral
exposure is set to V =4000 at time t = 0, and the size of the second exposure is also initially set to V = 4000. This second value
is doubled until it triggers an excursion, at which point a bisection method is applied to identify the maximum second
exposure value that avoids an excursion.

Repeated exposure simulations: To model periodic or stochastic re-exposure to virus, we use deterministic or stochastic
disturbance regimes, respectively. We solve the flow-kick system for a total time of at least 400 days to identify long term
behaviors. In the deterministic case, when looking for excursion thresholds in the flow-kick system, as in Fig. 5, we first set the
periodic kick size at k = 4000, and then double this value until it triggers an excursion within 1500 days. Then a bisection
method is applied to identify an approximation of the boundary of the blue protection region in Fig. 5. We use a lattice with
A1 = 0.1 and Ak = 1 along a linear approximation of the boundary and check each point in the lattice for an excursion within
1500 days.

Parameter Sensitivity: We analyzed this system for parameter values given in Table 1. To look at parameter sensitivity, we
examined the impact of an increase or decrease of 10% in each parameter. The parameter set in Table 1 lies near a subcritical
Hopf bifurcation of one fixed point in the underlying system. For most of the parameters, it is possible to cross the Hopf
bifurcation with a 10% change in value. However, the Hopf bifurcation is local to that specific fixed point, and that fixed point is
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not close to the dynamics we are studying. Adjusting the parameters by 10% creates changes that are not visually detectable
for the results in Fig. 2. It also does not have an effect on the boundary in Fig. 3.

Matlab scripts for the computations used for Figs. 2—5 are available at https://github.com/ahoyerleitzel/flow-kick-
immune-system.

3. Results

Single exposure: In Fig. 2, we illustrate the model system state for 10 days following an initial exposure to infection. After
exposure, there is a post-infection phase in which virus invades target cells and replicates in them, with innate interferon
responses and B-cells also increasing. Adaptive antibodies increase over a longer time frame (with meaningful presence 3
days post exposure). The interferon response decreases rapidly after the number of infected cells is controlled, and B-cell
numbers decrease gradually over time. Initial virus exposures of k > 10 give results quantitatively similar to those shown in
Fig. 2.

Second exposure: Following the first exposure to infection, the modeled immune response is temporarily protective against
infection from re-exposure to the same pathogen (see Fig. 3). For a moderate time period (50 days), the host remains robust
against even massive doses of virus (an order of magnitude higher than the initial dose). That protection wanes over time.
Lower and lower dose exposures are sufficient to cause some infection as time progresses. Nearly all protection is lost by
approximately a year post initial infection so that a small dose of virus, just sufficient to cause infection in a naive host, will
again lead to active infection in the previously-recovered host. This qualitatively mirrors expected biological dynamics,
though the timing and magnitude are different for different hosts and pathogens (e.g. (Glass & Grenfell, 2004),).

Periodic repeated exposures: Using the same model, we explore periodic re-exposure following an initial infection, in which
the host is re-exposed to the same viral dose (kick k) every 7 days. This leads to two separate cases (see Fig. 4): one where
periodic re-exposures protect against reinfection indefinitely, and one where the protection wanes over time and reinfection
does occur.

In the first case (Fig. 4, A-F), periodic re-exposure causes immune function to remain protective against reinfection: there
is never a large replication spike in virus after recovery from initial infection. Mathematically, the flow-kick system reaches
equilibrium. In this case, the regular viral exposure is sufficient to keep immune function up-regulated, and insufficient to
overwhelm the protection afforded by that primed immune response. As we saw earlier, this is not solely a function of the
magnitude of the re-exposure dose, but also of the time between doses. Small viral doses that are introduced so quickly that
they function as a single, cumulatively large dose may be able to overwhelm immune protection in ways that would not be
possible with more time between exposure doses. Conversely, if the inter-exposure interval is too large (e.g., over a year in our
initial example), protection is likely to have waned sufficiently so that each next exposure triggers a novel infection.

One intriguing possibility that is highlighted by this case is that medically detectable signals of protective immune up-
regulation may be much subtler than currently expected, while still offering substantive protection. Neither antibody
levels nor systemic inflammatory responses may seem meaningfully elevated, yet they would still provide just enough
protective benefit, not to prevent all viral replication, but to sufficiently anticipate dose introduction and overwhelm viral
replication with only modest responses. This means that there is the potential for meaningful protection, even when no
infection or immune response would ever be noticed without a specific, targeted study looking for very subtle changes.

In the second case (Fig. 4, G-L), periodic re-exposure slightly prolongs the initial protection against reinfection, but over
time the protection wanes, despite the periodic priming, and reinfection occurs. This case merits further analytical consid-
eration than we present in this first exploration. It is intriguing that the re-exposures do slightly prolong the initial protection,

Viral Load 1xe5 B| Target Cells x7e7
1
0 0
0 2 4 6 8 10 0 2 4 6 8 10
C| Infected Cells x7e7 D Interferon
1 1
0 0
0 2 4 6 8 10 0 2 4 6 8 10
E B-cells F| Antibodies x5e4
1 1
0 0

0 2 4 6 8 10 0 2 4 6 8 10

Fig. 2. Short term (10 day) immune response to a single viral exposure. (A)—(F) Baseline solution to the continuous system given in Equation (1) with an initial
condition of V = 15000, T = C, and all other variables equal to 0.
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Fig. 3. (A)—(F) Long term (400 day) immune response with a second viral exposure at 7 = 283. (A)—(C) The viral dose is set to k = 14800, and there is no
excursion after the second exposure. This corresponds a point in the blue region of (G). (D)—(F) The viral dose is set to k = 15000. This is the smallest (integer
valued) second dose that triggers a second excursion at 7 = 283. This corresponds a point outside of the blue region of (G). (G) The viral re-exposure dose needed
to trigger a second excursion depends on the timing of re-exposure. The shaded region shows the kick sizes (doses) that do not trigger a second excursion for each
re-exposure time 7 (5 < 7 < 400).
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Fig. 4. Long term (400 day) immune response with viral re-exposure every 7 days. (A)—(F) Case 1: iteration of the flow-kick system with (7, k) = (7, 15000). This
combination of parameters (7, k) leads to a stable flow-kick equilibrium corresponding to a protected state in which no reinfection occurs. For a finer time-scale
depiction of this equilibrium, see Supplementary Figure A1 A-F. (G)—(L) Case 2: iteration of the flow-kick system with (7, k) = (7, 16244), representing a state in
which reinfection does occur. This is the smallest integer kick size that yields a second excursion when applied every 7 days. To see a finer time-scale depiction of
the dynamics near the second excursion, see Supplementary Figure A1 G-L.

making it unclear how to predict when a new round of active infection will be triggered by a re-exposure. We will explore this
phenomenon more fully in future work and hope others will join us in helping to understand the nuances of this system.

The dichotomy between periodic re-exposure patterns that do or do not provide long-term protection against reinfection
is numerically plotted in Fig. 5. The blue area corresponds to re-exposure patterns that provide long-term protection. At the
boundary, there is surprising periodicity in the re-exposure frequencies and magnitudes that provide protection against
successive illness. The presence of periodicity means that differences in outcome that may be perceived as stochasticity and
heterogeneity in host response to re-exposure could instead be aspects of the deterministic system. This highly structured
excursion boundary reflects canard-like behavior that is associated with the periodic protection regions. This canard-like
behavior separates regions of (7, k) space in which there is only protection against reinfection until the N kick vs the
N + 1 kick. See Supplemental Figure A2 to see part of (7, k)-space where reinfection occurs colored by the number of kicks, N,
after which there is reinfection.

The locations in (7, k)-disturbance space of canard-like behavior may be set by slight differences in the coherence between
viral dose and the immune state of the host in the flow dynamics of the recovery following illness. The precise dynamics and
possible bifurcations that lead to this observed behavior merit further exploration, planned in our own future work.

Stochastic repeated exposures: One of the most restrictive assumptions we have made thus far is the deterministic regu-
larity of the re-exposure in both dose magnitude and inter-exposure interval. Many factors we do not include in our model are
likely to drive a stochastic pattern of re-exposure to an infection circulating in a community (e.g., strain mutation (Ferguson
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kick size x1e5
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0.03

0 5 10 15 20 25 30

flow time 7

Fig. 5. The periodic viral re-exposure dose required to provide long-term protection against reinfection depends on the inter-exposure interval. The blue area
corresponds to parameter values (7, k) for which the deterministic flow-kick system has a stable flow-kick equilibrium, i.e. the combination of inter-exposure
interval and dose magnitude provides long-term protection against reinfection. The small yellow box depicts the set 7 < 7 < 8 and 12000 < k < 13000 from
which the viral re-exposure dose and inter-exposure period are randomly sampled (uniformly) in the stochastic simulation in Fig. 6.

et al., 2003), seasonality in transmissibilty of the pathogen (James et al., 2012), birth rates impacting frequency of outbreaks
among naive susceptibles (Conlan & Grenfell, 2007), etc. (James et al., 2012; Lofgren et al., 2007)). To explore the impact of
stochasticity in our model system, we selected a region of the parameter space that would be expected to be fully protected
against reinfection under an assumption of deterministic regularity (see the yellow block region in Fig. 5). We then sampled
randomly (uniformly) from within that region to provide a stochastic pattern of re-exposure dose magnitudes and inter-
exposure intervals.

By disrupting the regularity of the re-exposure pattern in this way, we see a very different immune response, in which
many of the stochastic re-exposure patterns lead to reinfection (see Fig. 6). We emphasize that the re-exposure parameters
were all sampled from within the yellow box in Fig. 5, and therefore would not lead to reinfection in a deterministic scenario.
The stochastic nature of the re-exposure appears to be reducing the successful protection in host immune response by
perturbing the system away from the region of the deterministic flow-kick equilibria. Work is already underway to discover
what properties of this seemingly simple mathematical system lead to this counter-intuitive outcome, including the use of
techniques from the literature on Piecewise Deterministic Markov Processes.

4. Discussion

Mathematical modeling of epidemics is usually considered on a population scale but, in fact, epidemics emerge from
individuals catching infections and infecting others. While some recent models have investigated the immune-

.[B| _Viral Load x1e5 C| Target Cells x7e7
| ! i\ $

13500

Q L O O O L O
O S S
13000 1 D| Infected Cells x7e7 E Interferon

U wod | DN

O O O O O O Q O O O O O O
A S S S X A S R X
B-cells G| Antibodies x5e4

=]

kicksize

120001

L

11500 s L L L L 1 L L L
100 107.07 114.09 121.13 128.61 136.14 143.63 150

Qo
time F|

Fig. 6. Stochastic simulation of the flow-kick system. (A) An example of stochastic kicks and viral exposures sampled uniformly from the set 7 < 7 < 8,
12000 < k < 13000 depicted in Fig. 5. (B)—(G) A subset of stochastic simulations are plotted here. Out of 500 simulations, 386 (77%) had an excursion representing
reinfection by t = 600.
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epidemiological coupling of individuals to populations (e.g. (Kostova, 2007; Xue & Xiao, 2020),), they have primarily focused
on how within-host replication eventually spills over to between-host transmission. Our model builds on, and complements,
these studies. It focuses on the within-host dynamics of an individual during an ongoing epidemic outbreak. We assume
individuals experience frequent sub-infective “boosting” exposures due to the epidemic. The within-host dynamics in this
model are meant to capture symptomatic infection, rather than asymptomatic or carrier states of infection.

Our model demonstrates how ongoing individual immune function may be “primed” by sub-infectious doses. The pos-
sibility of priming suggests that low, endemic circulation of clinically infectious cases might need to be characterized by both
the traditional reproductive number, Ry and also by an analogous Priming value, Pegr. The priming value measures the number
of cases prevented by boosting the undetected, ongoing protection that exists in a non-naive population. Current estimates of
Reff (Andrade & Duggan, 2022) would include some of these posited protective effects when estimated from real-world data.
However, those estimates would not include the important distinction between long-term and actively reinforced short-term
immune protection in the recovered population. This has potential to affect our understanding not only of the epidemio-
logical dynamics themselves, but also related aspects of disease ecology and evolution (e.g., the evolution of virulence for
pathogens over time (Bull & Lauring, 2014)).

Untangling the effects of Ry and Pefr allows us to make rigorous and quantitative predictions. For example, standard theory
would conflate the following cases: (1) a population that has experienced a large-scale outbreak in which everyone has
residual protective, long-lasting adaptive immune memory; (2) a population in which symptomatic cases in an ongoing
outbreak become limited due to “boosting” effects caused by sustained re-exposures to subclinical doses. The latter would be
possible when there is an ongoing, low-level endemic prevalence of active infectious cases. For these two scenarios, our
model allows us to anticipate differences in how the populations would react to subsequent reintroduction of infection.
Specifically, actual eradication of the infection from circulation would leave the latter population susceptible to a severe
outbreak from re-introduction of the infection. The loss of long-term immune protection can be estimated by fitting ongoing
incidence curves for observed reinfection to the initial epidemic. In the presence of boosting, this estimated loss will be slower
than the actual loss-rate for adaptive immune memory.

While our model has very strong structural assumptions, and we have purposefully investigated only short-term immune
dynamics within a single host, the insights it provides have implications for longer-term dynamics. One implication is that
endemic prevalence would have a more important role in whether or not large breakthrough outbreaks occur than is usually
assumed. This is due to the non-trivial relationship between prevalence and the frequency of re-exposures. Our model shows
that, depending on frequency, these re-exposures lead either to “boosting” or active reinfection.

In this model, we considered only a single pathogen with a single circulating strain. Our results exploring stochastic kicks
within an otherwise “safe” region, in which regular re-exposure would continue to provide protection, hint at potentially
complex dynamics. It is possible that the maintenance of stable short-term protection against reinfection depends on the
specific dynamics of the innate and adaptive immune responses. The co-circulation of multiple pathogens that prime the
upregulation of innate immune responses in similar ways, but do not have cross-protective adaptive immune responses, may
meaningfully de-couple these dynamics. This means that a full pathogen-level ecosystem analysis may be needed to truly
understand and predict the presence of boosting. In this way, our work also parallels and complements the rich existing
literature considering the conditions under which exogenous re-exposure to pathogen can lead to successive outbreaks at the
population level (Singh & Myers, 2014), especially in cases such as zoonotic spillover due to host contact with heterospecfic
animal reservoirs (Lloyd-Smith et al., 2009; Roche et al., 2012). Fully understanding how both endogenous and exogenous re-
exposure, at both the within- and among-host levels, can together shape outbreak dynamics remains an open and challenging
area for further exploration. Moreover, pathogens provide an evolutionary selective landscape for each other's circulation
(Fefferman et al., 2022; Haeryfar, 2020; Hanna et al., 2015). Perhaps they also shape the severity (e.g., observable Ry and
virulence) of each other's outbreaks through perturbing host innate and adaptive immune function by altering the timing of
upregulation (even when they do not offer cross-protective adaptive immunity). This is a potential area for further study.

The model presented in this paper only begins to scratch the surface of the work needed to truly understand these dy-
namics. We used numerical solutions of a single parameterization of a single model. We have not yet explored alternative
functional forms for system elements, nor considered extending the model to capture longer-term immune dynamics (either
in addition, or as an alternative, to short-term immune function). We have not analyzed the boundary between periodic
exposure patterns that give stable protection and those that trigger eventual reinfection, and we have not explained the
counter-intuitive result that stochastic exposure patterns reduce the protection conveyed by regular exposure patterns.
Clearly, the eventual understanding of which elements are driving the complex behavior of the system is a tantalizing goal.
We hope that this first presentation will attract more interest from the field and highlight the value of using flow-kick systems
as a simplifying abstraction for multiscale coupling of within-host and among-host dynamics in epidemic outbreaks.
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