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A Pulsed-Precipitation Model of Dryland Vegetation Pattern Formation*

Punit Gandhi\dagger , Lily Liu\ddagger , and Mary Silber\S 

Abstract. We develop a model for investigating the impact of rainstorm variability on the formation of banded
vegetation patterns in dryland ecosystems. Water input, during rare rainstorms, is modeled as
an instantaneous kick to the soil water. The redistribution, from surface water to soil moisture,
accounts for the impact of vegetation on infiltration rate and downslope overland flow speed. These
two positive feedbacks between water and biomass distributions act on the fast timescales of rain
storms. During dry periods, a classic reaction-diffusion framework is used for the slow processes
associated with soil water and biomass. This pulsed-precipitation model predicts that the preferred
spacing of the vegetation bands is determined by the characteristic distance that a storm pulse
of water travels overland before infiltrating into the soil. In this way, the vegetation pattern is
determined by the fast ecohydrological processes and may be attuned with its dryland precipitation
pattern. We demonstrate how this modeling framework, suited for stochastic rain inputs, can be used
to investigate possible collapse of a dryland pattern-forming ecosystem under different precipitation
patterns with identical low annual mean. Model simulations suggest, for instance, that shorter rainy
seasons and greater variability in storm depth may both hasten ecosystem collapse.
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stochastic rainfall, ecosystem collapse
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1. Introduction. The availability of aerial photography in the 1940's first enabled the
study of landscape-scale spatial patterns of vegetation growth in the Horn of Africa [30, 31].
On gentle slopes, \lesssim 2\% grade, the patterns typically consist of bands of dense vegetation
that are tens of meters wide and separated by bare soil (Figure 1). They exhibit regular
spacing, with wavelength on the order of a hundred meters, and are oriented approximately
perpendicular to the elevation grade. More recent studies incorporating modern satellite
images have reported little change, relative to initial aerial photographs, at least in absence of
increased human pressure [23]; the most remarkable change is a slow uphill migration of the
pattern, on order of meters per decade [11]. It is now known that spontaneous formation of
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Figure 1. (a) Aerial photograph of banded vegetation patterns in the Sool region of Somalia, taken in March
1945 [23, 31]. (b) Satellite image of the same vegetation pattern taken in October 2020 from the Copernicus
Sentinel 2 mission [14]. (c) Normalized difference vegetation index (NDVI) along the green line shown in panel
(b). The location of the pattern (9\circ 20'38""N 48\circ 46'22""E) is indicated on the map in panel (d). [Used with
permission of John Wiley and Sons, from [31]

periodic vegetation patterns occurs in drylands around the globe [10]. Mathematical models
suggest that the phenomenon may be a strategy to exploit positive feedbacks that concentrate,
in the vegetated zones, the limiting water resource [5, 19, 33].

The striking regularity of the dryland vegetation patterns has led to proposals that they
may possess remotely sensed characteristics that are indicative of the ecosystem health and
its risk of collapse [9, 39]. If true, monitoring changes in the patterns over time could pro-
vide information about the resilience of the ecosystems that support them, including their
vulnerability under climate change. Many of the mathematical modeling studies have focused
on pattern transitions, using mean annual precipitation level as a bifurcation parameter [21,
22, 24, 39, 49]. Indeed there is some observational evidence of significant changes in pattern
morphology along an aridity gradient from South Sudan into Sudan [12]. Here we aim to
expand the use of mathematical models to investigate changes in patterns, including possi-
ble collapse, under other characteristics of dryland precipitation, such as variability in storm
frequency, storm depth, and length of rainy seasons.

Much of the currently available spatial remote sensing data provides information about
the biomass distribution which, while fluctuating on a seasonal timescale, evolves on a decade
timescale or longer. However, feedbacks between water and vegetation that are thought to
be responsible for pattern formation involve a much faster rainstorm timescale. Detailed
mechanistic models that attempt to bridge these disparate timescales can require significant
computational resources to make useful predictions on the timescale of pattern evolution [17,
35]. Our approach to this challenge builds on a fast-slow switching framework [18] devel-
oped specifically to capture the processes involved, at a conceptual level, using the range of
timescales on which they occur. We make some further simplifying assumptions about the fast
processes that lead to a computationally tractable model for carrying out the large number
of trials required to explore the impact of rainfall variability.
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PULSED-PRECIPITATION MODEL FOR VEGETATION PATTERNS 659

In contrast to the fast-slow switching model developed in [18], we do not attempt to
resolve the short intra-rainstorm time in this current work, and instead treat each rain event
as a Dirac-delta function impulse that deposits a uniform layer of water on the surface. We
convert this surface water layer directly into an increase in the soil water distribution, taking
into account the key feedbacks between the biomass distribution and (1) overland flow speed,
and (2) infiltration rate. In analogy with ``flow-kick"" systems considered in the context of
ecological resilience [34], the rain events become instantaneous ``kicks"" to the soil water in
the reaction-diffusion model that governs the ``flow,"" or time-evolution, of the ecosystem via
water-biomass interactions. We use the resulting impulsive reaction-diffusion system [29]
with nonlocal, spatially heterogeneous impulses to investigate vegetation bands on a one-
dimensional hillslope with stochastic rainfall.

Many of the earliest conceptual PDE modeling efforts handle the multiple scales associated
with vegetation pattern formation by formulating a model on an annually averaged timescale
in which the fast processes are phenomenologically ``upscaled"" [21, 27, 38]. Mathematical
analysis of such models that highlighted the mechanisms that set the spacing between vege-
tation bands or patches formulated this in terms of the wavenumber of Turing patterns in the
context of reaction-diffusion models, or the analogous Turing--Hopf patterns when advection
is also present [2, 43, 48]. A key feature of these models is that the wavenumber, and thus the
predicted band or patch spacing, is controlled by the relative strengths of the transport terms,
e.g. the phenomenological diffusion and advection constants incorporated into surface water,
soil water, and biomass equations. Our analysis of the proposed pulsed-precipitation model
has the characteristic band spacing set instead by the typical storm depth, which controls
the distance that deposited surface water travels before it infiltrates into the soil. Moreover,
the associated wavenumber is largely independent of the phenomenological diffusion constants
incorporated into the soil water and biomass equations. In this way our results deviate from
those of earlier conceptual models, and suggest interesting directions for future studies of more
mechanistically detailed models and for field studies of the overland flow and infiltration that
takes place after a storm, e.g., of the type reported in [6]. An interesting point of comparison
can already be made between our wavenumber selection results and those presented in a recent
paper by Crompton and Thompson [8]. Their study uses a different approach to determining
the soil moisture distribution following a storm event. It is based on using machine learning to
build an emulator for the Saint Venant shallow water equations for overland flow, coupled to
the Richards equation for infiltration. They also find that greater storm depth, with identical
annual mean, leads to increased spacing of the bands.

The impact of rainfall seasonality and variability on vegetation pattern dynamics is a major
motivation for our study and has been explored in other works [13, 15, 25, 28, 45]. Here, we
incorporate into the pulsed-precipitation model a stochastic rainfall that assumes a Poisson
point process for storm arrivals and draws each storm depth from an exponential distribution
[40]. We demonstrate how this model can be used to investigate the likelihood of noise-induced
transitions between patterned states and barren desert states in a low annual-mean-rainfall,
bistable regime. Specifically, we find that the vegetation can spontaneously collapse in a finite
time as a result of fluctuations in rainfall and that both precipitation characteristics, such as
the mean storm depth, and pattern characteristics, such as the band spacing, impact how long
the vegetation survives on average. We find, for example, that greater variability in storm
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660 PUNIT GANDHI, LILY LIU, AND MARY SILBER

depth increases the likelihood of collapse. The model also predicts that the same stochastic
rainfall pattern, spread out over a longer rainy season, leads to longer-lived vegetation.

Our paper is organized as follows. In section 2, we summarize the fast-slow switching
framework [18] that serves as a foundation for the pulsed-precipitation model used in this
study, highlighting the key simplifications that make our stochastic rainfall simulations pos-
sible. In section 3, we leverage these simplifying assumptions to derive a pulsed-precipitation
model in which rainstorms act as kicks to the soil moisture, which then evolves slowly, with
the biomass, during the long dry periods between storms. In section 4, we investigate pattern-
forming instabilities of spatially uniform states of the pulsed-precipitation model for an ideal-
ized periodic sequence of rain pulses. This linear stability analysis reveals a spatial resonance
tongue structure that suggests the distance that surface water travels before infiltrating into
the soil plays a key role in wavelength selection. In section 5, we numerically explore im-
portant qualitative differences in the dynamics of the model under stochastic rainfall versus
periodic rainfall, while also showing that the wavelength, as in the linear problem, is tuned to
mean overland flow distance of surface water following a storm. We then demonstrate how the
model can be used to probe possible ecosystem collapse that results from rainfall variability
in the bistable regime. Finally, in section 6, we discuss the results of our study in the context
of other related work and suggest potential directions to pursue with the pulsed-precipitation
model.

2. Fast-slow switching framework. This section introduces a model for the formation
of banded vegetation patterns based on the fast-slow switching framework developed in [18].
The switching framework evolves, on appropriate timescales, three fields: surface water height
H(X,T ) [cm], soil water column height W (X,T ) [cm], and biomass density B(X,T ) [kg/m2].
While H(X,T ) only evolves on the short timescale of rain events and B(X,T ) only evolves
on the long timescales between them, W (X,T ) responds to processes that act on the fast
timescale and other ones that occur on the slow timescale.

The output of the fast part of the switching model, after surface water has infiltrated the
soil under an assumption of fixed biomass distribution \scrB (X), is a soil moisture distribution
\scrW (X). This is the initial condition for the slow system that applies during the ensuing dry
period between rain storms. The slow system evolves both biomass and soil moisture. It takes
into account evapotranspiration of soil moisture, biomass growth and death, as well as seed
dispersal, modeled as biomass diffusion, which leads to up-slope colonization of the vegetation.
The explicit formulation of the fast and slow parts of the switching model are given in sections
2.1 and 2.2, respectively. We highlight the differences between the original formulation in [18]
and the version used in this paper.

The modifications we introduce here allow for a closed form solution for the spatial distri-
bution of soil water \scrW once all of the surface water from a rainstorm has infiltrated into the
soil. In section 3, we leverage this result to formulate a pulsed-precipitation model in which
the biomass B(X,T ) and soil water W (X,T ) evolve on the slow timescale and rainstorms are
treated as instantaneous impulses to W (X,T ), determined by the closed form solution of the
fast system, for a given storm depth and the current biomass profile.

Both the switching model and the pulsed-precipitation model are formulated on a one-
dimensional spatial domain with periodic boundary conditions; the perspective is that it is
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PULSED-PRECIPITATION MODEL FOR VEGETATION PATTERNS 661

Table 1
Comparison of infiltration rate \scrI and overland water flow speed \scrV used with the fast-slow switching model in

[18] and our modified pulsed-precipitation model. For the pulsed-precipitation model, we set KI = 200cm/day,
whereas for the fast-slow model we used KI = 500cm/day with A = 1cm, Ws = 27cm, and \beta I = 4 for

the additional factors that can reduce infiltration. Both \beta V = 2/3 (with KV

\surd 
\zeta = 1.4m/day/cm2/3) and the

computationally faster \beta V = 0 (with KV

\surd 
\zeta = 1.4m/day) were used in [18]. All other parameters match values

for the pulsed-precipitation model given in Table 2. Here \Theta (H) denotes a Heaviside step function in H.

Fast-slow [18] Pulsed-precipitation

Infiltration rate KI

\biggl( 
\scrB (X)+fQ
\scrB (X)+Q

\biggr) \biggl( 
H

H+A

\biggr) \biggl( 
1 - W

Ws

\biggr) \beta I

KI

\biggl( 
\scrB (X)+fQ
\scrB (X)+Q

\biggr) 
\Theta (H)

Surface flow speed

\biggl( 
KV

\surd 
\zeta 

1+N\scrB (X)

\biggr) 
H\beta V KV

\surd 
\zeta 

1+N\scrB (X)

capturing some representative middle portion of a long swath of gently sloped terrain, oriented
with uphill in the +X direction. We conclude in section 2.3 by presenting the rainfall models
used in this study, inspired by a typical climatology in the Horn of Africa.

2.1. Fast subsystem of the switching model. The fast portion of the switching model is

\partial H

\partial T
= P (T )\underbrace{}  \underbrace{}  

Precip.

 - \scrI 
\Bigl( 
H,W ;\scrB (X)

\Bigr) 
\underbrace{}  \underbrace{}  

Infiltration

+
\partial 

\partial X

\Bigl( 
\scrV (H;\scrB (X)) H

\Bigr) 
\underbrace{}  \underbrace{}  

Advection

,(2.1a)

\partial W

\partial T
= \scrI 

\Bigl( 
H,W ;\scrB (X)

\Bigr) 
\underbrace{}  \underbrace{}  

Infiltration

,(2.1b)

where the infiltration rate, \scrI [cm/day], and overland surface flow speed, \scrV [m/day], are given
in Table 1 for both the original fast slow model and the approximation that leads to the
pulsed-precipitation model.

In the pulsed model, the H and W dependent factors in \scrI are replaced by a Heaviside
step function in H; infiltration occurs whenever there is water on the surface at a rate that
depends only on \scrB at that location. With the default value of f = 0.1, the bare soil infiltration
rate (\scrB = 0kg/m2) is a factor of 10 slower than its maximum rate for \scrB \gg Q. This sigmoidal
transition from low to high infiltration rate with increasing biomass \scrB is an essential positive
feedback and suggests an advantage for \scrB to exceed the threshold Q in its patterned state.

We assume a constant 0.5\% elevation grade (\zeta = 0.005) and, as is common in conceptual
models for vegetation pattern formation, we omit the dependence on H in the speed of overland
flow \scrV for the pulsed-precipitation model. We note that exactly what dependence is most
appropriate in this setting is still an open question, and the impact on qualitative predictions
may potentially be minimized by appropriately calibrating the model [7]. The overland flow
speed is decreased, by a factor 1+N\scrB (X), if there is vegetation at a location X. This longer
residence time, of surface water on vegetated soil compared to bare soil, is another positive
feedback between water resource and biomass that acts on the fast timescale.
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662 PUNIT GANDHI, LILY LIU, AND MARY SILBER

2.2. Slow subsystem of the switching model. The slow portion of the switching model
evolves the soil water W (X,T ), initialized by its post-storm distribution \scrW (X), and the
biomass density B(X,T ). Specifically,

\partial W

\partial T
= - 

\Bigl( 
L+\Gamma B

\Bigr) 
W\underbrace{}  \underbrace{}  

Evapotranspiration

+DW
\partial 2W

\partial X2\underbrace{}  \underbrace{}  
Diffusion

,(2.2a)

\partial B

\partial T
=C

\Bigl( 
1 - B

KB

\Bigr) 
\Gamma BW\underbrace{}  \underbrace{}  

Growth

 - MB\underbrace{}  \underbrace{}  
Death

+DB
\partial 2B

\partial X2\underbrace{}  \underbrace{}  
Dispersal

.(2.2b)

Here, the evaporation rate is given by L and the transpiration rate is given by \Gamma B. Transpi-
ration dictates the biomass growth rate with an efficiency set by the parameter C and with a
logistic term that limits growth if B approaches a carrying capacity KB. The death rate M
is constant, and seed dispersal is modeled by linear diffusion. As is done in [18], we typically
neglect the soil water diffusion, i.e., DW = 0. Our simulation results with DW > 0 indicate
that soil water diffusion plays a negligible role in the model. See Appendix A for numerical
exploration of the impact of diffusion rates DB and DW on pattern formation within the
pulsed-precipitation model.

2.3. Precipitation model. We use rainfall patterns in the Horn of Africa as inspiration
for our rainfall models. Figure 2(a--d) shows rainfall statistics, based on reanalysis data of
rainfall rates [26] at the site shown in Figure 1, between 2015 and 2020, along with associated
cumulative rainfall.

Rainfall statistics in Figure 2(a--c), which are based on rainfall rates shown in Figure 2(d),
indicate two rain seasons per year, each lasting approximately 1--2 months with annual pre-
cipitation fluctuating between 11 and 25 cm/year over the 5-year period. We emphasize that
the data presented in Figure 2, while corrected using available rain gauge data, is reanalysis
data based on models and not directly measured. We can therefore reliably report rainfall
rate statistics, but not rainstorm depth statistics, which would be most relevant for informing
the pulsed-precipitation model.

Investigations in [18], with the fast-slow switching model, collapsed the rainfall of each
rainy season into a single hours-long storm of constant intensity, as illustrated in Figure 2(e).
The pulsed-precipitation model, introduced in section 3, assumes each rainstorm instanta-
neously deposits water on the surface. We note that this is an assumption of convenience, and
other studies have explored the role that storm duration can play in vegetation patterns [8].
In Appendix B, we show how we might capture the effects of storm duration in the pulsed-
precipitation model by interpreting the storm depth as an effective surface water height during
a storm.

In order to carry out linear stability analysis in section 4, we consider a periodic array of
identical, evenly spaced rain pulses within each rainy season, as illustrated in Figure 2(f). In
section 5 we explore the dynamics under a stochastic rainfall model [40] that treats rainstorm
arrivals as a Poisson point process, during each fixed duration rainy season, with storm depths
drawn from an exponential distribution, as illustrated in Figure 2(g).
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PULSED-PRECIPITATION MODEL FOR VEGETATION PATTERNS 663

(a)

(e) (g)(f)

(d)

(b) (c)

Figure 2. (a) Annual totals, (b) average monthly totals, and (c) rainfall rate distribution for (d) five years
of half-hourly reanalysis rainfall data [26] at the location from Figure 1(d). Also shown is the time series
generated by (e) the periodic rainfall model used in [18], consisting of a six-hour storm with a storm depth
of 8cm, repeating every six months, (f) the periodic rainfall model with eight instantaneous pulses with storm
depth of 1cm, evenly spaced in each one-month biannual rainy season, and (g) the stochastic rainfall model
with two one-month rainy seasons per year, mean storm depth of 1cm, and mean annual precipitation of 16cm.
Note that rainfall in the pulsed precipitation model is characterized by storm depth in cm (blue), whereas the
rainfall in the fast-slow model is given in terms of a rainfall rate cm/hr over a given interval of time (black).

3. Pulsed-precipitation model. This section develops the model we use in this paper
for stochastic precipitation simulations. While we retain the same reaction-diffusion model
(2.2) for the slow subsystem, we make two significant changes to the fast subsystem (2.1),
which allow us to determine its output soil moisture distribution \scrW (X) in a closed form, by
quadrature. The model changes are the following:

1. The precipitation P (T ) in (2.1a) is replaced by rain events that instantaneously deposit
a column of water, of height H0, uniformly on the domain. The timing and strength
of these ``precipitation pulses"" are the random variables in our stochastic simulations.

2. The infiltration rate used in [18], given in Table 1, is replaced by

(3.1) \scrI (H;\scrB (X))\equiv KI

\Bigl( \scrB (X) + fQ

\scrB (X) +Q

\Bigr) 
\Theta (H).

The infiltration is independent of how saturated the soil might be and has a simple on-off
switch with presence-absence of surface water. We model this with the Heaviside unit step
function \Theta (H), assuming the convention that \Theta (0) = 0.

With these modifications we are able to reformulate the fast-slow model into a pulsed-
precipitation framework, with rain input modeled by instantaneous kicks to the soil water
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664 PUNIT GANDHI, LILY LIU, AND MARY SILBER

followed by evolution of the slow system during the intervening dry-surface time intervals.
We compare results from the two models in Appendix B.

The nondimensionalization in section 3.1 reveals key characteristic scales associated with
the modified fast and slow subsystems (2.1)--(2.2). In section 3.2, we solve the fast system to
obtain the spatial distribution of water that has infiltrated the soil following a Dirac-delta rain
impulse. Algebraic manipulation of the integral expression for the soil water kick provides a
geometric interpretation of the infiltration process that redistributes water from the surface
into the soil.

3.1. Dimensionless parameters. In this subsection we present the dimensionless version
of the pulsed precipitation model used in our investigations. For this, we introduce two
different (dimensionless) timescales, t and \tau for the fast and slow subsystems, respectively,
and a dimensionless distance x. Specifically, we let

(3.2) t=
KI

\scrH 0
T, \tau =MT, x=

KI/\scrH 0

KV
\surd 
\zeta 
X.

Here, \scrH 0 is a characteristic rain pulse height and \scrH 0/KI is an associated infiltration timescale.
This time, together with a characteristic overland flow speed (KV

\surd 
\zeta ), determines a charac-

teristic overland travel distance (\scrH 0/KI)/(KV
\surd 
\zeta ) that is used to nondimensionalize X. We

set the (slow) biomass timescale by its mortality rate, M . Finally, we define the dimensionless
fields:

(3.3) h=
H

\scrH 0
, w=

\Bigl( C\Gamma 
M

\Bigr) 
W, b=

B

Q
.

The fast subsystem of the pulsed-precipitation model, in dimensionless variables, is

\partial h

\partial t
= - \iota (x)\Theta (h) +

\partial 

\partial x
(\nu (x)h) ,(3.4a)

\partial w

\partial t
= \alpha \iota (x)\Theta (h),(3.4b)

where

(3.5) \iota (x) =
\^b(x) + f

\^b(x) + 1
, \nu (x) =

1

1+ \eta \^b(x)
.

Because the rainstorm is assumed to deposit water on the surface instantaneously, we take
h= h0 as the initial condition for (3.4a), and there is no longer an explicit precipitation term.
The dimensionless biomass distribution \^b(x) \equiv \scrB (X)/Q is taken from the slow subsystem at
the arrival time of the precipitation pulse. The nondimensionalized slow subsystem is

\partial w

\partial \tau 
= \delta w

\partial 2w

\partial x2
 - (\sigma + \gamma b)w,(3.6a)

\partial b

\partial \tau 
= \delta b

\partial 2b

\partial x2
+wb

\biggl( 
1 - b

\kappa 

\biggr) 
 - b.(3.6b)
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PULSED-PRECIPITATION MODEL FOR VEGETATION PATTERNS 665

Table 2
Summary of parameters used in numerical simulations. Values are given for the dimensioned fast-slow

model (2.1)--(2.2) and the nondimensionalized pulsed precipitation model (3.4)--(3.6). We neglect soil water
diffusion so \delta w = 0.

Parameter Units Default value Description/definition

\scrH 0 cm 1 Characteristic precipitation pulse
KI cm/day 200 Infiltration rate coefficient
f -- 0.1 Bare/vegetated infiltration contrast

Q kg/m2 0.1 Biomass level for infiltration enhancement
KV

\surd 
\zeta m/day 1.4\times 104 Surface water speed (bare soil)

N m2/kg 20 Surface roughness coefficient
L day - 1 0.0075 Evaporation rate

\Gamma (kg/m2) - 1day - 1 0.025 Transpiration coefficient

KB kg/m2 4 Biomass carrying capacity

C (kg/m2)/cm 0.1 Water use efficiency coefficient
M day - 1 0.01 Biomass mortality rate
DB m2/day 0.01 Biomass diffusion
DW m2/day 0 Soil water diffusion
\eta -- 2 \eta \equiv NQ
\alpha -- 0.25 \alpha \equiv \scrH 0C\Gamma /M
\sigma -- 0.75 \sigma \equiv L/M
\gamma -- 0.25 \gamma \equiv \Gamma Q/M
\kappa -- 40 \kappa \equiv KB/Q
\delta w -- 0 \delta w \equiv DWK2

I /(M\scrH 2
0K

2
V \zeta )

\delta b -- 0.0002 \delta b \equiv DBK
2
I /(M\scrH 2

0K
2
V \zeta )

Definitions of the dimensionless parameters, and typical values used in simulations for
all dimensioned parameters of the model, are given in Table 2; see [18] for details of these
parameter estimates. Note that for the default parameters the fast infiltration timescale in
(3.2) is less than 10 minutes, while the slow time-scale associated with the biomass is 100
days. The characteristic distance for overland water flow is \sim 70m. This contrasts with the
short biomass diffusion scale of 2

\surd 
365DB \approx 2.4m, which is based on a year timespan. The

disparity of these two lengthscales is reflected in the nondimensionalized model through small
diffusion parameter \delta b \ll 1. Finally, we note that the characteristic soil water depth in (3.3)
is W0 =M/C\Gamma = 4cm= 4\scrH 0.

3.2. Solving the fast subsystem of the pulsed-precipitation model. The goal of this
subsection is to obtain a closed form expression for \widehat w(x), which is the amount of soil water at
each location x, after the rain event. This distribution, together with \^b(x), is then the initial
condition for the slow subsystem (3.6) that applies during the ensuing dry spell. Before going
into the details of the calculation, we present a schematic summary of the result in Figure 3.
In particular, this figure illustrates the redistribution and infiltration processes that determine
the amount of water from the rain event that infiltrates into a given location. The biomass
level is indicated with high (low) levels shaded in green (yellow) in the upper part of both
panels. The left panel illustrates the initial surface water input by the blue (and red) shaded
region below some initial surface water height h0 in the positive (x,h) quadrant. This initial
amount of water is redistributed by downhill surface transport and infiltration, resulting in
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666 PUNIT GANDHI, LILY LIU, AND MARY SILBER

uphill

Figure 3. Illustration of the surface water transport and infiltration process modeled by the fast system
(3.4). The initial surface water, shaded blue and red in the left panel, is redistributed by the dynamics of the
fast system to a soil water distribution indicated by the corresponding shaded regions in the right panel. The
spatial biomass profile is indicated with high/low levels in green/yellow in the upper portions of both panels.
The direction field associated with the characteristic equation (3.7) is indicated in black in the left panel, with
two example curves in red. The red region between the two example curves, constrained to be below the initial
height h0, determines the soil water in red in the right panel. As indicated by the arrow in the right panel, x
increases in the uphill direction.

the soil water distribution indicated by the blue (and red) shaded region in the right panel.
Specifically, the amount of the initial block of surface water between the two red curves in the
left panel, filled in red, infiltrates the soil at the locations where those curves reach h= 0. This
contribution to soil moisture is summarized by the corresponding red block in the right panel.
Note that the added soil water distribution \Delta w, shown in the right panel, is concentrated
where the biomass is located, reflecting the positive feedbacks of the system.

In this section, we describe how we obtain the red curves that define the redistribution
process as the solution of system (3.4) by a standard application of the method of charac-
teristics (see, e.g., [16]). In particular, the solutions to the h equation (3.4a) along so-called
characteristic curves, defined below by (3.8), partition the initial water by where it ends up in
the soil, as illustrated in Figure 3. Figure 4 provides further details behind our approach for
the biomass profile, \scrB (X) \equiv Q\^b(x), shown in panel (c). It fills in the steps to our geometric
interpretation (Figure 3) for the way water, initialized on the surface, gets redistributed into
the soil. While the following discussion of our method assumes an infinite domain to make the
presentation of the underlying ideas more clear, our simulations incorporate periodic boundary
conditions on a domain of length L.

We employ the method of characteristics to solve the fast subsystem (3.4), given a biomass
distribution \^b(x), which determines the infiltration rate \iota (x) and overland flow speed \nu (x) via
(3.5). We assume that the initial surface water height is h(x,0) = h0, which is set by the
precipitation pulse, and that the initial soil water distribution is w(x,0) = w0(x). We begin
with the h equation (3.4a), which is decoupled from the w equation (3.4b) thanks to our
simplifying assumptions related to the infiltration function \scrI . We parameterize time t(x;y)
by spatial position x along a characteristic that starts at x= y at time t= 0. This results in
the following set of ODEs, one for each \^h(x;y)\equiv h(x, t(x;y)), the height of the surface water
along the characteristic starting at y:

(3.7)
d

dx

\Bigl( 
\nu (x)\^h(x;y)

\Bigr) 
= \iota (x)\Theta 

\Bigl( 
\^h(x;y)

\Bigr) 
, \^h(y;y) = h0,
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PULSED-PRECIPITATION MODEL FOR VEGETATION PATTERNS 667

(d)

(f)

(e)

(a)

(b)

(c)

Figure 4. (a) The space time characteristic, defined by (3.8), with initial condition h(y,0) = h0 is highlighted
in bold. Surface water h reaches zero at xz(y) along the characteristic, which is indicated by a transition
from solid to dotted line. (b) The corresponding picture in the (x,h) plane shows how h evolves along the
characteristic, labeled by the location y of the initial height h0. (c) The biomass profile is included to highlight
its role of slowing water flow and increasing infiltration. (d) The space time characteristics for which h reaches
zero at x= x\ast are highlighted in red. The (vertical) time intervals (0, t1) and (t2, t\ell ) at x= x\ast capture the times
for which h> 0 at x= x\ast and infiltration occurs. (e) The corresponding picture in the (y,h) plane indicates that
the contributions to the soil water at x= x\ast come from locations with h< h0 along the characteristic labeled by
y= y\ell (x\ast ) which, by definition (3.12), reaches h= 0 at x\ast . (f) The contribution from the rainstorm to the soil
water at x= x\ast , determined by (3.13), is highlighted in red.

where the time to reach the position x\leq y along the characteristic starting at y is given by

(3.8) t(x;y) =

\int y

x

1

\nu (s)
ds.

Based on the functional forms, we can assume \nu (x) and \iota (x) are continuous and strictly
positive. Therefore, by (3.7), the product q(x;y) = \nu (x)\^h(x;y), which is initially positive at
x= y, decreases monotonically as x decreases, i.e., in the downhill direction. It can reach zero
only when \^h(x;y) = 0, and for x values below this point, \^h(x;y) remains zero, a consequence
of the Heaviside function in (3.7). For the characteristic starting at y, we denote that point
where the surface water reaches zero by xz(y). We can then integrate (3.7) from the start of
the characteristic y to some point x to get

(3.9) \^h(x;y)\equiv h(x, t(x, y)) =

\Biggl\{ 
1

\nu (x)

\bigl( 
\nu (y)h0  - 

\int y
x \iota (s)ds

\bigr) 
if xz(y)<x\leq y,

0 if x\leq xz(y).
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668 PUNIT GANDHI, LILY LIU, AND MARY SILBER

Figure 4(a) illustrates a number of characteristics t(x;y) satisfying (3.7). (Note that due to
the periodic boundary conditions the characteristics wrap around the domain.) We indicate
the point on the characteristic where \^h(x;y) first reaches zero, (xz(y), t(xz(y);y)), by a black
circle and change to a dotted line where \^h(x;y) = 0.

With a solution for h in hand, we now turn to the soil water equation (3.4b). We can
write a formal solution for \widehat w(x) in terms of h(x, t) as

(3.10) \widehat w(x) =w0(x) + \alpha \iota (x)

\int \infty 

0
\Theta (h(x, t))dt\underbrace{}  \underbrace{}  

\equiv \Omega (x), \mathrm{a}\mathrm{d}\mathrm{d}\mathrm{e}\mathrm{d} \mathrm{s}\mathrm{o}\mathrm{i}\mathrm{l} \mathrm{w}\mathrm{a}\mathrm{t}\mathrm{e}\mathrm{r}

.

Here, the integral over the Heaviside function determines the total length of time surface water
is infiltrating the soil after a rain pulse on the fast timescale. Figure 4(d) indicates, with thick
red vertical line segments, two intervals that comprise this time for the given point x= x\ast . In
order to compute the integral in (3.10) given our solution \^h(x;y) in (3.9), we make the change
of variables from time t to the starting position y of the characteristic that reaches x at time
t(x;y) via (3.8). The added soil water is given by

(3.11) \Omega (x) = \alpha \iota (x)

\int \infty 

x

\Theta 
\Bigl( 
\^h(x;y)

\Bigr) 
\nu (y)

dy.

The positive contributions to the integral in (3.11) occur for values of y where the surface
water height h is nonzero at x along the characteristic starting at y. There are two such
intervals in y associated with x = x\ast for the example in Figure 4(d), which are indicated
with thick dotted red lines along the spatial axis. The characteristics highlighted in red in
Figure 4(d) have surface water height that just reaches 0 at x= x\ast and mark the boundaries
of the contributing intervals for (3.10) and (3.11). Figure 4(f) shows the resulting soil water
distribution \Omega (x) added by the impulse of rain. The contribution at x= x\ast highlighted by a
thick solid red line is proportional to the time during which infiltration occurs.

In order to develop a geometric interpretation of (3.11), we return to our set of ODEs
for \^h(x;y), with each labeled by y and given in (3.7). Notice that it is possible for multiple
characteristics to first reach zero surface water height at the same location, that is, xz(y1) =
xz(y2) for y1 \not = y2. Because we assume the surface water is initially uniformly distributed
across the entire domain, there is at least one characteristic that first reaches zero at any
point x on the domain. We define y\ell (x) to be the largest y such that xz(y) = x. Now,
integrating (3.7), along this y\ell (x) characteristic, from x where the surface water reaches zero
up to some point y < y\ell (x) gives

(3.12) \^h(y;y\ell (x)) =
1

\nu (y)

\int y

x
\iota (s)ds.

The integral in (3.12) represents the height of the surface water at a point y along a char-
acteristic defined by (3.7) and (3.8) that starts at x with h = 0 and follows it backward in
time. We use the same notation \^h as in (3.9) here because the result of the integral in (3.12)
is equivalent to the surface water height at the point y along the same characteristic curve,
but starting at y\ell (x) with h= h0 and integrating forwards in time.
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PULSED-PRECIPITATION MODEL FOR VEGETATION PATTERNS 669

Noting that a positive multiplicative factor \nu (x)/\nu (y) can be inserted in the argument of
the Heaviside step function of (3.7), we can make use of (3.9) together with (3.12) to re-express
the added soil water \Omega (x) as

(3.13) \Omega (x) = \alpha \iota (x)

\int y\ell (x)

x

\Theta 
\Bigl( 
h0  - \^h(y;y\ell (x))

\Bigr) 
\nu (y)

dy.

We can truncate the upper bound of the integral in going from (3.11) to (3.13) because we
have defined y\ell (x) such that \^h(y;y\ell (x))>h0 for all y > y\ell (x).

Equation (3.13) affords a geometric picture for the water going from the surface into the
soil. We imagine beginning with a ``block"" of water on the surface as a result of the rainstorm,
which is represented by the region between the thick solid black line and the y-axis in the
(y,h)-plane in Figure 4(e). The fast system acts to redistribute this initial block of water
into the soil via surface transport and infiltration. We can think of the characteristics defined
by (3.12) that start at h = 0 and move backward in time as a partitioning of this block in
the (y,h)-plane. The amount of the initial block of water that appears along a characteristic,
starting at a location x with h = 0, is how much water infiltrates into that location. Notice
that the contribution to \Omega (x) along a characteristic is limited by the Heaviside function to
intervals where h < h0, e.g., within the initial block of water. Typical characteristics are
indicated in Figure 4(e) by blue lines, with the intervals above h0 dotted. The characteristic
that starts at x = x\ast and determines the amount of added soil water at that location is
highlighted in red. Notice that there are two intervals of this characteristic below h0. The
endpoints of these segments correspond exactly to the endpoints of the intervals of integration
(x\ast , y1) and (y2, y\ell (x\ast )) shown in Figure 4(d). Indeed, all the characteristics that start with
h= h0 at t= 0 and reach zero at x= x\ast in the (x, t)-plane of Figure 4(d) map onto segments
of the characteristic that starts with h= 0 at x= x\ast in the (y,h)-plane of Figure 4(e).

The numerical simulations reported on in sections 4 and 5 are carried out using the ODE
suite of MATLAB [42]. The contribution to the soil water from each rain pulse is computed
by numerical integration of (3.12)--(3.13) via the trapezoidal rule. A centered finite-difference
scheme is used to evolve the slow system (3.6) in between the rain pulses.

4. Periodic rainfall. We begin exploration of the pulsed-precipitation model by first con-
sidering an evenly spaced sequence of identical rain events within each rainy season, which is
the periodic case shown in Figure 2(f). We find that the regularity of this artificial rainfall
pattern leads to a spatial resonance phenomenon that controls the preferred spacing of the
vegetation bands. Specifically, the spacing is determined by the distance surface water can
travel in the time it takes for the precipitation pulse to fully infiltrate into the soil. We show
this explicitly in section 4.1 through a linear stability analysis of the uniform vegetation state
to spatially periodic perturbations proportional to eikx. This analysis reveals a sequence of
resonance tongues in a (\scrM \scrA \scrP , k)-parameter plane, where \scrM \scrA \scrP denotes mean annual pre-
cipitation. We then use this insight to understand the preferred spacing and travel direction
of the fully nonlinear bands, which is obtained through numerical simulations of the model in
section 4.2.

Throughout this section we use a precipitation model consisting of Ns = 2 identical rainy
seasons, six months apart, so the periodicity is Tp = (365/2)days. Each rainy season lasts for
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670 PUNIT GANDHI, LILY LIU, AND MARY SILBER

a time Tr = (365/12)days \equiv 1month, and it consists of Np equally spaced rain pulses that
deliver, instantaneously, a column of water of height H0. The mean annual precipitation is
then \scrM \scrA \scrP =NsNpH0. We denote dimensionless time units by \tau , with the six-month period
of the seasonal forcing given by \tau p = 1.825, and the month-long rainy season lasting a time
\tau r = \tau p/6. The precipitation pulses, in dimensionless units, are denoted by h0.

4.1. Linear stability of spatially uniform, temporally periodic solutions. In this subsec-
tion, we describe results of linear stability computations for uniform vegetation to heteroge-
neous perturbations, proportional to eikx. The uniform state has the same half-year periodicity
as the rainfall pattern and is determined as a fixed point of an appropriate stroboscopic map.
Its linear stability properties are determined by a computation of Floquet multipliers as a
function of k.

Loss of stability of bare soil solution. We find that the uniform vegetation state arises from
a transcritical bifurcation of the zero-biomass desert state at \scrM \scrA \scrP = \scrM \scrA \scrP c \equiv LM/C\Gamma .
In particular, as shown in Appendix C, this threshold is independent of the details of the
rainfall model. In fact, if we were to replace our fast-slow system for the uniform solutions
by a pair of ODEs for slow variables (W (T ),B(T )), with a constant precipitation rate P0,
then we would obtain the same instability boundary. Specifically, we find that there is a
transcritical bifurcation, which produces the uniform vegetation solution, when P0 = Pc =
LM/C\Gamma =\scrM \scrA \scrP c for

\.W = P0  - (L+\Gamma B)W,

\.B =C
\Bigl( 
1 - B

KB

\Bigr) 
\Gamma BW  - MB.

This transcritical bifurcation marks the stability boundary for the zero-biomass desert state;
it's unstable for \scrM \scrA \scrP > \scrM \scrA \scrP c. Numerical simulations using parameters given in Table
2 indicate that patterns may stably co-exist with desert well below \scrM \scrA \scrP c \approx 11cm. Our
numerical investigations of pattern collapse reported in section 5.3 are carried out in such a
stable co-existence regime using a stochastic rainfall model with an average \scrM \scrA \scrP of 8 cm.

Pattern-forming instability of the uniform vegetation solution. In contrast to the desert state,
we find that the stability region for the uniform vegetation state, to heterogeneous perturba-
tions, depends on details of the rainfall model. Here we describe our linear stability calcula-
tions and summarize some of the key findings related to pattern-forming instabilities of the
uniform vegetation state.

Let (w0, b0) denote soil water and biomass levels of the \tau p-periodic uniform vegetation
state at the start of the rainy season. This state exists, with b0 > 0, for \scrM \scrA \scrP >\scrM \scrA \scrP c. We
evolve it, together with a small spatially periodic perturbation (\Delta wk,0,\Delta bk,0)e

ikx, over one
cycle of the periodic rainfall model. The (linearized) Poincar\'e return map,

(4.1) \scrP \tau p,k(w0, b0,\Delta wk,0,\Delta bk,0) = (w0, b0,\Delta wk,1,\Delta bk,1),

has fixed point (w0, b0,0,0). This map also determines the linear evolution of the perturbation
(\Delta wk,0,\Delta bk,0), over the period \tau p, to its updated value (\Delta wk,1,\Delta bk,1). We quantify this change
by a pair of Floquet multipliers, which are the eigenvalues of the linearized Poincar\'e return
map restricted to the perturbations. We denote this two-dimensional linear map by \scrL k, i.e.,
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PULSED-PRECIPITATION MODEL FOR VEGETATION PATTERNS 671

(4.2)

\biggl( 
\Delta wk,1

\Delta bk,1

\biggr) 
=\scrL k

\biggl( 
\Delta wk,0

\Delta bk,0

\biggr) 
.

The return map, \scrP \tau p,k, is a composition of maps associated with the fast and slow subsys-
tems. The fast subsystem distributes the water in the soil after a rain pulse of strength h0.
The associated map, denoted by \psi h0,k, takes the form

(4.3) \psi h0,k(w, b,\Delta wk,\Delta bk) = (w+ \alpha h0, b,\Delta wk +\Delta \Omega h0,k,\Delta bk).

Note that the initial biomass b+\Delta bke
ikx is frozen for the fast system and hence is unchanged.

The soil moisture gains a uniform contribution \alpha h0 and, for the linearized problem, a nonuni-
form contribution \Delta \Omega h0,k e

ikx. We determine the latter by linearizing (3.13) about \Delta bk = 0,
and setting y\ell (x) = x+ \ell 0 + \delta \ell k(x), where

(4.4) \ell 0 =
\nu (b)

\iota (b)
h0

is the distance surface water of height h0 travels, over uniform biomass at level b, before
completely infiltrating into the soil. The change in this travel distance due to the biomass
perturbation \Delta bke

ikx, denoted by\delta \ell k(x), is determined below. First, to linear order in \Delta bk
and \delta \ell k(x), we find

\Omega (x) = \alpha \iota (b+\Delta bke
ikx)

\int y\ell (x)

x

\Theta (h0  - \widehat h(y;y\ell (x)))
\nu (b+\Delta bkeiky)

dy

= \alpha 
\Bigl( 
\iota (b) +

d\iota 

db
\Delta bke

ikx
\Bigr) \int x+\ell 0+\delta \ell k(x)

x

\Bigl( 1

\nu (b)
 - 1

\nu (b)2
d\nu 

db
\Delta bke

iky
\Bigr) 
dy+ \cdot \cdot \cdot 

= \alpha h0 + \alpha h0

\Bigl[ \delta \ell k(x)
\ell 0

+
\Bigl( 1

\iota (b)

d\iota 

db
+
i(eik\ell 0  - 1)

\nu (b)k\ell 0

d\nu 

db

\Bigr) 
\Delta bke

ikx
\Bigr] 

\underbrace{}  \underbrace{}  
=\Delta \Omega h0,k eikx

+ \cdot \cdot \cdot ,(4.5)

where the ellipses refer to higher order terms in \Delta bk and \delta \ell k. To find the slight adjustment,
\delta \ell k(x), to the total travel distance to complete infiltration at location x, which is specifically
due to the biomass perturbation \Delta bke

ikx, we solve \widehat h(y\ell (x);y\ell (x)) = h0 using (3.12). We find,
to linear order in \Delta bk,

(4.6)
\delta \ell k(x)

\ell 0
=

\Bigl[ 1

\nu (b)

d\nu 

db
eik\ell 0 +

i

\iota (b)k\ell 0

d\iota 

db

\Bigl( 
eik\ell 0  - 1

\Bigr) \Bigr] 
\Delta bke

ikx.

Combining (4.5)--(4.6), we obtain, for k \not = 0,

(4.7) \Delta \Omega h0,k = \alpha h0

\biggl[ 
1

\iota (b)

d\iota 

db
+

1

\nu (b)

d\nu 

db
eik\ell 0 +

i

k\ell 0

\biggl( 
1

\iota (b)

d\iota 

db
+

1

\nu (b)

d\nu 

db

\biggr) \Bigl( 
eik\ell 0  - 1

\Bigr) \biggr] 
\Delta bk.

Here, \ell 0 is given by (4.4), and

1

\iota (b)

d\iota 

db
=

(1 - f)

(b+ f)(b+ 1)
,

1

\nu (b)

d\nu 

db
= - 

\Bigl( \eta 

1 + \eta b

\Bigr) 
follow from (3.5). (Note that for k= 0 it can be shown that \Omega h0,0 = 0.)
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672 PUNIT GANDHI, LILY LIU, AND MARY SILBER

The flow map that applies between pulses is derived from the slow system (3.6). It consists
of the nonlinear equations satisfied by the uniform vegetation state (w, b), together with the
linear equations in the perturbations (\Delta wk,\Delta bk). We denote this map, which flows from an
initial condition (w0, b0,\Delta wk,0,\Delta bk,0) for a time \tau , by

(4.8) \varphi \tau ,k(w0, b0,\Delta wk,0,\Delta bk,0) = (w(\tau ), b(\tau ),\Delta wk(\tau ),\Delta bk(\tau )).

Here, w(\tau ), b(\tau ),\Delta wk(\tau ),\Delta bk(\tau ) satisfy

dw

d\tau 
= - (\sigma + \gamma b)w,(4.9a)

db

d\tau 
=

\biggl( 
1 - b

\kappa 

\biggr) 
wb - b,(4.9b)

d\Delta wk

d\tau 
= - (\delta wk

2 + \sigma + \gamma b)\Delta wk  - \gamma w\Delta bk,(4.9c)

d\Delta bk
d\tau 

=

\biggl( 
1 - b

\kappa 

\biggr) 
b\Delta wk +

\biggl( 
 - \delta bk2 +w - 2b

\kappa 
w - 1

\biggr) 
\Delta bk.(4.9d)

We can now construct the Poincar\'e return map (4.1) as

(4.10) \scrP \tau p,k =\varphi \tau d,k \circ (\varphi \Delta \tau ,k \circ \psi h0,k) \circ \cdot \cdot \cdot \circ (\varphi \Delta \tau ,k \circ \psi h0,k)\underbrace{}  \underbrace{}  
Np \mathrm{t}\mathrm{i}\mathrm{m}\mathrm{e}\mathrm{s}

.

Here, \Delta \tau = \tau r/Np, which is the time between rain pulses during the rainy season, while
\tau d = \tau p  - \tau r is the length of the dry season. Restricting the map to the two perturbation
components determines \scrL k in (4.2). The eigenvalues, \lambda k, of \scrL k are the (complex) Floquet
multipliers. (Note that it follows from (4.7) that the map itself has complex entries.) If the
modulus of either eigenvalue \lambda k exceeds one, then the uniform state is unstable to pattern-
forming perturbations of wavenumber k.

Figure 5 presents, in dimensioned quantities, an example of typical linear stability results
for the parameters of Table 2. To obtain these results, we first numerically compute the uni-
form vegetation fixed point (w0, b0,0,0) of the Poincar\'e return map (4.1) and then numerically
compute its linear stability via the eigenvalues \lambda k of the perturbation map (4.2). Figure 5(a)
shows a heat map of the largest | \lambda k| as a function of both mean annual precipitation \scrM \scrA \scrP 
and perturbing wavenumber k in the case of a fixed number of rainstorms per season Np = 8.
(For Np = 8, storm strengths range between H0 \approx 0.68cm and H0 \approx 2.7cm for Figure 5(a).)
We find that as \scrM \scrA \scrP decreases from a high value of \scrM \scrA \scrP = 45cm, by continuously decreas-
ing H0, the uniform state loses stability at \scrM \scrA \scrP \approx 42.8cm to perturbations of wavenumber
k\approx 0.141m - 1 (wavelength L\approx 45m). This figure, which shows the instability boundary asso-
ciated with | \lambda k| = 1 as a black curve, captures a structure in the form of ``resonance tongues.""
Specifically, we find that the instability regions straddle predictions based on overland water
flow distances Ln = 2\ell 0/(n+ 1), n = 0,1,2, . . . (solid white lines), where \ell 0 is given by (4.4).
(For this, we evaluate \nu (b) and \iota (b) in \ell 0 using the fixed point value b0 associated with the
return map (4.1), i.e., its level at the start of the rainy season.) We find that the most unstable
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PULSED-PRECIPITATION MODEL FOR VEGETATION PATTERNS 673

(c)

(b)(a)

Figure 5. (a) Magnitude of leading eigenvalue of \scrL k, defined by (4.2), as a function of mean annual precipi-
tation (\scrM \scrA \scrP ) and perturbation wavenumber k. Solid black lines are linear stability boundaries, and solid white
lines indicate predicted resonances between the pattern wavelength and characteristic surface flow distance. (b)
The magnitude and phase of the two eigenvalues \lambda k along the dotted black line at \scrM \scrA \scrP = 16cm in panel
(a). The solid lines correspond to the larger magnitude eigenvalue, and the dashed correspond to the smaller
one. Shaded regions yield downhill migration of perturbations, inferred from the sign of \phi k. (c) The phase of
the biomass perturbation relative to the soil water perturbation associated with the eigenvectors for eigenvalues
shown in (b). The wavenumber corresponding to a wavelength of 200m is marked by black vertical dotted lines
in the right panels; compare to nonlinear pattern with same wavenumber in Figure 6.

perturbation has a wavelength L0 that is well-approximated by twice the distance water flows
on the surface before getting infiltrated, i.e., to the perturbation wavenumber k= \pi /\ell 0. Thus,
at the linear level, the ``preferred"" pattern wavelength is one for which the newly forming
vegetation band harvests water from the location of the newly forming bare soil region. This
instability appears as part of a series of increasingly weaker and narrower instability regions,
which correspond to the surface water from a newly forming bare soil region traveling n wave-
lengths before reaching a newly forming vegetation band. Figure 5(b) shows a plot of | \lambda k| for
\scrM \scrA \scrP = 16cm, indicated by a black dotted line in panel (a), which slices through four of the
instability tongues of Figure 5(a).

In order to determine linear predictions for vegetation band migration speed, we extract
the phases \phi k of the eigenvalues \lambda k = | \lambda k| ei\phi k of \scrL k. The second panel of Figure 5(b) shows
a plot of \phi k, for both eigenvalues \lambda k for \scrM \scrA \scrP = 16cm, and indicates that, for all four
instability intervals, the phase switches sign near each successive peak of | \lambda k| , and that the
phase is confined to an interval around \phi k = 0, here approximately [ - \pi /3, \pi /3]. If the phase
is negative for the unstable Floquet multiplier, then that indicates a phase advance of the
pattern during each seasonal cycle and thus corresponds to uphill migration of the vegetation
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674 PUNIT GANDHI, LILY LIU, AND MARY SILBER

bands. The opposite holds for a positive phase, shaded gray in panels (b) and (c), which
indicates a downhill migration of the vegetation bands. Figure 5(c) shows the phase shift
between the components \Delta wk and \Delta bk of the eigenvectors of \scrL k; e.g., the eigenvector can be
written (\Delta wk,\Delta bk) = (1,\scrR ei\phi bw), where \scrR > 0 is real. We see that the sign of the phases
\phi k in Figure 5(b) are (typically) opposite to the phase denoted by \phi bw in Figure 5(c). This
observation lends itself to a simple interpretation. Specifically, if \phi bw > 0, then the water
peak is uphill from the biomass peak and we might expect uphill migration of the bands, i.e.,
\phi k < 0. Similarly, we expect \phi k > 0 (downhill migration) if \phi bw < 0, in which case the water
peak is shifted downhill from the biomass one.

We note that the prediction, of the linearized problem, that patterns might travel downhill
is not consistent with observational studies, which report only upslope colonization. Moreover,
the observed migration speeds for the bands are slow; for instance, by an order of magnitude,
a band might take a century to migrate uphill by one wavelength [11, 23], which would
correspond to a (negative) phase shift of \sim \pi /100 every seasonal cycle. In the subsequent
sections, we explore how well these linear findings hold up for the nonlinear problem under
periodic and stochastic rain inputs.

4.2. Nonlinear patterns. Numerical simulations indicate that, while the linear theory
captures the behavior of small amplitude patterns near the onset of the lowest order reso-
nance tongue shown in Figure 5, the nonlinear patterns selected at lower \scrM \scrA \scrP values exhibit
dynamics very different from the linear predictions. Even still, the importance of the charac-
teristic distance surface water travels before infiltrating into the soil seems to carry over into
the nonlinear regime, as we now demonstrate.

For Figure 6, we consider periodic rainfall with \scrM \scrA \scrP = 16cm and storm depth of H0 =
1cm on a 1km domain. Simulations initialized with the 0.1\% random noise on top of the
uniform vegetation state typically settle into a ``traveling-wave"" state with five bands on
the domain. Here we use ``traveling wave"" (in quotes) to indicate that the state undergoes
a spatial translation under the nonlinear map associated with evolving the system by one
rainy and subsequent dry season. The five-band state (wavelength of 200m, wavenumber
of \sim 0.0314m - 1) has an uphill migration speed of approximately 69cm/year, corresponding
to translation by one wavelength every \sim 290 years; this wavenumber is also indicated by a
vertical line in the linear results of Figure 5(b). Panel (a) provides timeseries data of spatially
averaged quantities over the last 2 years of the 100-year simulation, panel (b) shows spatial
profiles derived from the last year of the simulation, and panel (c) shows annually averaged
spacetime plots. We note that \Delta Y\ell (X) in panel (b) is the farthest (dimensioned) distance
traveled by water on the surface during a rainstorm before infiltrating at a point X. The
dimensionless version of this quantity is \Delta y\ell (x)\equiv y\ell (x) - x, where y\ell is defined in section 3.2
and sets the upper bound of integration for computing the soil water kick \Omega in (3.13). The
linear stability analysis of spatially uniform states in section 4.1 indicates that \Delta y\ell (x) = \ell 0, a
constant value in this case, plays a key role in controlling the wavelength of the patterns. For
the fully nonlinear patterns shown in Figure 6, we see a ``sawtooth"" structure in the plot of
the average \Delta Y\ell (x). Gray horizontal arrows indicate the farthest average distance traveled by
water that infiltrates into locations between the peak value of \Delta Y\ell (X) = 180m at X = 321m
and the minimum value of \Delta Y\ell (X) = 36m at X = 478m. Water initialized at X = 514m,
within the trailing edge of a vegetation band, travels through nearly the entire vegetation
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Figure 6. (a) Time series showing, from top to bottom, storm depth H of rain pulses, domain-averaged soil
water W , and biomass B during last two years of a 100-year simulation under periodic rainfall. Solid lines
indicate spatially averaged fields, while dashed lines indicate instantaneous min/max. (b) Spatial distribution,
from top to bottom, of dimensioned maximum distance \Delta Y\ell (X) traveled by water before infiltrating, soil water
W , and biomass B during the last year of the simulation. Solid lines indicate averages over rainstorms for
\Delta Y\ell (X) and annual averages for W and B. Pointwise min/max values are shown by dashed lines. Horizontal
gray arrows have length equal to \Delta Y\ell (X) and indicate the farthest distance traveled by surface water infiltrating
into locations at the arrow tips. (c) From left to right, time series of annual rainfall totals in blue with 1cm
contribution from each rainstorm highlighted in orange, spacetime plots of annually averaged soil water in
units of cm, and biomass in units of kg/m2. Parameters: Periodic rainfall with \scrM \scrA \scrP = 16cm, storm depth
H0 = 1cm, and rainy season duration Tr = 1month on an L= 1000m domain and initialized with 1\% random
noise on top of the spatially uniform solution.

band downhill before fully infiltrating. This indicates that nearly the entire 86m width of the
vegetation bands are harvesting water from bare soil regions uphill of them and that none of
the water travels across a band into the bare soil region downhill of it.

Using the same parameters, we also observe a state with six bands that migrate downhill
at an average rate of about 179cm/year or one L\approx 167m wavelength every 93years. Figure
7 zooms in on a single band of these 5-band and 6-band periodic patterns. It shows, from
bottom to top, the spatial profiles of the biomass B and the maximum distance \Delta Y\ell water
travels before infiltrating into the soil for each of the eight one-centimeter rainstorms of a
rainy season. The profiles are aligned so that X = 0 corresponds to the farthest downhill that
water initialized within the vegetation band reaches during any of the rainstorms. With this
choice, if there is a bare soil region uphill of the vegetation band, then we know that it did
not collect water from a vegetated region during the rainy season.
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Figure 7. Spatial distribution of maximum distance \Delta Y\ell (X) traveled by water before infiltrating and biomass
profile associated with each of the eight rainstorms during one season with (a) L = 200m with average uphill
migration speed of 69cm/year and (b) L\approx 167m with average downhill migration 179cm/year. The location of
the peak of \Delta Y\ell (X) averaged over the eight storms is marked by a vertical dotted line, while the domain size is
marked by a horizontal dashed line. Parameters: Periodic rainfall with \scrM \scrA \scrP = 16cm, storm depth H0 = 1cm,
and rainy season duration Tr = 1month.

The uphill-migrating case with L= 200m in panel (a) is more ``optimal"" in the sense that
the water from the bare region uphill of the band is deposited completely within the band, as
evidenced by the peak value of \Delta Y\ell being less than the domain length. Moreover, the peak is
located within the vegetation band. By contrast, the profile of \Delta Y\ell in the downhill migrating
case with L \approx 167m, shown in panel (b), indicates that water is traveling all the way across
the band and continuing into the downhill bare soil region. The peak values for \Delta Y\ell in this
case, which is about 174m, slightly exceeds the domain length.

5. Stochastic rainfall. In this section, we explore some of the striking differences in be-
havior of the pulsed-precipitation model under stochastic rainfall, compared to the idealized
periodic rainfall results of section 4. Numerical simulations indicate that banded patterns
still form under stochastic rainfall, with characteristics consistent with observational data
for band spacing and migration speed. Moreover, some of the more complex, and perhaps
worrisome, spatiotemporal behaviors produced by the model with idealized periodic rainfall
vanish once stochasticity in rainfall is introduced. We also find that the variability in rainfall
can lead to noise-induced transitions from a patterned state to the bare soil state when the
mean annual precipitation level puts the system in a bistable regime, below the transcritical
bifurcation point found in section 4.1. We show that both the rainfall and the vegetation
band characteristics can impact statistics of these collapse events.

We assume Ns = 2 equal rainy seasons per year, each lasting Tr days. The interven-
ing dry seasons last for a time Td = Ty/Ns  - Tr, where Ty = 365days. During each rainy
season we model the rainstorms as a Poisson point process with a mean arrival rate of
\lambda r = \scrM \scrA \scrP /H0/Ns/Tr where \scrM \scrA \scrP is the mean annual precipitation and H0 is the mean
rainfall per storm. The actual amount of rainfall Hi, in the ith storm, is drawn from an
exponential distribution with mean H0, where we typically consider 0.5 \leq H0 \leq 2, measured
in cm. While Tr = 1month is our default value, we let Tr \rightarrow 0 to speed up computations for
the ecosystem collapse simulations of section 5.3, after first exploring some of the effects of
changing the rainy season duration in section 5.2.
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Figure 8. (a) Time series showing, from top to bottom, storm depth H of rain pulses, domain-averaged soil
water W , and biomass B during the last two years of a 100-year simulation under periodic rainfall. Solid lines
indicate spatially averaged fields, while dashed lines indicate instantaneous min/max. (b) Spatial distribution,
from top to bottom, of dimensioned maximum distance \Delta Y\ell (X) traveled by water before infiltrating, soil water
W , and biomass B during the last year. Solid lines indicate averages over rainstorms for \Delta Y\ell (x) and annual
averages for W and B. Pointwise min/max values are shown by dashed lines. (c) From left to right, time
series of annual rainfall totals in blue with contribution from largest rainstorm highlighted in orange, spacetime
plots of annually averaged soil water, and biomass. Parameters: Stochastic rainfall with \scrM \scrA \scrP = 16cm, mean
storm depth of H0 = 1cm, and Tr = 1month on an L= 1000m domain and initialized with 1\% random noise
on top of the spatially uniform solution.

Figure 8 shows an example of results from a simulation on a 1km domain initialized with
0.1\% random noise on top of the uniform vegetation state, \scrM \scrA \scrP = 16cm, and mean storm
depth H0 = 1cm. The simulation settles into a ``stochastic traveling wave"" solution which
fluctuates from season to season, due to rainfall variability, but can be characterized by a
mean vegetation band width, spacing, and migration speed. In this case the pattern consists
of 6 bands on the domain and travels uphill on average, which is in contrast to the 6-band
pattern obtained with periodic rainfall in section 4.2, which traveled downhill. We also note
that the annual mean \Delta Y\ell in the last year, shown in Figure 8(b), has an average of 94m,
which is approximately half the wavelength of the pattern, which is \sim 167m. This ratio, at
\sim 0.56, is remarkably in line with the resonance tongue phenomenon explored in section 4.1.

5.1. Comparison to periodic rainfall. In repeated trials of the stochastic simulation,
with parameters as in Figure 8, we typically observe between 5 and 12 bands on the 1000m
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678 PUNIT GANDHI, LILY LIU, AND MARY SILBER

domain at 200 years. This is in contrast to the skewed-lower and narrower range of 4 to 6
bands observed under periodic rainfall as described in section 4.2. We also see occasional,
intermittent collapse of the vegetation to the bare soil state and explore this phenomenon
further in section 5.3 at lower precipitation levels where the vegetation cannot recover.

Comparing Figures 6 and 8 shows that while fluctuations in the size and number of rain-
storms per season drive fluctuations in the soil water-biomass dynamics, there are qualitative
similarities between the mean pattern characteristics in the stochastic rainfall case and the
periodic rainfall one. However, Figure 9, which further compares the pattern characteristics
of periodic and stochastic rainfall, shows that this is not always the case. To generate those
results, we fixed the rain model parameters to have \scrM \scrA \scrP = 16cm and (mean) storm depth
H0 = 1cm, and we enforced different band spacings by changing the size of the periodic do-
main L and initializing with a perturbation of wavenumber k= 2\pi /L. We restricted ourselves
to L\leq 250m since for domains with L> 250m (k < 0.0252m - 1) the initial perturbation would
split and the pattern eventually settled into a multiband state on the domain. At L= 250m,
we obtained a single-band ``traveling wave"" state for the periodic rainfall case, while the sto-
chastic rainfall case still split into two bands. For cases with 100 < L< 167m and L < 59m,
we did not observe ``traveling wave"" states with periodic rainfall but did observe a ``stochastic
traveling wave"" state with stochastic rainfall. The intervals in L for which one or both rainfall
models did not reach a ``(stochastic) traveling wave state"" are shaded gray in Figure 9(a--c).
We observed relatively consistent values of average biomass on the domain but with a gradual
increase in fraction of the domain covered as a function of k. Figure 9(c) shows migration fre-
quency for these simulations. We compute the migration speed by tracking the motion of the
uphill edge of the vegetation band whenever there is a clearly defined band. We take the edge
as the location where the biomass first goes above a threshold value of \epsilon B =Q/5 = 0.02kg/m2.
While we see significant downhill migration with periodic rainfall, the stochastic simulation
bands tend to travel slowly uphill (on average), except in a few cases with very short domain
sizes.

5.2. Dependence on rainy season duration. In this subsection we investigate the impact
of changing the duration of the rainy season on pattern characteristics, as well as on mean time
to ecosystem collapse at low mean annual rainfall. This investigation is motivated in part by
an additional computational speedup that is possible if we take Tr \rightarrow 0 so that all rainstorms
in a given rainy season occur simultaneously. In this limit we can use the same biomass profile
for all the storms, thereby admitting an efficient parallel computation of the associated soil
water contributions \Omega by (3.13). Exploring the impacts of rainy season duration is also of
possible interest in light of observed changes in the rainfall seasonality of Eastern Africa [50].

Simulations at \scrM \scrA \scrP = 16cm indicate very little dependence of pattern characteristics on
the duration of a rainy season for 0 < Tr \lesssim 3months, aside from an approximate 10  - 30\%
increase in migration speed for each month of added rainy season duration. At a lower \scrM \scrA \scrP 
value of 8 cm, where the bare soil state stably co-exists with patterns, simulations initialized
with a banded vegetation state may transition to the stable bare soil state and not recover on a
centuries-long simulation timescale. In practice, we identify these collapse events by tracking
the domain-averaged biomass; we use a threshold of \epsilon B = Q/5 = 0.02kg/m2 and require the
biomass level to stay below that for at least one decade. Figure 10(a)--(c) illustrates a collapse
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Figure 9. Comparison of pattern characteristics under periodic and stochastic rainfall. (a) Minimum, max-
imum, and mean of annually averaged biomass profile, (b) fraction of domain covered by biomass, and (c) mean
migration speed as a function of pattern wavenumber k= 2\pi /L for one band on a periodic domain of length L.
Results from simulations under periodic rainfall are marked with red circles and stochastic rainfall with blue x's.
Either ``traveling waves"" or ``stochastic traveling waves"" were not obtained from simulations with domain sizes
appearing within the gray shaded regions. Thumbnails of annual rainfall, soil water, and biomass from example
simulations are shown in panel (d) at the domain sizes indicated in the panels above for both (left) periodic
rainfall and (right) stochastic rainfall. The vertical time axis covers 100 years, and the horizontal rainfall axis
goes to 40cm in all of the cases, while each row has a different scale on the horizontal spatial axis for soil water
and biomass in order to show the entire periodic domain. Color scales are the same as in Figures 6 and 8.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

12
/3

0/
23

 to
 1

52
.2

.1
76

.2
42

 . 
R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y



680 PUNIT GANDHI, LILY LIU, AND MARY SILBER

0 100 200 300 400

10 0

10 2

0 50 100 150
10 0

10 2

10 3

10 4
(d) (e)

(a) (b) (c)

Figure 10. (a) Annual rainfall and (b) biomass distribution starting at T = 40years for a stochastic rainfall
simulation with \scrM \scrA \scrP = 8cm, H0 = 1cm, and Tr = 1month on an L = 200m domain that collapses at
T \approx 61years. (c) Collapse is defined when the mean biomass on the domain, indicated by the solid green line,
falls below \epsilon B = 0.02kg/m2 for 10 consecutive years (shaded red). All (shorter) intervals with Bavg < \epsilon B are
shaded gray. The dashed green line indicates the peak biomass value on the domain as a function of time. (d) A
histogram of collapse times from 200 trials with the parameters from (a)--(c), and indicated by a dotted vertical
line in (e), has a mean survival time of Tc = 64years. The solid black line represents an exponential distribution
with this mean, and the dashed lines represent a 95\% confidence interval for a maximum-likelihood fit of the
histogram to an exponential distribution. (e) The mean survival time approximately follows an exponential
trend as a function of the duration of the rainy season Tr. Each gray circle represents a single simulation,
while the solid black circles indicate the mean over 200 trials at each value of Tr, and the vertical bars indicate
95 confidence interval for the fit of the trails Tr to an exponential distribution. The data fits well the solid black
line, Tc = 30.5\times 2.2Tr , with Tr given in months and Tc given in years.

event for a sample simulation at \scrM \scrA \scrP = 8cm, H0 = 1cm, and a 1-month rainy season on
an L= 200m domain. Time intervals for which the average biomass, shown in Figure 10(c),
falls below the threshold are shaded in gray, while the first interval that lasts 10 years is
shaded red. Survival times for 200 trials with the same parameters, shown in Figure 10(d),
are well-approximated by an exponential distribution. We use the same 200 rain sequences
and rescale the relative wait times by a constant factor to obtain a range of rainy season
durations between simultaneous rainstorms (Tr \rightarrow 0) and year-round rainfall (Tr = 6months).
A plot of the survival times as a function of duration of the rainy season, shown in Figure
10(e), indicates that the mean survival time from the exponential fit approximately doubles
with each additional month of increase in rainy season duration.
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PULSED-PRECIPITATION MODEL FOR VEGETATION PATTERNS 681

5.3. Collapse at low precipitation values. We now explore the dependence of collapse
on rainstorm intensity and band spacing. We assume that all the rainstorms in each season
occur simultaneously so that we may take advantage of the computational speed up noted
in section 5.2 for Tr \rightarrow 0. Since this may bias the collapse events towards shorter times, as
suggested by results in Figure 10(e), we keep the focus on the trends associated with varying
certain parameters.

We conduct trials with stochastic rainfall at \scrM \scrA \scrP = 8cm, where stable ``traveling wave""
patterns exist under periodic rainfall. With stochastic rainfall, there is inevitably a collapse
to the (bistable) bare soil in simulations initialized with a single vegetation band on a domain
of 50 \leq L \leq 1000m and mean rainstorm depth 0.4 \leq H0 \leq 2cm. Here, as illustrated in
Figure 10(a--c), we define collapse to be when the domain-averaged biomass level first falls
below \epsilon B = Q/5 = 0.02kg/m2 and remains so for a period of 10 years, at which point we
terminate the simulation. We generate the initial condition for the stochastic simulations via
a periodic rainfall simulation with an identical sequence of rainstorm depths in each season,
run to its steady state. For this, rather than choosing each storm in the sequence to have the
same strength, we take the expected number of storms (rounded to nearest integer) that we
will use for the stochastic model and select the storm depths to match expected values for
storm intervals of equal probability for the exponential distribution. We find that selecting
the initial condition in this way avoids premature collapse due to the initial condition not
being appropriately ``tuned"" to the rainfall pattern.

We begin with an exploration of rainfall statistics near collapse. Figure 11(a) shows time
series of the domain-averaged biomass and seasonal rainfall in the 20-year window surrounding
collapse in a stochastic rainfall simulation with \scrM \scrA \scrP = 8cm and H0 = 1cm initialized with
a single vegetation band on a 200m domain. The bottom panel of Figure 11(a) shows a
histogram of rainfall events within the shaded 2-year window centered at time \Delta Tc = - 5years,
which is measured relative to the collapse time \Delta Tc = 0. We use this sliding 2-year window for
computing rain statistics for the 200 trials. Figure 11(b) then summarizes, from top to bottom,
the mean biomass B, the mean annual precipitation \scrM \scrA \scrP , and the mean rainstorm depth
H0 for \Delta Tc \in [ - 10,10] years. The average over all trials is given in solid black, interquartile
ranges are shaded cyan, and the minimum/maximum values are indicated by dotted lines.
The red dashed lines indicate the biomass threshold \epsilon B = 0.02kg/m2 for collapse, and the
expected values of \scrM \scrA \scrP and H0 are based on the parameters of the rainfall model. There is
a noticeable drop in all three quantities in the vicinity of collapse, with biomass, by definition
of collapse, failing to recover. These results suggest that the drop in \scrM \scrA \scrP may be critical
to driving collapse; its minimum mean value falls from the expected 8cm to 3.2cm; it does
so approximately 5months after our defined ``collapse time."" The mean storm depth H0 also
drops from its expected 1cm value to 0.66cm. However, this does not account for the full
deficit in \scrM \scrA \scrP since we'd expect about 5.3cm if the mean storm frequency remained at 8
storms per year. The average \scrM \scrA \scrP , over the trials, falls to a lower value because there is a
similar drop (not shown) in the mean number of storms per year, from 8 to approximately 5.

Figure 12(a) shows the survival times, i.e., the length of time before collapse, of stochastic
simulations with \scrM \scrA \scrP = 8cm and mean rainstorm depth H0 = 1cm as a function of domain
length L. The mean survival times from exponential fits of 200 trials at each value of L are
marked by solid red circles. An increase in the (periodic) domain size, corresponding to an
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Figure 11. Rainfall statistics near collapse. (a) A time series of domain-averaged biomass is shown for a
20- year interval centered around a collapse event, marked by a vertical red line in the top panel. The middle
panel shows the seasonal rainfall, with the contribution from each individual storm marked by dots. The bottom
panel shows a histogram of rainstorm depths within the 2-year window highlighted in gray and centered at
\Delta Tc = - 5 years relative to the time of collapse. (b) From top to bottom, average biomass on the domain, mean
annual precipitation, and mean storm depth within a 2-year window centered about the time relative to collapse,
\Delta Tc. The solid black line indicates averages over 200 trials, the shaded cyan region indicates the interquartile
range, and the dotted lines indicate the minimum and maximum values. The red dashed line indicates the
collapse threshold level for biomass and the expected mean values for the rainfall parameters.
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Figure 12. Survival times for simulations under stochastic rainfall with \scrM \scrA \scrP = 8cm and a single band
initialized on the domain as a function of (a) domain length L with mean storm depth H0 = 1cm and (b)
mean storm depth H0 with domain length L = 200m. Each gray circle represents a single simulation, while
the red/blue circles indicate the mean of a maximum-likelihood fit of the 200 trials at each parameter value
to an exponential distribution and the vertical bars indicate a 95\% confidence interval for each fit. A linear
interpolation of the mean values highlights the trend that survival times (a) increase as a function of domain
size and (b) decrease as a function of mean storm depth.

increase in the spacing between bands in a periodic pattern, leads to longer mean survival
time over this range. However, the trend (on the logarithmic scale) appears to saturate for
longer domain sizes. Results analogous to those of Figure 12(a), described above, are shown
with blue in Figure 12(b) as a function of the mean storm depth H0 for a fixed domain size of
L= 200m. We see longer survival times on average with smaller H0, with the trend leveling

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

12
/3

0/
23

 to
 1

52
.2

.1
76

.2
42

 . 
R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y



PULSED-PRECIPITATION MODEL FOR VEGETATION PATTERNS 683

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
10 0

10 2

10 4

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
10 0

10 2

10 4

(a) (b)

Figure 13. How band spacing affects the dependence of survival times on mean storm depth H0 for stochastic
simulations with \scrM \scrA \scrP = 8cm. (a) A single band is initialized on an L = 100, 200, and 300m domain. (b)
One, two, and three bands are initialized with 100m spacing. The red, blue, and black circles indicate the mean
of a maximum-likelihood fit of the 200 trials to an exponential distribution at each parameter value, and the
vertical bars indicate a 95\% confidence interval associated with each fit. A linear interpolation of the mean
values highlights the trends for these simulations. The mean survival times for simulations (a) initialized with
a single vegetation band increase with domain size for mean storm depths below approximately 1cm, yet (b) do
not depend strongly on domain size when the band spacing of the initial condition is fixed.

off somewhere above H0 \approx 1cm. Since \scrM \scrA \scrP is fixed, smaller storm depths correlate with
more storms in each season and also less variability in annual precipitation from year to year.

We find that the mean survival time depends more strongly on H0 for larger domain sizes
when initialized with a single band on the domain. Figure 13(a) shows the average survival
times from a maximum-likelihood fit of 200 trials to an exponential distribution at each H0

for L = 100, 200, and 300m domains. We also observe that increasing the domain size but
fixing the band spacing has little effect on trends in mean survival time. Figure 13(b) shows
results analogous to those of Figure 13(a) described above, except that the initial condition is
chosen for each domain size to fix the band spacing at 100m. Some of the longer-lived trials
initialized with multiple vegetation bands do occasionally prolong survival by first losing one
or two bands. However, these partial collapse events are infrequent and have little impact on
the overall statistics; the majority of simulations collapse by losing all vegetation bands at
once.

6. Discussion. We have developed a pulsed-precipitation model for banded vegetation
patterns in dryland ecosystems and used it to investigate the impacts of changing rainfall
patterns. The model is built upon the fast-slow modeling framework [18] and leverages addi-
tional simplifying assumptions about overland surface water flow and infiltration into the soil
to obtain a closed form expression for the soil water contribution from a rainstorm. Biomass
and soil water evolve on the slow timescale associated with plant growth, with rainstorms
modeled as instantaneous kicks to the soil water, which are spatially dependent as they fol-
low the biomass profile. These soil water kicks capture the positive biomass-water resource
feedbacks via enhanced infiltration and reduced surface flow speeds in vegetated zones.

Our pulsed-precipitation model paves the way for exploration of stochastic rainfall pat-
terns by allowing significant computational speedup over the original fast-slow model, thus
making large numbers of trials feasible. We note that computational speed has also been
addressed by applying machine learning techniques to predict the soil water distribution fol-
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684 PUNIT GANDHI, LILY LIU, AND MARY SILBER

lowing rain in a more detailed hydrological model [8]. Although stochasticity and seasonality
of rainfall were not considered in that paper, they did include storm duration, along with
storm depth, as training parameters, and observed similar qualitative trends of increased
band spacing with increased storm depth. An advantage of our approach is that simplifying
the model keeps analysis, and the insights gained from it, within reach. Nonetheless, it will
be important to characterize the impacts of our simplifications on predictions in future work
through comparison to more detailed models.

Linear stability analysis of the model under periodic rainfall reveals that the distance \ell 0
that water flows on the surface before infiltrating into the soil plays a key role in determining
pattern characteristics such as band spacing, a result that has also been suggested in the
context of so-called flat-terrain vegetation patterns [47]. With periodic rainfall, the pattern
formation in the pulsed-precipitation model is organized around a series of ``spatial resonances""
in which water from the newly forming bare soil region travels some integer number of wave-
lengths of the pattern before infiltrating into the newly forming vegetation band. Simulations
indicate that while the nonlinear patterns that form are significantly different from those
predicted by the linear stability analysis, insights about the key role of the distance surface
water flows still apply, even under stochastic rainfall. Nonetheless, some of the predictions
obtained under periodic rainfall, such as significant downhill migration of vegetation bands,
run contrary to observation. This aspect of the underlying resonance structure, present with
the idealized periodic rainfall, is, however, washed out when we introduce variability to the
rainfall model; stochastic rainfall simulations produce banded patterns with characteristics
that are reasonably consistent with observation. The impact of stochasticity on the existence
and stability of nonlinear traveling wave patterns is itself an intriguing mathematical ques-
tion. For example, how does the so-called Busse balloon, which was investigated in the context
of vegetation patterns for a modified Klausmeier model [2, 48], change when rainfall is less
predictable? Our investigation of a stochastic and impulsively forced pattern forming system
suggests new directions for fundamental pattern formation research.

Motivated by the potential for identifying precursors to ecosystem collapse in a changing
climate, a main focus of this study is the transition from spatially patterned vegetation to the
desert state. Indeed, at low enough mean annual precipitation values, stable vegetation pat-
terns exist alongside a stable bare soil state, and fluctuations in rainfall can trigger ecosystem
collapse. We see that both the pattern characteristics, such as band spacing, and the rainfall
characteristics, such as rainy season duration and mean storm depth, have an impact on the
mean time to collapse. Increased band spacing, corresponding to a larger area for harvesting
water, leads to longer survival times. Both longer rainy seasons, corresponding to shorter dry
intervals in which the biomass must survive without rainfall, and less intense storms, corre-
sponding to a decrease in variability of rainfall from season to season, also increase the mean
survival time. We note that we have also observed collapse of patterns at higher precipitation
levels, but, if the bare soil state is unstable, the ecosystem is expected to recover.

Studies that use mathematical models to investigate the possible impact of a changing
climate on vegetation patterns typically do so by varying the mean annual precipitation [1, 44,
46], with all other parameters held fixed. The pulsed-precipitation model allows for exploration
of other rainfall characteristics, such as mean storm intensity, seasonality, and other forms of
variability. We illustrate the potential here by presenting results from 200 trials with stochastic
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PULSED-PRECIPITATION MODEL FOR VEGETATION PATTERNS 685

(b)(a)

Figure 14. Transitions in band spacing as a function of slowly varying mean storm depth H0. (a) Spacetime
plots of annually averaged biomass distribution from 1200-year simulations with stochastic rainfall with \scrM \scrA \scrP =
16cm and rainy season length Tr \rightarrow 0. The mean storm depth is linearly increased from H0 = 0.1cm to 2.5cm
at a rate of 2cm/millennium in the left panel and decreased at the same rate starting from H0 = 2.5cm in
the right panel. The blue and red arrows indicate the direction of time for increasing and decreasing storm
depth. (b) The average number of bands from 200 trials of increasing and decreasing H0 are depicting with the
thick blue and red lines marked by up and down triangles. The shaded cyan and magenta regions indicate the
interquartile range from the 200 trails at each value of H0 for increasing and decreasing H0. The dotted lines
indicate the maximum and minimum number of bands from the trials for each corresponding color.

rainfall at \scrM \scrA \scrP = 16cm and Tr \rightarrow 0 in which the mean storm depth starts at H0 = 0.2cm
and is then slowly increased to H0 = 2.5cm (at a rate of 2mm/century). We also carry
out another 200 trials with the mean storm depth slowly decreasing from H0 = 2.5cm at
the same slow rate. (Each of these 400 trials is initialized with uniform vegetation with 1\%
random noise.) Figure 14(a) shows example spacetime distributions of the annually averaged
biomass, where the blue and red arrows indicate the direction of time for the simulations with
increasing and decreasing storm intensities. As expected, based on the role of storm depth in
pattern selection for the model, the simulations exhibit increased band spacing, on average,
at higher H0. Figure 14(b) summarizes the number of bands on the domain as a function of
H0 from all of the trials for increasing H0 (blue) and decreasing H0 (red). We note that band
merging and band splitting events were also observed in a study of the extended Klausmeier
model when the annual mean precipitation was slowly ramped down and back up [46]. Those
typically occurred as spatial period-doubling or period-halving in this simpler deterministic
model setting. In the stochastic pulsed-precipitation model results shown in Figure 14 there
is more variability in the band loss and gain events, which here occur without any changes in
the mean annual precipitation.

We have made a number of simplifying assumptions in this work, particularly in the
overland flow model, with the goal of allowing for analytic insight and computational efficiency.
The form of the infiltration model neglects soil saturation effects, which may become important
when considering very intense rainstorms. The choice of periodic boundary conditions does
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686 PUNIT GANDHI, LILY LIU, AND MARY SILBER

not allow for exploration of the impact of surface water run off. Both effects have been
considered in [8, 45] using very different approaches to model surface hydrology. We note
that the work of Crompton and Thompson [8] indicates that storm duration plays an equally
important role as storm depth in pattern formation, as both can affect rainfall intensity. Our
assumption of instantaneous rain pulses does not allow us to explicitly explore the impact of
storm duration, separate from storm depth, on pattern formation. The possibility that we
might reinterpret our storm depth parameter, which determined pattern wavelength in our
pulsed model, as capturing an effective surface water height during storms will be the subject
of future work, in which storm duration is included in our model.

Our focus in this work has been on capturing the influence of hydrological processes
across timescales, and the biomass model used here is based directly on previous conceptual
models [21, 38]. Other works have explored the impacts of incorporating additional vegetation
characteristics and processes [3, 4, 13, 15, 25, 36, 41]. Fortunately, as indicated in Appendix
A, we did not find a strong dependence of simulation results on the biomass diffusion rate,
which is a phenomenological parameter that is not well constrained by observation.

Generalizing the pulsed-precipitation framework to capture the influence of heterogeneous
terrain and moving to two spatial dimensions would open the door to a number of possible
future directions. For example, an investigation of the Klausmeier model [27] with topograph-
ically modified water transport suggested that the placement of patterns relative to local
valleys and ridges may provide an indicator for resilience of the ecosystem to drought [20]. It
would be interesting to explore what additional insights could be gained by a two-dimensional
pulsed-precipitation model that captures the influence of various rainfall characteristics, not
just the mean precipitation value that controls drought. Capturing hydrology on the fast
timescale could also allow for the exploration of the impact of roads, noted, for example, in
[23], or other disruptions to surface water flow on the vegetation patterns. It is also likely to
be important when coupling to landscape evolution through erosion and sediment transport.

Theoretical studies have suggested that spatial patterns can increase ecosystem resilience
and protect it against collapse under a decrease in total rainfall [32, 37]. However, climate
change will impact not only the yearly mean rainfall. It is already seen to disrupt seasonal-
ity in rainfall patterns and increase variability in storm characteristics. A framework like the
pulsed-precipitation model, which can capture the influence of changing rainfall patterns, may
therefore be useful since it can assess resilience in those contexts. It also brings into sharp
focus the driving role of the fast hydrological processes on the dynamics of dryland vegetation
patterns, which then evolve on their own years-to-decades timescales. This highlights the po-
tential for time-resolved data from field-based hydrology monitoring, across vegetation bands,
as a welcome and timely feedback to mathematical modeling efforts.

Appendix A. Dependence of pattern formation on soil water and biomass diffusion
rates. The soil water and biomass diffusion rates DW and DB are typically not well con-
strained by observation in reaction-diffusion models of vegetation pattern formation (see, e.g.,
[19]). This appendix explores the dependence of pattern formation on these constants in the
pulsed-precipitation model with stochastic rain input. We take \scrM \scrA \scrP = 16cm, mean storm
depth H0 = 1cm, and Tr \rightarrow 0, as done in section 5.3. 500-year simulations with the same
initial condition and rainfall sequence but different diffusion rates are carried out on a 1000-m
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domain. The thumbnails of spacetime plots of biomass shown in Figure 15 illustrate the qual-
itative influence of DB on the uphill migration rate of the pattern. We see relatively minor
impact from changing DW across three orders of magnitude. Importantly, selection of the
pattern wavelength is insensitive to the values of both diffusion constants.

Appendix B. Comparison of pulsed-precipitation model to fast-slow model. This ap-
pendix provides a comparison of simulation results from the fast-slow model [18], described in
section 2, to corresponding results from the pulsed-precipitation model, presented in section
3. Some care must be taken to make the comparison as the fast-slow model incorporates
both storm depth and duration, whereas the pulsed-precipitation model assumes instanta-
neous rain impulses (with no duration). We can, however, account for this by interpreting
the storm depth associated with an impulsive rain storm from the pulsed-precipitation model
as an effective surface water height that is achieved during a storm of finite duration in the
fast-slow model.

Figure 16 shows results from simulations of the fast-slow model using the same parameters
as [18], which are also reported in section 2. A mean annual rainfall of \scrM \scrA \scrP = 16cm is used,
and each of two identical rainy seasons per year is modeled by a single storm with constant
rainfall rate P0 of duration Tdur = 45min, 90min, 3hrs, 6hrs, 12hrs, and 24hrs. Simulations
with each of these six rainstorm durations are initialized with 1\% random noise on top of
a uniform vegetation state and run for 200 years. We take the peak surface water height
achieved at each point on the 500m domain during the final cycle of the fast system (i.e.,
the time period over which water from the last rainstorm of the simulation remains on the
surface) and plot the spatial average of this profile (denoted by H) as a function of the rainfall
rate during the storm in Figure 16(a).

This domain-averaged peak surface water height H, captured by Figure 16(a), provides
a path to compare the fast-slow model to the pulsed-precipitation model. In particular, we
interpret the mean storm depth parameter H0 of the pulsed-precipitation model as an effective
peak surface water height, analogous to the quantity H from the fast-slow model described
above. Instead of taking H0 as the total mean rainfall during storms, we can then think of it
as characterizing an effective peak surface water height during storms that takes into account
both the influence of storm depth and duration. We run 150 total trials of the stochastic
pulsed-precipitation model, also with \scrM \scrA \scrP = 16cm and two rainy seasons per year on a
500-m domain initialized with 1\% noise added to a uniform vegetation state. We do five trails
at each mean storm depth value 0.2cm \leq H0 \leq 6cm at 0.2cm increments. For the last 20
years of each 200-year trial, we compute the mean storm depth during that year, the number
of bands in the pattern, the domain-averaged peak biomass and soil water during the year,
and the domain-averaged infiltration rate during the storm pulse. These are compared to the
analogous quantities obtained with the fast-slow model in Figure 16(b).

In each of the four panels shown in Figure 16(b) the mean value of the quantity, as a
function of mean storm depth from the stochastic pulsed-precipitation simulations, is plotted
with a solid line. The interquartile range is shaded, and the minimum and maximum values
obtained from the trials are also indicated by dotted lines. The black circles indicate values
from the final year of the fast-slow simulation. We see agreement in the biomass and soil water
levels between the two models. The number of bands is also consistent between the two models
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Figure 15. Dependence of pattern characteristics on biomass and soil water diffusion rates. Thumbnail
plots of annually averaged biomass in units of kg/m2 as a function of space (horizontal axis) and time (vertical
axis) are shown for different biomass and soil water diffusion rates DW , DB = 0, 0.001, 0.01, and 0.1kg/m2.
The color scale is the same as in Figures 6 and 8. Each simulation has the same stochastic rainfall sequence
for a total of 500years, with \scrM \scrA \scrP = 16cm, mean storm depth H0 = 1cm, and rainy season duration Tr \rightarrow 0
on a L = 1000m domain, and is initialized with the same 1\% random noise on top of the spatially uniform
solution.
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Figure 16. A comparison of the pulsed-precipitation model to the fast-slow model [18]. Simulations of the
fast-slow model use a fixed mean annual precipitation \scrM \scrA \scrP = 16cm over two equally spaced storms per year
with durations Tdur = 45min up to 24hrs and are initialized with 1\% noise on top of a uniform state and a
domain of L = 500m. The results of 200-year simulations are compared to analogous results from 150 trials
of the pulsed-precipitation model with different stochastic rainfall with mean storm depths from H = 0.2cm up
to 6cm. (a) The domain-averaged, temporal-maximum surface water height from simulations of the fast-slow
model during the storm is shown as a function of rainfall rate, and the points are labeled by the storm duration.
(b) The domain-averaged soil water, biomass, infiltration rate, and number of bands from the final year of the
fast-slow simulations, indicated by black circles, are compared to analogous results from the stochastic pulsed-
precipitation model. In each case the mean value of the quantity as a function of the mean storm depth H
is plotted with a thick solid line. The interquartile range is shaded, and the minimum/maximum vlaues are
indicated by dotted lines.

for larger H. At small H, the difference in the infiltration rate functions between the two
models may explain the differences in the predicted band spacing. Indeed, we see improved
agreement in both lower panels of Figure 16(b) in simulations (not shown) where we decrease
the parameter A in the infiltration function of the fast-slow model below its default value
A= 1cm. Specifically, we refer to the factor H/(H +A) in the fast-slow infiltration function
given in Table 1; decreasing A makes the fast-slower infiltration closer to the step-function
used in the pulsed-precipitation model. We note that Thompson et al. [47] have explored
the dependence of the infiltration rate on surface water height in the context of so-called
flat-terrain vegetation patterns.

Last, we emphasize that the computational savings of the pulsed-precipitation model over
the fast-slow model are significant. We see a factor of 200 or more speedup in simulation
time by going from the fast-slow model to the analogous pulsed-precipitation simulation in
the comparisons presented here.

Appendix C. Linear stability of bare soil state to uniform perturbations. In this ap-
pendix we consider the linear stability of the zero biomass desert state to spatially uniform
perturbations. (We need not consider heterogeneous perturbations, proportional to eikx, for
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Figure 17. Summary of rainfall model and other quantities introduced for the linear stability analysis.

the zero biomass state since we require b\geq 0.) We show that the \scrM \scrA \scrP threshold for loss of
stability, denoted by \scrM \scrA \scrP c, is independent of details of the rainfall model. We consider N
pulses of rain per year, with strengths hk, k = 1, . . . ,N , which repeat annually and sum to
\scrM \scrA \scrP . The temporal spacing between pulses is denoted by \Delta \tau k, k= 1, . . . ,N , and these time
intervals sum to \tau P = 3.65, i.e., 1 year in dimensionless units. The periodic rainfall model and
the parameters needed for the linear stability analysis are summarized in Figure 17.

The base state for the linear stability analysis has b = 0 and a soil moisture level that
repeats with the annual period. Let w0 be the initial condition for this periodic base state,
and denote the soil moisture at time \tau k, prior to the kth pulse of strength hk, by wk. From
(4.3), we have that a pulse of strength h adds \alpha h to w and, from (4.9a), that a dry period of
duration \Delta \tau leads to its evaporative decay by a factor e - \sigma \Delta t. It follows that

(C.1) wk+1 = (wk + \alpha h1)e
 - \sigma \Delta tk , k= 0, . . . ,N  - 1.

Moreover, we require wN =w0 for the periodic state, which determines w0.
We perturb this (w, b) = (w(\tau ),0) base state by(\Delta w0,\Delta b0) at time \tau = 0. This pertur-

bation advances to a value (\Delta w1,\Delta b1) at time \Delta \tau 1, and so on. We obtain, for example,
(\Delta w1,\Delta b1) by evolving the following linearized slow system equations for time \Delta \tau 1:

d

d\tau 

\biggl( 
\Delta w
\Delta b

\biggr) 
=

\biggl( 
 - \sigma \gamma w(\tau )
0 w(\tau ) - 1

\biggr) \biggl( 
\Delta w
\Delta b

\biggr) 
,

where here w(\tau ) = (w0 +\alpha h1)e
 - \sigma \tau for \tau \in (0,\Delta \tau 1). From this, we obtain the following map:\biggl( 
\Delta w1

\Delta b1

\biggr) 
=

\biggl( 
e - \sigma \Delta \tau 1 \ast 

0 e\chi 1

\biggr) \biggl( 
\Delta w0

\Delta b0

\biggr) 
,

where the off-diagonal term \ast is not needed for determining stability, and

\chi 1 =

\int \Delta \tau 1

0
(w(\tau ) - 1) d\tau =

\Bigl( w0 + \alpha h1
\sigma 

\Bigr) \Bigl( 
1 - e - \sigma \Delta \tau 1

\Bigr) 
 - \Delta \tau 1 =

\Bigl( w0 + \alpha h1  - w1

\sigma 

\Bigr) 
 - \Delta \tau .
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Here the final equality follows from (C.1). Repeating this for the N rain pulses, we find\biggl( 
\Delta wN

\Delta bN

\biggr) 
=

\biggl( 
e - \sigma \tau P \ast 
0 e\chi 1+\chi 2+\cdot \cdot \cdot +\chi N

\biggr) \biggl( 
\Delta w0

\Delta b0

\biggr) 
,

where

\chi k =

\int \tau k

\tau k - 1

(w(\tau ) - 1) d\tau =
\Bigl( wk - 1 + \alpha hk  - wk

\sigma 

\Bigr) 
 - \Delta \tau k.

The stability boundary, denoted by \scrM \scrA \scrP c is determined by the condition \chi 1+ \cdot \cdot \cdot +\chi N = 0.
Using the fact that w0 =wN and that \Delta \tau 1 + \cdot \cdot \cdot +\Delta \tau N = \tau P , it follows that

\scrM \scrA \scrP c = h1 + \cdot \cdot \cdot + hN =
\sigma \tau P
\alpha 
,

which, in dimensioned quantities, is (LM/C\Gamma )365 = 10.95cm/yr for the parameters of
Table 2.
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