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Abstract

Researchers have investigated whether machine learning

(ML) may be able to resolve one of the most fundamental

concerns in personnel selection, which is by helping reduce

the subgroup differences (and resulting adverse impact) by

race and gender in selection procedure scores. This arti-

cle presents three such investigations. The findings show

that the growing practice of making statistical adjustments

to (nonlinear) ML algorithms to reduce subgroup differ-

ences must create predictive bias (differential prediction)

as a mathematical certainty. This may reduce validity and

inadvertently penalize high-scoring racial minorities. Sim-

ilarly, one approach that adjusts the ML input data only

slightly reduces the subgroup differences but at the cost

of slightly reduced model accuracy. Other emerging tactics

involve weighting predictors to balance or find a compro-

mise between the competing goals of reducing subgroup

differences while maintaining validity, but they have been

limited to two outcomes. The third investigation extends

this to three outcomes (e.g., validity, subgroup differences,
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and cost) and presents an online tool. Collectively, the stud-

ies in this article illustrate that ML is unlikely to be able

to resolve the issue of adverse impact, but it may assist in

finding incremental improvements.

1 INTRODUCTION

The purpose of this article is to illustrate some of the current uses of machine learning (ML) to reduce the subgroup

differences by race and gender in selection decisions. Subgroup differences are critically important in personnel selec-

tion because they can result in differences in passing/hiring rates by subgroup (called adverse impact), which is illegal if

the selection procedures are not job related according to civil rights laws in the United States (Uniform Guidelines on

Employee Selection Procedures, 1978). Evenwhen selection procedures can be shown to be job related, the presence

of adverse impact may be viewed as problematic by organizations attempting to increase the diversity of their work-

forces. As such, some researchers are attempting to use ML to help reduce subgroup differences. In order to present

several relevant studies on the topic, only brief summaries are presented in this article. Interested readers should con-

sult each study’s Online Supplement for additional information on the study background, method, and supplemental

analyses.

This article presents three complementary studies of this important problem. First, using mathematical proofs as

well as simulated and real organizational data, Study 1 by Zhang and colleagues shows that (nonlinear) ML algorithms

that make statistical adjustments to reduce subgroup differences must create predictive bias (also called differential

prediction, which is the definition of unfairness in selection science), which may actually reduce validity and penalize

high-scoring racial minorities. Study 2 by Hickman et al. illustrates one approach to reducing subgroup differences

that involves adjusting the input data to be equivalent between races by oversampling higher-performing minorities

during ML model training. The study shows that by statistically removing subgroup differences in the training data,

one can only slightly reduce the differences in the resulting ML model but at the cost of slightly reduced accuracy.

Third, attempting to increase the validity of statistical predictions and reduce subgroup differences at the same time

is very difficult or impossible because the two outcomes are in conflict (i.e., increasing validity often increases sub-

group differences of the predictor composites). Research in recent years has used Pareto-optimal analytic techniques

to attempt to find the best compromise thatmaximizes both outcomes to the extent possible. The difficulty is that cur-

rent techniques are limited to two outcomes, while there may be three (e.g., validity, subgroup differences, and cost).

Study 3 by Song et al. presents a tool for achieving optimization for up to three objectives, which hasmany applications

in selection.

2 STUDY 1: ARE FAIRNESS-AWARE ML ALGORITHMS REALLY FAIR? PREDICTIVE
BIAS OF USING ML IN PERSONNEL SELECTION1

Thepast decadewitnessed remarkable advances in the development ofMLalgorithms that automate the construction

of prediction models (Sejnowski, 2018). These advances attracted interest from practitioners in applying ML to orga-

nizational decision-making processes, amongwhich personnel selection is a prominent example (Hickmanet al., 2022).

Recognizing the importance of limiting adverse impact (Dastin, 2018),ML researchers devoted considerable attention

to the development of fairness-awareML algorithms (Barocas et al., 2019), which are designed to optimize for predictive

accuracy while limiting the adverse impact of predictions. When used in personnel selection, these algorithms could

offer mathematical guarantees in terms of an upper bound on the adverse impact of selection outcomes (Zafar et al.,
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ZHANG ET AL. 1127

2019). Yet what has received little attention is whether the predictions made by fairness-aware ML algorithms could

suffer from predictive bias (also known as test bias or differential predictions; SIOP, 2018), that is, whether the relation-

ship between the ML-predicted score and the criterion of interest (e.g., job performance) could be different for one

demographic group than for another. Given the considerable attention afforded to predictive bias in personnel selec-

tion (Aguinis et al., 2010), this omission represents a significant issue in research and practice, and is thus the focus of

this study.

The goal of this study is to assess the potential for predictive bias in predictions made by fairness-aware ML for

personnel selection.We start with mathematical analysis showing that, unless a “plain”ML algorithmwith no fairness

constraint already satisfies theorganizational requirement on adverse impact, predictionsmadeby fairness-awareML

are almost always biased even when every predictor is free of predictive bias. Our mathematical findings also reveal

a peculiar result. Contrary to the intuition that a racial minority candidate always stands to gain from the inclusion

of fairness constraints, the opposite could be true for some racial minorities. Specifically, when an ML algorithm is

designed to satisfy a fairness constraint, it could be inherently incentivized to “guess” whether an applicant belongs

to a protected group. As a result, these ML predictions tend to unfairly penalize those racial minority candidates who

“look like” racial majorities according to the predictor battery. When the mean criterion score of racial minorities is

lower than the racial majorities, those racial minority candidates who “look like” the racial majorities could be those

who are highly qualified for the job. In this case, the predictive bias of ML predictions could lead to the exclusion of

these candidates who would have been selected had there been no fairness consideration in ML. In other words, the

predictive bias of ML predictions could distort the selection outcomes so much that a fairness-aware ML algorithm

introduces its own fairness issues in the process of reducing adverse impact.

After discussing the mathematical findings, we present Monte Carlo simulation results and a case study with real-

world data that confirm ourmathematical findings and demonstrate the prevalence of predictive bias in the predicted

scores generated by a variety of fairness-awareMLalgorithms.We conclude the studywith a discussion of its practical

implications.

2.1 Preliminaries

2.1.1 Fairness-aware ML algorithms

We note at the outset a distinction between the design of selection systems for personnel selection (De Corte et al.,

2011) and that of fairness-awareML algorithms.ML researchers, who aremostly computer scientists, rarely design an

algorithm exclusively for one purpose such as personnel selection. Instead, they often cite “non-discriminatory hiring”

(Friedler et al., 2019) as one of the most important goals of fairness-aware ML, while keeping open the possibility for

the algorithm to be used for other purposes such as loan allocation (Feldman et al., 2015). Thus, while we review the

existing fairness-aware ML algorithms in the context of personnel selection, it should not be interpreted as implying

that they cannot be used in other relevant contexts.

In general, any algorithm can be characterized by its (1) input, (2) output, (3) requirement on the output, and (4)

technical design for mapping the input to the output (Cormen et al., 2009, p. 5). In the passages that follow, we first

review the input, output, and requirement on the output of fairness-awareML, before briefly summarizing the existing

algorithms for fairness-awareML.

Input. A fairness-aware ML algorithm takes as input an incumbent dataset—known as training dataset in ML—

collected from current or past employees of an organization. The composition of this dataset is similar to what is

required for a local validation study in personnel selection. That is, for each incumbent employee, the dataset typically

includes the predictor battery, a criterion score, and whether the employee is part of a protected group.

Output. The algorithm’s output is a prediction model that relates the predictor battery of a candidate to a numeric

predicted score, which we refer to as the ML prediction. The functional form of the model could vary widely, from a

support-vector machine (Zafar et al., 2019) to a Gaussian process (Tan et al., 2020). Regardless of the functional form,
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1128 ZHANG ET AL.

the prevailing assumption in ML is that a prediction model serves as a drop-in replacement for the selection process.

That is, once an organization applies the prediction model to a pool of applicants, it selects those applicants with the

highestML predictions.

Requirement on output. A key requirement on the output prediction model is to meet an organization’s desired

level of validity-diversity tradeoff (De Corte et al., 2011). That is, it needs to balance between (1) maximizing the

expected criterion of selected candidates, and (2) minimizing the adverse impact of selection outcome.While adverse

impact has been assessed with measures such as the adverse impact ratio (De Corte et al., 2011), the Fisher exact

test (Siskin & Trippi, 2005), the ZIR test (Morris & Lobsenz, 2000), and so on, once an applicant pool and selection rate

are given, a threshold on one measure can be converted to another. Thus, we focus on the measure prescribed in the

Uniform Guidelines, the Adverse Impact Ratio (AIR), which is the ratio between the selection rate of the racial minority

group and the racial majority group (De Corte et al., 2011).

Algorithmic design. From an algorithmic perspective, fairness-awareML falls under the general paradigm of learn-

ing with privileged information (Vapnik & Vashist, 2009). Whereas the algorithm does have access to the protected

variable (e.g., race) of incumbents during training, it cannot include such a variable in the prediction model because,

in the context of personnel selection, the use of protected variables in prediction is generally prohibited due to legal

constraints in the United States. This makes the protected variable privileged information that is only available during

training. The key technical challenge in algorithmic design then becomes how to leverage such privileged information

in training the predictionmodel.

It is important to note the similarities in howprotected variables are used in fairness-awareML vis-à-vis traditional

selection systems. Traditionally, human experts often evaluate the potential adverse impact of a selection-system

design based on incumbent data (which includes protected variables for the assessment of adverse impact), andmake

the appropriate adjustments, such as revising the inclusion/exclusion of certain predictors or changing their weights.

Yet, once a selection system is put into production, it has no access to any applicant’s protected variables. If we draw

an analogy between the design process for a selection system and the training of an ML model, then their use of pro-

tected variables is almost identical. That is, protected variables are usedduring training (manual training for traditional

selection systems, algorithmic training forML) but not when the selection system orMLmodel is deployed in practice.

To address this challenge, the general idea in fairness-aware ML is to revise a “plain” ML algorithm by assigning a

penalty to a potential prediction model if it violates the fairness constraint (e.g., an upper bound on AIR). The more

serious the violation is, the higher the penalty would be. Since this penalty can be assessed at training time using

the privileged information, a fairness-aware ML algorithm would then be incentivized to adjust the output predic-

tion model to avoid the penalty and satisfy the given fairness constraint. For example, Kamiran et al. (2010) revised

a decision-tree algorithm, specifically the rules used by the algorithm to determine how to grow a branch, in order to

minimize adverse impact. Similarly, researchers have integrated fairness constraints by revising algorithms for repre-

sentation learning (Zemel et al., 2013), support-vector machines (Zafar et al., 2019), and natural language processing

(Zhao et al., 2018). To the best of our knowledge, however, the predictive bias of predictions made by either plain ML

or fairness-awareML algorithmhas not been systematically studied in the literature. Even though the selection of pre-

dictors has been examined, the prevailing view is to include all available predictors and leave feature selection to the

fairness-awareML algorithm (Kleinberg &Mullainathan, 2019).

2.1.2 Predictive bias

Testing for predictive bias typically involves a moderated multiple regression framework known as Cleary’s (1968)

method (SIOP, 2018). Its precise description requires the introduction of a few mathematical notations. Let the

criterion variable be Y, the (vector representation of) predictor battery beX, the prediction generated by the fairness-

aware ML algorithm be f̃(X), and the group membership be G. For the sake of simplicity, we focus on two groups, with

G = 0 being the racial majority andG = 1 being the racial minority (i.e., protected) group.
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ZHANG ET AL. 1129

Consider the following linear models where a0, b0 and c0 are the intercepts; a1, b1, b2, b3, c1, and c2 are

unstandardized regression coefficients; and ", "′, and "′′ are random error terms:

Y = a0 + a1 f̃ (X) + ",
Y = b0 + b1 f̃ (X) + b2G + b3 f̃ (X)G + "′,

Y = c0 + c1 f̃(X) + c2G + "′′,
Predictive bias exists if (1) b3 ≠ 0, indicating a slope difference between groups, and/or (2) b2 ≠ 0, indicating an

intercept difference. The third equation further specifies whether a common regression line would, on average, over-

(c2 < 0) or under-predict (c2 > 0) the criterion scores of racialminority candidates,with either indicating the existence

of predictive bias. Statistical significance tests may be conducted directly over the regression coefficients (Sackett

et al., 2003) or over the difference in R2 between the first and second equations (Aguinis et al., 2010). In empirical

literature, intercept differences are found to be more common than slope differences, with a common regression line

typically overpredicting the criterion scores of racial minority candidates (SIOP, 2018). Note that, even though the

Cleary’s method tests linear models while ML may learn nonlinear functions, it remains an appropriate method for

testing the predictive bias of ML predictions because, within each group, an applicant with a higher criterion score

should be assigned a proportionally higher predicted score.

2.2 Predictive bias of fairness-aware ML algorithms

2.2.1 Key source of predictive bias: Prediction target

Designing apractical systemwithML is a complexprocess (Barocas et al., 2019); andpredictivebias could arise inmany

steps along the way, from making an improper selection of the ML algorithm to a lack of sufficient training samples

(Buolamwini & Gebru, 2018). Since the purpose of this study is to investigate whether the introduction of fairness

constraints could induce predictive bias inML predictions, we need to ensure that our findings generalize to different

implementations of fairness-awareML regardless of their specific technical design. To this end, it is helpful to consider

an idealized scenario in which fairness-aware ML produces the least possible amount of prediction error. If we could

identify a source of predictive bias even in this idealized scenario, then the bias would likely generalize to all practical

implementations of fairness-awareML.We construct this idealized scenario with two assumptions as follows.

First, the ML algorithm being used should produce prediction models that are sufficiently complex to address the

prediction task at hand (according to measures such as model capacity, Vapnik, 1998). For example, we would not

consider the use of linear regression to fit a nonlinear predictor-to-criterion relationship, the problem of which was

already noted in the literature (Bauer, 2005).With this assumption, any predictive bias we identify could not be easily

fixed by switching to a more complex ML algorithm such as a non-parametric Gaussian process with unlimited model

capacity (Rasmussen &Williams, 2006), which always satisfies this assumption.

Second, we assume the training dataset to be sufficiently large and drawn from the same distribution as the appli-

cant pool. Doing so allows us to sidestep a frequently arising issue in ML called covariate shift, which happens when

a prediction model trained on one dataset is used for predicting over samples drawn from a different probability dis-

tribution. Covariate shift may potentially incur an increase of prediction error known as generalization error (Vapnik,

1998). While the reduction of generalization error is an important problem inML and has been treated with methods

such as importance sampling (Sugiyama& Storkey, 2006), it is tangential to our work because such errors are typically

assumed to be independent and identically distributed Gaussian noise with no statistical difference between groups

(Bishop, 2006, p. 29). In other words, they are unlikely to alter the predictive bias of ML predictions. Like the first
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1130 ZHANG ET AL.

assumption, this one ensures that any predictive bias we identify cannot be easily fixed by improving (e.g., increasing

the size of) the input training dataset.

In this idealized scenario, an ML prediction model should be able to approximate any prediction target function

that defines, according to the desired validity-diversity tradeoff, what the ML-predicted scores should look like for

each given value combination of the predictor battery. Whether such a prediction target exhibits predictive bias thus

becomes the key question for assessing the bias of fairness-awareML.We address this question next.

2.2.2 Existence of predictive bias

To assess predictive bias, we first need to derive amathematical model for the prediction target of fairness-awareML.

To this end, it is helpful to start with a “plain” ML algorithm in which the sole objective for candidate selection is to

maximize themean criterion score

u(S) = 1

|S|
∑
x∈SE (Y|X = x)

of the selected candidates S for a given selection rate (i.e., a fixed |S|). For such an algorithm, Rambachan et al.

(2020) proved that its prediction target function, denoted by f0(x), is simply the expected criterion score for the input

predictor battery

f0(x) = E (Y|X = x)

because selecting those candidates with themaximum f0(x) is guaranteed tomaximize u(S). In other words, the overall

task of candidate selection can be decomposed into the individual tasks of approximating the prediction target f0(x)

for each candidate.

Comparedwith this “plain” algorithm, the prediction target for fairness-awareML ismore complex because it needs

to balance the validity-diversity tradeoff. A common strategy is to pursue Pareto-optimal (De Corte et al., 2011) selec-

tion outcomes, that is, those that no other possible outcome can dominate on both expected criterion and AIR. To do

so, u(S) has to be maximized under a fairness constraint that Smeets a given lower bound r on the AIR. Clearly, f0(x) is

no longer a proper prediction target because selecting the top |S| candidates with the maximum f0(x) might result in

AIR< r. Since it may not be possible to assess whether AIR≥ rwithout first assembling S, the introduction of the fair-

ness constraint brings into question whether the task of candidate selection is still decomposable into approximating

a prediction target for individual candidates. Fortunately, as proved in the following theorem, the Lagrange-multiplier

method (Nocedal &Wright, 2006) provides an elegant solution that enables such a decomposition.

Theorem 1. For any % ≥ 0 and any selection rate, selecting the candidates with themaximum

f%(x) = E(Y ||X = x) + % ⋅ Pr{G = 1||X = x}

is Pareto-optimal on the validity-diversity tradeoff. Conversely, given any selection rate and any lower bound r on AIR,

there must exist % ≥ 0, such that the selection outcome that maximizes f%(x) also maximizes expected criterion score

under the constraint of AIR≥ r. Further, there is

E
(
Pr{G = 1 ||X = x}||G = 1

) > E
(
Pr{G = 1 ||X = x}||G = 0

)

unless Pr{G = 1|X = x} is constant for all x.

Themathematical proof is available in the SupplementalMaterials. The theorem yields two insights. First, the over-

all task of seeking Pareto optimality is still decomposable to the individual tasks of approximating a prediction target
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ZHANG ET AL. 1131

f%(x) for each candidate, where %, the Lagrangemultiplier, is a function of theAIR requirement. In otherwords, Theorem

1 states that, to make a Pareto-optimal tradeoff, fairness-aware ML should produce predicted scores that resemble

the prediction target f%(x). Interestingly, the only difference between f%(x) and the prediction target for plain ML is

an additive term of % times Pr{G = 1|X = x}, that is, the likelihood for a candidate to be a racial minority given the

observed predictors inX.

Second, the theorem suggests that, even when every input predictor is unbiased, predictive bias could still emerge

in the predicted scores of fairness-aware ML because the additive term in the prediction target function, % ⋅ Pr{G =
1|X = x}, is systematically larger for the racial minority group in almost all cases. There are only two exceptions: 1)

when % = 0, or 2) when Pr{G = 1|X = x} is constant for all x. Either exception would make f%(x) equivalent with
f0(x)—because their difference would be either zero or the same across all candidates—implying that plain ML would

achieve AIR≥ r anyway.

To understand themechanism throughwhich a between-group difference in the additive termmanifests as predic-

tive bias, consider a few idealized examples. The first is when % is set to eliminate adverse impact by ensuring an equal

mean ofML-predicted scores, say f% (x) = F, for both groups. Since a least-squares regression line linking f%(x) and cri-
terion Y always passes through the center-of-mass point (f%(x), Y), the two groups’ regression lines pass through (F, Y0)

and (F, Y1), respectively, where Yi are their mean criterion. According to the inequality in the theorem, there must be

Y0 > Y1 when % > 0, meaning that a common regression line has to overpredict the criterion score of racial minority

candidates in this example.

Figure 1a provides a graphic illustration of another example where a predictor variable has no predictive bias but a

slight mean difference between groups. Due to this mean difference, the additive term in f%(x) (i.e., % ⋅ Pr{G = 1|X =
x}) becomes a reverse sigmoid function with x, as shown in Figure 1b. Figure 1c shows how this reverse sigmoid

function “bends” the prediction target f% to form a nonlinear relationship with the criterion. Since this bending is, by

definition, more concentrated on racial minority candidates, the resulting nonlinearity is also more pronounced for

them, resulting in the predictive bias shown in Figure 1d. In this specific example, a common regression line features

a smaller slope and a larger intercept than the regression line for the racial minority group, leading to, on average, an

overprediction of the criterion score for racial minority candidates.

The example also points to a negative consequence of predictive bias. As illustrated in Figure 1e, when % > 0,

fairness-aware ML has to exclude from selection some racial majority candidates who would have been selected if% = 0. This exclusion is not a problem in and of itself, because it is necessary for achieving the given bound on AIR.

What is problematic is that ML has no access to the group membership of a candidate. As such, it has no choice but to

“guess,” based on the observed predictors, whether a candidate is a racial majority who needs to be excluded. Recall

from Figure 1b that the likelihood for a candidate to be in the racial majority increases with their criterion score.

Thus, when fairness-aware ML needs to “guess” the candidates to exclude, it tends to pick some candidates with a

higher criterion score. Unfortunately, such a guess is imperfect, meaning that some racial minorities could be inadver-

tently excluded too. The exclusion of these candidates is detrimental to fairness because it means that the adoption of

fairness-aware ML leads to the exclusion of some qualified racial minority candidates who would have been selected

had there been no fairness consideration in the first place. In other words, in attempting to reduce adverse impact in

personnel selection, fairness-aware ML could inadvertently raise its own fairness issue through the introduction of

predictive bias. Next, we present a simulation study and a case study to verify the findings based on Theorem 1.

2.3 Simulation study

In the passages that follow, we describe the data-generating process for the simulation study, the fairness-aware ML

algorithms tested, the simulation conditions, and the simulation results, respectively.
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1132 ZHANG ET AL.

F IGURE 1 Examples of prediction target for fairness-awareML.Note. Panel (a):X= predictor. Y = criterion
score. ◦= racial majority candidates.×= racial minority candidates. Solid line is the regression line connecting Y toX,
which is identical for both groups. In other words,X has no predictive bias towards the criterion Y. Panel (b): Dashed
and dotted curves are the probability density function (PDF) ofX in racial minorities andmajorities, respectively. The
solid curve represents Pr{G = 1|X = x}, which is a reverse sigmoid function that decreases withX. Panel (c) depicts
the prediction target function f% , which is the sum of the solid line in Panel (a) and % times the solid curve in (b). Note
that, the larger % is, themore f% becomes “bended” by the reverse sigmoid function, even to the point of losing
monotonicity when % = .2. Panel (d): Solid curve represents the relationship between f% and Y. Dashed line is the
regression lines for the racial minority group, while dotted line represents the common regression line. The
difference between these two lines indicates the presence of predictive bias. Observe from the panel that the
regression line for racial minorities has a larger slope and a smaller intercept. On average, a common regression line
would overpredict the criterion score for racial minority candidates. Panel (e) depicts the exclusion of candidates due
to the fairness constraint, specifically. The dotted curve is the prediction target function f% when % = .2. The solid
line represents the selection threshold, that is, theminimumML-predicted score for a candidate to be selected. The
gray zone represents those candidates whowould have been selected if % = 0, but are excludedwhen % = .2.
2.3.1 Data-generating process

We generated two sets of data: (1) a varying-size training (i.e., incumbent) dataset, which was used for ML to learn

its predictionmodel, and (2) a 1000-record testing dataset, which was used to assess the predictive bias ofML predic-

tions. In terms of features, we followed Finch et al. (2009) to simulate (1) a battery of five predictors: biodata, cognitive

ability, conscientiousness, integrity, and structured interview, (2) a criterion variable, which is job performance, and (3)
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ZHANG ET AL. 1133

abinary (i.e., racialmajority orminority) groupmembership representingWhite andBlack applicants, respectively. The

detailed procedure and its potential limitations are discussed in the Supplemental Materials.

2.3.2 Fairness-aware ML algorithms

As detailed in the Supplemental Materials, we tested four ML algorithms, Gaussian process (GP), support vector

machine (SVM), regression-tree ensemble with least-squares boosting (BOOST), and a feed-forward, fully connected

neural network (NN). While no qualitative difference emerged in results across algorithms, we found the first two

(GP and SVM) to consistently outperform the latter (BOOST and NN) in terms of predictive accuracy. Thus, we focus

on GP and SVMwhen reporting the simulation results. To set %, we performed an iterative optimization like Google’s

TensorFlowConstrainedOptimization (Cotter et al., 2019).

2.3.3 Simulation conditions

We varied five parameters: algorithm, AIR bound, selection rate s, training dataset size N, and between-group dif-

ference ratio ) on predictors. The last parameter ) (0 < ) ≤ 2) served as a multiplicative factor for the standardized

between-group mean difference for each predictor. We simulated twoML algorithms: SVM or GP; four levels for the

selection rate: .1, .3, .5, .8; three for the lower bound on AIR: .5, .8, 1.0; three for the training dataset size: 1000, 2500,

and 5000; and three for ): .5, 1.0, 2.0. Overall, our simulation design consisted of 216 unique conditions or a 2 (algo-

rithm)× 4 (s)× 3 (N)× 3 ())× 3 (AIR) factorial design.We repeated each condition 20 times, leading to a total of 216 ×
20= 4320 runs.

2.3.4 Simulation results

Table A2 in the online supplement shows themarginal statistics for the prevalence of predictive bias in fairness-aware

ML. In light of the different implementations of Cleary’s method, we reported in the table both the regression-

coefficient estimates for Race and the interaction between Race and ML prediction (Sackett et al., 2003) as well as∆R2, the increase in R2 from adding Race and the interaction term as regressors (Aguinis et al., 2010). Both implemen-

tations identified predictive bias in anoverwhelmingmajority of simulation runs. Specifically,∆R2 (M= .026, SD= .017)

was statistically significant (p < .05) in 3871 (89.61%) out of all 4320 runs. Similarly, the coefficient estimates for

Race (M = −.350, SD = .183) and the interaction term (M = −.054, SD = .196) were statistically significant in 3572

(82.69%) and 461 (10.67%) runs, respectively. Notably, the marginal means for both coefficients were consistently

below zero across all conditions, echoing our earlier discussions that a common regression line constructed from the

ML predictions would likely overestimate the criterion scores of racial minority candidates.

To further examine how the simulated factors affect predictive bias, we conducted a five-way analysis of variance

(ANOVA)with the dependent variable being∆R2 and the independent variables being the five simulation factors. Due

to the space limit,we include thedetailed results ofANOVA in theonline supplement, and summarize themain findings

here. Due to the large sample size (4320), we followed Steinley (2006) to only consider (main and interaction) effects

with effect size ,2 ≥ .05. In terms of main effects, ANOVA identified AIR (F (2,4104) = 1819.98, p < .01), selection
rate s (F (3,4104) = 953.03, p < .01), and between-group difference ratio ) (F (2,4104) = 557.49, p < .01). TheML

algorithm and the amount of training data, on the other hand, do not have a pronounced effect on ∆R2, consistent
with our earlier finding that the predictive bias results from the intrinsic design of fairness-aware ML, specifically its

prediction target, rather than the specificML implementations.

In terms of the directions of the main effects, observe from Table A2 in the online supplement that ∆R2 clearly

increases with AIR and decreases with s. In other words, as the fairness constraint becomes more stringent with a
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1134 ZHANG ET AL.

larger AIR and/or in a “select in” scenario with a smaller s, fairness-awareML has to “bend” the prediction target more

to achieve a Pareto-optimal outcome, increasing its predictive bias. The relationship between∆R2 and ) is subtler and
best qualified by a three-way interaction identified by ANOVA, s × )× AIR (F (12,4104) = 97.34, p < .01), as shown
in Figure A1 in the online supplement.

The figure yields two observations. First, ∆R2 was surprisingly small when ) = 2, seemingly “capped” by an upper

bound of around .025. This contradicts the intuition that, to reduce adverse impact when the between-group differ-

ence is large, fairness-aware ML has to increase its predictive bias. Interestingly, the contradiction speaks to a limit

of using ∆R2 to quantify predictive bias. When % is so large that the prediction target is dominated by its second

term, that is, the likelihood of a candidate being a racial minority, the prediction target becomes an approximate of

the group membership rather than the criterion of a candidate. In this case, making the true group membership (i.e.,

race) a regressor alongside the prediction target adds little to the explanatory power (i.e.,R2) evenwhen its coefficient

is nonzero. Indicatively, Table A2 in the online supplement shows that, despite the low ∆R2, all 1440 simulation runs

with ) = 2 returned statistically significant estimates for the coefficient of Race (M=−.464, SD= .091).

Second, an increaseof) from .5 to1actually reduced∆R2 when the fairness constraintwas loose (e.g., a lowAIR= .5

under amoderate selection rate s= .3 or .5). Upon further examination, we found a key reason to be how the Lagrange

multiplier % responded to an increase of ): Under a loose fairness constraint, even though the higher ) reduced the

selection rate of racialminorities, this reduced rate still met theAIR requirement. Thus, an increase of ) did not require
an increase of the second term in the prediction target, that is, % ⋅ Pr{G = 1|x}. On the other hand, since a higher) made it easier to distinguish between the two groups, the likelihood function Pr{G = 1|x} became higher for the

racial minorities. These two changes in combination drove down % and thereby∆R2 in a loose-fairness regime.

In sum, the simulation results showed the prevalence of predictive bias for multiple fairness-aware ML algorithms

across diverse simulation settings. The results further suggested that ML predictive bias was the largest in a select-in

scenario (s= .1) with a stringent AIR requirement (AIR= 1); and the smallest in a select-out scenario (e.g., s= .8) where

the AIR requirement and the between-group difference in predictors are both small.

2.4 Illustration of practical impact

To further illustrate the practical implications of using a fairness-aware ML algorithm in personnel selection, we

examined three additional issues: (1) the existence of a validity-diversity tradeoff in the selection outcomes of

fairness-awareML; (2) the consequences of the predictive bias of fairness-awareML, specifically the number of racial

minorities who would have been selected by a plain ML algorithm but are excluded from selection by fairness-aware

ML; and (3) the reliability of our findings over a real-world dataset.

Figure 2a demonstrates how the criterion-related validity of ML-predicted scores varies with the reduction of

adverse impact when a fairness-aware ML algorithm is used over simulated datasets. As can be seen from the

figure, fairness-aware ML lowered adverse impact at the expense of a potential decrease in criterion-related validity.

Consistent with the understanding for traditional selection systems (Rupp et al., 2020), themagnitude of this validity-

diversity tradeoff was more pronounced when the input data contained substantial between-group differences. For

example, with a between-group difference ratio of ) = 1, the criterion-related validity dropped from .48 to .37when

the AIR requirement increased from .3 to .7. While the existence of this tradeoff is technically obvious (e.g., given the

Lagrangian objective function in Theorem 1), it indicates that fairness-awareML is far from a silver bullet, but instead

subject to the same validity-diversity “dilemma” (Pyburn Jr et al., 2008) and its associated practical challenges (Rupp

et al., 2020) as traditional selection systems.

To illustrate how the use of fairness-aware ML could hurt rather than benefit certain racial minorities, Figure 2b

depicts the number of “deselected” racial minorities, meaning those who would have been selected by a plain ML

algorithm but were excluded by fairness-aware ML. As can be seen from the figure, the number of such candidates

increasedwith AIR, reaching over 20% of all racial minorities being selected when AIR≥ .7 () = 1). This suggests that

the deselected racial minorities were “sacrificed” by fairness-aware ML in pursuit of a lower adverse impact because,
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ZHANG ET AL. 1135

F IGURE 2 Implications of fairness-awareML.Note. r= (uncorrected) criterion-related validity ofML-predicted
scores. AIR= adverse impact ratio. Deselected racial minorities= among racial minorities selected by plainML
(without fairness considerations), the percentage that are not selected by fairness-awareML. The panels were
generated with the SVM algorithm, selection rate s = .3, and training dataset sizeN = 1000.We also tested the GP
algorithm and observed similar trends. All points on a validity-diversity tradeoff curve were generated over the same
simulated dataset. Panel (a) shows that, consistent with earlier discussions, when the input data contains substantial
between-group differences (e.g., ) ≥ .7), fairness-awareML reduces adverse impact with a corresponding reduction
in validity. Panel (b) shows that, contrary to the intuition that a racial minority candidate always stands to gain from
the inclusion of fairness constraints (Zafar et al., 2019), the opposite could be true for some racial minorities, like
those deselected ones depicted in the plot.

as discussed earlier, they “look like” racial majorities according to the predictor battery. Another observation from the

figure is that the number of deselected racial minorities was higher when the input data contained larger between-

group differences. This is consistent with our earlier discussions that, the more pronounced the validity-diversity

tradeoff becomes (thanks to the larger between-group differences), themore likely it is for fairness-awareML to incur

predictive bias when reducing adverse impact.

Finally, to examine the reliability of our findings over a real-world dataset, we tested fairness-awareML algorithms

over a dataset containing the results of pre-employment tests used for entry-level positions in a Fortune500 company.

While we defer details of this case study to the online supplement, themain finding was that predictive bias remained

prevalent over real-world data, evenwhen thedataset features racialmajority andminority candidateswith very close

criteriondistributions (specifically, a standardizedbetween-groupmeandifferenceof .11).While the smaller between-

group differences led to a milder validity-diversity tradeoff and, in turn, a smaller magnitude of predictive bias (e.g.,

as measured by ∆R2), the predictive bias identified over the real-world dataset featured a more pronounced slope

difference than the simulation results, suggesting that fairness-aware ML likely had difficulty “guessing” the group

affiliation of high-criterion candidates, leading to a flatter regression line for racial minorities.

2.5 General discussion

Our findings are important because they speak to a substantive problem of using fairness- aware ML as a drop-in

replacement for selection systems. Such a practice, while convenient, could lead to unintended consequences such as

predictive bias. As summarized in Table 1, an important reason is the complexity of prediction models produced by

ML. With a traditional selection system, prediction models (e.g., a weighted sum of predictors) take functional forms
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1136 ZHANG ET AL.

TABLE 1 Comparison of predictionmodels for traditional selection systems and fairness-awareML.

Traditional Selection Systems Fairness-AwareML

Model complexity Relatively simple. For example,
the predictionmodel for a
compensatory design features
a linear combination of
predictors.

Considerablymore complex and generally
nonlinear. For example, a deep learning
model could containmillions of
parameters learned from data.

Model interpretability Relatively straightforward. For
example, weights representing
the relative importance of
predictors.

Subject of ongoing research (Du et al.,
2019), as many types ofML prediction
models are not interpretable even by
experts.

Predictor selection Predictors are scrutinized (e.g.,
for predictive bias) in scientific
literature and according to
empirical evidence.

Prevailing view is to include all available
predictors and leave selection to the
algorithm (Kleinberg &Mullainathan,
2019).

Prediction target The expected criterion score for a
candidate based on the values
of the input predictor battery.

Per Theorem 1, a linear combination of
expected criterion score and the
likelihood of the groupmembership.

Predictive accuracy Linear models could incur large
predictive errors when the
predictor-to-criterion
relationship is nonlinear.

Could achieve optimal accuracy given
sufficient training samples, per
universal approximation theorems
(Goodfellow et al., 2016).

Source of predictive bias A linear predictionmodel never
incurs predictive bias when the
input predictors are unbiased.

AnML predictionmodel, which is
generally nonlinear, could incur
predictive bias evenwhen all input
predictors are unbiased.

Prevention of predictive bias Predictive bias is taken into
account during the selection of
predictors.

Generally impossible unless plainML
without any fairness constraint already
satisfies the adverse-impact
requirement.

with only a few parameters (e.g., weights). This allows researchers and practitioners to directly inspect a model and

identify potential problems. For example, if regressing criterion scores over predictors returned a negative weight for

a cognitive ability test, a natural responsewould be to scrutinize the test design rather than to just deploy themodel in

practice. With an ML algorithm, however, a prediction model may easily contain millions of parameters learned from

data (Goodfellow et al., 2016). While such added complexity affords ML models with better accuracy, it also makes

the model prohibitively expensive to scrutinize manually (Du et al., 2019). This is compounded with the prevailing

view in ML that tasks like predictor selection should be done automatically by the algorithm rather than manually

by experts (Kleinberg & Mullainathan, 2019). As a result, an ML prediction model could easily circumvent desirable,

fairness-related, properties—for example, the absence of predictive bias—so long as these properties are not explicitly

specified in the optimization goal. This is exactly what we observed in this study.

There are twoways to address this problem.One is to further thework of InterpretableML (e.g., LIME; Ribeiro et al.,

2016) to make ML algorithms and models open to manual scrutiny (Xu et al., 2020). Unfortunately, a wide gap exists

betweenwhat is deemed “interpretable” inML andwhat could be properly examined in personnel selection. For exam-

ple, theprevailing view inML is that decision trees are interpretablebecause they canbeexpressedas (long) sequences

of if-then-else statements. Yet the adoption of decision tree in personnel selection means that the predictor battery

used for different candidates may contain different predictors, be applied in different orders, and feature different

cutoffs. All these variations raise new research questions in terms of their legal defensibility in the personnel selection
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ZHANG ET AL. 1137

context, for which our understanding is still nascent. Thus, to pursue this direction, we believe the participation of I-O

psychologists is urgently needed in the future development of interpretableML for personnel selection.

The second way to address the problem is by formulating fairness notions, like the absence of predictive bias, as

mathematical constraints that can be formally entered into an ML algorithm. Recent work in ML has already started

formulating fairness constraints beyond adverse impact, to include notions such as the statistical parity of predictive

accuracy between groups (Feldman et al., 2015), the assurance that no protected group under one selection system

would overwhelmingly prefer another system (i.e., “envy-freeness”; Zafar et al., 2019), and so on.While handling mul-

tiple such constraints is technically feasible (e.g., the method of Lagrangemultipliers could assign a different % to each
constraint), the feasibility does not mean one could achieve all these constraints without increasing adverse impact

or reducing the expected criterion score of selected candidates. Indeed, many of these constraints are conflictive

with each other (Kleinberg et al., 2017) or other legal requirements (e.g., privacy; Xu & Zhang, 2022), even without

considering criterion. In personnel selection, this conflict could lead to thorny questions. For example, is it better to

condone predictive bias when removing it leads to an increase of adverse impact? Like the first solution, the future

research for this one is also in urgent need of I-O psychologists’ participation, not only in using ML to further organi-

zational research (e.g., Zhang et al., 2022), but also in developing fairness-related constraints and understanding the

mathematical tradeoffs between them.

As both solutions require long-term research and development, we offer some suggestions that may apply in the

short term. A popular belief among ML researchers is that it is always better for an ML algorithm to take in as many

predictors as possible—regardless of whether a predictor exhibits predictive bias—and count on the algorithm to sort

out the proper use of these predictors and to achieve the desired fairness properties. While this belief is mathemat-

ically correct when adverse impact is the only fairness concern (Kleinberg & Mullainathan, 2019), the literature of

personnel selection has long noted the limitation of having a singular focus on reducing adverse impact when seeking

a diverse work force (Kehoe, 2008). Our study further shows the danger of relying on fairness-awareML for adverse-

impact reduction. For example, our simulation results indicate that predictive bias tends to be greater when the AIR

requirement is more stringent. This suggests that, while fairness-aware ML can indeed reduce the adverse impact of

selection outcomes, in doing so it might also be forced to incur other types of fairness concerns, such as predictive

bias. Our study also suggests that one way to address these concerns is to carefully attend to characteristics of the

selection system, such as the selection rate and the composition of the predictor battery. For example, our simula-

tion results indicate that predictive bias could be greater in highly selective scenarios, or when there are considerable

between-group differences in predictors, especially under stringent AIR requirements. To this end, we submit thatML

researchers and practitioners should not consider fairness-aware ML algorithms as silver bullets that work on any

and all predictors, but carefully study the empirical evidence in the I-O psychology literature in determining which

predictors to use in the context of personnel selection.

3 STUDY 2: OVERSAMPLING HIGHER-PERFORMING MINORITIES DURING
MACHINE LEARNING MODEL TRAINING REDUCES ADVERSE IMPACT SLIGHTLY BUT
ALSO REDUCES MODEL ACCURACY2

“Is it going to have a disparate impact on different protected classes? That is the number one thing

employers using artificial intelligence should be looking out for.” - EEOC Commissioner, Keith E.

Sonderling (Strong, 2021)

Organizations are rapidly adopting tools that use artificial intelligence andML formanypurposes, including person-

nel assessment and selection (e.g., Campion et al., 2016;Hickman et al., 2022; Langer et al., 2020). However, significant

concerns have been raised throughout society regarding the fairness and ethicality of ML assessments (Landers &
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1138 ZHANG ET AL.

Behrend, 2023; Tippins et al., 2021). In the United States, a key legal concern for ML assessments is that person-

nel selection decisions that cause adverse (or disparate) impact—substantially different hiring rates between groups

that disadvantage a legally protected group (Civil Rights Act, 1964)—constitute prima facie evidence of employment

discrimination.

Several algorithmic solutions that adjust models to achieve equal group outcomes have been proposed to address

group disparities in ML assessments (e.g., Calmon et al., 2017; Hardt et al., 2016; Kamishima et al., 2012; Kleinberg,

Ludwig, Mullainathan, & Sunstein , 2018; Zemel et al., 2013), but many provide the final ML model with demographic

information explicitly (e.g., by using demography as a predictor) or implicitly (e.g., by creating separatemodels for each

group) during test administration. Both are likely illegal in the United States because they constitute disparate treat-

ment (Civil Rights Act, 1964) and/or subgroup norming (Civil Rights Act, 1991) during test administration. Therefore,

there is a pressing need to advance our understanding of the causes of and potential (legal) remedies to ML model

adverse impact.

MLmodels tend to reflect subgroup differences in applicant attributes in the training data, which are then reflected

in the ML model predictions. We investigate whether this tendency can be used to our advantage by examining

whether removing (i.e., equal selection ratios) or reversing (i.e., selection ratios flipped to favor disadvantaged group

members) subgroup differences in the training data reduces ML model adverse impact without sacrificing accuracy.

To do so, we utilize a data preprocessing approach known as oversampling—techniques for resampling observations

to address class imbalances (Chawla et al., 2002; Yan et al., 2020)—to manipulate adverse impact ratios in the train-

ing data. Then, we systematically examine how this affects the adverse impact and accuracy of ML models that use

self-reports and interview transcripts to predict historical screening decisions.

The present study contributes to the literature on employment discrimination in several ways. First, we answer the

special issue call to investigate adverse impact in artificial intelligence andMLpersonnel selection systems. Second,we

answer calls to test the effects of oversampling minority groups to enhance diversity in training data (Hickman et al.,

2022). We do so in a real-world, high-stakes dataset where adverse impact and group representation can be directly

evaluated and altered. Oversampling to balancemeans and sample sizes has been shown to have small positive effects

onMLmodelmeasurement bias (Yan et al., 2020) defined as equal accuracy across groups (Tay et al., 2022), butwe are

unaware of any studies of oversampling’s effects on adverse impact. By doing so with both self-reports and interview

transcripts, our study addresses the fairness of both traditional andmodern selection systems. Further, we investigate

the effects across a variety of text mining vectorization techniques andML algorithms. This allows us to estimate the

effect of oversampling on adverse impact across a variety of MLmodeling approaches, reducing the chances that any

observed effects are algorithm-bound. Third, we compare multiple oversampling strategies to inform future research

andpractice. Specifically, we compare the effects of (a) adjusting training data adverse impact versus adjusting training

data adverse impact and equalizing sample sizes, as well as (b) oversampling real versus synthetic applicants. Doing so

provides nuanced answers regarding how different oversampling methods affect the adverse impact and accuracy of

MLmodel screening decisions.

3.1 Indices of adverse impact

Adverse impact is often operationalized as an adverse impact (AI) ratio—or the ratio of the selection ratios of two

subgroups. Selection ratios (SRs) are calculated as the number of applicants hired in a subgroup divided by the

total number of applicants from that subgroup. The AI ratio is calculated by dividing one subgroup’s SR by another

subgroup’s SR.

Adverse impact is concernedwith equality of outcomes. Themost common standard for identifying practically sig-

nificant adverse impact and prima facie evidence of discrimination is the four-fifths rule, or that the SR of members

of one legally protected subgroup should not be less than four-fifths the SR of members of another subgroup (Equal

EmploymentOpportunityCommission, 1978).3 Therefore, AI ratios should exceed .80. TheAI ratio indicates the effect
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ZHANG ET AL. 1139

size of group differences in SRs and is commonly used, although significance testing is also relevant to discrimination

claims (Morris, 2016). We chose to focus on the AI ratio because even minor subgroup differences in SRs become

statistically significant when sample size is in the thousands, as in the present study.

3.2 Origins of discrimination in ML models

MLmodels and their predictions reflect existing patterns in their training data. Therefore, to the extent that discrim-

ination and/or adverse impact exist in the personnel data used to train ML models, the ML models may reflect those

historical patterns (Barocas & Selbst, 2016). We now turn to summarize the standard ML model development and

evaluation process, as illustrated in Figure B1 in the online supplement, and then explain the relevant sources of ML

adverse impact that motivate our oversampling approach.

3.2.1 Supervised ML in personnel assessment

Most ML assessments rely on supervisedML, which involves training an algorithm to predict some known individual-

level outcome, such as historical screening or hiring decisions. To do so, individual behavior must be observed in an

evaluative situation. Human observers then, either using the in situ behavior or amore holistic process involving addi-

tional information (e.g., resumés, cover letters), rate applicants and/ormake selection decisions. Amachine “perceiver”

then observes and quantifies individual behavior, whether this behavior is performance in an evaluative situation (e.g.,

an interview), on a self-report scale, or on a test (e.g., of cognitive ability). For example, in automatically scored inter-

views, theunstructured, natural languageof interviewee responses is transcribed, vectorized, andused in an algorithm

to predict the outcome of interest (e.g., Hickman et al., 2022).

DuringMLmodel development, researchers often test multiple predictor-algorithm combinations. For example, in

textmining, researchersmay try outmultiple vectorization techniques (i.e., methods for quantifying unstructured text

data, such as closed and open vocabulary; Kern et al., 2016). To do so, the data are split into training and test datasets

(e.g., Year 1 and Year 2, or k-fold cross-validation), the algorithm is fitted (or trained) on the training data, and the

resultingMLmodel’s accuracy is estimated on the test dataset. The predictor-algorithm combination with the highest

cross-validated accuracy is often trained on all available data (i.e., both the training and test data). This final MLmodel

is applied to future, unseen cases.

However, group differences in training data may affect theMLmodel, as reflected in the model parameters and its

predictions. Two training data disparities affect ML models: (1) group mean differences on the outcome variable; and

(2) differential representation, or underrepresentation of a subgroup (e.g., Barocas & Selbst, 2016; Kleinberg, Ludwig,

Mullainathan, & Rambachan, 2018). Regarding groupmean differences,4 the concern is that if groupmean differences

in the training data are not representative of the population of applicants to which the model will be applied, this may

alter themodelweights in away that favorsonegroupof applicants over another (Barocas&Selbst, 2016). In our study,

groupmeansequal their SRs, and therefore, groupmeandifferences represent adverse impact.Weexpect that training

data AI ratios will affect ML model AI ratios, such that ML models trained with equal subgroup SRs (AI ratios = 1) or

with subgroup SRs favoring the subgroup with the lower SR in the observed data (AI ratios > 1) will likely exhibit less

adverse impact thanmodels trained on data where AI ratios< 1.

Differential representation occurs when subgroups are unevenly represented in training data. In cases where the

predictor-outcome relationships differ across groups,5 unequal representation in the data will cause the algorithm

to primarily reflect the most prevalent patterns in the training data—or those of majority group members (Barocas &

Selbst, 2016). Therefore, we also investigate the effects of equally representing subgroups in training data, as it has

been proposed elsewhere as away of enhancing fairness and validity (Kleinberg, Ludwig,Mullainathan, & Rambachan,

2018).
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1140 ZHANG ET AL.

3.2.2 Diversity-validity tradeoff: ML edition

Making adjustments during ML model training to enhance fairness may negatively affect the model’s convergent

validity (in our study, accuracy; Barocas & Selbst, 2016). The so-called diversity-validity tradeoff is analogous to this

concern (Ployhart & Holtz, 2008). The tradeoff occurs because some highly valid predictors of job performance (e.g.,

multiple choice cognitive ability tests) exhibit large subgroup differences, whereas selection procedures with smaller

subgroup differences (e.g., personality traits) tend to less validly predict job performance. One common suggestion for

addressing the so-called diversity-validity tradeoff is to find equally valid selection procedures with smaller subgroup

differences (Ployhart & Holtz, 2008). Therefore, if oversampling to remove adverse impact in training data enhances

ML model fairness without sacrificing convergence/accuracy, doing so may be preferable to training an ML model on

raw historical data.

With these considerations in mind, our study addresses the following research questions:

Research Question 1a-b: How does adjusting the training data AI ratios affect ML model AI ratios when using (a)

self-report scales, (b) text mined interview transcripts, or (c) both self-reports and interview transcripts to predict

screening decisions?

Research Question 2: How does equally representing subgroups (i.e., equalNs) in training data affectMLmodel AI

ratios?

Research Question 3: How does oversampling real versus synthetic observations affectMLmodel AI ratios?

ResearchQuestion 4: Howdoes oversampling to remove adverse impact in training data affectMLmodel accuracy

in the test data?

3.3 Method

Figure 3 summarizes the present study’s methods, andmore detail is provided below and in the online supplement.

3.3.1 Sample

Participants in our sample applied for US-based positions in a female-dominated service industry. The sample consists

of 2501 applicants (71.9% female, 36.6%White, 28.3% Black or African American, 19.1%Hispanic, 6.3% two or more

races, 4.1%Asian, and the remaining demographic groups each comprised<1% of the sample).

3.3.2 Machine learning model predictor variables

Text mined interview transcripts. Participants recorded their answers to five interview questions using an online

video platform, and computer software transcribed their responses.We applied six common vectorization techniques

to convert the interviews to vectors for use as predictors in the ML models, as detailed in Figure 3 and the online

supplement.

Self-report survey scores. The self-report survey included 16 proprietary multi-item, bipolar scales developed for

the purposes of job selection that measure constructs including sociability, work ethic, and analytical mindset. These

self-reports were scored in twoways: (1) as raw numerical scores and (2) as percentile scores based on norms derived

by the survey vendor. The online supplement reports the scales’ reliability and validity.
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ZHANG ET AL. 1141

F IGURE 3 Methods overview for the Study 2.

3.3.3 Outcome variable (screening decisions)

Weused the organization’s screening decisions as the outcome variable. The decision is binary: applicantswho passed

proceeded to the next stage of the hiring process (screened in), and applicants who failed did not (screened out). The

overall SR= .494,White applicant SR= .60, non-White applicant SR= .43, Black applicant SR= .46, andHispanic appli-

cant SR = .37. These SRs result in Non-White/White AI ratio = .72, Black/White AI ratio = .77, and Hispanic/White

AI ratio = .62. A baseline model that always guesses “screened out” would have accuracy = .506, and this forms the

‘baseline’ accuracy against whichMLmodel accuracy is judged.

3.3.4 Train and test data splits for machine learning models

To compare multiple predictor-algorithm pairs, we created a stratified three-fold split of the raw data to conduct

k-fold cross-validation. Specifically, we split the data into k = 3 folds such that White, Black, and Hispanic appli-

cants had consistent Ns and SRs in each fold, thereby maintaining the original data’s properties. Across the three

folds, White SR = .60, Non-White SR = .43, Black SR ranged from .45 to .47, and Hispanic SR ranged from .36 to

.38. The three folds ranged in size from N = 832 to 835. For all experiments, we trained ML models on two folds

then assessed them on the third fold and repeated the process three times, using each fold only once for testing.

In total, we trained and tested: 5 (the adjusted training data AI ratios) * 2 (adjusting SRs or SRs and Ns) * 2 (over-

sampling real or synthetic observations) * 154 (11 algorithms * 14 sets of predictors) + 154 (the 11 algorithms * 14

sets of predictors on the raw data) = 3234 models in each of the three folds, or 9702 models trained and tested.
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1142 ZHANG ET AL.

The output of our experiments used in all analyses in the manuscript and online supplement is available on OSF:

https://osf.io/c46sp/?view_only=2ffb2172f8274968bf720429812deae4

3.3.5 Algorithms

We trained a variety of common machine learning algorithms, as detailed in Figure 3 and the online supplement. No

one algorithm is optimal for all tasks (i.e., no free lunch theorem; Wolpert & Macready, 1997), and these represent

a sample of commonly used ML algorithms. We conducted hyperparameter tuning for each algorithm in each set of

training folds of the original data, as detailed in the online supplement. We fully crossed these algorithms with the

two methods for scoring the self-reports, the six text mining approaches applied to the interview transcripts, and the

combined predictor set of the six text mining approaches plus the raw self-report scores. This allowed us to estimate

the effect of oversampling on model outcomes across a variety of predictor-algorithm pairs, thereby ensuring that

our results generalize across many ML models. Tables B8–B10 in the online supplement report the average accuracy

obtained on the raw data when SR= .50 for all algorithms, predictors, and predictor-algorithm pairs, respectively.

3.3.6 Oversampling ratios

We used under- and oversampling to investigate the relationship between training data AI ratios and ML model AI

ratios in the test data. Prior to model training, we under- and oversampled minorities in the training data to achieve

Black/White and Hispanic/White AI ratios ranging from .60 to 1.40, stepping by .20. In all cases, we kept Black and

Hispanic SRs in the numerator. To achieve training data AI ratio = .60, we undersampled passing Black and Hispanic

applicants to reduce their SRs. To achieve AI ratios= .80 to 1.40, we oversampled passing (i.e., screened in) Black and

Hispanic applicants until the desired AI ratio was achieved.

3.3.7 Oversampling strategies

We investigated two oversampling strategies: (1) oversampling to adjust SRs and (2) oversampling to adjust SRs and

equalize sample sizes. The former case is described in the “Oversampling Ratios” subsection. In doing so, Black and

Hispanic sample sizes increased by the number of cases added to achieve themanipulated AI ratio. To equalize sample

sizes, we multiplied the White N by the desired SR (as determined by the desired AI ratio),6 then we (a) oversampled

passing Black and Hispanic applicants (respectively) to reach those values and (b) oversampled (or undersampled, if

necessary) Black andHispanic applicants who failed untilWhite, Black, and Hispanic applicantNs were equal.

3.3.8 Oversampling techniques

We, (1) oversampled real observations with replacement or (2) oversampled synthetically generated observations.

We used the Synthetic Minority Over-Sampling TEchnique (SMOTE; Chawla et al., 2002) to generate synthetic (a)

screened in Black applicants, (b) screened in Hispanic applicants, (c) screened out Black applicants, and (d) screened

out Hispanic applicants. Figure B2 in the online supplement illustrates how SMOTE works. We used the first two

categories to adjust AI ratios and all four categories when adjusting AI ratios and equalizing sample sizes.
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3.3.9 Test data selection ratio

As a robustness check, we analyzed our results at different overall SRs in the test data: .10 and .50. To do so, we had

the ML models output class probabilities (i.e., continuous values ranging from 0 to 1) instead of binary predictions.

Then, to achieve overall SRs= .10 and .50, we set the highest 10% and 50%, respectively, of the class probabilities to 1

(pass/screen in) and the remaining values to 0 (fail/screen out). AI ratios are more likely to violate the four-fifths rule

as the overall SR decreases (Oswald et al., 2016). SR = .50 is very similar to the observed SR in our data, and SR = .10

represents amore competitive (e.g., later stage) selection procedure.

3.4 Results

To investigate our research questions, we treated the 9702 sets of algorithmic predictions as observations for analysis

and measured their accuracy and AI ratios at overall SR= .10 and .50. In the raw data, the models that used interview

transcripts to predict screening decisions tended tobemore accurate thanmodels that used self-reports as predictors,

and themodels that used both interview transcripts and self-reports tended to be nomore accurate than the interview

models. Amongmodels that used: interview transcripts as predictors, AccuracyMax =69.6% (averagedacross the three

folds); self-reports as predictors, AccuracyMax = 60.2%; and combined predictor sets, AccuracyMax = 70.6%.

ResearchQuestion 1 concerns the effect of training dataAI ratios onMLmodel AI ratioswhen screening applicants

in the test data. Table 2 reports the average ML model accuracy and AI ratios in the raw data and at each manipu-

lated training data AI ratio for models that used self-reports (top), interview transcripts (middle), and both interview

transcripts and self-reports (bottom) as predictors (Tables B5–B7 in the online supplement report the same informa-

tion at overall SR = .10). On average, among models that used self-reports as predictors, changing training data AI

ratios from .6 to 1.4 caused the ML model AI ratios to increase from a minimum of .11 (Hispanic/White AI Ratios) to

a maximum of .16 (Black/White AI Ratios). Among models that used interview transcripts as predictors, the average

increases were smaller, ranging from a minimum of .04 (Hispanic/White AI ratios) to a maximum of .07 (Black/White

AI Ratios). On average, amongmodels that used both sets of predictors, the AI ratios increased from aminimum of .06

(Black/White AI ratios) to amaximumof .08 (Non-White/White AI ratios). These findings that the effects were largest

among models that used self-reports and smallest among models that used interview transcripts as predictors align

with themagnitude of correlations between training data AI ratios andMLmodel AI ratios reported in Table B1 in the

online supplement for each predictor set. Thus, for all three predictor sets, training data AI ratios affect ML model AI

ratios.

Notably, however, the effects were sometimes small in magnitude. Table 3 and Figure 4 report the ML model AI

ratios for the most accurate model from each predictor set because these are the models likely to have been selected

for subsequent use. For example, the most accurate model included the Latent Semantic Indexing (LSI) operational-

ization of interview transcripts plus self-reports as predictors and used linear discriminant analysis for prediction.

When it was trained on the raw data where Black/White AI ratio = .77, and Hispanic/White AI ratio = .62, it exhib-

ited an average Black/White AI ratio= .715 and Hispanic/White AI ratio= .611, whereas when it was trained on data

where AI ratios were adjusted via oversampling to equal 1, it exhibited an average Black/White AI ratio = .747 and

Hispanic/White AI ratio= .649.

Research Question 2 regards whether equalizing subgroup Ns further enhances ML model AI ratios. Tables B2-B4

in the online supplement report the average ML model accuracy and AI ratios, respectively, for ML models that used

self-reports, interview transcripts, and the combined predictor set in each experimental condition at overall SR = .50

(Tables B5–B7 in the online supplement report the same at overall SR = .10). AI ratios tended to increase by about

.01 (although did not always do so) frommanipulating SRs and equalizingNswhen compared to onlymanipulating SRs.

These findings alignwith the correlations between a dummyvariable forwhether SRs or SRs andNsweremanipulated
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1144 ZHANG ET AL.

TABLE 2 Averagemlmodel accuracy and adverse impact ratios (Overall SR= .50).

Accuracy AI Ratio

Train AI ratio Overall White Black Hispanic NW/W B/W H/W

Self-reports Raw .568 .584 .558 .569 .736 .692 .753

.6 .564 .581 .552 .563 .724 .689 .737

.8 .564 .577 .554 .562 .743 .711 .754

1.0 .560 .570 .551 .560 .768 .745 .771

1.2 .554 .560 .547 .552 .807 .789 .808

1.4 .544 .545 .541 .540 .854 .844 .849

Interview transcripts Raw .625 .622 .623 .636 .844 .869 .795

.6 .630 .628 .629 .643 .835 .858 .787

.8 .630 .628 .630 .641 .845 .872 .793

1.0 .627 .625 .628 .636 .853 .884 .795

1.2 .620 .617 .620 .629 .867 .902 .809

1.4 .611 .608 .612 .620 .891 .928 .831

Combined predictors Raw .633 .636 .628 .639 .782 .798 .739

.6 .631 .635 .624 .642 .768 .785 .726

.8 .631 .633 .627 .640 .781 .801 .735

1.0 .628 .629 .624 .637 .799 .825 .747

1.2 .623 .623 .621 .631 .818 .848 .762

1.4 .613 .613 .612 .619 .850 .844 .793

For self-reports, N = 66 models on the raw data; N = 1,320 models when oversampling; for both interview transcripts and
combined predictors,N= 198models on the raw data,N= 3960models when oversampling.

TABLE 3 Average accuracy and adverse impact ratios for most accuratemodels (Overall SR= .50).

Test AI Ratios

Model Train AI ratio Overall accuracy NW/W B/W H/W

Self-reports (raw) Raw .602 .669 .627 .674

1.0 .587 .725 .715 .720

LSI Raw .696 .695 .712 .625

1.0 .697 .716 .742 .647

LSI+ Self-reports Raw .706 .688 .715 .611

1.0 .693 .719 .747 .649

Note: Results averaged across folds, oversampling methods and techniques (on the raw data, for each, N = 3; when train AI
ratio = 1.0, N = 12 for each. NW/W = Non-White/White AI Ratio; B/W = Black/White AI Ratio; H/W = Hispanic/White AI
Ratio. Logistic regression provided the highest accuracy for survey scores; ridge regression for LSI; and linear discriminant
analysis for LSI+ Self-reports.

and theMLmodel AI ratios, in that the correlations show aminimal positive effect of equalizingNs beyondmanipulat-

ing SRs. Overall, equalizing sample sizes tended to exert minimal, positive effects beyond manipulating training data

AI ratios.
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ZHANG ET AL. 1145

F IGURE 4 Average fairness-accuracy tradeoff for themost accuratemodels (selection ratio= .50).Note:
Numbers in shapes indicate the training data Black/White andHispanic/White AI ratios.

Research Question 3 regards whether different effects are observed from oversampling real versus synthetic

observations generated by SMOTE. As reported in Tables B2–B4 in the online supplement, these effects tended to

be even smaller in magnitude than the effect of manipulating SRs versus manipulating SRs and equalizing Ns. Further,

as reported in Table B1 in the online supplement, the effects were mixed across predictor sets, such that synthetic

observations increased Non-White/White and Black/White AI ratios among models that used self-reports as predic-

tors but decreased themandHispanic/WhiteAI ratios amongmodels that used interview transcripts or both interview

transcripts and self-reports as predictors. Therefore, oversampling real or synthetic observations provided similar

effects.

Research Question 4 addresses the tradeoff between ML model accuracy and adverse impact. Table 3 reports the

most accurate models’ accuracy when trained on the raw data versus when training data AI ratios = 1, and Figure 4

illustrates the tradeoff between accuracy and Non-White/White AI ratios for these models when training data AI

ratios = .6, .8, 1.0, 1.2, and 1.4 (on average across the other conditions). As Figure 4 shows, oversampling to adjust

training data AI ratios tended to slightly decrease model accuracy. For example, for the models that used LSI and self-

reports as predictors, AI ratios increased by .100 when training models on training data AI ratios = 1.4 compared to

training on the raw data, and accuracy decreased by .027. Among models that used only LSI as predictors, AI ratios

increased by .091 when training models on training data AI ratios = 1.4 compared to training on the raw data, and

accuracy decreased by .006. This aligns with trends reported in Table 2when all models’ outputs were examined.

3.5 Discussion

Adverse impact is a foundational concern for ML-powered selection tools, as they receive heightened scrutiny from

applicants and policymakers. The present study investigated the effects of oversampling high-performing minorities,

a technique being explored by data and computer scientists (Yan et al., 2020), on ML model AI ratios. Removing or

reversing adverse impact in training data increased ML model AI ratios while reducing ML model accuracy, although

the effect sizes were small.
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3.5.1 Theoretical and practical implications

Although adequate representation in training data is important for developing ML models that are equally accurate

across demographic groups (Barocas & Selbst, 2016; Kleinberg, Ludwig, Mullainathan, & Rambachan, 2018), equal

representation had veryminor, positive effects onMLmodel AI ratios in our study. This may be because oversampling

minority success already affected differential representation in our training data. Indeed, to create training data AI

ratios = 1.0, 1.2, and 1.4, we necessarily oversampled many minority applicants, thereby increasing their sample size

beyond the number ofWhite applicants. Therefore, equal representation may have independent, positive effects, but

our adjustments to training data AI ratios may have suppressed them.

Further, the observed effectswere similar regardless ofwhether real or synthetically generated observationswere

oversampled. This is encouraging, because although binary classification problems tend to benefit more from over-

sampling synthetic than real observations (Chawla et al., 2002), there is something uncanny about using synthetic

observations for personnel assessment. We encourage future work to continue to check if this holds true in other

studies, but the current findings suggest that practitioners can reduce ML model adverse impact to a similar degree

regardless of whether they oversample real or synthetic observations.

Although oversampling to adjust training data AI ratios slightly increasedMLmodel AI ratios, doing so also tended

to slightly reduce ML model accuracy. This issue is analogous to the so-called diversity-validity dilemma (Ployhart

& Holtz, 2008) and a known limitation of methods of enhancing algorithmic fairness (Barocas & Selbst, 2016). Such

decreases in accuracy limit the potential practical value of oversampling. Importantly, however, ifMLmodels perfectly

replicate historical human decisions, they could not reduce adverse impact. Future work is needed to determine how

such adjustments affect validity and predictive bias, as these are more important than replicating historical decisions

and our data did not include workplace outcomes.

3.5.2 Limitations and future research

The generalizability of our findings to other personnel selection situations is limited by two primary properties of the

dataset. First, our study focused on a subset of potentially useful predictors for personnel selection (i.e., self-reports

and interview responses), yet many selection systems may have a broader array of predictors available, such as bio-

data and cognitive ability. Second, the sample size in our study is rather small for real-world ML applications, as they

may be based, in practice, on tens of thousands of observations. The relatively low accuracy of our ML models may

have enhanced the magnitude of oversampling’s effects, whereas more accurate models may exhibit smaller effects

from oversampling. Both a broader array of predictors and a larger sample size could potentially increase ML model

accuracy and alter the effects of oversampling.

Due to the small effects of oversampling, future research should investigate additional approaches for addressing

MLmodel adverse impact. For example, removing predictors that are predictive of groupmembership holds potential

for reducing adverse impact (Booth et al., 2021), as does reducing the weight given to such predictors (Zhang et al.,

2018). Future research is needed to determine the effects of these and other approaches in high-stakes settings.

The effects of oversampling high-performing minorities rely on an assumption that subgroup differences in pre-

dictors will be consistent in new data. If, however, subgroup differences on predictors were inconsistent between

the training data and subsequent applicants, then training data AI ratios may have a weaker relationship with ML

model AI ratios. This suggests another route to addressing adverse impact, regardless of whetherMLmodels are used

for assessment: enacting societal change to reduce subgroup differences in job-relevant qualifications (i.e., predic-

tors). Mean racial subgroup differences in job-relevant qualifications begin at a young age (McDaniel et al., 2011),

and without change, they may persist in society for another 90 years or more (Barrett et al., 2011). Addressing sub-

groupdifferences in job-relevant qualifications is themost direct route for reducing adverse impact across assessment

methods.
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4 STUDY 3: MULTI-OBJECTIVE OPTIMIZATION FOR PERSONNEL SELECTION: A
GUIDE, TUTORIAL, AND USER-FRIENDLY TOOL7

Organizations oftenwant to optimizemultiple hiring objectives simultaneously, yet doing so can be difficult, especially

for conflicting objectives (e.g., cost and effectiveness; job performance and diversity). As a result, there is a growing

need to develop robust methods for making hiring decisions that consider multiple objectives. To date, however, most

analytic approaches are limited to optimizing just one objective at a time (e.g., cost or effectiveness, instead of cost

and effectiveness). Multi-objective optimization (MOO; a.k.a., Pareto-optimization) is a promising machine learning

approach that can help organizations optimize multiple objectives. It generates predictor weights that optimize the

value of one objective at given levels of the other objective(s); organizations then choose the set of predictor weights

that best fulfills their needs and values. MOO has been used in personnel selection to address the diversity-validity

dilemmaby deriving hiring solutions that can asmuch as double the proportion ofminority hireswhilemaintaining the

expected job performance of the new hires (Wee et al., 2014).

Nonetheless, existing MOO applications that are readily available for personnel selection are limited in two ways:

(a) they have only been applied to optimize two objectives, and (b) those two objectives have always been task per-

formance and diversity (in the form of adverse impact; e.g., De Corte et al., 2007; Song et al., 2017). Yet, organizations

are often concernedwithmultiple hiring objectives beyond task performance and diversity, such as the likelihood of early

turnover (Speer et al., 2019) and organizational citizenship behavior (OCB; Ployhart et al., 2017).

This study aims to provide a generalized MOO guide and tool that help users optimize multiple objectives in per-

sonnel selection. By doing so, we aim tomake two contributions. First, we provide a guide to generalize the application

ofMOO to a wide range of objectives and enable the use ofMOO in situations beyond the diversity-validity dilemma.

The guide details how to useMOO for different personnel selection applications by explainingwhat types of problems

are best addressed with MOO, how to define MOO problems, and how to implement, evaluate, and monitor MOO

selection systems. Second, we introduce a user-friendly online application (Multi-Objective Selection Tool, MOST;

https://orgtools.shinyapps.io/MOST/) to help awide range of users exploreMOOwithout requiring complex computer

programming ormathematical knowledge ofmachine learning algorithms.We hope this studywill foster the adoption

ofMOO and, thereby, improve hiring outcomes.

4.1 Multi-objective optimization and current organizational applications

As the term “multi-objective optimization” suggests, the MOO approach consists of a variety of algorithms that

simultaneously optimize multiple objectives. MOO is useful any time the objectives are in conflict—or whenever the

objectives cannot be simultaneously optimized (De Corte et al., 2007). Buying a used car, for example, can be consid-

ered a MOO problem. Suppose our objectives for a car purchase are to (1) minimize price and (2) minimize mileage.

Because price tends to decrease as mileage increases, there is a conflict between the two objectives, making it a typi-

calMOOproblem.Our purchase decisions are also often bounded by some conditions. For instance, wemay onlywant

to consider minivans; in MOO, this is called an equality constraint (i.e., body type = minivan). Also, we may only want

to consider cars with a fuel efficiency of at least 16 miles per gallon; in MOO, this is called an inequality constraint (i.e.,

gas mileage ≥16 miles per gallon). Constraints reduce the range of feasible solutions (e.g., car options) to ones that

are most likely to meet our needs. Thus, a typical MOO problem consists of a set of objectives (e.g., minimize price,

minimizemileage) and, often, some equality constraints (e.g., body type=minivan) and inequality constraints (e.g., gas

mileage≥16miles per gallon).

The goal of MOO is to identify Pareto-optimal solutions. A Pareto-optimal solution optimizes one objective, at a

certain level of the other objective(s). In our car buying example, the Pareto-optimal solutions include minivans with

the lowest price given amileage, aswell asminivanswith the lowestmileage given a price. The choice of a final solution
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1148 ZHANG ET AL.

depends on the preference of the buyer. For instance, among all the Pareto-optimal minivan options, the buyer might

decide to select theminivan that has the lowest mileage among all themedium-priced options.

The example above concerns discrete choices of used cars. Inmany applications (e.g., personnel selection), the final

solution is a set of predictor weights. For example, MOO has been used to address the diversity-validity dilemma in

personnel selection (e.g., DeCorte et al., 2007). Thediversity-validity dilemmaconcernshowcommonpersonnel selec-

tion predictors and procedures (e.g., cognitive ability tests) that validly predict job performance also tend to engender

adverse impact. This creates aMOO problemwhere organizations have to optimize two conflicting objectives (in this

example, diversity andvalidity).Oneway toaddress this problem is to assigndifferentweights topredictors (e.g., struc-

tured interview, personality assessments) so that the resulting weighted predictor composite exhibits high validity in

predicting job performance and low adverse impact (Outtz &Newman, 2010).

MOO uses a data-driven approach to generate multiple sets of predictor weights, each of which optimizes one

hiring outcome (e.g., adverse impact ratio [AI ratio]) at a given level of the other outcome(s) (e.g., job performance).

The final choice of predictor weights depends on organizational needs and values. For instance, organizations focused

on complying with the four-fifths rule (Equal Employment Opportunity Commission, 1978) may select the solution

that maximizes the expected job performance with expected AI ratio greater than or equal to .80; while organizations

focused on enhancing social equality may select the solution that maximizes the expected job performance with the

expected AI ratio equal to 1.00 (see Newman et al., 2022).

In summary, MOO is useful when the objectives are in conflict with each other, which occurs when two or more

objectives “cannot be optimized by exactly the same weighting of the available selection predictors” (De Corte et al.,

2007, p. 1382). By analyzing the relationships between the predictors and multiple objectives simultaneously, MOO

provides a set of optimal solutions that organizations could choose from based on their specific needs and values.

4.2 Growing demand in personnel selection for optimizing multiple objectives

There is a growingdemandamongorganizations to simultaneously optimizemultiple objectives in personnel selection.

Recently, interest has increased in performance criteria beyond task performance, such as OCBs and CWBs (Ployhart

et al., 2017), and non-performance criteria, such as turnover and employee well-being (Speer et al., 2019). OCBs con-

tribute to, and CWBs detract from, positive organizational functioning (Van Iddekinge & Ployhart, 2008); high rates of

voluntary employee turnover harmorganizational outcomes (Park&Shaw, 2013); and employeewell-being influences

job satisfaction, job performance, and retention (Cleveland & Colella, 2010). However, it is often difficult to optimize

these objectives simultaneously, as they are not perfectly related and sometimes are negatively or non-linearly related

(e.g., curvilinear relationship between job performance and retention; e.g., Salamin&Hom, 2005). Thus, a strategy that

optimizes one objectivemight not be optimal for, and could even hinder, another objective.

MOO can help organizations develop selection systems that optimize multiple hiring objectives. In the sections

below, we provide a guide, a point-and-click R Shiny app, and an R package for obtaining MOO solutions for general

personnel selection purposes.

4.3 Guide for implementing multi-objective optimization for personnel selection

MyriadMOOalgorithms exist for obtainingPareto-optimal solutions,which are summarized in the online supplement.

In this study, we focus on the normal boundary intersection (NBI) algorithm developed by Das and Dennis (1998),

which has been most commonly used in personnel selection (e.g., De Corte et al., 2007, 2011; Newman et al., 2022;

Song et al., 2017; see Rupp et al., 2020). Table 4 provides a checklist with the key steps for adoptingMOO in personnel

selection, and the online supplement provides a step-by-step example demonstration.
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ZHANG ET AL. 1149

TABLE 4 A checklist of the key decisions for adoptingmulti-objective optimization for personnel selection.

Stage 1. Define theMOOProblem

a. Determine the hiring objectives∙ What are the hiring objectives (e.g., job performance, retention, diversity)? The choice depends on
organizational needs and values.∙ How to operationalize each hiring objective?∙ Optimization goal: Decide the extent to which each objective will be optimized

b. Choose predictors and corresponding assessmentmethods∙ What predictors best predict the hiring objectives? The choice of predictors needs to be backed by job analysis.∙ How tomeasure/assess the predictors?
c. Set proper constraints∙ Consider practical and legal needs

Stage 2. ObtainMOOSolutions

a. Choose aMOOalgorithm∙ Considerations for selectingMOO algorithm (SeeOnline Supplement C, Table C1)
○ Are there relative weights associated with each hiring objective?

• Yes: a priori algorithms
• No: a posteriori algorithms

b. Prepare input statistics∙ Identify the calibration sample
○ What incumbent group to sample/archival data to use as the calibration sample? Calibration samples should

closely match the target sample of interest (e.g., applicant pool).
○ What is the expected sample size?When possible, the calibration sample size should be large.∙ Collect data from the calibration sample∙ Compute input statistics forMOO
○ Predictor intercorrelations
○ Predictor-objective relationships

c. ObtainMOOpredictor weights∙ Obtain theMOOpredictor weights using the input statistics∙ Choose a solution that best satisfies the optimization goal(s)
d. Pilot trial (highly recommend)∙ Identify the pilot sample (e.g., applicant sample)∙ Collect predictor data from the pilot sample∙ Apply theMOOpredictor weights to the pilot sample and estimate weighted predictor composites for each

individual in the pilot sample (but do not use it tomake actual hiring decisions)∙ Evaluate whether theMOOpredictor weights result in hiring outcomes that satisfy optimization goals, if
applicable∙ Identify other practical needs (e.g., communication, training)

Stage 3. Implementation

a. UseMOOweighted predictor composite tomake hiring decisions∙ Assess predictor data from the target sample of interest (e.g., job applicants)∙ For each applicant, calculate weighted predictor composite scores using theMOOpredictor weights∙ Make hiring decisions based on (or partially based on) the weighted predictor composite scores

Stage 4.Maintenance

∙ Evaluate the objectives in each round of implementation∙ Monitor hiring outcomes across different samples and scenarios∙ If change is required (e.g., due to updates from job analysis or substantial shrinkage), re-evaluate theMOO
selection system starting from Stage 1

Note: All steps need to be documented for future validation and legal auditing.
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1150 ZHANG ET AL.

4.3.1 Stage 1. Define the MOO problem

The first stage is to define andoperationalize the hiring objectives. Hiring objectives can be informedbyorganizational

needs and values; for example, an organization may aim to improve employee diversity, retention, and performance.

Stage 1 also typically involves setting the optimization goal (i.e., to what extent each objective should be optimized).

For instance, some organizations may choose to select solutions that allowmore favorable retention rates only to the

extent that expected task performance is not substantially decreased; other organizations may choose to maximize

new hire task performance andOCB only to the extent the adverse impact risks are low.

Thehiringobjectives then inform the choiceof predictors. Eachpredictor should individually demonstrate evidence

of job-relatedness, through job analysis and content or criterion-related validity (Equal Employment Opportunity

Commission, 1978).8 As each predictor can be assessed in multiple ways, the most suitable method of assessment

can be determined with validation studies, (lack of) overlap with other assessments, and practical considerations. For

example, should interpersonal skills bemeasured using situational judgment tests or structured interviews? Are there

assessment tools that are already available, or do they need to be developed? One should also examine practical and

legal considerations related to the selection predictors, such as constraining predictor weights to be non-negative to

properly reflect job analysis results (see De Corte et al., 2007).

4.3.2 Stage 2. Obtain MOO solutions

The second stage focuses on obtaining MOO (or Pareto-optimal) predictor weighting solutions. Multiple algorithms

are available for implementing MOO, which could be broadly classified as a priori and a posteriori algorithms. If the

optimization goal is clear, a priori algorithm should be used; if it is not clear, then a posteriori algorithm should be used

(see online supplement for details).

MOO algorithms are supervised machine learning algorithms that train models (i.e., develop predictor weighting

solutions) using calibration/training sample data. For example, when MOO is used for hiring, the calibration/training

sample consists of employees with criterion data (e.g., job performance ratings), and the target/testing sample is the

applicants.

MOOmodels generate multiple sets of predictor weights that optimize each objective at given values of the other

objective(s). From them, theuser chooses the solution (i.e., predictorweights) that best satisfies theoptimization goals.

In other words, MOO generates possible solutions; and from those solutions, the organization selects one based on

their values, goals, and business necessity. Even when the optimization goal is loosely defined (e.g., to improve all

three objectives to a reasonable degree), one can still narrow down the solution space based on the goal. They can,

for instance, identify a subset of solutions with higher expected new hire job performance, retention rate, and AI ratio

than the current practice, which can be presented to the organizational decision-makers for further consideration.

When possible, users should conduct a pilot trial to (a) evaluate the predictor weights in the target sample of inter-

est and (b) identify any preparations needed to integrate theMOO system into selection practice. Specifically, collect

predictor information from a pilot sample (e.g., applicant sample), use theMOOpredictor weights to identify individu-

als who might be selected with theMOO selection system (but not yet use them to make actual hiring decisions), and

evaluate the hypothetical hiring outcomes (e.g., whether the AI ratio satisfies the four-fifths rule). In addition, examine

practical needs such as communication (e.g., how to explain to stakeholders) and training (e.g., how to train recruiters

and hiringmanagers).

4.3.3 Stage 3. Implementation

The MOO solution is then implemented to make hiring decisions. Specifically, collect predictor information from the

job applicants and, for each applicant, use the MOO predictor weights to calculate weighted predictor composites.

 17446570, 2023, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/peps.12593, W

iley O
nline Library on [30/12/2023]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License



ZHANG ET AL. 1151

The weighted predictor composite scores can be used to rank order job applicants to aid compensatory selection.

They can also be used in conjunction with non-compensatory methods (e.g., minimum cut-score requirements), for

instance, by first selecting out applicants that did not meet the minimum cut-score for certain predictors (e.g., edu-

cation requirement, licenses, work experience requirements) and rank ordering the remaining applicants based on

weighted predictor composite scores.

4.3.4 Stage 4. Maintenance

The MOO selection system should be maintained through continuous validation. In each round of implementation,

the hiring outcomes should be evaluated to determine whether they still satisfy the optimization goals and detect any

changes in the hiring outcomes. For example, are the new hires’ job performance and 6-month retention rates similar

to previous implementations? Does the AI ratio still satisfy the four-fifths rule? Are there any changes across different

locations or times of the year? When the validation suggests a need to revisit the selection system, the selection sys-

temmust be re-evaluated, starting from Stage 1. This procedure supports the continued effectiveness of the selection

system.

4.4 Multi-objective selection tool (MOST): A user-friendly tool to implement MOO

The MOST online application (https://orgtools.shinyapps.io/MOST/) is a user-friendly and freely available R Shiny

application that uses theNBI algorithm (Das&Dennis, 1998) to estimate predictorweights for optimizing three hiring

objectives. We also provide a corresponding R package, “rMOST” that is available via the Comprehensive R Archive

Network (CRAN; https://cran.r-project.org/) repository. Figure 5 provides an example MOST Shiny app interface and

the online supplement provides a detailedmanual for using the app.

4.4.1 Procedures to use the MOST Shiny app

Step 1. Define the MOO problem. The first step in implementing MOO in personnel selection is to define the hir-

ing objectives (see Table 4). Common hiring objectives generally fall into two categories: adverse impact objectives

and non-adverse impact objectives.9 Adverse impact objectives relate to the proportion of selected applicants from

legally protected groups (e.g., women, racial/ethnic minorities) relative to the proportion of selected majority appli-

cants, and they are commonly operationalizedwith AI ratios (e.g., Oswald et al., 2016). Non-adverse impact objectives

include all other objectives, such as dimensions of employee performance (e.g., task performance, OCB, CWB); they

are commonly operationalized as supervisor ratings, peer ratings, andwith objective employee records.

The MOST app can optimize predictor weights for: (1) three non-adverse impact objectives (“No Adverse Impact

Objectives”), (2) two non-adverse impact objectives and one adverse impact objective (“One Adverse Impact Objec-

tive”), or (3) one non-adverse impact objective and two adverse impact objectives (“Two Adverse Impact Objectives”).

Use the “Optimization Problem” drop-down menu to select one of the three options (see Figure 5). As the optimiza-

tion function does not allow negative predictor weights (as suggested by De Corte et al., 2007), MOST requires that

the predictors and non-adverse impact objectives be operationalized such that greater values indicate more desired

outcomes (e.g., emotional stability instead of neuroticism; retention instead of turnover).

Step 2. ObtainMOO solutions.

Prepare input statistics. MOST (which implements NBI) takes the predictor intercorrelations and the predictor-

objective relationships as input statistics, both of which can be estimated from the calibration sample. The predictor

intercorrelations are represented by a correlation matrix of the predictors. The predictor-objective relationships are
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1152 ZHANG ET AL.

F IGURE 5 An example usage of theMOST Shiny App.

criterion-related validities (for non-adverse impact objectives; i.e., the correlation between each predictor and the

measure of an objective) or subgroup difference (for adverse impact objectives; i.e., the standardized predictor mean

scoredifference [Cohen’sd] betweenminority andmajority groups). For personnel selection applications, the intercor-

relations and criterion-related validity need to be corrected for range restriction and criterion unreliability to reflect

the relationships in the applicant sample (SIOP, 2018; see online supplement for recommended resources for range

restriction correction).

To specify the inputs in MOST, begin by entering the number of predictors to be used in the field labeled “Number

of Predictors.” Next, enter the predictor intercorrelations in the table labeled “Predictor Correlations.” The values

entered into the table must be between−1 and 1. Simply click on a cell in the table and enter the relevant correlation;

the predictors will be labeled “P” (for predictor) followed by a number representing their order in the table.10

Then, enter the relationships between the predictors and the objectives in the “Predictor-Objective Relation-

ships” table. The non-adverse impact objective will be labeled “C” (for criterion) followed by a number representing

their order among the non-adverse impact objectives in the table (e.g., “C1”); these predictor-objective relationships

should be entered as correlations between −1 and 1. The adverse impact objectives will be labeled “AI” (for adverse
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ZHANG ET AL. 1153

impact) followed by a number representing their order among the adverse impact objectives in the table (e.g., “AI1”);

these predictor-objective relationships should be entered as standardizedmean subgroupdifferences of the predictor

scores (subgroup d), with positive values favoring the reference group. If there are two adverse impact objectives, the

subgroup ds entered should be the standardized mean difference between a minority group and the same reference

group (e.g., both beminority groups compared to theWhite group, such as Black-White andHispanic-White subgroup

d’s).

If the MOO problem has “One Adverse Impact Objective” or “Two Adverse Impact Objectives,” MOST will display

additional fields requesting further input information. In both cases, theuser needs to enter the expectedoverall selec-

tion ratio of the selection system (a value between 0 and 1) in the “Overall Selection Ratio” field. In addition, if the

problem has “One Adverse Impact Objective,” the user needs to enter the expected proportion of the minority sub-

group in the applicant pool (a value between 0 and 1) in the “Proportion Minority for AI1” field. If the problem has

“Two Adverse Impact Objectives,” the user needs to enter the expected proportions of the twominority subgroups in

the applicant pool in the “ProportionMinority for AI1” and “ProportionMinority for AI2” fields.

ObtainMOOpredictor weights. After all the inputs are entered, click the “Get Solution!” button.MOSTwill visualize

theMOO solutions in a 3-dimensional plot on the top right section of the screen and provide the predictor weights as

well as the expectedhiring outcomes (expectedAI ratio and composite validities) associatedwith each solution, both in

the plot and in a table on the bottom right section of the screen. The solutions in the table can be sorted in descending

or ascendingorderbasedoneach column,which facilitates solution comparisonand selection. In addition to the results

for the three-objective solutions, for each of the three pairs of objectives, MOST also provides the results of two-

objective optimization solutions generated via NBI (e.g., C1 & C2, C2 & C3, C1 & C3).11 The user can obtain more

information on each solution by hovering the cursor over a point on the plot. For each point on the plot,MOSTdisplays

the solution number (which corresponds to the solution number in the table), predictor weights, and the expected

hiring outcomes. The user can use both the plot and the table to select a solution that best fits their needs.

4.5 Discussion

In this study, we highlighted organizations’ growing demand to optimizemultiple objectives in personnel selection and

described howMOOcan address this demand.We then introduced a guide for implementingMOO in personnel selec-

tion and provided a user-friendly online application and R package to help organizations implementMOO to optimize

three hiring objectives.

4.5.1 Utility of MOO over common personnel selection practices

To help readers consider the utility of MOO given their specific hiring scenarios and needs, we conducted a sup-

plemental exploratory study to investigate the factors influencing the utility of MOO. Details of the study and

recommendations are provided in the online supplement. Although the utility ofMOOultimately depends on the spe-

cific hiring scenario and the user’s needs, the results of our exploratory study suggest that MOO tends to be more

useful when predictors are differentially related to the objective. That is, MOO tends to be more useful over other

predictor weighting methods when predictor-objective relationships vary widely across predictors; and MOO tends

tobe less useful over othermethodswhenpredictor-objective relationships donot varymuchacross predictors.When

the predictor-objective relationships moderately vary across predictors, different users may find MOO useful to dif-

ferent degrees. Importantly, even in conditions where MOO does not seem to add much value, users can still choose

to useMOO, asMOOgenerally performs (at the least) similarly to other predictorweightingmethods.MOOsolutions

outperform unit weighting solutions; andMOOprovides the same set of predictor weights as regression weighting at

the endpoints (in addition to a range of optimal solutions that onlyMOO [but not regression] can provide).
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1154 ZHANG ET AL.

4.5.2 Shrinkage considerations with MOO and recommendations

When applying optimizationmethods such asMOOand regressionweighting, wemust consider shrinkage. Shrinkage

refers to decreases in the weighted predictor composite’s validity when predictor weights derived from one sam-

ple (calibration sample) are used in another sample (validation sample). In personnel selection, predictor weights are

oftenobtained froman incumbent sampleor archival data (calibration sample) andused to select applicants (validation

sample).

Previous studies (DeCorte et al., 2022; Song et al., 2017) suggested that shrinkage exists forMOOsolutions.MOO

shrinkage is influencedby calibration sample size andmagnitudeof theexpectedhiringoutcome. First, shrinkage tends

to be largerwhen the calibration sample size is small. Song et al. (2017), examining optimization of two objectives—job

performanceanddiversity—found that shrinkagewas sizable for a compositeof commonselectionpredictors (biodata,

cognitive ability test, conscientiousness, structured interview, integrity test)when the calibration sample sizewasat or

below 500; and shrinkagewas sizable for a composite of cognitive subtest predictorswhen the calibration sample size

was at or below 100. For a composite of common selection predictors, when calibration sample size was 500, validity

shrinkage (difference in calibration and validation sample job performance validity) ranged between .00 and .01, and

diversity shrinkage (difference in calibration and validation sample AI ratio) ranged between .00 and .08. In contrast,

when calibration sample sizewas 100, validity shrinkage ranged between−.01 and .03, and diversity shrinkage ranged
between .00 and .43 (see Song et al., 2017; Table 3).

Second, for a particular objective, across MOO solutions, shrinkage increases to the extent the objective is being

maximized (Song et al., 2017). In other words, there tends to be the most shrinkage for objective C1 in the solution

where C1 is maximized and the least (or no) shrinkage for C1 in the solution where C1 is least maximized. As an

example, for a composite of common selection predictors, the diversity shrinkage (in terms of AI ratio) was as high

as 1.24 (calibration sample size= 40, from AI ratio= 2.15 to .91; see Song et al., 2017; Table 3) for the solution where

diversitywasmaximized butwas approximately 0 (across all calibration sample size conditions) for the solutionwhere

diversity is least maximized (or where job performance was maximized; see Song et al., 2017; Table 3). Because the

MOO solutions that maximize certain (single) objectives (i.e., the endpoints) are akin to regression solutions maximiz-

ing that same objective, compared to regression solutions, MOO solutions tend to be less or similarly susceptible to

shrinkage [for the objective maximized by regression]. Specifically, compared to regression solutions that maximize

a certain objective, MOO solutions at the endpoints are similarly susceptible to shrinkage [for that objective] while

MOO solutions between the endpoints are less susceptible to shrinkage (see Song et al., 2017).

Based on these findings, we provide several recommendations regarding shrinkage when using MOO. First, when

possible, use large calibration samples (e.g., with more than 100 or 500 individuals, depending on the predictors; see

Song et al., 2017). Large calibration sample size can help reducemodel overfit (or capitalizing on chance), thus reducing

shrinkage (Song et al., 2021). Second, consider complementingMOO in conjunctionwith other approaches to improve

hiring outcomes. For example, to ameliorate the diversity-validity dilemma in personnel selection and enhance orga-

nizational diversity, users could seek to develop and use predictor measures with smaller subgroup differences (e.g.,

Goldstein et al., 2010;Hough et al., 2001) and adopt recruitmentmethods that enhance diversity (e.g., Avery&McKay,

2006; Newman& Lyon, 2009).

Finally, consider using shrinkage formulas to approximate cross-validated hiring outcomes. MOO shrinkage for-

mulas are recently developed to approximate cross-validated MOO (NBI) outcomes when optimizing two objectives

(Song et al., 2023). The shrinkage formulas are developed on the basis that (1) classic shrinkage formulas (e.g., Browne,

1975; Claudy, 1978; Lord, 1950; Nicholson, 1960; Olkin & Pratt, 1958; Wherry, 1931) can be used to approximate

cross-validated outcomes on the MOO solutions at the endpoints (e.g., solution where C1 is maximized); and (2) the

solutions between the endpoints can be interpolated (based on the specific MOO algorithms). Although previous

studies suggested that shrinkage formulas are effective for NBI-based MOO applications optimizing two objectives,

future studies are needed to examine whether the MOO shrinkage formulas could be generalized to other scenarios
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ZHANG ET AL. 1155

(e.g., other MOO algorithms and optimizing more than two objectives). Such work will be instrumental for selection

practices usingMOO.

4.5.3 Future directions

MOO is a promisingmachine learningmethod to advance both organizational practice and research. In addition to the

personnel selection applications exemplified in this study,MOOcould be used in a number of otherworkplace applica-

tions. In practice, organizations often face a tradeoff between the cost and validity of a selection system.While some

selection procedures (such as structured interviews and assessment centers) have high validity in predicting job per-

formance, they could also be costly to develop and administer; and other inexpensive procedures (such as personality

assessments) may have lower validity. MOO could be used to address this practical concern by reducing the cost of a

hiring design while optimizing diversity and validity. Specifically, one can useMOO to optimize three objectives: cost,

job performance, and diversity hiring outcome. The cost objective can be operationalized as the sum of the cost of the

predictors with non-zero weights, and the validity and diversity objectives can be operationalized as described ear-

lier (e.g., job performance validity, AI ratio). With appropriate algorithms and operationalizations, MOO can provide

solutions with a select set of predictors that minimize cost, at a given level of job performance validity and diversity

outcomes.

In addition to improving organizational practice, MOO could be used as a research method to advance the the-

oretical understanding of workplace phenomena. Examples include expanding the predictor space—to explore new

predictors that contribute to optimizing multiple organizational objectives. Existing methodologies (e.g., regression)

that can only analyze one outcome at a time have restricted the historical focus in personnel selection to predictors

that have high correlationwith task performance, such as cognitive ability, structured interviews, and biodata (Sackett

et al., 2021). The vast majority of our understanding of personnel selection predictors are informed bymeta-analyses,

regression, and structural equation modeling studies that examine the criterion-related validity, composite validity,

and/or incremental validity of predictor(s) in predicting a single workplace outcome—for example, job performance

or retention. Our field as a whole has limited knowledge of how different predictors influence multiple workplace

outcomes simultaneously— for example, job performance and retention.MOO,with its ability to systematically exam-

ine multiple objectives, holds promise to unveil more holistic predictor-criterion relationships. With MOO, we can

identify novel predictors of important work outcomes and develop methods to enhance multiple hiring objectives

simultaneously—a broader, diverse collection of predictors holds potential to improve overall hiring outcomes.
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ENDNOTES
1Study 1 authored by Zhang, N.,Wang,M., Xu, H., & Koenig, N.
2Study 2 authored byHickman, L., Kuruzovich, J., Ng, V., Arhin, K., &Wilson, D.
3Even when selection procedures violate the four-fifths rule, employers can demonstrate the job relevance and business
necessity of the selection procedure (Civil Rights Act, 1964). However, employers may also want to reduce adverse impact
for ethical reasons and to reduce the likelihood of litigation (Oswald et al., 2016).

4 In the present study,we do not consider differences in standard deviations/variances between groups because the standard
deviationofbinaryvariables (like screeningdecisions) is determinedprimarily by theirmeans. Specifically, a binaryvariable’s
standard deviation = (np(1-p))ˆ.5 where n = sample size and p = the observed mean. Further, in our study, group SRs are
equivalent to groupmeans.

5Differential prediction is rare in selection, and when it does occur, it tends to come in the form of overpredicting minority
performance (Dahlke & Sackett, 2022).

6The “fail” Black applicants was N = 4 larger than the “fail” White applicants. To equalize sample sizes, we first oversampled
four of the “fail”White applicants before oversampling Black andHispanic applicants.

7Study 3 authored by Song, Q. C., Tang, C., Alexander III, L. Hickman, L., & Kim, Y.
8For benchmarks of criterion-related validity, we refer readers to Bosco et al. (2015), which provides an overview of effect
size distributions for various bivariate relationships examined in applied psychology.

9The adverse impact objectives, which regard maintaining similar selection ratios across demographic groups, must be
treated differently than other objectives because they are operationalized with group differences (or related statistics)
rather than a validity coefficient.

10MOST will automatically update the corresponding cell on the other side of the diagonal with the same value so the corre-
lation matrix remains symmetric. It will not allow the user to change the “1”s on the diagonal of the matrix. Note that in the
cells that allow edits, negative values require a leading zero (e.g., “−0.20” instead of “−.20”).

11Previous studies have suggested NBI’s limitations in finding the entire Pareto front when optimizing more than two objec-
tives (Burachik et al., 2017). Thus, the MOST app generates MOO solutions that optimize two objectives as well as the
solutions that optimize three objectives, allowing the organization to choose from a range of solutions to satisfy their
organizational needs.
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