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1 | INTRODUCTION

The purpose of this article is to illustrate some of the current uses of machine learning (ML) to reduce the subgroup
differences by race and gender in selection decisions. Subgroup differences are critically important in personnel selec-
tion because they can result in differences in passing/hiring rates by subgroup (called adverse impact), which is illegal if
the selection procedures are not job related according to civil rights laws in the United States (Uniform Guidelines on
Employee Selection Procedures, 1978). Even when selection procedures can be shown to be job related, the presence
of adverse impact may be viewed as problematic by organizations attempting to increase the diversity of their work-
forces. As such, some researchers are attempting to use ML to help reduce subgroup differences. In order to present
several relevant studies on the topic, only brief summaries are presented in this article. Interested readers should con-
sult each study’s Online Supplement for additional information on the study background, method, and supplemental
analyses.

This article presents three complementary studies of this important problem. First, using mathematical proofs as
well as simulated and real organizational data, Study 1 by Zhang and colleagues shows that (nonlinear) ML algorithms
that make statistical adjustments to reduce subgroup differences must create predictive bias (also called differential
prediction, which is the definition of unfairness in selection science), which may actually reduce validity and penalize
high-scoring racial minorities. Study 2 by Hickman et al. illustrates one approach to reducing subgroup differences
that involves adjusting the input data to be equivalent between races by oversampling higher-performing minorities
during ML model training. The study shows that by statistically removing subgroup differences in the training data,
one can only slightly reduce the differences in the resulting ML model but at the cost of slightly reduced accuracy.
Third, attempting to increase the validity of statistical predictions and reduce subgroup differences at the same time
is very difficult or impossible because the two outcomes are in conflict (i.e., increasing validity often increases sub-
group differences of the predictor composites). Research in recent years has used Pareto-optimal analytic techniques
to attempt to find the best compromise that maximizes both outcomes to the extent possible. The difficulty is that cur-
rent techniques are limited to two outcomes, while there may be three (e.g., validity, subgroup differences, and cost).
Study 3 by Song et al. presents a tool for achieving optimization for up to three objectives, which has many applications

in selection.

2 | STUDY 1: ARE FAIRNESS-AWARE ML ALGORITHMS REALLY FAIR? PREDICTIVE
BIAS OF USING ML IN PERSONNEL SELECTION*

The past decade witnessed remarkable advances in the development of ML algorithms that automate the construction
of prediction models (Sejnowski, 2018). These advances attracted interest from practitioners in applying ML to orga-
nizational decision-making processes, among which personnel selection is a prominent example (Hickman et al., 2022).
Recognizing the importance of limiting adverse impact (Dastin, 2018), ML researchers devoted considerable attention
to the development of fairness-aware ML algorithms (Barocas et al., 2019), which are designed to optimize for predictive
accuracy while limiting the adverse impact of predictions. When used in personnel selection, these algorithms could

offer mathematical guarantees in terms of an upper bound on the adverse impact of selection outcomes (Zafar et al.,
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2019). Yet what has received little attention is whether the predictions made by fairness-aware ML algorithms could

suffer from predictive bias (also known as test bias or differential predictions; SIOP, 2018), that is, whether the relation-
ship between the ML-predicted score and the criterion of interest (e.g., job performance) could be different for one
demographic group than for another. Given the considerable attention afforded to predictive bias in personnel selec-
tion (Aguinis et al., 2010), this omission represents a significant issue in research and practice, and is thus the focus of
this study.

The goal of this study is to assess the potential for predictive bias in predictions made by fairness-aware ML for
personnel selection. We start with mathematical analysis showing that, unless a “plain” ML algorithm with no fairness
constraint already satisfies the organizational requirement on adverse impact, predictions made by fairness-aware ML
are almost always biased even when every predictor is free of predictive bias. Our mathematical findings also reveal
a peculiar result. Contrary to the intuition that a racial minority candidate always stands to gain from the inclusion
of fairness constraints, the opposite could be true for some racial minorities. Specifically, when an ML algorithm is
designed to satisfy a fairness constraint, it could be inherently incentivized to “guess” whether an applicant belongs
to a protected group. As a result, these ML predictions tend to unfairly penalize those racial minority candidates who
“look like” racial majorities according to the predictor battery. When the mean criterion score of racial minorities is
lower than the racial majorities, those racial minority candidates who “look like” the racial majorities could be those
who are highly qualified for the job. In this case, the predictive bias of ML predictions could lead to the exclusion of
these candidates who would have been selected had there been no fairness consideration in ML. In other words, the
predictive bias of ML predictions could distort the selection outcomes so much that a fairness-aware ML algorithm
introduces its own fairness issues in the process of reducing adverse impact.

After discussing the mathematical findings, we present Monte Carlo simulation results and a case study with real-
world data that confirm our mathematical findings and demonstrate the prevalence of predictive bias in the predicted
scores generated by a variety of fairness-aware ML algorithms. We conclude the study with a discussion of its practical

implications.

2.1 | Preliminaries
2.1.1 | Fairness-aware ML algorithms

We note at the outset a distinction between the design of selection systems for personnel selection (De Corte et al.,
2011) and that of fairness-aware ML algorithms. ML researchers, who are mostly computer scientists, rarely design an
algorithm exclusively for one purpose such as personnel selection. Instead, they often cite “non-discriminatory hiring”
(Friedler et al., 2019) as one of the most important goals of fairness-aware ML, while keeping open the possibility for
the algorithm to be used for other purposes such as loan allocation (Feldman et al., 2015). Thus, while we review the
existing fairness-aware ML algorithms in the context of personnel selection, it should not be interpreted as implying
that they cannot be used in other relevant contexts.

In general, any algorithm can be characterized by its (1) input, (2) output, (3) requirement on the output, and (4)
technical design for mapping the input to the output (Cormen et al., 2009, p. 5). In the passages that follow, we first
review the input, output, and requirement on the output of fairness-aware ML, before briefly summarizing the existing
algorithms for fairness-aware ML.

Input. A fairness-aware ML algorithm takes as input an incumbent dataset—known as training dataset in ML—
collected from current or past employees of an organization. The composition of this dataset is similar to what is
required for alocal validation study in personnel selection. That is, for each incumbent employee, the dataset typically
includes the predictor battery, a criterion score, and whether the employee is part of a protected group.

Output. The algorithm’s output is a prediction model that relates the predictor battery of a candidate to a numeric
predicted score, which we refer to as the ML prediction. The functional form of the model could vary widely, from a

support-vector machine (Zafar et al., 2019) to a Gaussian process (Tan et al., 2020). Regardless of the functional form,
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the prevailing assumption in ML is that a prediction model serves as a drop-in replacement for the selection process.

That is, once an organization applies the prediction model to a pool of applicants, it selects those applicants with the
highest ML predictions.

Requirement on output. A key requirement on the output prediction model is to meet an organization’s desired
level of validity-diversity tradeoff (De Corte et al., 2011). That is, it needs to balance between (1) maximizing the
expected criterion of selected candidates, and (2) minimizing the adverse impact of selection outcome. While adverse
impact has been assessed with measures such as the adverse impact ratio (De Corte et al., 2011), the Fisher exact
test (Siskin & Trippi, 2005), the Z| test (Morris & Lobsenz, 2000), and so on, once an applicant pool and selection rate
are given, a threshold on one measure can be converted to another. Thus, we focus on the measure prescribed in the
Uniform Guidelines, the Adverse Impact Ratio (AIR), which is the ratio between the selection rate of the racial minority
group and the racial majority group (De Corte et al., 2011).

Algorithmic design. From an algorithmic perspective, fairness-aware ML falls under the general paradigm of learn-
ing with privileged information (Vapnik & Vashist, 2009). Whereas the algorithm does have access to the protected
variable (e.g., race) of incumbents during training, it cannot include such a variable in the prediction model because,
in the context of personnel selection, the use of protected variables in prediction is generally prohibited due to legal
constraints in the United States. This makes the protected variable privileged information that is only available during
training. The key technical challenge in algorithmic design then becomes how to leverage such privileged information
in training the prediction model.

It is important to note the similarities in how protected variables are used in fairness-aware ML vis-a-vis traditional
selection systems. Traditionally, human experts often evaluate the potential adverse impact of a selection-system
design based on incumbent data (which includes protected variables for the assessment of adverse impact), and make
the appropriate adjustments, such as revising the inclusion/exclusion of certain predictors or changing their weights.
Yet, once a selection system is put into production, it has no access to any applicant’s protected variables. If we draw
an analogy between the design process for a selection system and the training of an ML model, then their use of pro-
tected variables is almost identical. That is, protected variables are used during training (manual training for traditional
selection systems, algorithmic training for ML) but not when the selection system or ML model is deployed in practice.

To address this challenge, the general idea in fairness-aware ML is to revise a “plain” ML algorithm by assigning a
penalty to a potential prediction model if it violates the fairness constraint (e.g., an upper bound on AIR). The more
serious the violation is, the higher the penalty would be. Since this penalty can be assessed at training time using
the privileged information, a fairness-aware ML algorithm would then be incentivized to adjust the output predic-
tion model to avoid the penalty and satisfy the given fairness constraint. For example, Kamiran et al. (2010) revised
a decision-tree algorithm, specifically the rules used by the algorithm to determine how to grow a branch, in order to
minimize adverse impact. Similarly, researchers have integrated fairness constraints by revising algorithms for repre-
sentation learning (Zemel et al., 2013), support-vector machines (Zafar et al., 2019), and natural language processing
(Zhao et al., 2018). To the best of our knowledge, however, the predictive bias of predictions made by either plain ML
or fairness-aware ML algorithm has not been systematically studied in the literature. Even though the selection of pre-
dictors has been examined, the prevailing view is to include all available predictors and leave feature selection to the
fairness-aware ML algorithm (Kleinberg & Mullainathan, 2019).

2.1.2 | Predictive bias

Testing for predictive bias typically involves a moderated multiple regression framework known as Cleary’s (1968)
method (SIOP, 2018). Its precise description requires the introduction of a few mathematical notations. Let the
criterion variable be Y, the (vector representation of) predictor battery be X, the prediction generated by the fairness-
aware ML algorithm be f(X), and the group membership be G. For the sake of simplicity, we focus on two groups, with

G = 0beingthe racial majority and G = 1 being the racial minority (i.e., protected) group.
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Consider the following linear models where ag, by and cy are the intercepts; a4, by, by, bz, cq, and ¢, are

unstandardized regression coefficients; and ¢, ¢/, and ¢’ are random error terms:
Y =ag +aif (X) +¢,
Y = bg + byf (X) + boG + bsf (X) G + ¢,
Y =co+ ¢y F(X) + c,G +¢”,

Predictive bias exists if (1) b3 # 0, indicating a slope difference between groups, and/or (2) b, # 0, indicating an
intercept difference. The third equation further specifies whether a common regression line would, on average, over-
(co < 0) or under-predict (c, > 0) the criterion scores of racial minority candidates, with either indicating the existence
of predictive bias. Statistical significance tests may be conducted directly over the regression coefficients (Sackett
et al., 2003) or over the difference in R? between the first and second equations (Aguinis et al., 2010). In empirical
literature, intercept differences are found to be more common than slope differences, with a common regression line
typically overpredicting the criterion scores of racial minority candidates (SIOP, 2018). Note that, even though the
Cleary’s method tests linear models while ML may learn nonlinear functions, it remains an appropriate method for
testing the predictive bias of ML predictions because, within each group, an applicant with a higher criterion score

should be assigned a proportionally higher predicted score.

2.2 | Predictive bias of fairness-aware ML algorithms
2.2.1 | Key source of predictive bias: Prediction target

Designing a practical systemwith ML is a complex process (Barocas et al., 2019); and predictive bias could arise in many
steps along the way, from making an improper selection of the ML algorithm to a lack of sufficient training samples
(Buolamwini & Gebru, 2018). Since the purpose of this study is to investigate whether the introduction of fairness
constraints could induce predictive bias in ML predictions, we need to ensure that our findings generalize to different
implementations of fairness-aware ML regardless of their specific technical design. To this end, it is helpful to consider
an idealized scenario in which fairness-aware ML produces the least possible amount of prediction error. If we could
identify a source of predictive bias even in this idealized scenario, then the bias would likely generalize to all practical
implementations of fairness-aware ML. We construct this idealized scenario with two assumptions as follows.

First, the ML algorithm being used should produce prediction models that are sufficiently complex to address the
prediction task at hand (according to measures such as model capacity, Vapnik, 1998). For example, we would not
consider the use of linear regression to fit a nonlinear predictor-to-criterion relationship, the problem of which was
already noted in the literature (Bauer, 2005). With this assumption, any predictive bias we identify could not be easily
fixed by switching to a more complex ML algorithm such as a non-parametric Gaussian process with unlimited model
capacity (Rasmussen & Williams, 2006), which always satisfies this assumption.

Second, we assume the training dataset to be sufficiently large and drawn from the same distribution as the appli-
cant pool. Doing so allows us to sidestep a frequently arising issue in ML called covariate shift, which happens when
a prediction model trained on one dataset is used for predicting over samples drawn from a different probability dis-
tribution. Covariate shift may potentially incur an increase of prediction error known as generalization error (Vapnik,
1998). While the reduction of generalization error is an important problem in ML and has been treated with methods
such as importance sampling (Sugiyama & Storkey, 2006), it is tangential to our work because such errors are typically
assumed to be independent and identically distributed Gaussian noise with no statistical difference between groups
(Bishop, 2006, p. 29). In other words, they are unlikely to alter the predictive bias of ML predictions. Like the first
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assumption, this one ensures that any predictive bias we identify cannot be easily fixed by improving (e.g., increasing

the size of) the input training dataset.

In this idealized scenario, an ML prediction model should be able to approximate any prediction target function
that defines, according to the desired validity-diversity tradeoff, what the ML-predicted scores should look like for
each given value combination of the predictor battery. Whether such a prediction target exhibits predictive bias thus
becomes the key question for assessing the bias of fairness-aware ML. We address this question next.

2.2.2 | Existence of predictive bias

To assess predictive bias, we first need to derive a mathematical model for the prediction target of fairness-aware ML.
To this end, it is helpful to start with a “plain” ML algorithm in which the sole objective for candidate selection is to

maximize the mean criterion score

us) = — T E(YIX=x)
ISl XES
of the selected candidates S for a given selection rate (i.e., a fixed |S|). For such an algorithm, Rambachan et al.
(2020) proved that its prediction target function, denoted by fo(x), is simply the expected criterion score for the input
predictor battery

folx) = E(YIX=x)

because selecting those candidates with the maximum fy(x) is guaranteed to maximize u(S). In other words, the overall
task of candidate selection can be decomposed into the individual tasks of approximating the prediction target fy(x)
for each candidate.

Compared with this “plain” algorithm, the prediction target for fairness-aware ML is more complex because it needs
to balance the validity-diversity tradeoff. A common strategy is to pursue Pareto-optimal (De Corte et al., 2011) selec-
tion outcomes, that is, those that no other possible outcome can dominate on both expected criterion and AIR. To do
so, u(S) has to be maximized under a fairness constraint that S meets a given lower bound r on the AIR. Clearly, fo(x) is
no longer a proper prediction target because selecting the top |S| candidates with the maximum fp(x) might result in
AIR < r. Since it may not be possible to assess whether AIR > r without first assembling S, the introduction of the fair-
ness constraint brings into question whether the task of candidate selection is still decomposable into approximating
a prediction target for individual candidates. Fortunately, as proved in the following theorem, the Lagrange-multiplier
method (Nocedal & Wright, 2006) provides an elegant solution that enables such a decomposition.

Theorem 1. For any 1 > 0 and any selection rate, selecting the candidates with the maximum
fa0) = E(Y|X = x)+1-Pr{G = 1|X = x}
is Pareto-optimal on the validity-diversity tradeoff. Conversely, given any selection rate and any lower bound r on AIR,
there must exist 1 > 0, such that the selection outcome that maximizes f; (x) also maximizes expected criterion score
under the constraint of AIR > r. Further, there is
E(Pr{G =1X =x}|G = 1) >E(Pr{G =1|X =x}|G = 0)
unless Pr{G = 1|X = x}is constant for all x.

The mathematical proof is available in the Supplemental Materials. The theorem yields two insights. First, the over-

all task of seeking Pareto optimality is still decomposable to the individual tasks of approximating a prediction target
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f;(x) for each candidate, where 4, the Lagrange multiplier, is a function of the AIR requirement. In other words, Theorem

1 states that, to make a Pareto-optimal tradeoff, fairness-aware ML should produce predicted scores that resemble
the prediction target f; (x). Interestingly, the only difference between f;(x) and the prediction target for plain ML is
an additive term of A times Pr{G = 1|X = x}, that is, the likelihood for a candidate to be a racial minority given the
observed predictorsin X.

Second, the theorem suggests that, even when every input predictor is unbiased, predictive bias could still emerge
in the predicted scores of fairness-aware ML because the additive term in the prediction target function, 1 - Pr{G =

1|X = x}, is systematically larger for the racial minority group in almost all cases. There are only two exceptions: 1)
when 1 = 0, or 2) when Pr{G = 1|X = x}is constant for all x. Either exception would make f;(x) equivalent with
fo(x)—because their difference would be either zero or the same across all candidates—implying that plain ML would
achieve AIR > r anyway.

To understand the mechanism through which a between-group difference in the additive term manifests as predic-
tive bias, consider a few idealized examples. The first is when 1 is set to eliminate adverse impact by ensuring an equal
mean of ML-predicted scores, sayE (x) = F,for both groups. Since a least-squares regression line linking f; (x) and cri-
terion Y always passes through the center-of-mass point (a(x), Y), the two groups’ regression lines pass through (F, 70)
and (F, 71), respectively, where 7, are their mean criterion. According to the inequality in the theorem, there must be
Vo > 71 when 4 > 0, meaning that a common regression line has to overpredict the criterion score of racial minority
candidates in this example.

Figure 1a provides a graphic illustration of another example where a predictor variable has no predictive bias but a
slight mean difference between groups. Due to this mean difference, the additive term in f;(x) (i.e, 1 - Pr{G = 1|X =

x}) becomes a reverse sigmoid function with x, as shown in Figure 1b. Figure 1c shows how this reverse sigmoid
function “bends” the prediction target f; to form a nonlinear relationship with the criterion. Since this bending is, by
definition, more concentrated on racial minority candidates, the resulting nonlinearity is also more pronounced for
them, resulting in the predictive bias shown in Figure 1d. In this specific example, a common regression line features
a smaller slope and a larger intercept than the regression line for the racial minority group, leading to, on average, an
overprediction of the criterion score for racial minority candidates.

The example also points to a negative consequence of predictive bias. As illustrated in Figure 1e, when 1 > 0,
fairness-aware ML has to exclude from selection some racial majority candidates who would have been selected if
A = 0. This exclusion is not a problem in and of itself, because it is necessary for achieving the given bound on AIR.
What is problematic is that ML has no access to the group membership of a candidate. As such, it has no choice but to
“guess,” based on the observed predictors, whether a candidate is a racial majority who needs to be excluded. Recall
from Figure 1b that the likelihood for a candidate to be in the racial majority increases with their criterion score.
Thus, when fairness-aware ML needs to “guess” the candidates to exclude, it tends to pick some candidates with a
higher criterion score. Unfortunately, such a guess is imperfect, meaning that some racial minorities could be inadver-
tently excluded too. The exclusion of these candidates is detrimental to fairness because it means that the adoption of
fairness-aware ML leads to the exclusion of some qualified racial minority candidates who would have been selected
had there been no fairness consideration in the first place. In other words, in attempting to reduce adverse impact in
personnel selection, fairness-aware ML could inadvertently raise its own fairness issue through the introduction of
predictive bias. Next, we present a simulation study and a case study to verify the findings based on Theorem 1.

2.3 | Simulation study

In the passages that follow, we describe the data-generating process for the simulation study, the fairness-aware ML

algorithms tested, the simulation conditions, and the simulation results, respectively.
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Pr{G = 1|X}

(c) Prediction Target for Fairness-Aware ML (d) Predictive Bias

X

(e) Exclusion of Candidates

Selgction threshold

excluded candidates

FIGURE 1 Examples of prediction target for fairness-aware ML. Note. Panel (a): X = predictor. Y = criterion
score. o = racial majority candidates. x = racial minority candidates. Solid line is the regression line connecting Y to X,
which is identical for both groups. In other words, X has no predictive bias towards the criterion Y. Panel (b): Dashed
and dotted curves are the probability density function (PDF) of X in racial minorities and majorities, respectively. The
solid curve represents Pr{G = 1|X = x},whichis a reverse sigmoid function that decreases with X. Panel (c) depicts
the prediction target function f;, which is the sum of the solid line in Panel (a) and A times the solid curve in (b). Note
that, the larger 1 s, the more f; becomes “bended” by the reverse sigmoid function, even to the point of losing
monotonicity when 2 = .2.Panel (d): Solid curve represents the relationship between f; and Y. Dashed line is the
regression lines for the racial minority group, while dotted line represents the common regression line. The
difference between these two lines indicates the presence of predictive bias. Observe from the panel that the
regression line for racial minorities has a larger slope and a smaller intercept. On average, a common regression line
would overpredict the criterion score for racial minority candidates. Panel (e) depicts the exclusion of candidates due
to the fairness constraint, specifically. The dotted curve is the prediction target function f; when 1 = .2. The solid
line represents the selection threshold, that is, the minimum ML-predicted score for a candidate to be selected. The
gray zone represents those candidates who would have been selected if A = 0, but are excluded when1 = .2.

2.3.1 | Data-generating process

We generated two sets of data: (1) a varying-size training (i.e., incumbent) dataset, which was used for ML to learn
its prediction model, and (2) a 1000-record testing dataset, which was used to assess the predictive bias of ML predic-
tions. In terms of features, we followed Finch et al. (2009) to simulate (1) a battery of five predictors: biodata, cognitive

ability, conscientiousness, integrity, and structured interview, (2) a criterion variable, which is job performance, and (3)
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abinary (i.e., racial majority or minority) group membership representing White and Black applicants, respectively. The

detailed procedure and its potential limitations are discussed in the Supplemental Materials.

2.3.2 | Fairness-aware ML algorithms

As detailed in the Supplemental Materials, we tested four ML algorithms, Gaussian process (GP), support vector
machine (SVM), regression-tree ensemble with least-squares boosting (BOOST), and a feed-forward, fully connected
neural network (NN). While no qualitative difference emerged in results across algorithms, we found the first two
(GP and SVM) to consistently outperform the latter (BOOST and NN) in terms of predictive accuracy. Thus, we focus
on GP and SVM when reporting the simulation results. To set 4, we performed an iterative optimization like Google’s
TensorFlow Constrained Optimization (Cotter et al., 2019).

2.3.3 | Simulation conditions

We varied five parameters: algorithm, AIR bound, selection rate s, training dataset size N, and between-group dif-
ference ratio 6 on predictors. The last parameter § (0 < & < 2) served as a multiplicative factor for the standardized
between-group mean difference for each predictor. We simulated two ML algorithms: SVM or GP; four levels for the
selection rate: .1, .3, .5, .8; three for the lower bound on AIR: .5, .8, 1.0; three for the training dataset size: 1000, 2500,
and 5000; and three for &: .5, 1.0, 2.0. Overall, our simulation design consisted of 216 unique conditions or a 2 (algo-
rithm) x 4 (s) x 3 (N) x 3 (8) x 3 (AIR) factorial design. We repeated each condition 20 times, leading to a total of 216 x
20=4320runs.

2.3.4 | Simulation results

Table A2 in the online supplement shows the marginal statistics for the prevalence of predictive bias in fairness-aware
ML. In light of the different implementations of Cleary’s method, we reported in the table both the regression-
coefficient estimates for Race and the interaction between Race and ML prediction (Sackett et al., 2003) as well as
ARZ, the increase in R? from adding Race and the interaction term as regressors (Aguinis et al., 2010). Both implemen-
tations identified predictive bias in an overwhelming majority of simulation runs. Specifically, AR (M =.026,SD =.017)
was statistically significant (p < .05) in 3871 (89.61%) out of all 4320 runs. Similarly, the coefficient estimates for
Race (M = —.350, SD = .183) and the interaction term (M = —.054, SD = .196) were statistically significant in 3572
(82.69%) and 461 (10.67%) runs, respectively. Notably, the marginal means for both coefficients were consistently
below zero across all conditions, echoing our earlier discussions that a common regression line constructed from the
ML predictions would likely overestimate the criterion scores of racial minority candidates.

To further examine how the simulated factors affect predictive bias, we conducted a five-way analysis of variance
(ANOVA) with the dependent variable being AR? and the independent variables being the five simulation factors. Due
to the space limit, we include the detailed results of ANOVA in the online supplement, and summarize the main findings
here. Due to the large sample size (4320), we followed Steinley (2006) to only consider (main and interaction) effects
with effect size 772 > .05. In terms of main effects, ANOVA identified AIR (F (2,4104) = 1819.98, p < .01), selection
rates(F (3,4104) = 953.03,p < .01), and between-group difference ratio & (F (2,4104) = 557.49, p < .01).The ML
algorithm and the amount of training data, on the other hand, do not have a pronounced effect on AR2, consistent
with our earlier finding that the predictive bias results from the intrinsic design of fairness-aware ML, specifically its
prediction target, rather than the specific ML implementations.

In terms of the directions of the main effects, observe from Table A2 in the online supplement that AR? clearly

increases with AIR and decreases with s. In other words, as the fairness constraint becomes more stringent with a

ASUDOIT suOWWO)) dATEaI)) d[qesridde o) Aq PAUIIAOS a1e SA[ITIE Y $9SN JO SA[NI I0] ATeIqIT dUITUQ AJ[IA UO (SUONIPUOI-PUL-SULId) WO KM’ ATRIqI[auI[uo//:sd)ty) SUONIpuo) pue swa [, 341 3§ *[£z0z/21/0¢] uo Arexqry auruQ Kdfip ‘€65z 1 sdad/[ 111 01/10p/wod Kopim Arexqrauriuo//:sdny woiy papeoiumod ‘v ‘€207 ‘0LSOPHLT



1134 PERSONNEL ZHANG €T AL.
% | WILEY PSYCHOLOGY

larger AIR and/or in a “select in” scenario with a smaller s, fairness-aware ML has to “bend” the prediction target more

to achieve a Pareto-optimal outcome, increasing its predictive bias. The relationship between AR? and § is subtler and
best qualified by a three-way interaction identified by ANOVA, s x §x AIR (F (12,4104) = 97.34,p < .01), as shown
in Figure A1 in the online supplement.

The figure yields two observations. First, ARZ was surprisingly smallwhené = 2, seemingly “capped” by an upper
bound of around .025. This contradicts the intuition that, to reduce adverse impact when the between-group differ-
ence is large, fairness-aware ML has to increase its predictive bias. Interestingly, the contradiction speaks to a limit
of using AR? to quantify predictive bias. When 1 is so large that the prediction target is dominated by its second
term, that is, the likelihood of a candidate being a racial minority, the prediction target becomes an approximate of
the group membership rather than the criterion of a candidate. In this case, making the true group membership (i.e.,
race) a regressor alongside the prediction target adds little to the explanatory power (i.e., R%) even when its coefficient
is nonzero. Indicatively, Table A2 in the online supplement shows that, despite the low ARZ?, all 1440 simulation runs
with§ = 2returned statistically significant estimates for the coefficient of Race (M = —.464, SD =.091).

Second, anincrease of § from .5 to 1 actually reduced AR? when the fairness constraint was loose (e.g,alowAIR=.5
under a moderate selection rate s =.3 or.5). Upon further examination, we found a key reason to be how the Lagrange
multiplier 1 responded to an increase of §: Under a loose fairness constraint, even though the higher § reduced the
selection rate of racial minorities, this reduced rate still met the AIR requirement. Thus, an increase of § did not require
an increase of the second term in the prediction target, that is, 2 - Pr{G = 1|x}. On the other hand, since a higher
& made it easier to distinguish between the two groups, the likelihood function Pr{G = 1|x} became higher for the
racial minorities. These two changes in combination drove down 1 and thereby AR? in a loose-fairness regime.

In sum, the simulation results showed the prevalence of predictive bias for multiple fairness-aware ML algorithms
across diverse simulation settings. The results further suggested that ML predictive bias was the largest in a select-in
scenario (s =.1) with a stringent AIR requirement (AIR = 1); and the smallest in a select-out scenario (e.g., s = .8) where

the AIR requirement and the between-group difference in predictors are both small.

2.4 | lllustration of practical impact

To further illustrate the practical implications of using a fairness-aware ML algorithm in personnel selection, we
examined three additional issues: (1) the existence of a validity-diversity tradeoff in the selection outcomes of
fairness-aware ML; (2) the consequences of the predictive bias of fairness-aware ML, specifically the number of racial
minorities who would have been selected by a plain ML algorithm but are excluded from selection by fairness-aware
ML; and (3) the reliability of our findings over a real-world dataset.

Figure 2a demonstrates how the criterion-related validity of ML-predicted scores varies with the reduction of
adverse impact when a fairness-aware ML algorithm is used over simulated datasets. As can be seen from the
figure, fairness-aware ML lowered adverse impact at the expense of a potential decrease in criterion-related validity.
Consistent with the understanding for traditional selection systems (Rupp et al., 2020), the magnitude of this validity-
diversity tradeoff was more pronounced when the input data contained substantial between-group differences. For
example, with a between-group difference ratioof § = 1, the criterion-related validity dropped from .48 to .37 when
the AIR requirement increased from .3 to .7. While the existence of this tradeoff is technically obvious (e.g., given the
Lagrangian objective function in Theorem 1), it indicates that fairness-aware ML is far from a silver bullet, but instead
subject to the same validity-diversity “dilemma” (Pyburn Jr et al., 2008) and its associated practical challenges (Rupp
et al., 2020) as traditional selection systems.

To illustrate how the use of fairness-aware ML could hurt rather than benefit certain racial minorities, Figure 2b
depicts the number of “deselected” racial minorities, meaning those who would have been selected by a plain ML
algorithm but were excluded by fairness-aware ML. As can be seen from the figure, the number of such candidates
increased with AIR, reaching over 20% of all racial minorities being selected when AIR > .7 (§ = 1). This suggests that

the deselected racial minorities were “sacrificed” by fairness-aware ML in pursuit of a lower adverse impact because,
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(a) Criterion-related validity (b) Racial minorities deselected by fairness-
aware ML

FIGURE 2 Implications of fairness-aware ML. Note. r = (uncorrected) criterion-related validity of ML-predicted
scores. AIR = adverse impact ratio. Deselected racial minorities = among racial minorities selected by plain ML
(without fairness considerations), the percentage that are not selected by fairness-aware ML. The panels were
generated with the SVM algorithm, selectionrate s = .3, and training dataset size N = 1000. We also tested the GP
algorithm and observed similar trends. All points on a validity-diversity tradeoff curve were generated over the same
simulated dataset. Panel (a) shows that, consistent with earlier discussions, when the input data contains substantial
between-group differences (e.g., § > .7), fairness-aware ML reduces adverse impact with a corresponding reduction
in validity. Panel (b) shows that, contrary to the intuition that a racial minority candidate always stands to gain from
the inclusion of fairness constraints (Zafar et al., 2019), the opposite could be true for some racial minorities, like
those deselected ones depicted in the plot.

as discussed earlier, they “look like” racial majorities according to the predictor battery. Another observation from the
figure is that the number of deselected racial minorities was higher when the input data contained larger between-
group differences. This is consistent with our earlier discussions that, the more pronounced the validity-diversity
tradeoff becomes (thanks to the larger between-group differences), the more likely it is for fairness-aware ML to incur
predictive bias when reducing adverse impact.

Finally, to examine the reliability of our findings over a real-world dataset, we tested fairness-aware ML algorithms
over a dataset containing the results of pre-employment tests used for entry-level positions in a Fortune 500 company.
While we defer details of this case study to the online supplement, the main finding was that predictive bias remained
prevalent over real-world data, even when the dataset features racial majority and minority candidates with very close
criterion distributions (specifically, a standardized between-group mean difference of .11). While the smaller between-
group differences led to a milder validity-diversity tradeoff and, in turn, a smaller magnitude of predictive bias (e.g.,
as measured by AR?), the predictive bias identified over the real-world dataset featured a more pronounced slope
difference than the simulation results, suggesting that fairness-aware ML likely had difficulty “guessing” the group
affiliation of high-criterion candidates, leading to a flatter regression line for racial minorities.

2.5 | General discussion

Our findings are important because they speak to a substantive problem of using fairness- aware ML as a drop-in
replacement for selection systems. Such a practice, while convenient, could lead to unintended consequences such as
predictive bias. As summarized in Table 1, an important reason is the complexity of prediction models produced by

ML. With a traditional selection system, prediction models (e.g., a weighted sum of predictors) take functional forms
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TABLE 1 Comparison of prediction models for traditional selection systems and fairness-aware ML.

Model complexity

Model interpretability

Predictor selection

Prediction target

Predictive accuracy

Source of predictive bias

Prevention of predictive bias

Traditional Selection Systems

Relatively simple. For example,
the prediction model for a
compensatory design features
a linear combination of
predictors.

Relatively straightforward. For
example, weights representing
the relative importance of
predictors.

Predictors are scrutinized (e.g.,
for predictive bias) in scientific
literature and according to
empirical evidence.

The expected criterion score for a
candidate based on the values
of the input predictor battery.

Linear models could incur large
predictive errors when the
predictor-to-criterion
relationship is nonlinear.

A linear prediction model never
incurs predictive bias when the
input predictors are unbiased.

Predictive bias is taken into
account during the selection of
predictors.

Fairness-Aware ML

Considerably more complex and generally
nonlinear. For example, a deep learning
model could contain millions of
parameters learned from data.

Subject of ongoing research (Du et al.,
2019), as many types of ML prediction
models are not interpretable even by
experts.

Prevailing view is to include all available
predictors and leave selection to the
algorithm (Kleinberg & Mullainathan,
2019).

Per Theorem 1, a linear combination of
expected criterion score and the
likelihood of the group membership.

Could achieve optimal accuracy given
sufficient training samples, per
universal approximation theorems
(Goodfellow et al., 2016).

An ML prediction model, which is
generally nonlinear, could incur
predictive bias even when all input
predictors are unbiased.

Generally impossible unless plain ML
without any fairness constraint already
satisfies the adverse-impact
requirement.

with only a few parameters (e.g., weights). This allows researchers and practitioners to directly inspect a model and
identify potential problems. For example, if regressing criterion scores over predictors returned a negative weight for
a cognitive ability test, a natural response would be to scrutinize the test design rather than to just deploy the model in
practice. With an ML algorithm, however, a prediction model may easily contain millions of parameters learned from
data (Goodfellow et al., 2016). While such added complexity affords ML models with better accuracy, it also makes
the model prohibitively expensive to scrutinize manually (Du et al., 2019). This is compounded with the prevailing
view in ML that tasks like predictor selection should be done automatically by the algorithm rather than manually
by experts (Kleinberg & Mullainathan, 2019). As a result, an ML prediction model could easily circumvent desirable,
fairness-related, properties—for example, the absence of predictive bias—so long as these properties are not explicitly
specified in the optimization goal. This is exactly what we observed in this study.

There are two ways to address this problem. One is to further the work of Interpretable ML (e.g., LIME; Ribeiro et al.,
2016) to make ML algorithms and models open to manual scrutiny (Xu et al., 2020). Unfortunately, a wide gap exists
between what is deemed “interpretable” in ML and what could be properly examined in personnel selection. For exam-
ple, the prevailing view in ML is that decision trees are interpretable because they can be expressed as (long) sequences
of if-then-else statements. Yet the adoption of decision tree in personnel selection means that the predictor battery
used for different candidates may contain different predictors, be applied in different orders, and feature different
cutoffs. All these variations raise new research questions in terms of their legal defensibility in the personnel selection
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context, for which our understanding is still nascent. Thus, to pursue this direction, we believe the participation of I-O

psychologists is urgently needed in the future development of interpretable ML for personnel selection.

The second way to address the problem is by formulating fairness notions, like the absence of predictive bias, as
mathematical constraints that can be formally entered into an ML algorithm. Recent work in ML has already started
formulating fairness constraints beyond adverse impact, to include notions such as the statistical parity of predictive
accuracy between groups (Feldman et al.,, 2015), the assurance that no protected group under one selection system
would overwhelmingly prefer another system (i.e., “envy-freeness”; Zafar et al., 2019), and so on. While handling mul-
tiple such constraints is technically feasible (e.g., the method of Lagrange multipliers could assign a different A to each
constraint), the feasibility does not mean one could achieve all these constraints without increasing adverse impact
or reducing the expected criterion score of selected candidates. Indeed, many of these constraints are conflictive
with each other (Kleinberg et al., 2017) or other legal requirements (e.g., privacy; Xu & Zhang, 2022), even without
considering criterion. In personnel selection, this conflict could lead to thorny questions. For example, is it better to
condone predictive bias when removing it leads to an increase of adverse impact? Like the first solution, the future
research for this one is also in urgent need of I-O psychologists’ participation, not only in using ML to further organi-
zational research (e.g., Zhang et al., 2022), but also in developing fairness-related constraints and understanding the
mathematical tradeoffs between them.

As both solutions require long-term research and development, we offer some suggestions that may apply in the
short term. A popular belief among ML researchers is that it is always better for an ML algorithm to take in as many
predictors as possible—regardless of whether a predictor exhibits predictive bias—and count on the algorithm to sort
out the proper use of these predictors and to achieve the desired fairness properties. While this belief is mathemat-
ically correct when adverse impact is the only fairness concern (Kleinberg & Mullainathan, 2019), the literature of
personnel selection has long noted the limitation of having a singular focus on reducing adverse impact when seeking
adiverse work force (Kehoe, 2008). Our study further shows the danger of relying on fairness-aware ML for adverse-
impact reduction. For example, our simulation results indicate that predictive bias tends to be greater when the AIR
requirement is more stringent. This suggests that, while fairness-aware ML can indeed reduce the adverse impact of
selection outcomes, in doing so it might also be forced to incur other types of fairness concerns, such as predictive
bias. Our study also suggests that one way to address these concerns is to carefully attend to characteristics of the
selection system, such as the selection rate and the composition of the predictor battery. For example, our simula-
tion results indicate that predictive bias could be greater in highly selective scenarios, or when there are considerable
between-group differences in predictors, especially under stringent AIR requirements. To this end, we submit that ML
researchers and practitioners should not consider fairness-aware ML algorithms as silver bullets that work on any
and all predictors, but carefully study the empirical evidence in the I-O psychology literature in determining which
predictors to use in the context of personnel selection.

3 | STUDY 2: OVERSAMPLING HIGHER-PERFORMING MINORITIES DURING
MACHINE LEARNING MODEL TRAINING REDUCES ADVERSE IMPACT SLIGHTLY BUT
ALSO REDUCES MODEL ACCURACY?

“Is it going to have a disparate impact on different protected classes? That is the number one thing
employers using artificial intelligence should be looking out for.” - EEOC Commissioner, Keith E.
Sonderling (Strong, 2021)

Organizations are rapidly adopting tools that use artificial intelligence and ML for many purposes, including person-
nel assessment and selection (e.g., Campion et al., 2016; Hickman et al., 2022; Langer et al., 2020). However, significant

concerns have been raised throughout society regarding the fairness and ethicality of ML assessments (Landers &
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Behrend, 2023; Tippins et al., 2021). In the United States, a key legal concern for ML assessments is that person-

nel selection decisions that cause adverse (or disparate) impact—substantially different hiring rates between groups
that disadvantage a legally protected group (Civil Rights Act, 1964)—constitute prima facie evidence of employment
discrimination.

Several algorithmic solutions that adjust models to achieve equal group outcomes have been proposed to address
group disparities in ML assessments (e.g., Calmon et al., 2017; Hardt et al., 2016; Kamishima et al., 2012; Kleinberg,
Ludwig, Mullainathan, & Sunstein, 2018; Zemel et al., 2013), but many provide the final ML model with demographic
information explicitly (e.g., by using demography as a predictor) or implicitly (e.g., by creating separate models for each
group) during test administration. Both are likely illegal in the United States because they constitute disparate treat-
ment (Civil Rights Act, 1964) and/or subgroup norming (Civil Rights Act, 1991) during test administration. Therefore,
there is a pressing need to advance our understanding of the causes of and potential (legal) remedies to ML model
adverse impact.

ML models tend to reflect subgroup differences in applicant attributes in the training data, which are then reflected
in the ML model predictions. We investigate whether this tendency can be used to our advantage by examining
whether removing (i.e., equal selection ratios) or reversing (i.e., selection ratios flipped to favor disadvantaged group
members) subgroup differences in the training data reduces ML model adverse impact without sacrificing accuracy.
To do so, we utilize a data preprocessing approach known as oversampling—techniques for resampling observations
to address class imbalances (Chawla et al., 2002; Yan et al., 2020)—to manipulate adverse impact ratios in the train-
ing data. Then, we systematically examine how this affects the adverse impact and accuracy of ML models that use
self-reports and interview transcripts to predict historical screening decisions.

The present study contributes to the literature on employment discrimination in several ways. First, we answer the
special issue call to investigate adverse impact in artificial intelligence and ML personnel selection systems. Second, we
answer calls to test the effects of oversampling minority groups to enhance diversity in training data (Hickman et al.,
2022). We do so in a real-world, high-stakes dataset where adverse impact and group representation can be directly
evaluated and altered. Oversampling to balance means and sample sizes has been shown to have small positive effects
on ML model measurement bias (Yan et al., 2020) defined as equal accuracy across groups (Tay et al., 2022), but we are
unaware of any studies of oversampling’s effects on adverse impact. By doing so with both self-reports and interview
transcripts, our study addresses the fairness of both traditional and modern selection systems. Further, we investigate
the effects across a variety of text mining vectorization techniques and ML algorithms. This allows us to estimate the
effect of oversampling on adverse impact across a variety of ML modeling approaches, reducing the chances that any
observed effects are algorithm-bound. Third, we compare multiple oversampling strategies to inform future research
and practice. Specifically, we compare the effects of (a) adjusting training data adverse impact versus adjusting training
data adverse impact and equalizing sample sizes, as well as (b) oversampling real versus synthetic applicants. Doing so
provides nuanced answers regarding how different oversampling methods affect the adverse impact and accuracy of
ML model screening decisions.

3.1 | Indices of adverse impact

Adverse impact is often operationalized as an adverse impact (Al) ratio—or the ratio of the selection ratios of two
subgroups. Selection ratios (SRs) are calculated as the number of applicants hired in a subgroup divided by the
total number of applicants from that subgroup. The Al ratio is calculated by dividing one subgroup’s SR by another
subgroup’s SR.

Adverse impact is concerned with equality of outcomes. The most common standard for identifying practically sig-
nificant adverse impact and prima facie evidence of discrimination is the four-fifths rule, or that the SR of members
of one legally protected subgroup should not be less than four-fifths the SR of members of another subgroup (Equal

Employment Opportunity Commission, 1978).° Therefore, Al ratios should exceed .80. The Al ratio indicates the effect
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size of group differences in SRs and is commonly used, although significance testing is also relevant to discrimination

claims (Morris, 2016). We chose to focus on the Al ratio because even minor subgroup differences in SRs become

statistically significant when sample size is in the thousands, as in the present study.

3.2 | Origins of discrimination in ML models

ML models and their predictions reflect existing patterns in their training data. Therefore, to the extent that discrim-
ination and/or adverse impact exist in the personnel data used to train ML models, the ML models may reflect those
historical patterns (Barocas & Selbst, 2016). We now turn to summarize the standard ML model development and
evaluation process, as illustrated in Figure B1 in the online supplement, and then explain the relevant sources of ML
adverse impact that motivate our oversampling approach.

3.2.1 | Supervised ML in personnel assessment

Most ML assessments rely on supervised ML, which involves training an algorithm to predict some known individual-
level outcome, such as historical screening or hiring decisions. To do so, individual behavior must be observed in an
evaluative situation. Human observers then, either using the in situ behavior or a more holistic process involving addi-
tional information (e.g., resumés, cover letters), rate applicants and/or make selection decisions. A machine “perceiver”
then observes and quantifies individual behavior, whether this behavior is performance in an evaluative situation (e.g.,
an interview), on a self-report scale, or on a test (e.g., of cognitive ability). For example, in automatically scored inter-
views, the unstructured, natural language of interviewee responses is transcribed, vectorized, and used in an algorithm
to predict the outcome of interest (e.g., Hickman et al., 2022).

During ML model development, researchers often test multiple predictor-algorithm combinations. For example, in
text mining, researchers may try out multiple vectorization techniques (i.e., methods for quantifying unstructured text
data, such as closed and open vocabulary; Kern et al., 2016). To do so, the data are split into training and test datasets
(e.g., Year 1 and Year 2, or k-fold cross-validation), the algorithm is fitted (or trained) on the training data, and the
resulting ML model’s accuracy is estimated on the test dataset. The predictor-algorithm combination with the highest
cross-validated accuracy is often trained on all available data (i.e., both the training and test data). This final ML model
is applied to future, unseen cases.

However, group differences in training data may affect the ML model, as reflected in the model parameters and its
predictions. Two training data disparities affect ML models: (1) group mean differences on the outcome variable; and
(2) differential representation, or underrepresentation of a subgroup (e.g., Barocas & Selbst, 2016; Kleinberg, Ludwig,
Mullainathan, & Rambachan, 2018). Regarding group mean differences, the concern is that if group mean differences
in the training data are not representative of the population of applicants to which the model will be applied, this may
alter the model weights in a way that favors one group of applicants over another (Barocas & Selbst, 2016). In our study,
group means equal their SRs, and therefore, group mean differences represent adverse impact. We expect that training
data Al ratios will affect ML model Al ratios, such that ML models trained with equal subgroup SRs (Al ratios = 1) or
with subgroup SRs favoring the subgroup with the lower SR in the observed data (Al ratios > 1) will likely exhibit less
adverse impact than models trained on data where Al ratios < 1.

Differential representation occurs when subgroups are unevenly represented in training data. In cases where the
predictor-outcome relationships differ across groups,” unequal representation in the data will cause the algorithm
to primarily reflect the most prevalent patterns in the training data—or those of majority group members (Barocas &
Selbst, 2016). Therefore, we also investigate the effects of equally representing subgroups in training data, as it has
been proposed elsewhere as a way of enhancing fairness and validity (Kleinberg, Ludwig, Mullainathan, & Rambachan,
2018).
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3.2.2 | Diversity-validity tradeoff: ML edition

Making adjustments during ML model training to enhance fairness may negatively affect the model’s convergent
validity (in our study, accuracy; Barocas & Selbst, 2016). The so-called diversity-validity tradeoff is analogous to this
concern (Ployhart & Holtz, 2008). The tradeoff occurs because some highly valid predictors of job performance (e.g.,
multiple choice cognitive ability tests) exhibit large subgroup differences, whereas selection procedures with smaller
subgroup differences (e.g., personality traits) tend to less validly predict job performance. One common suggestion for
addressing the so-called diversity-validity tradeoff is to find equally valid selection procedures with smaller subgroup
differences (Ployhart & Holtz, 2008). Therefore, if oversampling to remove adverse impact in training data enhances
ML model fairness without sacrificing convergence/accuracy, doing so may be preferable to training an ML model on
raw historical data.

With these considerations in mind, our study addresses the following research questions:

Research Question 1a-b: How does adjusting the training data Al ratios affect ML model Al ratios when using (a)
self-report scales, (b) text mined interview transcripts, or (c) both self-reports and interview transcripts to predict

screening decisions?

Research Question 2: How does equally representing subgroups (i.e., equal Ns) in training data affect ML model Al
ratios?

Research Question 3: How does oversampling real versus synthetic observations affect ML model Al ratios?

Research Question 4: How does oversampling to remove adverse impact in training data affect ML model accuracy
in the test data?

3.3 | Method

Figure 3 summarizes the present study’s methods, and more detail is provided below and in the online supplement.

3.3.1 | Sample

Participants in our sample applied for US-based positions in a female-dominated service industry. The sample consists
of 2501 applicants (71.9% female, 36.6% White, 28.3% Black or African American, 19.1% Hispanic, 6.3% two or more
races, 4.1% Asian, and the remaining demographic groups each comprised <1% of the sample).

3.3.2 | Machine learning model predictor variables

Text mined interview transcripts. Participants recorded their answers to five interview questions using an online
video platform, and computer software transcribed their responses. We applied six common vectorization techniques
to convert the interviews to vectors for use as predictors in the ML models, as detailed in Figure 3 and the online
supplement.

Self-report survey scores. The self-report survey included 16 proprietary multi-item, bipolar scales developed for
the purposes of job selection that measure constructs including sociability, work ethic, and analytical mindset. These
self-reports were scored in two ways: (1) as raw numerical scores and (2) as percentile scores based on norms derived

by the survey vendor. The online supplement reports the scales’ reliability and validity.
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3.3.3 | Outcome variable (screening decisions)

We used the organization’s screening decisions as the outcome variable. The decision is binary: applicants who passed
proceeded to the next stage of the hiring process (screened in), and applicants who failed did not (screened out). The
overall SR = .494, White applicant SR = .60, non-White applicant SR = .43, Black applicant SR = .46, and Hispanic appli-
cant SR = .37. These SRs result in Non-White/White Al ratio = .72, Black/White Al ratio = .77, and Hispanic/White
Al ratio = .62. A baseline model that always guesses “screened out” would have accuracy = .506, and this forms the

‘baseline’ accuracy against which ML model accuracy is judged.

3.34 | Train and test data splits for machine learning models

To compare multiple predictor-algorithm pairs, we created a stratified three-fold split of the raw data to conduct
k-fold cross-validation. Specifically, we split the data into k = 3 folds such that White, Black, and Hispanic appli-
cants had consistent Ns and SRs in each fold, thereby maintaining the original data’s properties. Across the three
folds, White SR = .60, Non-White SR = .43, Black SR ranged from .45 to .47, and Hispanic SR ranged from .36 to
.38. The three folds ranged in size from N = 832 to 835. For all experiments, we trained ML models on two folds
then assessed them on the third fold and repeated the process three times, using each fold only once for testing.
In total, we trained and tested: 5 (the adjusted training data Al ratios) * 2 (adjusting SRs or SRs and Ns) * 2 (over-
sampling real or synthetic observations) * 154 (11 algorithms * 14 sets of predictors) + 154 (the 11 algorithms * 14
sets of predictors on the raw data) = 3234 models in each of the three folds, or 9702 models trained and tested.
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The output of our experiments used in all analyses in the manuscript and online supplement is available on OSF:
https://osf.io/c46sp/?view_only=2ffb2172f8274968hf720429812deae4

3.3.5 | Algorithms

We trained a variety of common machine learning algorithms, as detailed in Figure 3 and the online supplement. No
one algorithm is optimal for all tasks (i.e., no free lunch theorem; Wolpert & Macready, 1997), and these represent
a sample of commonly used ML algorithms. We conducted hyperparameter tuning for each algorithm in each set of
training folds of the original data, as detailed in the online supplement. We fully crossed these algorithms with the
two methods for scoring the self-reports, the six text mining approaches applied to the interview transcripts, and the
combined predictor set of the six text mining approaches plus the raw self-report scores. This allowed us to estimate
the effect of oversampling on model outcomes across a variety of predictor-algorithm pairs, thereby ensuring that
our results generalize across many ML models. Tables B8-B10 in the online supplement report the average accuracy

obtained on the raw data when SR = .50 for all algorithms, predictors, and predictor-algorithm pairs, respectively.

3.3.6 | Oversampling ratios

We used under- and oversampling to investigate the relationship between training data Al ratios and ML model Al
ratios in the test data. Prior to model training, we under- and oversampled minorities in the training data to achieve
Black/White and Hispanic/White Al ratios ranging from .60 to 1.40, stepping by .20. In all cases, we kept Black and
Hispanic SRs in the numerator. To achieve training data Al ratio = .60, we undersampled passing Black and Hispanic
applicants to reduce their SRs. To achieve Al ratios = .80 to 1.40, we oversampled passing (i.e., screened in) Black and

Hispanic applicants until the desired Al ratio was achieved.

3.3.7 | Oversampling strategies

We investigated two oversampling strategies: (1) oversampling to adjust SRs and (2) oversampling to adjust SRs and
equalize sample sizes. The former case is described in the “Oversampling Ratios” subsection. In doing so, Black and
Hispanic sample sizes increased by the number of cases added to achieve the manipulated Al ratio. To equalize sample
sizes, we multiplied the White N by the desired SR (as determined by the desired Al ratio),® then we (a) oversampled
passing Black and Hispanic applicants (respectively) to reach those values and (b) oversampled (or undersampled, if
necessary) Black and Hispanic applicants who failed until White, Black, and Hispanic applicant Ns were equal.

3.3.8 | Oversampling techniques

We, (1) oversampled real observations with replacement or (2) oversampled synthetically generated observations.
We used the Synthetic Minority Over-Sampling TEchnique (SMOTE; Chawla et al., 2002) to generate synthetic (a)
screened in Black applicants, (b) screened in Hispanic applicants, (c) screened out Black applicants, and (d) screened
out Hispanic applicants. Figure B2 in the online supplement illustrates how SMOTE works. We used the first two

categories to adjust Al ratios and all four categories when adjusting Al ratios and equalizing sample sizes.
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3.3.9 | Test data selection ratio

As a robustness check, we analyzed our results at different overall SRs in the test data: .10 and .50. To do so, we had
the ML models output class probabilities (i.e., continuous values ranging from O to 1) instead of binary predictions.
Then, to achieve overall SRs =.10 and .50, we set the highest 10% and 50%, respectively, of the class probabilities to 1
(pass/screen in) and the remaining values to O (fail/screen out). Al ratios are more likely to violate the four-fifths rule
as the overall SR decreases (Oswald et al., 2016). SR = .50 is very similar to the observed SR in our data, and SR = .10
represents a more competitive (e.g., later stage) selection procedure.

3.4 | Results

To investigate our research questions, we treated the 9702 sets of algorithmic predictions as observations for analysis
and measured their accuracy and Al ratios at overall SR =.10 and .50. In the raw data, the models that used interview
transcripts to predict screening decisions tended to be more accurate than models that used self-reports as predictors,
and the models that used both interview transcripts and self-reports tended to be no more accurate than the interview
models. Among models that used: interview transcripts as predictors, Accuracyyax = 69.6% (averaged across the three
folds); self-reports as predictors, Accuracypmax = 60.2%; and combined predictor sets, Accuracypa = 70.6%.

Research Question 1 concerns the effect of training data Al ratios on ML model Al ratios when screening applicants
in the test data. Table 2 reports the average ML model accuracy and Al ratios in the raw data and at each manipu-
lated training data Al ratio for models that used self-reports (top), interview transcripts (middle), and both interview
transcripts and self-reports (bottom) as predictors (Tables B5-B7 in the online supplement report the same informa-
tion at overall SR = .10). On average, among models that used self-reports as predictors, changing training data Al
ratios from .6 to 1.4 caused the ML model Al ratios to increase from a minimum of .11 (Hispanic/White Al Ratios) to
a maximum of .16 (Black/White Al Ratios). Among models that used interview transcripts as predictors, the average
increases were smaller, ranging from a minimum of .04 (Hispanic/White Al ratios) to a maximum of .07 (Black/White
Al Ratios). On average, among models that used both sets of predictors, the Al ratios increased from a minimum of .06
(Black/White Al ratios) to a maximum of .08 (Non-White/White Al ratios). These findings that the effects were largest
among models that used self-reports and smallest among models that used interview transcripts as predictors align
with the magnitude of correlations between training data Al ratios and ML model Al ratios reported in Table B1 in the
online supplement for each predictor set. Thus, for all three predictor sets, training data Al ratios affect ML model Al
ratios.

Notably, however, the effects were sometimes small in magnitude. Table 3 and Figure 4 report the ML model Al
ratios for the most accurate model from each predictor set because these are the models likely to have been selected
for subsequent use. For example, the most accurate model included the Latent Semantic Indexing (LSI) operational-
ization of interview transcripts plus self-reports as predictors and used linear discriminant analysis for prediction.
When it was trained on the raw data where Black/White Al ratio = .77, and Hispanic/White Al ratio = .62, it exhib-
ited an average Black/White Al ratio =.715 and Hispanic/White Al ratio = .611, whereas when it was trained on data
where Al ratios were adjusted via oversampling to equal 1, it exhibited an average Black/White Al ratio = .747 and
Hispanic/White Al ratio = .649.

Research Question 2 regards whether equalizing subgroup Ns further enhances ML model Al ratios. Tables B2-B4
in the online supplement report the average ML model accuracy and Al ratios, respectively, for ML models that used
self-reports, interview transcripts, and the combined predictor set in each experimental condition at overall SR =.50
(Tables B5-B7 in the online supplement report the same at overall SR = .10). Al ratios tended to increase by about
.01 (although did not always do so) from manipulating SRs and equalizing Ns when compared to only manipulating SRs.

These findings align with the correlations between a dummy variable for whether SRs or SRs and Ns were manipulated
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TABLE 2 Average ml model accuracy and adverse impact ratios (Overall SR = .50).
Accuracy Al Ratio

Train Al ratio Overall White Black Hispanic NW/W B/W H/W
Self-reports Raw .568 .584 .558 569 736 692 .753
.6 564 .581 .552 .563 724 .689 737

.8 564 577 554 562 .743 711 754

1.0 .560 .570 551 .560 768 .745 771

12 .554 .560 .547 .552 .807 .789 .808

14 .544 .545 541 .540 .854 844 .849

Interview transcripts Raw .625 622 .623 .636 .844 .869 795
6 .630 .628 .629 .643 .835 .858 .787

.8 .630 .628 .630 641 .845 872 793

1.0 627 .625 .628 .636 .853 .884 795

12 .620 617 .620 629 867 .902 .809

14 611 .608 612 .620 891 .928 .831

Combined predictors Raw .633 .636 .628 .639 .782 .798 739
.6 .631 .635 624 .642 768 .785 726

.8 .631 .633 627 .640 .781 .801 .735

1.0 .628 .629 .624 .637 799 .825 747

12 623 .623 621 631 818 .848 762

14 613 .613 612 619 .850 .844 793

For self-reports, N = 66 models on the raw data; N = 1,320 models when oversampling; for both interview transcripts and
combined predictors, N = 198 models on the raw data, N = 3960 models when oversampling.

TABLE 3 Average accuracy and adverse impact ratios for most accurate models (Overall SR = .50).

Model Train Al ratio
Self-reports (raw) Raw
1.0
LSI Raw
1.0
LSI + Self-reports Raw
1.0

Overall accuracy

.602
.587
696
697
.706
.693

Test Al Ratios

NwW/wW
669
725
.695
716
.688
719

B/W
.627
715
712
742
VIS
747

H/W
674
.720
.625
.647
611
.649

Note: Results averaged across folds, oversampling methods and techniques (on the raw data, for each, N = 3; when train Al
ratio = 1.0, N = 12 for each. NW/W = Non-White/White Al Ratio; B/W = Black/White Al Ratio; H/W = Hispanic/White Al

Ratio. Logistic regression provided the highest accuracy for survey scores; ridge regression for LSI; and linear discriminant

analysis for LS| + Self-reports.

and the ML model Al ratios, in that the correlations show a minimal positive effect of equalizing Ns beyond manipulat-

ing SRs. Overall, equalizing sample sizes tended to exert minimal, positive effects beyond manipulating training data

Al ratios.
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FIGURE 4 Average fairness-accuracy tradeoff for the most accurate models (selection ratio =.50). Note:
Numbers in shapes indicate the training data Black/White and Hispanic/White Al ratios.

Research Question 3 regards whether different effects are observed from oversampling real versus synthetic
observations generated by SMOTE. As reported in Tables B2-B4 in the online supplement, these effects tended to
be even smaller in magnitude than the effect of manipulating SRs versus manipulating SRs and equalizing Ns. Further,
as reported in Table B1 in the online supplement, the effects were mixed across predictor sets, such that synthetic
observations increased Non-White/White and Black/White Al ratios among models that used self-reports as predic-
tors but decreased them and Hispanic/White Al ratios among models that used interview transcripts or both interview
transcripts and self-reports as predictors. Therefore, oversampling real or synthetic observations provided similar
effects.

Research Question 4 addresses the tradeoff between ML model accuracy and adverse impact. Table 3 reports the
most accurate models’ accuracy when trained on the raw data versus when training data Al ratios = 1, and Figure 4
illustrates the tradeoff between accuracy and Non-White/White Al ratios for these models when training data Al
ratios = .6, .8, 1.0, 1.2, and 1.4 (on average across the other conditions). As Figure 4 shows, oversampling to adjust
training data Al ratios tended to slightly decrease model accuracy. For example, for the models that used LSI and self-
reports as predictors, Al ratios increased by .100 when training models on training data Al ratios = 1.4 compared to
training on the raw data, and accuracy decreased by .027. Among models that used only LSI as predictors, Al ratios
increased by .091 when training models on training data Al ratios = 1.4 compared to training on the raw data, and
accuracy decreased by .006. This aligns with trends reported in Table 2 when all models’ outputs were examined.

3.5 | Discussion

Adverse impact is a foundational concern for ML-powered selection tools, as they receive heightened scrutiny from
applicants and policymakers. The present study investigated the effects of oversampling high-performing minorities,
a technique being explored by data and computer scientists (Yan et al., 2020), on ML model Al ratios. Removing or
reversing adverse impact in training data increased ML model Al ratios while reducing ML model accuracy, although
the effect sizes were small.
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3.5.1 | Theoretical and practical implications

Although adequate representation in training data is important for developing ML models that are equally accurate
across demographic groups (Barocas & Selbst, 2016; Kleinberg, Ludwig, Mullainathan, & Rambachan, 2018), equal
representation had very minor, positive effects on ML model Al ratios in our study. This may be because oversampling
minority success already affected differential representation in our training data. Indeed, to create training data Al
ratios = 1.0, 1.2, and 1.4, we necessarily oversampled many minority applicants, thereby increasing their sample size
beyond the number of White applicants. Therefore, equal representation may have independent, positive effects, but
our adjustments to training data Al ratios may have suppressed them.

Further, the observed effects were similar regardless of whether real or synthetically generated observations were
oversampled. This is encouraging, because although binary classification problems tend to benefit more from over-
sampling synthetic than real observations (Chawla et al., 2002), there is something uncanny about using synthetic
observations for personnel assessment. We encourage future work to continue to check if this holds true in other
studies, but the current findings suggest that practitioners can reduce ML model adverse impact to a similar degree
regardless of whether they oversample real or synthetic observations.

Although oversampling to adjust training data Al ratios slightly increased ML model Al ratios, doing so also tended
to slightly reduce ML model accuracy. This issue is analogous to the so-called diversity-validity dilemma (Ployhart
& Holtz, 2008) and a known limitation of methods of enhancing algorithmic fairness (Barocas & Selbst, 2016). Such
decreases in accuracy limit the potential practical value of oversampling. Importantly, however, if ML models perfectly
replicate historical human decisions, they could not reduce adverse impact. Future work is needed to determine how
such adjustments affect validity and predictive bias, as these are more important than replicating historical decisions

and our data did not include workplace outcomes.

3.5.2 | Limitations and future research

The generalizability of our findings to other personnel selection situations is limited by two primary properties of the
dataset. First, our study focused on a subset of potentially useful predictors for personnel selection (i.e., self-reports
and interview responses), yet many selection systems may have a broader array of predictors available, such as bio-
data and cognitive ability. Second, the sample size in our study is rather small for real-world ML applications, as they
may be based, in practice, on tens of thousands of observations. The relatively low accuracy of our ML models may
have enhanced the magnitude of oversampling’s effects, whereas more accurate models may exhibit smaller effects
from oversampling. Both a broader array of predictors and a larger sample size could potentially increase ML model
accuracy and alter the effects of oversampling.

Due to the small effects of oversampling, future research should investigate additional approaches for addressing
ML model adverse impact. For example, removing predictors that are predictive of group membership holds potential
for reducing adverse impact (Booth et al., 2021), as does reducing the weight given to such predictors (Zhang et al.,
2018). Future research is needed to determine the effects of these and other approaches in high-stakes settings.

The effects of oversampling high-performing minorities rely on an assumption that subgroup differences in pre-
dictors will be consistent in new data. If, however, subgroup differences on predictors were inconsistent between
the training data and subsequent applicants, then training data Al ratios may have a weaker relationship with ML
model Al ratios. This suggests another route to addressing adverse impact, regardless of whether ML models are used
for assessment: enacting societal change to reduce subgroup differences in job-relevant qualifications (i.e., predic-
tors). Mean racial subgroup differences in job-relevant qualifications begin at a young age (McDaniel et al., 2011),
and without change, they may persist in society for another 90 years or more (Barrett et al., 2011). Addressing sub-
group differences in job-relevant qualifications is the most direct route for reducing adverse impact across assessment

methods.
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4 | STUDY 3: MULTI-OBJECTIVE OPTIMIZATION FOR PERSONNEL SELECTION: A
GUIDE, TUTORIAL, AND USER-FRIENDLY TOOL’

Organizations often want to optimize multiple hiring objectives simultaneously, yet doing so can be difficult, especially
for conflicting objectives (e.g., cost and effectiveness; job performance and diversity). As a result, there is a growing
need to develop robust methods for making hiring decisions that consider multiple objectives. To date, however, most
analytic approaches are limited to optimizing just one objective at a time (e.g., cost or effectiveness, instead of cost
and effectiveness). Multi-objective optimization (MOO; a.k.a., Pareto-optimization) is a promising machine learning
approach that can help organizations optimize multiple objectives. It generates predictor weights that optimize the
value of one objective at given levels of the other objective(s); organizations then choose the set of predictor weights
that best fulfills their needs and values. MOO has been used in personnel selection to address the diversity-validity
dilemma by deriving hiring solutions that can as much as double the proportion of minority hires while maintaining the
expected job performance of the new hires (Wee et al., 2014).

Nonetheless, existing MOO applications that are readily available for personnel selection are limited in two ways:
(a) they have only been applied to optimize two objectives, and (b) those two objectives have always been task per-
formance and diversity (in the form of adverse impact; e.g., De Corte et al., 2007; Song et al., 2017). Yet, organizations
are often concerned with multiple hiring objectives beyond task performance and diversity, such as the likelihood of early
turnover (Speer et al., 2019) and organizational citizenship behavior (OCB; Ployhart et al., 2017).

This study aims to provide a generalized MOO guide and tool that help users optimize multiple objectives in per-
sonnel selection. By doing so, we aim to make two contributions. First, we provide a guide to generalize the application
of MOO to a wide range of objectives and enable the use of MOO in situations beyond the diversity-validity dilemma.
The guide details how to use MOO for different personnel selection applications by explaining what types of problems
are best addressed with MOO, how to define MOO problems, and how to implement, evaluate, and monitor MOO
selection systems. Second, we introduce a user-friendly online application (Multi-Objective Selection Tool, MOST;

https://orgtools.shinyapps.io/MOST/) to help a wide range of users explore MOO without requiring complex computer

programming or mathematical knowledge of machine learning algorithms. We hope this study will foster the adoption

of MOO and, thereby, improve hiring outcomes.

4.1 | Multi-objective optimization and current organizational applications

As the term “multi-objective optimization” suggests, the MOO approach consists of a variety of algorithms that
simultaneously optimize multiple objectives. MOO is useful any time the objectives are in conflict—or whenever the
objectives cannot be simultaneously optimized (De Corte et al., 2007). Buying a used car, for example, can be consid-
ered a MOO problem. Suppose our objectives for a car purchase are to (1) minimize price and (2) minimize mileage.
Because price tends to decrease as mileage increases, there is a conflict between the two objectives, making it a typi-
cal MOO problem. Our purchase decisions are also often bounded by some conditions. For instance, we may only want
to consider minivans; in MOO, this is called an equality constraint (i.e., body type = minivan). Also, we may only want
to consider cars with a fuel efficiency of at least 16 miles per gallon; in MOQ, this is called an inequality constraint (i.e.,
gas mileage >16 miles per gallon). Constraints reduce the range of feasible solutions (e.g., car options) to ones that
are most likely to meet our needs. Thus, a typical MOO problem consists of a set of objectives (e.g., minimize price,
minimize mileage) and, often, some equality constraints (e.g., body type = minivan) and inequality constraints (e.g., gas
mileage >16 miles per gallon).

The goal of MOO s to identify Pareto-optimal solutions. A Pareto-optimal solution optimizes one objective, at a
certain level of the other objective(s). In our car buying example, the Pareto-optimal solutions include minivans with

the lowest price given a mileage, as well as minivans with the lowest mileage given a price. The choice of a final solution
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depends on the preference of the buyer. For instance, among all the Pareto-optimal minivan options, the buyer might

decide to select the minivan that has the lowest mileage among all the medium-priced options.

The example above concerns discrete choices of used cars. In many applications (e.g., personnel selection), the final
solution is a set of predictor weights. For example, MOO has been used to address the diversity-validity dilemma in
personnel selection (e.g., De Corte et al., 2007). The diversity-validity dilemma concerns how common personnel selec-
tion predictors and procedures (e.g., cognitive ability tests) that validly predict job performance also tend to engender
adverse impact. This creates a MOO problem where organizations have to optimize two conflicting objectives (in this
example, diversity and validity). One way to address this problem is to assign different weights to predictors (e.g., struc-
tured interview, personality assessments) so that the resulting weighted predictor composite exhibits high validity in
predicting job performance and low adverse impact (Outtz & Newman, 2010).

MOO uses a data-driven approach to generate multiple sets of predictor weights, each of which optimizes one
hiring outcome (e.g., adverse impact ratio [Al ratio]) at a given level of the other outcome(s) (e.g., job performance).
The final choice of predictor weights depends on organizational needs and values. For instance, organizations focused
on complying with the four-fifths rule (Equal Employment Opportunity Commission, 1978) may select the solution
that maximizes the expected job performance with expected Al ratio greater than or equal to .80; while organizations
focused on enhancing social equality may select the solution that maximizes the expected job performance with the
expected Al ratio equal to 1.00 (see Newman et al., 2022).

In summary, MOO is useful when the objectives are in conflict with each other, which occurs when two or more
objectives “cannot be optimized by exactly the same weighting of the available selection predictors” (De Corte et al.,
2007, p. 1382). By analyzing the relationships between the predictors and multiple objectives simultaneously, MOO

provides a set of optimal solutions that organizations could choose from based on their specific needs and values.

4.2 | Growing demand in personnel selection for optimizing multiple objectives

Thereis agrowing demand among organizations to simultaneously optimize multiple objectives in personnel selection.
Recently, interest has increased in performance criteria beyond task performance, such as OCBs and CWBs (Ployhart
et al., 2017), and non-performance criteria, such as turnover and employee well-being (Speer et al., 2019). OCBs con-
tribute to, and CWBs detract from, positive organizational functioning (Van Iddekinge & Ployhart, 2008); high rates of
voluntary employee turnover harm organizational outcomes (Park & Shaw, 2013); and employee well-being influences
job satisfaction, job performance, and retention (Cleveland & Colella, 2010). However, it is often difficult to optimize
these objectives simultaneously, as they are not perfectly related and sometimes are negatively or non-linearly related
(e.g., curvilinear relationship between job performance and retention; e.g., Salamin & Hom, 2005). Thus, a strategy that
optimizes one objective might not be optimal for, and could even hinder, another objective.

MOO can help organizations develop selection systems that optimize multiple hiring objectives. In the sections
below, we provide a guide, a point-and-click R Shiny app, and an R package for obtaining MOO solutions for general
personnel selection purposes.

4.3 | Guide for implementing multi-objective optimization for personnel selection

Myriad MOO algorithms exist for obtaining Pareto-optimal solutions, which are summarized in the online supplement.
In this study, we focus on the normal boundary intersection (NBI) algorithm developed by Das and Dennis (1998),
which has been most commonly used in personnel selection (e.g., De Corte et al., 2007, 2011; Newman et al., 2022;
Songetal., 2017; see Rupp et al., 2020). Table 4 provides a checklist with the key steps for adopting MOO in personnel

selection, and the online supplement provides a step-by-step example demonstration.
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TABLE 4 Achecklist of the key decisions for adopting multi-objective optimization for personnel selection.

Stage 1. Define the MOO Problem

a. Determine the hiring objectives
* What are the hiring objectives (e.g., job performance, retention, diversity)? The choice depends on
organizational needs and values.
* How to operationalize each hiring objective?
* Optimization goal: Decide the extent to which each objective will be optimized
b. Choose predictors and corresponding assessment methods
* What predictors best predict the hiring objectives? The choice of predictors needs to be backed by job analysis.
* How to measure/assess the predictors?
c. Set proper constraints
* Consider practical and legal needs

Stage 2. Obtain MOO Solutions

a. Choose aMOO algorithm
» Considerations for selecting MOO algorithm (See Online Supplement C, Table C1)
O Arethererelative weights associated with each hiring objective?
« Yes: apriori algorithms
« No: a posteriori algorithms
b. Prepare input statistics
* ldentify the calibration sample
O What incumbent group to sample/archival data to use as the calibration sample? Calibration samples should
closely match the target sample of interest (e.g., applicant pool).
O What is the expected sample size? When possible, the calibration sample size should be large.
* Collect data from the calibration sample
* Compute input statistics for MOO
O Predictor intercorrelations
O Predictor-objective relationships
c. Obtain MOO predictor weights
* Obtain the MOO predictor weights using the input statistics
* Choose a solution that best satisfies the optimization goal(s)
d. Pilot trial (highly recommend)
« Identify the pilot sample (e.g., applicant sample)
* Collect predictor data from the pilot sample
* Apply the MOO predictor weights to the pilot sample and estimate weighted predictor composites for each
individual in the pilot sample (but do not use it to make actual hiring decisions)
* Evaluate whether the MOO predictor weights result in hiring outcomes that satisfy optimization goals, if
applicable
* Identify other practical needs (e.g., communication, training)

Stage 3. Implementation

a. Use MOO weighted predictor composite to make hiring decisions
* Assess predictor data from the target sample of interest (e.g., job applicants)
* For each applicant, calculate weighted predictor composite scores using the MOO predictor weights
* Make hiring decisions based on (or partially based on) the weighted predictor composite scores

Stage 4. Maintenance

* Evaluate the objectives in each round of implementation

* Monitor hiring outcomes across different samples and scenarios

* Ifchangeisrequired (e.g., due to updates from job analysis or substantial shrinkage), re-evaluate the MOO
selection system starting from Stage 1

Note: All steps need to be documented for future validation and legal auditing.
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431 | Stage 1. Define the MOO problem

Thefirst stage is to define and operationalize the hiring objectives. Hiring objectives can be informed by organizational
needs and values; for example, an organization may aim to improve employee diversity, retention, and performance.
Stage 1 also typically involves setting the optimization goal (i.e., to what extent each objective should be optimized).
For instance, some organizations may choose to select solutions that allow more favorable retention rates only to the
extent that expected task performance is not substantially decreased; other organizations may choose to maximize
new hire task performance and OCB only to the extent the adverse impact risks are low.

The hiring objectives then inform the choice of predictors. Each predictor should individually demonstrate evidence
of job-relatedness, through job analysis and content or criterion-related validity (Equal Employment Opportunity
Commission, 1978).8 As each predictor can be assessed in multiple ways, the most suitable method of assessment
can be determined with validation studies, (lack of) overlap with other assessments, and practical considerations. For
example, should interpersonal skills be measured using situational judgment tests or structured interviews? Are there
assessment tools that are already available, or do they need to be developed? One should also examine practical and
legal considerations related to the selection predictors, such as constraining predictor weights to be non-negative to

properly reflect job analysis results (see De Corte et al., 2007).

432 | Stage 2. Obtain MOO solutions

The second stage focuses on obtaining MOO (or Pareto-optimal) predictor weighting solutions. Multiple algorithms
are available for implementing MOO, which could be broadly classified as a priori and a posteriori algorithms. If the
optimization goal is clear, a priori algorithm should be used; if it is not clear, then a posteriori algorithm should be used
(see online supplement for details).

MOO algorithms are supervised machine learning algorithms that train models (i.e., develop predictor weighting
solutions) using calibration/training sample data. For example, when MOO is used for hiring, the calibration/training
sample consists of employees with criterion data (e.g., job performance ratings), and the target/testing sample is the
applicants.

MOO models generate multiple sets of predictor weights that optimize each objective at given values of the other
objective(s). From them, the user chooses the solution (i.e., predictor weights) that best satisfies the optimization goals.
In other words, MOO generates possible solutions; and from those solutions, the organization selects one based on
their values, goals, and business necessity. Even when the optimization goal is loosely defined (e.g., to improve all
three objectives to a reasonable degree), one can still narrow down the solution space based on the goal. They can,
for instance, identify a subset of solutions with higher expected new hire job performance, retention rate, and Al ratio
than the current practice, which can be presented to the organizational decision-makers for further consideration.

When possible, users should conduct a pilot trial to (a) evaluate the predictor weights in the target sample of inter-
est and (b) identify any preparations needed to integrate the MOO system into selection practice. Specifically, collect
predictor information from a pilot sample (e.g., applicant sample), use the MOO predictor weights to identify individu-
als who might be selected with the MOO selection system (but not yet use them to make actual hiring decisions), and
evaluate the hypothetical hiring outcomes (e.g., whether the Al ratio satisfies the four-fifths rule). In addition, examine
practical needs such as communication (e.g., how to explain to stakeholders) and training (e.g., how to train recruiters

and hiring managers).

4.3.3 | Stage 3. Implementation

The MOO solution is then implemented to make hiring decisions. Specifically, collect predictor information from the

job applicants and, for each applicant, use the MOO predictor weights to calculate weighted predictor composites.
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The weighted predictor composite scores can be used to rank order job applicants to aid compensatory selection.

They can also be used in conjunction with non-compensatory methods (e.g., minimum cut-score requirements), for
instance, by first selecting out applicants that did not meet the minimum cut-score for certain predictors (e.g., edu-
cation requirement, licenses, work experience requirements) and rank ordering the remaining applicants based on
weighted predictor composite scores.

434 | Stage 4. Maintenance

The MOQO selection system should be maintained through continuous validation. In each round of implementation,
the hiring outcomes should be evaluated to determine whether they still satisfy the optimization goals and detect any
changes in the hiring outcomes. For example, are the new hires’ job performance and 6-month retention rates similar
to previous implementations? Does the Al ratio still satisfy the four-fifths rule? Are there any changes across different
locations or times of the year? When the validation suggests a need to revisit the selection system, the selection sys-
tem must be re-evaluated, starting from Stage 1. This procedure supports the continued effectiveness of the selection

system.

4.4 | Multi-objective selection tool (MOST): A user-friendly tool to implement MOO

The MOST online application (https://orgtools.shinyapps.io/MOST/) is a user-friendly and freely available R Shiny

application that uses the NBI algorithm (Das & Dennis, 1998) to estimate predictor weights for optimizing three hiring
objectives. We also provide a corresponding R package, “rMOST” that is available via the Comprehensive R Archive

Network (CRAN; https://cran.r-project.org/) repository. Figure 5 provides an example MOST Shiny app interface and

the online supplement provides a detailed manual for using the app.

441 | Procedures to use the MOST Shiny app

Step 1. Define the MOO problem. The first step in implementing MOO in personnel selection is to define the hir-
ing objectives (see Table 4). Common hiring objectives generally fall into two categories: adverse impact objectives
and non-adverse impact objectives.” Adverse impact objectives relate to the proportion of selected applicants from
legally protected groups (e.g., women, racial/ethnic minorities) relative to the proportion of selected majority appli-
cants, and they are commonly operationalized with Al ratios (e.g., Oswald et al., 2016). Non-adverse impact objectives
include all other objectives, such as dimensions of employee performance (e.g., task performance, OCB, CWB); they
are commonly operationalized as supervisor ratings, peer ratings, and with objective employee records.

The MOST app can optimize predictor weights for: (1) three non-adverse impact objectives (“No Adverse Impact
Objectives”), (2) two non-adverse impact objectives and one adverse impact objective (“One Adverse Impact Objec-
tive”), or (3) one non-adverse impact objective and two adverse impact objectives (“Two Adverse Impact Objectives”).
Use the “Optimization Problem” drop-down menu to select one of the three options (see Figure 5). As the optimiza-
tion function does not allow negative predictor weights (as suggested by De Corte et al., 2007), MOST requires that
the predictors and non-adverse impact objectives be operationalized such that greater values indicate more desired
outcomes (e.g., emotional stability instead of neuroticism; retention instead of turnover).

Step 2. Obtain MOO solutions.

Prepare input statistics. MOST (which implements NBI) takes the predictor intercorrelations and the predictor-
objective relationships as input statistics, both of which can be estimated from the calibration sample. The predictor

intercorrelations are represented by a correlation matrix of the predictors. The predictor-objective relationships are
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MOST: Multi-Objective Selection Tool
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FIGURE 5 Anexample usage of the MOST Shiny App.

criterion-related validities (for non-adverse impact objectives; i.e., the correlation between each predictor and the
measure of an objective) or subgroup difference (for adverse impact objectives; i.e., the standardized predictor mean
score difference [Cohen’s d] between minority and majority groups). For personnel selection applications, the intercor-
relations and criterion-related validity need to be corrected for range restriction and criterion unreliability to reflect
the relationships in the applicant sample (SIOP, 2018; see online supplement for recommended resources for range
restriction correction).

To specify the inputs in MOST, begin by entering the number of predictors to be used in the field labeled “Number
of Predictors.” Next, enter the predictor intercorrelations in the table labeled “Predictor Correlations.” The values
entered into the table must be between —1 and 1. Simply click on a cell in the table and enter the relevant correlation;
the predictors will be labeled “P” (for predictor) followed by a number representing their order in the table.1?

Then, enter the relationships between the predictors and the objectives in the “Predictor-Objective Relation-
ships” table. The non-adverse impact objective will be labeled “C” (for criterion) followed by a number representing
their order among the non-adverse impact objectives in the table (e.g., “C1”); these predictor-objective relationships
should be entered as correlations between —1 and 1. The adverse impact objectives will be labeled “Al” (for adverse
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impact) followed by a number representing their order among the adverse impact objectives in the table (e.g., “Al1”);

these predictor-objective relationships should be entered as standardized mean subgroup differences of the predictor
scores (subgroup d), with positive values favoring the reference group. If there are two adverse impact objectives, the
subgroup ds entered should be the standardized mean difference between a minority group and the same reference
group (e.g., both be minority groups compared to the White group, such as Black-White and Hispanic-White subgroup
d’s).

If the MOO problem has “One Adverse Impact Objective” or “Two Adverse Impact Objectives,” MOST will display
additional fields requesting further input information. In both cases, the user needs to enter the expected overall selec-
tion ratio of the selection system (a value between 0 and 1) in the “Overall Selection Ratio” field. In addition, if the
problem has “One Adverse Impact Objective,” the user needs to enter the expected proportion of the minority sub-
group in the applicant pool (a value between 0 and 1) in the “Proportion Minority for Al1” field. If the problem has
“Two Adverse Impact Objectives,” the user needs to enter the expected proportions of the two minority subgroups in
the applicant pool in the “Proportion Minority for Al1” and “Proportion Minority for Al2” fields.

Obtain MOO predictor weights. After all the inputs are entered, click the “Get Solution!” button. MOST will visualize
the MOO solutions in a 3-dimensional plot on the top right section of the screen and provide the predictor weights as
well as the expected hiring outcomes (expected Al ratio and composite validities) associated with each solution, both in
the plot and in a table on the bottom right section of the screen. The solutions in the table can be sorted in descending
or ascending order based on each column, which facilitates solution comparison and selection. In addition to the results
for the three-objective solutions, for each of the three pairs of objectives, MOST also provides the results of two-
objective optimization solutions generated via NBI (e.g., C1 & C2, C2 & C3, C1 & C3).1! The user can obtain more
information on each solution by hovering the cursor over a point on the plot. For each point on the plot, MOST displays
the solution number (which corresponds to the solution number in the table), predictor weights, and the expected

hiring outcomes. The user can use both the plot and the table to select a solution that best fits their needs.

45 | Discussion

In this study, we highlighted organizations’ growing demand to optimize multiple objectives in personnel selection and
described how MOO can address this demand. We then introduced a guide for implementing MOOQ in personnel selec-
tion and provided a user-friendly online application and R package to help organizations implement MOO to optimize
three hiring objectives.

451 | Utility of MOO over common personnel selection practices

To help readers consider the utility of MOO given their specific hiring scenarios and needs, we conducted a sup-
plemental exploratory study to investigate the factors influencing the utility of MOO. Details of the study and
recommendations are provided in the online supplement. Although the utility of MOO ultimately depends on the spe-
cific hiring scenario and the user’s needs, the results of our exploratory study suggest that MOO tends to be more
useful when predictors are differentially related to the objective. That is, MOO tends to be more useful over other
predictor weighting methods when predictor-objective relationships vary widely across predictors; and MOO tends
to be less useful over other methods when predictor-objective relationships do not vary much across predictors. When
the predictor-objective relationships moderately vary across predictors, different users may find MOO useful to dif-
ferent degrees. Importantly, even in conditions where MOO does not seem to add much value, users can still choose
to use MOO, as MOO generally performs (at the least) similarly to other predictor weighting methods. MOO solutions
outperform unit weighting solutions; and MOO provides the same set of predictor weights as regression weighting at

the endpoints (in addition to a range of optimal solutions that only MOO [but not regression] can provide).
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45.2 | Shrinkage considerations with MOO and recommendations

When applying optimization methods such as MOO and regression weighting, we must consider shrinkage. Shrinkage
refers to decreases in the weighted predictor composite’s validity when predictor weights derived from one sam-
ple (calibration sample) are used in another sample (validation sample). In personnel selection, predictor weights are
often obtained from an incumbent sample or archival data (calibration sample) and used to select applicants (validation
sample).

Previous studies (De Corte et al., 2022; Song et al., 2017) suggested that shrinkage exists for MOO solutions. MOO
shrinkage is influenced by calibration sample size and magnitude of the expected hiring outcome. First, shrinkage tends
to be larger when the calibration sample size is small. Song et al. (2017), examining optimization of two objectives—job
performance and diversity—found that shrinkage was sizable for a composite of common selection predictors (biodata,
cognitive ability test, conscientiousness, structured interview, integrity test) when the calibration sample size was at or
below 500; and shrinkage was sizable for a composite of cognitive subtest predictors when the calibration sample size
was at or below 100. For a composite of common selection predictors, when calibration sample size was 500, validity
shrinkage (difference in calibration and validation sample job performance validity) ranged between .00 and .01, and
diversity shrinkage (difference in calibration and validation sample Al ratio) ranged between .00 and .08. In contrast,
when calibration sample size was 100, validity shrinkage ranged between —.01 and .03, and diversity shrinkage ranged
between .00 and .43 (see Song et al., 2017; Table 3).

Second, for a particular objective, across MOO solutions, shrinkage increases to the extent the objective is being
maximized (Song et al., 2017). In other words, there tends to be the most shrinkage for objective C1 in the solution
where C1 is maximized and the least (or no) shrinkage for C1 in the solution where C1 is least maximized. As an
example, for a composite of common selection predictors, the diversity shrinkage (in terms of Al ratio) was as high
as 1.24 (calibration sample size = 40, from Al ratio = 2.15 t0 .91; see Song et al., 2017; Table 3) for the solution where
diversity was maximized but was approximately O (across all calibration sample size conditions) for the solution where
diversity is least maximized (or where job performance was maximized; see Song et al., 2017; Table 3). Because the
MOO solutions that maximize certain (single) objectives (i.e., the endpoints) are akin to regression solutions maximiz-
ing that same objective, compared to regression solutions, MOO solutions tend to be less or similarly susceptible to
shrinkage [for the objective maximized by regression]. Specifically, compared to regression solutions that maximize
a certain objective, MOO solutions at the endpoints are similarly susceptible to shrinkage [for that objective] while
MOO solutions between the endpoints are less susceptible to shrinkage (see Song et al., 2017).

Based on these findings, we provide several recommendations regarding shrinkage when using MOO. First, when
possible, use large calibration samples (e.g., with more than 100 or 500 individuals, depending on the predictors; see
Songetal., 2017). Large calibration sample size can help reduce model overfit (or capitalizing on chance), thus reducing
shrinkage (Song et al., 2021). Second, consider complementing MOO in conjunction with other approaches to improve
hiring outcomes. For example, to ameliorate the diversity-validity dilemma in personnel selection and enhance orga-
nizational diversity, users could seek to develop and use predictor measures with smaller subgroup differences (e.g.,
Goldstein et al.,2010; Hough et al., 2001) and adopt recruitment methods that enhance diversity (e.g., Avery & McKay,
2006; Newman & Lyon, 2009).

Finally, consider using shrinkage formulas to approximate cross-validated hiring outcomes. MOO shrinkage for-
mulas are recently developed to approximate cross-validated MOO (NBI) outcomes when optimizing two objectives
(Song et al., 2023). The shrinkage formulas are developed on the basis that (1) classic shrinkage formulas (e.g., Browne,
1975; Claudy, 1978; Lord, 1950; Nicholson, 1960; Olkin & Pratt, 1958; Wherry, 1931) can be used to approximate
cross-validated outcomes on the MOO solutions at the endpoints (e.g., solution where C1 is maximized); and (2) the
solutions between the endpoints can be interpolated (based on the specific MOO algorithms). Although previous
studies suggested that shrinkage formulas are effective for NBl-based MOO applications optimizing two objectives,

future studies are needed to examine whether the MOO shrinkage formulas could be generalized to other scenarios
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(e.g., other MOO algorithms and optimizing more than two objectives). Such work will be instrumental for selection

practices using MOO.

453 | Future directions

MOO is a promising machine learning method to advance both organizational practice and research. In addition to the
personnel selection applications exemplified in this study, MOO could be used in a number of other workplace applica-
tions. In practice, organizations often face a tradeoff between the cost and validity of a selection system. While some
selection procedures (such as structured interviews and assessment centers) have high validity in predicting job per-
formance, they could also be costly to develop and administer; and other inexpensive procedures (such as personality
assessments) may have lower validity. MOO could be used to address this practical concern by reducing the cost of a
hiring design while optimizing diversity and validity. Specifically, one can use MOO to optimize three objectives: cost,
job performance, and diversity hiring outcome. The cost objective can be operationalized as the sum of the cost of the
predictors with non-zero weights, and the validity and diversity objectives can be operationalized as described ear-
lier (e.g., job performance validity, Al ratio). With appropriate algorithms and operationalizations, MOO can provide
solutions with a select set of predictors that minimize cost, at a given level of job performance validity and diversity
outcomes.

In addition to improving organizational practice, MOO could be used as a research method to advance the the-
oretical understanding of workplace phenomena. Examples include expanding the predictor space—to explore new
predictors that contribute to optimizing multiple organizational objectives. Existing methodologies (e.g., regression)
that can only analyze one outcome at a time have restricted the historical focus in personnel selection to predictors
that have high correlation with task performance, such as cognitive ability, structured interviews, and biodata (Sackett
et al., 2021). The vast majority of our understanding of personnel selection predictors are informed by meta-analyses,
regression, and structural equation modeling studies that examine the criterion-related validity, composite validity,
and/or incremental validity of predictor(s) in predicting a single workplace outcome—for example, job performance
or retention. Our field as a whole has limited knowledge of how different predictors influence multiple workplace
outcomes simultaneously— for example, job performance and retention. MOO, with its ability to systematically exam-
ine multiple objectives, holds promise to unveil more holistic predictor-criterion relationships. With MOO, we can
identify novel predictors of important work outcomes and develop methods to enhance multiple hiring objectives
simultaneously—a broader, diverse collection of predictors holds potential to improve overall hiring outcomes.
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ENDNOTES

1Study 1 authored by Zhang, N., Wang, M., Xu, H., & Koenig, N.

2Study 2 authored by Hickman, L., Kuruzovich, J., Ng, V., Arhin, K., & Wilson, D.

3Even when selection procedures violate the four-fifths rule, employers can demonstrate the job relevance and business
necessity of the selection procedure (Civil Rights Act, 1964). However, employers may also want to reduce adverse impact
for ethical reasons and to reduce the likelihood of litigation (Oswald et al., 2016).

4In the present study, we do not consider differences in standard deviations/variances between groups because the standard
deviation of binary variables (like screening decisions) is determined primarily by their means. Specifically, a binary variable’s
standard deviation = (np(1-p))*.5 where n = sample size and p = the observed mean. Further, in our study, group SRs are
equivalent to group means.

5Differential prediction is rare in selection, and when it does occur, it tends to come in the form of overpredicting minority
performance (Dahlke & Sackett, 2022).

6The “fail” Black applicants was N = 4 larger than the “fail” White applicants. To equalize sample sizes, we first oversampled
four of the “fail” White applicants before oversampling Black and Hispanic applicants.

7Study 3 authored by Song, Q. C., Tang, C., Alexander Ill, L. Hickman, L., & Kim, Y.

8For benchmarks of criterion-related validity, we refer readers to Bosco et al. (2015), which provides an overview of effect
size distributions for various bivariate relationships examined in applied psychology.

?The adverse impact objectives, which regard maintaining similar selection ratios across demographic groups, must be
treated differently than other objectives because they are operationalized with group differences (or related statistics)
rather than a validity coefficient.

10MOST will automatically update the corresponding cell on the other side of the diagonal with the same value so the corre-
lation matrix remains symmetric. It will not allow the user to change the “1”s on the diagonal of the matrix. Note that in the
cells that allow edits, negative values require a leading zero (e.g., “—0.20” instead of “—.20").

1Previous studies have suggested NBI’s limitations in finding the entire Pareto front when optimizing more than two objec-
tives (Burachik et al., 2017). Thus, the MOST app generates MOO solutions that optimize two objectives as well as the
solutions that optimize three objectives, allowing the organization to choose from a range of solutions to satisfy their
organizational needs.
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