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Abstract—Based on the human trafficking incidence
data from the Las Vegas Metropolitan Police Department
(LVMPD), we have built a model of movement patterns
of traffickers within the contiguous US states. We utilized
the model for developing interdiction strategies for the
law enforcement authorities, with the goal of maximizing
interdiction pay-off within the agency budget, where pay-
off is measured in terms of the number of trafficking
incidences disrupted. In addition, from the U.S. Interstate
Highway Map, we have built a U.S. Interstate Network
Graph (USING) to test our interdiction pay-off maximiza-
tion algorithm. This is a realistic approximation of the U.S.
highway system and will be made available to researchers
engaged in trafficking interdiction research. Finally, we
evaluate our techniques on the data from LVMPD on
USING and present the results.

I. INTRODUCTION

The U.S. Dept. of Justice in its “National
Strategy to Combat Human Trafficking” (January
2022), declared its goal to ‘“enhance its capacity
to identify human trafficking victims and to detect
human trafficking networks”. One of the ways to
detect and disrupt trafficking networks is through
interdiction. Accordingly, interdiction problems of
trafficking in illicit material have received consid-
erable attention the research community in the last
few years [1]-[6]. Different research groups have
taken different approaches to modeling and analysis,
depending on domain specific characteristics of the
problem. In a paper published in the IEEE Inter-
national Symposium on Technologies for Homeland
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Security (2018) [4], the authors studied transnational
criminal organizations operating as interdependent
contraband smuggling, and money laundering net-
works and proposed tools and techniques to disrupt
such networks. Motivated by the need for countering
proliferation of nuclear material, researchers at the
Los Alamos National Laboratory studied the prob-
lem for stochastic evaders by introducing a model
in which the evader follows a Markovian random
walk, guided by the least-cost path to the target
[1]. The authors in [5] modeled cocaine traffickers
and counterdrug interdiction forces as a complex
adaptive system. Game theoretic approaches to the
interdiction problem were studied in [2] and [3], and
are modeled as a zero-sum game and a Stackelberg
game respectively. In this paper, we take a data
driven approach to modeling and analysis, with the
objective of maximizing interdiction payoff for law
enforcement authorities.

II. DATA DRIVEN INTERDICTION MODEL

This research is made possible by a grant from
the National Science Foundation to investigate hu-
man trafficking incidences in U.S. Southwest. We
received significant amount of anonymized hu-
man trafficking incidence data from the Las Vegas
Metropolitan Police Department (LVMPD). A sum-
mary of LVMPD data is shown in the Table I, where
each row corresponds to a recorded incidence and
the columns correspond to various factors related
to the incidence. The LVMPD data was collected
between 2011 and 2020 and had almost 1700 inci-
dences. 99% of all reported incidence data involved
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Incidence No. | Date, Time | Victim Id. | Trafficker Id. | Trafficker | Destination | Intermediate | Originating
& Location Type City Cities City
_[1 V1 T1 “Romeo” Cl CQ, Cg, C4 C5
IQ ‘/2 T2 “Boss” Cl 03, CG 07
_[3 V3 T3 “Boss” Cl @ Cg
I, Va T, “Boss” 4 9 Cho

TABLE I: Human Trafficking Incidence Data in Local Law Enforcement Records of City C;

(a) Visualization of Human Traffic Movement: Multiple
Cities to a Single City

(b) Visualization of Human Traffic Movement: Multiple
Cities to Multiple Cities

Fig. 1: Visualization of Trafficker Movement

(a) Logical to Physical Path Mapping

Mont:
Monterrey

Mexico
MEXICO Mavana

(b) U.S. Interstate Network Graph (USING)

Fig. 2: Logical and Physical Paths (Left) and the USING (Right)

road travel as the mode of transportation. Most of the
records included the travel originating city/state, but
only a few included the names of the intermediate
cities visited on the way to Las Vegas.

For the purpose of interdiction, this high level
information, that the victim traveled from the origi-
nating city, say Atlanta, to the destination city, say
Las Vegas, isn’t very helpful, because there are
multiple paths that could have been taken using
Interstate Highways, to travel from Atlanta to Las
Vegas. Lower level information, such as various

path segments that the trafficker might have taken
(e.g., Atlanta to Birmingham to Memphis or Atlanta
to Montgomery to Mobile etc.) will be crucial, as
only then can the Law Enforcement authorities set
up checkpoints to interdict the illicit traffic through
those path segments. We refer to high level de-
scription of the path taken by the victim, which
often includes only the names of the originating
and destination cities (and in some cases a few
intermediate cities) as a logical path. The red lines
in Fig. la show some logical paths from multiple
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Destination City | Originating City | Traffic Volume Logical Path Physical Path
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Cl 02 Cl<—03<—04<—02 Cl<—C12<—Cg<—C4<—CQ
Cl 02 10 (Cl<—02) Cl<—03<—04<—02 Cl<—03<—017<—04<—02
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l C1 [ Cho [ [ Cy + Chio [ C1+ Cs + C7r + Cyp + Cr12 + Chpo ‘
l 4 [ Cho [ [ Cy + C7 + Cg + Cho [ C1 + C7 + Cg + Oz + Cho ‘

TABLE II: Mapping of Logical Paths into Physical Paths

cities, such as New York and Seattle to a single city
- Las Vegas. As we obtained interdiction data only
from LVMPD, the destination city of all the logical
paths in Fig. 1a, is Las Vegas. We are sure that police
departments of every major U.S. cities have similar
human traffic incidence data. The logical paths from
multiple originating cities to multiple destination
cities are shown in Fig. 1b. A logical path may have
been realized through many physical paths, for e.g.,
the logical path from NYC to Las Vegas (shown in
Red line) in Fig. 2a, could have been realized by one
of the three physical paths (shown in black dotted
lines). A general scenario with a set of logical paths
and their corresponding physical paths, together with
the traffic volume on each path is shown in Table II.

From the interdiction perspective, the law enforce-
ment authorities need to know (or estimate) which
one of the many physical paths that correspond to a
logical path, most likely taken by the trafficker. In
order to make that estimate, our interdiction model
makes a few assumptions: (i) each path segment has
(a) cost of travel, and (b) an interdiction probability
associated with it; (i) Trafficker has a travel budget
that cannot be exceeded. Within these parameters,
we assume that the trafficker will choose the least
risky path (i.e., the path with the the smallest in-
terdiction probability), that is within the trafficker’s
budget. This setting gives rise to the Logical-to-
Physical Path Mapping Problem (LPPMP), which
is discussed in detail in Section V.

Using the solution to the LPPMP, the Law En-
forcement Authorities (LEAs) can estimate the path
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the trafficker most likely took between a source-
destination city and set up check points accordingly.
The traffic flow volume of a logical path is the
number of victims that are transported through that
path. After mapping each logical path into a physical
path, one can compute the traffic flow through each
path segment (i.e., an edge of the network graph),
which is the summation of the traffic volumes of
each of the paths that use this edge. From the LEA
perspective, this quantity is the payoff associated
with interdiction of that edge. Like the trafficker,
LEAs also has a budget referred to as the Interdiction
Budget. The goal of the LEAs is to maximize
Interdiction Payoff subject to the constraint that the
interdiction cost doesn’t exceed Law Enforcement
Interdiction Budget (LEIB). This scenario gives
rise to “Interdiction Payoff Maximization Problem”
(IPMP), which is discussed in detail in section VI.

III. U.S. INTERSTATE NETWORK GRAPH DATA
GENERATION AND VISUALIZATION

For the purpose of evaluating our algorithms on
real road transportation infrastructure in U.S., we
wanted to have access to a network graph, which
closely resembles the U.S. interstate highways. As
no such graph is readily accessible, we created such
a network graph, referred to as the U.S. Interstate
Network Graph (USING) ourselves. In this graph,
the nodes represent either (i) the largest city in each
state, or (ii) intersection point (city) of two interstate
highways. Two nodes are connected by an edge if
the corresponding cities have an interstate highway
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segment connecting them. The network constructed
following these rules have 280 nodes and 475 edges
and is shown in Fig. 2b.

It may be noted that an interstate on the US
map can be represented by multiple edges. For in-
stance, I-10 runs from Los Angeles through Phoenix,
Casa Grande and many other cities all the way to
Jacksonville. In USING, each segment of I-10 (e.g.,
between LA and Phoenix, Phoenix and Casa Grande,
etc.) will be represented by an edge. Each edge has
attributes such as Trafficker’s Travel Cost (TTC),
probability of interdiction (g), and Law Enforcement
Interdiction Cost (LEIC), associated with it.

In constructing the data set for USING, we use the
Googlemaps API. We start with a major city (node)
and determine what other major cities or interstate
intersections are neighbors of this city. If there is
another major city (node) or an interstate intersection
neighboring this node, we draw an edge between
these two nodes. After determining all the neighbors
of a node, we then go to each of its neighbors in
manner typical of a Breadth First Traversal, and then
find their neighbors in the same fashion, until all
the intersection of interstates and major cities are
connected. A snapshot of USING created following
the process is shown in Fig. 2b.

IV. PROBLEM FORMULATION

The Logical to Physical Path Mapping Problem
(LPPMP), and the Interdiction Payoff Maximization
Problem (IPMP) are studied with respect to the US-
ING network. The problems are defined as follows.
The following items are provided as the input for
the LPPMP and IPMP problems.

(i) A graph G = (V, E), where V' = {vy,...,v0,}
and E = {e;|v; is adjacent v; in G = (V,E)}
(USING is an example of such a graph)

(i) Three parameters, (a) Law Enforcement Inter-
diction Cost LEIC(e; ;), (b) Trafficker’s Travel Cost
TTC (e;;), and (c) Probability of Interdiction g(e; ;)
is associated with each edge ¢; ; € E. For simplicity,
TTC (e;,;) is equal to the distance between the cities
1,7 (computed using Googlemaps API).

(111)) Human trafficking incidence data from sin-
gle/multiple cities over a fixed time period (say,
one year) is shown in Table I. It may be noted
that each row of this table corresponds to a logical
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path from the originating to the destination city. The
traffic volume on path Py, i.e., the number of victims
transported over this path, denoted by TV (FP), is
also available in this data set.

(iv) Two budget parameters, one for the trafficker
Br and one for the law enforcement B r.

From input data items (i)-(iv), the following items
can be computed.

(i) Law Enforcement Interdiction Payoff for a path
Py, LEIP(P;), is equal to the volume of traffic
that can be reduced if the path P} is interdicted
(disrupted), i.e, LEIP(P;) =TV (Fy).

(i1) Law Enforcement Interdiction Payoff for an edge
e;j» LEIP(e; ;), is equal to the volume of traffic that
can be diminished if the edge e; ; is interdicted. It
may be noted interdiction of an edge e; ; will disrupt
all the paths that use the edge e, ;, i.e., if P’ a subset
of the set of paths that use e¢; ;, then

2

P, e P
€ij; € b,

LEIP(e;;) = TV (P;)

(iii) Probability of an edge e;; € E not being
interdicted, h(e; ;) =1— g(e; ;)

(iv) The path Py is disrupted only if at least one of
the edges that is a part of the path Pj is interdicted.
Accordingly, the probability of Py being disrupted

T‘(Pk) =1- H h(@@j)

ei’]‘GPk

(vii) Thus, the probability of Py not being disrupted

s(Po) =1=r(P)= [ hley)

€i.j EPy
V. LOGICAL TO PHYSICAL PATH MAPPING

The goal of the LPPMP is to map a given logical
path to one of the many physical paths that corre-
spond to that logical path. As shown in Fig. 2a, the
logical path shown in Red can be realized (mapped
onto) by any one of the three physical paths shown
in Black dotted lines. As discussed earlier, in our
model we assume that the trafficker has a travel
budget, Br, and the trafficker would choose the
least risky path (i.e., the path where the interdiction
probability is the minimum), subject to the budget
constraint. Accordingly, the LPPMP becomes the
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Budget Constrained Minimum Risk Path Selection
Problem (BCMRPSP).

Note that, each logical path has a specified source
node (origin city), a sink node (destination city) and
zero or more intermediate cities. In the following, we
assume that the logical path is specified with source
and sink nodes only (i.e., with zero intermediate
cities). The scenario where the number of interme-
diate cities is non-zero can easily be extended from
the one with zero intermediate nodes.

BCMRPSP must establish a path from the source
to the sink node, such that the cost of the path is at
most Bp and interdiction probability is minimum
(or, non interdiction probability is maximum). In
Section IV, it was established that the probabil-
ity of a path P, not being interdicted (disrupted)
is s(P) = [l ep, h(ei;), where h(e;;) is the
probability of the edge e;; not being interdicted.
Thus the BCMRPSP becomes the problem of finding
a path P, from the source to sink, whose travel
cost is at most Br and s(P) is largest among
all possible paths from the source to the sink.
The BCMRPSP belongs to a family of path com-
putation problems known as the “Constrained (or
Restricted) Shortest Path Problem” (CSPP) [7]. One
difference between the CSPP and BCMRPSP is that
the objective function for the CSPP involves an
additive operator (i.e., the objective function is of
the form Maximize > _p f(ei;)), whereas,
in the BCMRPSP the objective function involves
a multiplicative operator (i.e., the objective func-
tion is of the form Maximize  [],, cp h(ei;)).
However, the as [, p h(e;;) is maximized when

7
log I1., ,ep, (ei;) is maximized, the goal of BCM-
RPSP can be realized by replacing the multiplicative
operator by an additive operator and maximizing
Zem ep, log (h(e;;)). In the following, we provide
an Integer Linear Programming (ILP) formulation
for the BCMRPSP. We include a binary variable z;
for each edge ¢;; € E. This binary variable takes
the following values:

, if edge e;; is in the path P
Lij = .
7 0, otherwise

Maz Z(log hij) X z; ; (1)

/L'hj

978-1-6654-9404-5/22/$31.00 ©2022 IEEE

> TTC(ei;) x xi; < Br )
i,J
in,j—z%,i:l,izs (3)
J J
inﬁj—z%ﬁz—l,i:t (4)
J J
&)

Zmi’j — Z.ZC]"Z‘ = O,V’l 7é S,j 7é t
0] 0J

The objective function selects a path which max-
imizes the probability of not being interdicted, Eq.
2 is the budget constraint of the trafficker and Egs.
3-5 generate the path from source to destination. We
use the ILP formulation for computing the physical
paths corresponding to the logical paths obtained
from the LVMPD data set and executing them on
USING. The results of our logical to physical path
mapping is presented in Section VII.

VI. INTERDICTION PAYOFF MAXIMIZATION

The goal of the Interdiction Payoff Maximization
Problem (IPMP) is to reduce the human traffic
flow to the largest possible extent, subject to law
enforcement interdiction cost not exceeding budget
Bp . We provide an optimal solution for IPMP using
ILP. An IPMP instance is made up of
(i) A graph G = (V, E), where V = {vy,...,0,}
and E = {e; j|v; is adjacent vj in G = (V, E)}
(i) P: Set of physical paths Py, ..., P, computed
from the logical paths from the LVMPD data set.
In addition, the following parameters discussed in
section IV are used for solving IPMP.

(iii) LEIC(e;;): Law Enforcement Interdiction Cost
for edge e; ;

(iv) Bpg: Law enforcement budget

(v) [D(e;;)]p: The subset of paths in P that will be
disrupted if the edge e; ; is interdicted in the graph
G = (V,E).

(vi) [LEIP(e;;)|p: Interdiction payoff from the
edge e; ; with respect to the path-set P.

(vii) LEIC(E"): Interdiction cost of the edge set
£’ Q E = Zei,jEE’ LEIC'(ew)

We associate a binary variable x; ; with each edge
e;; € I/ and another binary variable y, with each
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Adjacent Cities
City Name Adjacent City 1 Adjacent City 2 Adjacent City k
City Name | Interstate | Distance | City Name | Interstate | Distance City Name | Interstate | Distance
Phoenix Flagstaff 17 200 Los Angeles 10 400 e
Albuquerqgee Flagstaff 40 250 Denver 25 300

TABLE III: Human Trafficking Incidence Data in Local Law Enforcement Records of City ('

path P, € P. The binary variable x; ; = 1, if the
edge e;; 18 interdicted, otherwise x;; = 0. The
binary variable y, = 1, if the path Py is disrupted,
otherwise y; = 0. The set of edges that make up the
path P is denoted by £, C E. If any edge ¢; ; € L},
is interdicted, then the path P is disrupted.

Maz > LEIP(P)yy (6)

PeP
> LEIC(ei;)ri; < By (7)
Ve, €E
Y = 1, if Tij = 1 and €ij € Pk (8)

Equation 8 can be re-written in the form

Z Ti,j > 1

ei,jGPk

yp =1, if (9a)

The above constraint involves a logical term
if, and can be replaced by the following constraints
and that do not involve any logical term.

< Y iy (9b)
ei,jEPk-

Vei; € Py Yr > T (9¢)
Vy;, 1 <j<r y;=0/1 (10)
me,l § Z,j S n, l'i,j = 0/1 (11)
owy =Y wa=1li=s (12)

J J
in,j_zxj,i:_lvi:t (13)

J J
(14)

Zl‘z}j - ij,i =0,Vi 7é s,J 7& t
,J 2]
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Eq. 6 maximizes the interdiction payoff for the
LEAs. Eq 7. ensures that the LEA operates within
their budget. Eqs. 8-14 ensure that a path is inter-
dicted iff all the edges in the path have been inter-
dicted. We use the above ILP formulation for finding
the set of edges whose interdiction will maximize
the Interdiction Payoff for the Law Enforcement,
without violating the budget constraint. The results
of our experiments are discussed in Section VII.

VII. EXPERIMENTAL RESULTS

The results of our experimental evaluation of
Logical to Physical Path Mapping and Interdiction
Payoff Maximization problems are presented in Ta-
bles IV and V respectively. In Table IV, columns 1
through 4 indicate the originating city, intermediate
cities (if known), destination city (Las Vegas) and
the shortest distance between the originating and
destination cities respectively. It may be noted that
we have used the USING network for our experi-
mentation and the shortest path length between the
cities is computed from this graph. The column
5 in Table IV indicates the tolerance level over
the shortest path distance, the trafficker might be
willing to accept, in order to reduce the interdiction
probability. As shown in Table 1V, if the originating
and destination city IDs. are 79 and 10 respectively
(Kansas City and Las Vegas in USING) and the
trafficker chooses to use the shortest path between
these two cities, the interdiction probability is 0.999.
However, if the trafficker is willing to take a slightly
longer path (at most 25% more than the shortest path
length), the interdiction probability can be reduced
to 0.951. However, further increase in tolerance, i.e.,
allowing 50% over the shortest path length may not
reduce interdiction probability any further. In the
four originating-destination city pairs whose results
are presented in Table IV, it can be seen that for
pairs 1, 3 and 4, the interdiction probability can be
lowered by taking a slightly longer path (up to a
certain limit), whereas for the pair 2, increase in
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Logical Path Shortest Path | Percentage
Originating | Intermediate | Destination | (SP) Length | Tolerance Physical Path Interdiction
City Cities City (in miles) over SP Probability
0 79, 170, 66, 55, 44, 30, 20, 12, 16, 10 0.999
79 None 10 1571.46 25 79, 94, 104, 55, 44, 41, 30, 20,12, 16, 10 0.951
50 79, 94, 104, 55, 44, 41, 30, 20,12, 16, 10 0.951
0 15, 14, 2, 5, 10 0.694
15 14 10 648.37 25 15, 14,2, 5, 10 0.694
50 15, 14, 2, 5, 10 0.694
0 17, 25, 31, 21, 13, 6, 3, 5, 10 0.9980
17 31,1 10 1835.13 25 17, 25, 36, 31, 21, 13, 6, 12, 16, 10 0.9963
50 17, 25, 36, 31, 21, 13, 6, 12, 16, 10 0.9963
0 59, 69, 71, 60, 49, 37, 25, 17, 11, 6, 3, 5, 10 0.99993
59 71, 60, 25 10 2338.97 25 59, 60, 71, 60, 49, 37, 25, 21, 13, 6, 12, 16, 10 0.9986
50 59, 60, 71, 60, 49, 37, 25, 21, 13, 6, 12, 16, 10 0.9986

TABLE 1V: Logical to Physical Path Mapping Table

Time Period Physical Paths (Traffic Volume) Interdiction Budget | Interdiction Payoff
2, 5,10 (6) 100 11
12, 16, 10 (1) 200 13
7,2,5,10 (1) 300 14
15, 14,2, 5, 10 (1) 400 15
2011 23,15, 14, 2, 5, 10 (1) 500 15
14, 2,5, 10 (1) 600 15
24, 16, 10 (1) 700 15
79, 170, 66, 55, 44, 30, 20, 12, 16, 10 (1) 800 15
108, 188, 106, 97, 80, 95, 79, 170, 66, 55, 44, 30, 20, 12, 16, 10 (1) 900 15
71, 69, 59, 72, 168, 226, 161, 51, 41, 28, 155, 12, 16, 10 (1) 1000 15
14, 2, 5, 10 (1) 100 11
7,2,5,10 (3) 200 12
44, 30, 20, 12, 16, 10 (1) 300 13
71, 69, 59, 72, 168, 226, 161, 51, 41, 28, 20, 155, 12, 16, 10 (1) 400 13
2,5,10 (1) 500 13
2012 98, 97, 88, 95, 79, 94, 104, 55, 44, 30, 20, 12, 16, 10 (1) 600 13
23,15, 14,2,7,2,5,10 (1) 700 13
32,23, 15,14, 2,5, 10 (1) 800 13
32,23, 15, 14,2, 5,10 (1) 900 13
79, 170, 66, 55, 44, 30, 20, 12, 16, 10 (1) 1000 13
11, 17, 25,21, 13, 8,4, 7, 2,5, 10 (1) 1100 13

TABLE V: Interdiction Payoff Maximization Table

tolerance doesn’t reduce the interdiction probability.
The entries in column 6 provide the physical path
corresponding the logical path defined by the origi-
nating, destination and the intermediate cities.

Table V shows the results of Interdiction Payoff
Maximization for 2011 and 2012. During 2011 and
2012, there were 144 and 120 recorded incidences
of trafficking respectively in Las Vegas, of which
only 22 and 32 had the origin and destination city
information respectively. An origin-destination city
pair corresponds to a logical path. As out of 22
and 32 logical paths, only 10 and 11 paths were
distinct, in Table V, we present the results of these
distinct paths only. The total traffic volume on
these distinct paths were 15 and 13 respectively.

978-1-6654-9404-5/22/$31.00 ©2022 IEEE

Table V shows how increase in Law Enforcement
Interdiction Budget results in increase in Interdiction
Payoff, up to a certain point. For 2011, when the
interdiction budget is increased from 100 to 400 in
steps of 100, the interdiction payoff increased from
11 — 13 — 14 — 15. Any further increase in
the interdiction budget doesn’t result in any higher
payoff because with a budget of 400, the entire
traffic volume carried by the 10 paths (15) was
interdicted and there was no room for any further
improvement in interdiction payoff. The experiments
were conducted on a 2.30 GHz processor computer
with 16GB RAM utilizing Python and Gurobi.
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