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a b s t r a c t

From infiltration of water into the soil during rainstorms to seasonal plant growth and death, the
ecohydrological processes that are thought to be relevant to the formation of banded vegetation
patterns in drylands occur across multiple timescales. We propose a new fast–slow switching model in
order to capture these processes on appropriate timescales within a conceptual modeling framework
based on reaction–advection–diffusion equations. The fast system captures hydrological processes that
occur on minute to hour timescales during and shortly after major rainstorms, assuming a fixed
vegetation distribution. These include key feedbacks between vegetation biomass and downhill surface
water transport, as well as between biomass and infiltration rate. The slow system acts between rain
events, on a timescale of days to months, and evolves vegetation and soil moisture. Modeling processes
at the appropriate timescales allows parameter values to be set by the actual processes they capture.
This reduces the number of parameters that are chosen expressly to fit pattern characteristics, or to
artificially slow down fast processes by the orders of magnitude required to align their timescales with
the biomass dynamics. We explore the fast–slow switching model through numerical simulation on a
one-dimensional hillslope, and find agreement with certain observations about the pattern formation
phenomenon, including band spacing and upslope colonization rates. We also find that the predicted
soil moisture dynamics are consistent with time series data that has been collected at a banded
vegetation site. This fast–slow model framework introduces a tool for investigating the possible impact
of changes to frequency and intensity of rain events in dryland ecosystems.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

Dryland ecosystems are subject to infrequent and largely un-
predictable rain inputs [1]. These rain events act as pulses to the
system that drive dynamics across multiple scales in time and
space [2,3]. When there is insufficient rain to support uniform
vegetation coverage, the vegetation may become patchy, and,
in some water-controlled regions these patches exhibit striking
regularity in spatial arrangement [4]. This is particularly the case
for gently sloped terrain, where patterns often appear as bands of
dense vegetation growth alternating with bare soil, each aligned
transverse to the elevation grade. The vegetation bands can be
tens of meters wide with spacing on the order of a hundred
meters, and form a regular striped pattern that often occupies
tens of square kilometers on the landscape [5].
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Fig. 1(a) shows a Sentinel-2A satellite image [6] of banded
vegetation patterns from the Haud region of the Horn of Africa
taken in 2016. A time series of rainfall [7] at the location is
shown in Fig. 1(b). Some of the earliest field studies of banded
patterns were carried out within this region, and postulated a
connection between the formation of bands and the hydrology of
the area [8,9]. For example, early observations describe sheet flow
in the interband region during rain events, with the rain ‘‘arrested
by the next vegetation arc down the slope’’ [10]. The presence
of vegetation promotes water infiltration into the soil both by
intercepting runoff and enhancing infiltration as a consequence of
the increased biologically-induced soil macroporosities [11–14].
Such feedbacks account for the significantly higher levels of soil
moisture observed within the vegetation bands than in the bare
soil regions after rain events [15]. Such interactions between veg-
etation and hydrological processes appear as nonlinear feedbacks
in mathematical modeling studies, where they act as mechanisms
underlying the formation of regular vegetation patterns [16–18].
Vegetation pattern models often also rely on a difference in
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Fig. 1. (a) Satellite image of banded vegetation patterns in the Haud region of Africa (8◦00′00.0′′N, 47◦30′00.0′′E). Dark is vegetation and orange is bare soil. Sentinel-
2A satellite image [6] was taken in 2016. (b) Hourly rainfall data for the same region, along with monthly averages. Note the two rainy seasons in this region.
Rainfall data retrieved from the Modern Era Retrospective-Analysis for Research and Applications (MERRA) [7] and downloaded from https://disc.gsfc.nasa.gov/daac-
bin/FTPSubset2.pl. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

timescales associated with fast water transport and slow biomass
dispersal as a key ingredient for generating pattern-forming in-
stabilities. This separation of scales has been exploited in analysis
of the simplest class of conceptual reaction–advection–diffusion
models [19–21].

Hydrology–vegetation feedbacks, where the presence of veg-
etation increases infiltration and reduces evaporation, have been
incorporated at an annually-averaged timescale into contem-
porary reaction–advection–diffusion models for vegetation pat-
terns [22,23]. We build on and extend conceptual models due
to Rieterk et al. [23] and Gilad et al. [22], by developing a fast–
slow mathematical framework to capture these hydrological and
ecological processes on their appropriate timescales. We also add
an additional feedback to the conceptual modeling framework:
the speed of the downhill surface water flow is reduced by
surface roughness effects in the vegetated zones [24,25]. This
new fast–slow switching framework provides an alternative both
to detailed mechanistic models and to conceptual models that
do not resolve the rainstorm timescale. Mechanistic models en-
code many processes on the timescales on which they occur
[26,27] but often require a large number of parameters, mak-
ing it difficult to identify key underlying mechanisms. Concep-
tual models formulated on a long, annually averaged, timescale
[22,23,28] require ‘‘effective’’ parameter values to capture faster
processes [29]. For example, one way to encode water infiltration
and biomass evolution on the same timescale is to reduce the
rate at which water infiltrates from the surface into the soil by
a factor of 1000 or more [23]. This reduction of the infiltration
rate then leads surface water to be present year-round at a height
that would be observed only during rainstorms. In the framework
we use here, we take an intermediate path. Fast hydrological
processes evolve on the timescale set by a rain event, with slow
ecohydrological processes evolving in between rain events with
a timescale set by the vegetation dynamics. This results in a
conceptual model, but one that is designed to operate on the
timescales of key processes in the system.

By capturing processes on the timescales on which they occur,
we can use infiltration and water transport parameters consis-
tent with the ecohydrology literature. The model proposed in

this study is able to form patterns and capture certain pattern
characteristics, with ecohydrologically consistent parameters, and
without additional parameter fitting. The natural separation of
the processes by their timescales admits a significant simplifi-
cation within each of the two systems, while still capturing the
influence of both fast and slow processes on dynamics. Biomass–
water feedbacks captured by the model, which act on the fast
rain-event timescale, include increased infiltration of surface wa-
ter into the soil in the bands, and a slower overland surface water
flow in the vegetated zones.

There have been other notable efforts to extend conceptual
modeling frameworks to capture the effects that seasonality [30],
pulse intermittency and intensity [31–33], and stochasticity
[34,35] of rainfall have on vegetation patterns. However, many
of these studies fail to appropriately adjust effective parameters
when additional timescales are captured within the model. A
few of the studies are similar in philosophy to the fast–slow
framework we propose in that they handle the fast hydrological
processes associated with rain events separately from the rest
of the slower processes. The work of Siteur et al. [35] employs
simplified infiltration and soil moisture dynamics, compared to
those in the model we are presenting. They treat rain events
as delta-function pulses of surface water, instead of resolving
surface water dynamics during rain events. The benefit of their
extreme simplification is the ability to make predictions about
annually averaged quantities for the case that rain events are
stochastic in time and intensity. Other work [32,33] implements a
continuous-time model, based on [22], using a numerical scheme
that also simplifies the computation of the fast hydrological pro-
cesses during rain events. In particular, [32,33] use a steady-state
relationship between surface water height and biomass while it
is raining, instead of resolving the time dynamics of the surface
water.

The paper is organized as follows. In Section 2 we first dis-
cuss some existing model predictions and ground-based obser-
vations regarding the distribution of soil moisture relative to the
vegetated and bare regions. There are significant qualitative dif-
ferences in predictions between various classes of models, but
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Fig. 2. (Top) Rainfall data in 1985 at a site in the Chihuahuan Desert of Mexico exhibiting banded vegetation patterns. (Bottom) Dashed line indicates measurements
of soil water content in the vegetation band and dotted line indicates the inbetween bare soil region.
Source: Adapted from Cornet et al. (1988) [12].

available observations suggest that the soil moisture is dramat-
ically increased within vegetation zones relative to the bare
soil during rain events and also depleted at a faster rate via
transpiration during dry periods. We then present a reaction–
advection–diffusion model for banded vegetation patterns that
couples processes operating on both fast and slow timescales in
Section 3. We use this coupled model as motivation for the fast–
slow switching model presented in Section 4. The precipitation
in the coupled model is assumed to vary in time, parameters are
chosen to be consistent with the hydrological literature when
available, and we explore predictions about pattern formation
within the model based on linear stability analysis of spatially-
uniform states. The time-dependence of precipitation has a sub-
stantial impact on pattern characteristics such as precipitation
level at onset, band spacing and upslope colonization rate.

We use the structure of the coupled model, along with chosen
parameters, to identify a timescale separation in the system:
the ratio of the timescale for surface water to infiltrate into the
soil to the timescale for biomass growth is small. This small
ratio suggests a fast–slow switching model, which we describe in
Section 4, and explore through numerical simulation in Section 5.
The simulation results of the fast–slow model are consistent with
linear predictions from the coupled model from Section 3 with
the same temporal rain input profile, and qualitatively match
the observed soil moisture dynamics from the literature that
is presented in Section 2. Finally, in Section 6, we discuss key
predictions of the fast–slow model in the context of other exist-
ing modeling frameworks, highlight advantages of the fast–slow
model, and suggest potential directions for future research. Ad-
ditional simulation results for the fast–slow switching model
are presented in Appendix A of the online supplement and the
linear stability calculations of the coupled model, which are based
on Floquet theory, are detailed in Appendix B of the online
supplement.

2. Soil moisture: model predictions and data from literature

Surface water dynamics occur on a minute to hour timescale,
while vegetation growth and death occurs on a week to month
timescale. Because soil moisture is replenished by fast infiltration
of surface water and depleted by slow evapotranspiration, its
dynamics occur on multiple timescales. Models of vegetation
patterns vary widely in both how they capture these multiscale
dynamics, and in their predictions about the soil moisture distri-
bution in the vegetation bands relative to the bare soil regions. In
this section, we discuss differences in predictions among different
classes of models ranging from conceptual, annually averaged

ones to very detailed mechanistic ones. We start the discussion
by presenting ground measurements of soil moisture at a banded
vegetation site in Mexico [12].

During rainfall events biomass feedback on infiltration acts
to increase soil moisture where plants are by allowing surface
water to enter the soil at a higher rate relative to the bare
soil regions [11,15]. However, soil moisture may be lost faster
where biomass is present because of transpiration. While time-
resolved soil moisture data at sites that exhibit banded vegetation
is limited, the work of Cornet et al. [12] provides a time series
of soil water content for a vegetation band and the bare soil
region just uphill at a site in the Chihauahuan Desert for 1985.
In data from [12], after rain events, the soil water content within
the band increases dramatically relative to that of the bare soil,
as shown in Fig. 2. It is only after extended periods without
rain that the soil water content within the vegetation band be-
comes comparable, or even slightly below, the soil moisture of
the bare ground. Even with these fluctuations, it appears from
Fig. 2 that the soil moisture is, on average, more concentrated
in the vegetation bands than in the bare soil regions. Qualita-
tively similar features occur for a site with banded vegetation
patterns in Niger [36]. Data on gapped patterns collected by
Barbier et al. [37] also indicates increased soil moisture levels in
vegetated regions, although the shorter-timescale dynamics are
qualitatively different. More comprehensive field studies would
determine if similar observations occur at additional sites beyond
these observational studies, and over longer time-periods. Many
predictions from models are inconsistent with these observations
of soil moisture distribution.

Conceptual reaction–advection–diffusion models can make
qualitative predictions about the system over century timescales
or longer. Such long-time simulation results ensure that the
asymptotic behavior of the model is captured, and not just tran-
sient behavior that may be sensitive to the choice of initial
conditions on biomass distribution. While these conceptual mod-
els typically encode a separation of scales into the advection
and diffusion terms to capture slow biomass dispersal and fast
water transport, the reaction terms associated with local ecohy-
drological processes are typically formulated on the slow biomass
timescale. Because these models do not resolve individual rain
events, the resulting predictions are interpreted as those of the
annually averaged system, and therefore miss important details
about soil moisture on shorter timescales.

The simplest of these conceptual models lump processes as-
sociated with surface and subsurface hydrology into a single
‘‘water’’ field, leading to a pair of reaction–advection–diffusion
equations that captures interactions between biomass and water.
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Table 1
Summary of the coupled model (1) default parameter values, as described in
Section 3.2.
Parameter Units Default

value(s)
Description

KI cm/day 500 Infiltration rate coefficient
f – 0.1 Bare/vegetated infiltration

contrast
Q kg/m2 0.1 Biomass level for infiltration

enhancement
A cm 1 Infiltration rate H-independent

for H ≫ A
β – 4 Infiltration exponent (soil

moisture)
ζ – 0.005 Elevation grade
δ – 5/3 (or 1)a Surface water transport

exponent
KV m/day/cm2/3

(or m/day)a
2× 105 Surface water transport

coefficient
N m2/kg 20 Surface roughness coefficient
DB m2/day 0.01 Biomass diffusion
φZr cm 27b Soil water capacity
L cm/day 0.2 Evaporation rate
Γ (cm/day)/(kg/m2) 0.67 Transpiration coefficient
KB kg/m2 4 Biomass carrying capacity
C (kg/m2)/cm 0.1 Water use efficiency coefficient
M day−1 0.01 Biomass mortality rate

aIn numerical simulations, we often use δ = 1, which changes the units of KV ,
although not the default numerical value we use for it.
bThis value is based on typical soil porosity φ = 0.45 and a root depth Zr = 60
cm.

Such ‘‘two-field’’ models, exemplified by Klausmeier [28], predict
the highest concentration of water in the regions of bare soil
between the vegetation bands. So-called ‘‘three-field’’ reaction–
advection–diffusion models separately track the dynamics of sur-
face and soil water, in addition to the biomass field. These models
predict the soil moisture, on average, will peak within the biomass
for typical parameter choices [22,23]. However, it has also been
shown, in the context of the three-field model by Gilad et al. [22],
that the soil moisture spatial profile can be either in or out of
phase with the spatial profile of biomass [38], depending on
which mechanism for pattern formation dominates. While such
models are capable of qualitatively capturing annually averaged
dynamics observed in Fig. 2, they fail to provide useful predictions
on shorter timescales.

Detailed mechanistic ecohydrological models for general
water-limited environments [26], which capture processes on the
fast time scales of individual rain events, have also been used to
study the banded vegetation patterns. Such models predict that
soil moisture can switch between being more highly concentrated
under the vegetation bands to being more highly concentrated
in the bare soil region for extended periods of time (a year
or more). In these models, decadal time-averaged soil moisture
is more highly concentrated in the bare soil region [27]. The
annually averaged predictions of these models, like those of
the Klausmeier model, are in contrast with the measurements
shown in Fig. 2. Moreover, the complexity of such models limits
numerical simulations to timescales of a few decades or less, and
prohibits detailed exploration of the extensive parameter space.

Any prediction that soil moisture is, on annual average, more
concentrated in the bare soil region, is inconsistent with the
limited time-series data that is available for vegetation patterns
[12,36,37]. Because of competition between increased infiltra-
tion and increased transpiration at vegetation bands relative to
the bare soil regions, modeling choices about biomass growth
based on plant physiology may play an important role in pre-
dictions about soil moisture distribution [39]. While we focus on
the modeling of hydrological processes at appropriate timescales

in this work, we expect that a critical analysis of model de-
tails of biomass dynamics, especially combined with more field
measurements, could provide additional insights.

3. A three-field coupled timescale model

Before introducing the fast–slow switching model, the main
focus of this study, we first present a reaction–advection–diffusion
model in Section 3.1 with a seasonally-varying precipitation in-
put that captures processes across the relevant fast and slow
timescales. This ‘three-field coupled timescale model’ provides
motivation for the switching model, and we discuss how parame-
ters are chosen in Section 3.2. In Section 3.3, we explore the linear
stability of the spatially uniform states within the seasonal model.
Using a dimensionless version of the coupled model (Section 3.4)
we demonstrate that the separation of timescales leads to a small
parameter. The fast and slow systems that comprise the switching
model are introduced in Section 4 by considering the limit in
which this small parameter approaches zero. While the coupled
model motivates the switching model, we treat the switching
model as distinct from the coupled model instead of considering
it as a means to approximate solutions of the coupled model.

3.1. Motivation: A three-field coupled timescale model

We first consider a model in which we input a time-dependent
precipitation P(T ) uniformly on a one-dimensional spatial do-
main. The model evolves a biomass field B(X, T ) (kg/m2), a soil
moisture field s(X, T ) ∈ [0, 1], and a surface water height H(X, T )
(cm). In restricting the description to these three dynamical
variables, the model has its roots in the three-field conceptual
reaction–advection–diffusion models of Rietkerk et al. [23] and
Gilad et al. [22]. However, those models typically evolve the
system on the timescale of biomass and input the rain at a
constant rate given by the mean annual value. Although the basic
structure of those models is a starting point for ours, we make
modifications to capture details of the hydrological processes on
the timescales at which they occur.

We will refer to our version of the three-field model as a
‘‘three-field coupled timescale model’’ or simply ‘‘coupled model’’
in this paper. It takes the following form:

∂H
∂T

= P(T )− I(H, s, B)+ KV
∂

∂X

(√
ζ Hδ

1+ NB

)
(1a)

φZr
∂s
∂T

= I(H, s, B)− Ls− Γ Bs (1b)

∂B
∂T

= C
(
1−

B
KB

)
Γ Bs−MB+ DB

∂2B
∂X2 (1c)

where the infiltration rate of water from the surface into the soil
is given by

I(H, s, B) = KI

(B+ fQ
B+ Q

)( H
H + A

)
(1− s)β . (2)

This empirical infiltration model captures feedback from biomass,
surface water and soil saturation in a highly simplified way as
compared to more physical-based approaches that rely on model-
ing the vertical distribution of soil moisture [40]. Such simplified
approaches have proven successful in other contexts [41].

In the next section, we describe each of the terms in the
coupled model (1) to highlight differences from previous models
and to justify our parameter choices which are summarized in
Table 1. A summary of some of the most significant differences
between the coupled model (1) and, for example, the Gilad et al.
model [22,42] are: Precipitation is time-dependent, there is no
soil diffusion in the coupled model, there is no root augmentation
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feedback in the coupled model, there is biomass feedback on
surface water transport in the coupled model and, in the cou-
pled model, the infiltration slows as soil moisture saturates and
becomes independent of surface water height for large enough
surface water height.

3.2. Choosing parameters

Surface water transport. We take the Manning formula for
gravity-driven open channel flow [43,44] as a basis for our surface
water transport model. According to this formula, the average ve-
locity of the fluid in a wide channel is empirically determined to
be V ∝ n−1ζ 1/2H2/3, where n characterizes the surface roughness,
ζ is the local elevation grade and H is the height of the water. By
modifying the surface roughness term based on literature values
for vegetated surfaces and bare soil, we include the influence of
biomass on runoff interception leading to a slow-down in the
surface water speed within vegetated regions. In particular, we
take the water flow speed to be given by

V(H, B) = KV

√
ζ Hδ−1

(1+ NB)
where the term 1+NB allows us to describe the change in surface
roughness from bare to vegetated soil. The value of the exponent
that is consistent with the Manning formula corresponds to δ =

5/3. With δ = 5/3 and a typical value for the elevation grade
of ζ = 0.005 (i.e. an 0.5% grade) we estimate the remaining pa-
rameters using Manning roughness coefficients n [43,44]. Typical
values of n for bare soil (ng = 0.02 s/m1/3) and dense vegetation
(nv = 0.1 s/m1/3) lead to KV = 2 × 105 (m/day)/(cm2/3) and
N = 20 m2/kg. Estimations using a typical surface water height
around H = 1 cm result in the same values of KV = 2×105 m/day
(note different units) and N = 20 m2/kg when using δ = 1.
These values and 1 cm surface water when δ = 5/3 lead to a
water velocity of around V ≈ 16 cm/s on bare soil and just over
a factor of 10 slow down through vegetation with biomass value
B = 0.5 kg/m2. While the value of the exponent that is consistent
with the Manning formula is δ = 5/3, we take δ = 1 for most
of the results in Section 5 for computational convenience. This
makes the water flow speed independent of H and the advective
transport term in Eq. (1a) linear in the surface water height H .
(We present some numerical calculations and simulations with
δ = 5/3 in Figs. 3(a), 11, and Fig. A3; our limited exploration
shows results that are similar when δ = 5/3 is replaced by δ = 1.)

Soil moisture dynamics. We use a ‘‘bucket model’’ that tracks
a depth-averaged soil moisture within the plant rooting zone
according to the soil moisture balance equation (1b), where s
is the relative soil moisture [45]. Denoting the rooting depth by
Zr and the soil porosity by φ, the quantity sφZr represents the
volume of water contained in the root zone per unit ground area,
and has units of column height. In the model here, we assumed
typical values of Zr = 60 cm and φ = 0.45 [45]. Water enters
the soil from the surface via the infiltration model (2) and is lost
through evapotranspiration as (L + Γ B)s. The linear evaporation
rate coefficient L = 0.2 cm/day is set so that the evaporation rate
is approximately 0.1 cm/day when soil moisture is at s = 0.5,
which is approximately the field capacity [45]. We neglect the
shading effects on evaporation by making the evaporation rate
independent of biomass B. We set the transpiration parameter to
be Γ = 0.67 (cm/day)/(kg/m2) in order that the transpiration
rate with biomass density B = 1 kg/m2 reaches approximately
0.4 cm/day when soil moisture is s = 0.5.

We take a heuristic approach to modeling infiltration, similar
to those of previous conceptual models [22,46]. The parameter KI
in Eq. (2) represents an effective infiltration rate, which was here

assumed equal to KI = 500 cm/day in order to ensure typical
values of the infiltration rates, e.g.∼100 cm/day, in the numerical
simulation. We note, however, that the value of KI depends on
the soil type. Similar to previous models, we assume a factor f =
0.1 reduction in infiltration when biomass levels fall far below
the threshold value of Q = 0.1 kg/m2. This biomass feedback
models the presence of a soil crust that reduces infiltration in
bare soil and root systems that enhance infiltration in vegetated
areas. We additionally assume that the infiltration rate becomes
independent of surface water height for H significantly greater
than A, where A = 1 cm (many descriptions of infiltration have
this H-independence, see e.g. [25]). Finally we include a factor
of (1 − s)β with β = 4 to account for the reduced infiltration
values as the moisture content reaches saturation. While soil
saturation effects are typically negligible for the case of constant
precipitation, we are interested in considering large, concentrated
rain events where the soil moisture can increase dramatically in
a very short time.

We neglect subsurface water flow, under the assumption that
surface water flow will be the dominant mode of water trans-
port. In other models, subsurface transport has been included
as linear diffusion but we do not notice significant differences
in the limited simulations where we have included it (see Ap-
pendix A of the online supplement for more details). We also
neglect leakage of water from the root zone to deeper areas
for similar reasons: it did not have a large impact on the lim-
ited simulation results where we have included it. However, a
more comprehensive exploration of the role of these two sub-
surface soil processes, and how they are modeled, could provide
a more detailed understanding of when they can and cannot be
neglected.

Biomass dynamics. We leave the biomass dynamics largely un-
changed in form from a simplified version of the model by
Gilad et al. [42]. The plant growth rate is taken to be pro-
portional to transpiration rate Γ Bs, except with a logistic term
that can be thought of as capturing a decrease in water use
efficiency as biomass increases. Specifically, the growth term
is C(1 − B/KB)Γ Bs, where the proportionality constant C =

0.1 (kg/m2)/cm is set by the typical water-use efficiency for
plants. Increased biomass begins to significantly decrease growth
rates when B ∼ KB, where we take KB = 4 kg/m2 (however,
biomass levels stay well below KB in all simulations presented
here). One notable difference from the biomass growth term of
the Gilad et al. [42] model is that we do not include a root
augmentation feedback associated with the lateral spreading of
roots. Mortality is modeled by linear loss with coefficient M =

0.01 day−1, which was estimated by Mauchamp et al. [47] using
typical carbon maintenance costs.

We model seed dispersal by linear biomass diffusion with
rate DB = 0.01 m2/day. This parameter is often chosen in
models of this type without clear justification; DB ranges from
∼10−6 m2/day in Gilad et al. [42] to ∼10−3 m2/day in Klaus-
meier [28] to 0.1 m2/day in Rietkerk et al. [23]. (It may ultimately
have been chosen to help the model match pattern character-
istics; see discussion in Gandhi et al. [48].) Our linear stability
results, presented in Fig. 3, show that this parameter, for our
model, controls a cut off for short-wavelength linear instabilities
of the uniform state within the seasonal model. While this pa-
rameter is unconstrained and diffusion is likely a poor model of
seed dispersal, we make no adjustments to DB in our simulations,
leaving it fixed at a value of 0.01 m2/day. We note that this
model does not attempt to capture drought resistant behavior
that plants in dryland ecosystems are known to exhibit. Nor does
it include transport of organic material or seeds via water during
rain storms.



6 P. Gandhi, S. Bonetti, S. Iams et al. / Physica D 410 (2020) 132534

Fig. 3. (a) Turing–Hopf bubble in the (MAP, k)-parameter plane for default parameters of Table 1 in the case that precipitation consists of a six-hour long rain event
every six months. Computations were done with transport exponents δ = 1 (larger red bubble) and δ = 5/3 (smaller cyan bubble). (b) Impact on Turing–Hopf bubble
under changes to the precipitation (5) for default parameters (δ = 1 case). The large blue bubble has constant precipitation P0 , the red has two equally-spaced rain
events of 6 h duration, and the small yellow bubble is associated with one rainy season of 12 hour duration. Note that the scale has changed for this panel; the
red bubble is the same as in figures (a), (c) and (d). (c) Impact of varying the transport parameters DB , associated with biomass diffusion, and KV , associated with
overland surface water flow in the case that δ = 1 in Eq. (1). The bubble associated with default parameters of Table 1 is in red, and unless otherwise indicated
DB = 0.01 m2/day and KV = 2 × 105 m/day. The short-wavelength (high k) cut-off vanishes if there is no biomass diffusion (blue region). The solid black line
indicates the impact on the Turing–Hopf bubble of decreasing KV by an order of magnitude; this suppresses the longest-wave (small k) instabilities. (d) Comparing
the Turing–Hopf bubble for default parameters in red (δ = 1) with those obtained when infiltration feedback is removed (cyan, f = 1), or biomass feedback on
transport is removed (yellow, N = 0 m2/kg). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)

3.3. Spatially uniform states and their stability

If we were to set the precipitation rate to a constant, P(T ) =
P0, then we could explicitly determine two possible types of
spatially uniform steady state solutions of (1). One is the bare soil
state, defined by Bbs = 0, and with

sbs =
P0
L
, Ibs = KI f (1− sbs)β , Hbs = A

P0
Ibs − P0

, (3)

which exists for all P0. This trivial solution becomes unstable at a
transcritical bifurcation point Pc ≡ ML/CΓ , and for P0 > Pc , there
also exists a uniform vegetation solution with nonzero biomass

Buv = KB
CP0 −ML/Γ
CP0 +MKB

, suv =
P0

L− Γ Buv
, (4)

Huv = A
P0

Iuv − P0
, Iuv = KI

Buv + fQ
Buv + Q

(1− suv)β .

We find that these two uniform solutions, and the associated
transcritical bifurcation at P0 = Pc , carry over to the case that
the precipitation comes into the system during nr equally-spaced
rain events per year. We consider rain events with constant
precipitation rate P (cm/day), each of duration Tr . Specifically, if
we denote the Heaviside unit step function by H, and we let

P(T ) = PH(Tr − T ), T ∈ [0, 365/nr ], (5)

then a periodic seasonal rainfall is obtained by repeating this
pattern, i.e. by letting P(T + 365/nr ) = P(T ). The total annual
precipitation is nrTrP , and it plays the role of a mean annual
precipitation rate MAP in our investigations. For the default pa-
rameters given in Table 1, the transcritical bifurcation Pc occurs
when the total annual precipitation is ∼110 mm/yr, and we find
that this value does not change when we use the pulsed, periodic
rain input (5) rather than constant precipitation P0.
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The stability of the spatially-uniform vegetation state to het-
erogeneous perturbations is determined by computing Floquet
multipliers associated with the linear variational equations, given
perturbations proportional to eikX (See, e.g., the book by Meiss
[49]). Specifically, we let

Hk(T ) = H0(T )+ H1,k(T )eikX ,
sk(T ) = s0(T )+ s1,k(T )eikX ,
Bk(T ) = B0(T )+ B1,k(T )eikX ,

where (H0(T ), s0(T ), B0(T )) is a spatially-uniform, temporally pe-
riodic solution of (1) for the periodic rain input (5). In practice, we
compute (H0(T ), s0(T ), B0(T )) by integrating the ODEs associated
with spatially uniform states of (1) forward in time until the sys-
tem converges sufficiently close to this stable periodic orbit. For
the linear stability calculation, we linearize in the perturbations
(H1,k, s1,k, B1,k), and (numerically) compute the Floquet multipli-
ers as eigenvalues of the associated Monodromy matrix M. This
calculation is carried out on a two-dimensional grid of values
for mean annual precipitation (MAP) associated with Eq. (1) and
the wavenumber k of the perturbation. The stability boundary in
the (MAP, k) parameter plane is then determined by interpolat-
ing where the leading Floquet multiplier crosses the unit circle;
we refer to the instability region in the (MAP, k)-plane as the
‘‘Turing–Hopf bubble’’. (See Appendix B of the online supplement
for more details of the linear stability computations.)

Results of some of our numerical computations of the Turing–
Hopf bubble are presented in Fig. 3. In each of figures (a)–(d)
the red Turing–Hopf bubble is the reference one. It was obtained
using the default parameters of Table 1 with overland water
transport exponent δ = 1; the precipitation function Eq. (5) had
nr = 2 and Tr = 0.25 days. This means that there were two big
rain events per year, separated by six months (two rainy seasons),
and each lasted for six hours. Here we summarize the findings
from our linear stability calculations.

• Fig. 3(a) shows that increasing the exponent from δ = 1 to
δ = 5/3 leads to a slight decrease in the size of the Turing–
Hopf bubble. Most of our simulation-based investigations
incorporate δ = 1 as taking δ = 5/3 significantly increases
computation time.

• Fig. 3(b) shows the impact on the instability region of chang-
ing the duration or frequency of the rain events. With con-
stant rain input P0 the instability region is significantly
greater as shown by the large blue Turing–Hopf bubble that
extends all the way to MAP ≈ 310 mm/yr. Alternatively,
if we keep the intensity of rain the same but decrease the
frequency from two rain events per year to just one rain
storm, the instability region shrinks quite significantly to
the small yellow Turing–Hopf bubble. This suggests that
the MAP level at onset of instability of the uniform state
decreases as rain events become less frequent. In fact, if we
decrease the frequency of large rain events to one every 2 yr,
then there is no pattern-forming instability of the uniform
state for these parameter values.

• Fig. 3(c) shows how the transport parameters KV and DB in
Eq. (1) impact the shape of the Turing–Hopf bubble. While
there is an instability of the uniform state even when we
neglect biomass diffusion (DB = 0 m2/day), there is no
short-wavelength (high k) cut-off as indicated by the asymp-
totically vertical boundary to the blue region at MAP ≈

178 mm/yr. As DB increases to DB = 0.1 m2/day we
find that the short-wavelength modes are stabilized. The
long-wavelength boundary is apparently set by the overland
transport parameter KV , as suggested by the change of shape
of the Turing–Hopf bubble when KV is decreased by an order
of magnitude to 2× 104 m/day.

• Fig. 3(d) shows how the Turing–Hopf bubble changes when
one of the two biomass–hydrology feedbacks is shut off.
The N = 0 m2/kg (f = 0.1) Turing–Hopf bubble is quite
similar in shape, although smaller, to that for N = 20 m2/kg
(f = 0.1). By way of contrast, the shape of the Turing–Hopf
bubble with only the transport feedback (i.e. when f = 1) is
more circular, with an expected wavelength of pattern that
is smaller than that when the infiltration feedback is turned
on.

The Turing–Hopf bubbles in Fig. 3 indicate regions of linear insta-
bility of the uniform vegetation state. They are not equivalent to
the regions of stability of nonlinear patterns which are typically
referred to as ‘‘Busse balloons’’ [50]. Even still, the numerical
simulation results presented in Section 5 suggest that these linear
calculations provide some insight into characteristics of fully
nonlinear states.

3.4. Non-dimensionalization: origin of the small parameter ϵ

We now introduce a rescaling of the three-field coupled
timescale model Eq. (1) to put it into dimensionless form. The
scaling for time is chosen based on the infiltration timescale TI =
A/KI which corresponds to the characteristic time for a surface
water column of height A to infiltrate into the soil under optimal
conditions: large reservoir of surface water, dense vegetation, and
dry soil. TI ≈ 3 min for the parameter values of Table 1. In
contrast the characteristic time associated with maximal biomass
growth within this model is TG = 1/CΓ , which corresponds to
∼15 days for our default parameters. The spatial scale is chosen
based on the characteristic advection distance of surface water
before infiltrating into the soil XA = KVAδ

√
ζ/KI . This distance is

∼28 m for our parameters. Biomass is scaled by KB = 4 kg/m2

and surface water height by A = 1 cm. For this choice of scalings,
namely,

B = KBb, H = Ah, T =
A
KI

t, X =
KVAδ

√
ζ

KI
x

the coupled model (1) becomes

∂h
∂t

= p(t)− ι(b, s, h)+
∂

∂x

(
ν(b, h) h

)
(6a)

∂s
∂t

= α ι(b, s, h)− ϵ (σ s+ γ bs) (6b)

∂b
∂t

= ϵ

(
sb(1− b)− µb+ δb

∂2b
∂x2

)
(6c)

where

ι(b, s, h) =
(
b+ qf
b+ q

)(
h

h+ 1

)
(1− s)β , ν(b, h) =

hδ−1

1+ ηb
,

and the dimensionless parameters are defined in Table 2. The
parameter ϵ = TI/TG represents the ratio of the infiltration
timescale to the growth timescale and is of order 10−4. We
exploit the smallness of this ratio in the following section to
motivate the switching model that is the focus of the rest of the
paper.

4. A fast–slow switching model

Rainfall initiates fast hydrological processes associated with
overland waterflow and, with it, infiltration from the surface
into the soil. These processes occur on timescales of minutes to
hours. Evapotranspiration and plant growth occur on much longer
timescales, days to months, and we assume can be neglected
during rain events. This separation of scales is evident in the
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Fig. 4. The fast system is initialized using the current biomass profile and soil moisture distribution. It evolves the surface water and soil moisture on the fast time
until surface water is no longer present. The final soil moisture distribution and unchanged biomass profile are then used to initialize the slow system. It evolves
the soil moisture and biomass until the start of the next rain event, and the cycle repeats.

coupled model presented in Section 3 from the small parameter
ϵ in Eq. (6) which represents the ratio of the water infiltration
timescale TI to the biomass growth timescale TG. In this section,
we present a switching model that captures dynamics of fast
processes initiated by rainfall and switches to the dynamics of
slower processes in the absence of surface water. Fig. 4 shows a
schematic diagram of such a model, which we describe in detail
in Section 4.1. We then, in Section 4.2, discuss numerical methods
employed to explore the model along with some potential issues
associated with our choice of periodic boundary conditions.

4.1. Fast–slow switching model: exploiting the limit ϵ → 0

We now motivate a switching model for banded vegetation
patterns by leveraging the fact that ϵ ≪ 1 in the dimensionless
model Eq. (6). We first consider the case that ϵ = 0, corre-
sponding to the assumption that the dynamics occurring on the
biomass growth timescale are completely negligible. The ϵ = 0
assumption leads to a fixed biomass profile b(x) since ∂b/∂t = 0
from Eq. (6c). The remaining two equations of system (6) become:

∂h
∂t

= p(t)−
(
b+ qf
b+ q

)(
h

h+ 1

)
(1− s)β +

∂

∂x

(
hδ

1+ ηb

)
(7a)

∂s
∂t

= α

(
b+ qf
b+ q

)(
h

h+ 1

)
(1− s)β . (7b)

We refer to Eq. (7) as the ‘‘fast system’’, which models the
dynamics during and shortly after rain events. (For convenience,
we substituted in the expressions for infiltration rate ι(b, s, h) and
transport speed ν(b, h) that are defined below Eq. (6).)

We start evolution of the fast system when a rain event
begins, and continue until the surface water h becomes negligible,
i.e. below a threshold of order ϵ. We expect these fast dynamics to
occur over an hours timescale, after which we obtain an updated
soil moisture profile

s
fast system
−−−−−→ s+ θ (b, s, p) (8)

that has been replenished by the rain event. The profile of the
soil moisture replenishment term θ is determined by the fast
system (7), and depends on the biomass b(x) and soil moisture
s(x) profiles prior to the rain event along with the rain event p(t)
itself.

The fast dynamics of Eq. (6) are terminated once h ∼ O(ϵ),
after which the soil moisture and biomass evolution proceeds on
a slow timescale given by τ = ϵt under the assumption that the

surface water height remains fixed at h = 0. Rescaling time in
Eqs. (6b) and (6c) then leads to
∂s
∂τ

= − (σ s+ γ sb) (9a)

∂b
∂τ

= sb(1− b)− µb+ δb
∂2b
∂x2

. (9b)

We refer to Eq. (9) as the ‘‘slow system’’ and use it to evolve
biomass and soil moisture in the absence of surface water. The
slow system (9) is initialized with the biomass profile b prior to
the rain event and the replenished soil moisture s+θ , and evolves
until the next rain event occurs. In results and discussion sections
that follow, we numerically explore this fast–slow model that has
been motivated by the coupled model (1).

4.2. Numerical methods and boundary conditions

We discretize in space with finite differences using first-order
upwinding for advection and second-order centered differences
for diffusion. For time integration we employ Matlab’s ode15s, an
implicit variable-order solver designed for stiff equations [51]. At
the start of each rain event, the fast system is initialized with the
output biomass (which will remain fixed), soil moisture of the
slow system and no initial surface water. The fast system is run
for twice as long as the rain event, with a constant rain input
for the first half of this time. The surface water height typically
has fallen to below 10−3 cm by this point, and the simulation
proceeds to the slow system initialized with the updated soil
moisture and previously output biomass. However, if the surface
water is not below a threshold value of Hthresh = 0.1 cm, the fast
system is run again with no rain input for fixed intervals of time
until the threshold is reached and the simulation can move on to
the slow system.

The simulations are carried out on a periodic domain that
typically corresponds to a few wavelengths of the banded pattern.
The underlying assumption for this choice of boundary conditions
is that we are considering a small section in the middle of a very
long hillslope. One potential issue that may arise with periodic
boundary conditions is that, during the fast system, surface water
may repeatedly reach the bottom of the domain and get re-
injected at the top of the domain. We do not expect surface water
to travel more than a few vegetation bands before infiltrating
into the soil, and find that our simulations are consistent with
this expectation. For example, a simulation of the fast system (7)
with parameters from Table 1 shows that 2 cm of surface water
at the top 15 m of a hillslope is decreased to approximately
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Table 2
Definitions and parameter values of the dimensionless form of the coupled
model given by Eq. (6).
Parameter Definition Value

p P/KI
η NKB 80
δ –
f – 0.1
q Q/KB 0.025
β – 4
α A/φZr 0.037
σ L/(φZrCΓ ) 0.11
γ KB/(φZrC) 1.48
ϵ ACΓ /KI 1.3× 10−4

µ M/(CΓ ) 0.15
δb DBK 2

I /
(
CΓ KV

√
ζ
)2 2.8× 10−3

Fig. 5. Spacetime plot of surface water height in units of cm shown with the
blue indicating 2 cm. The green indicates where vegetation is above 0.01 kg/m2 .
The surface water, initialized at 2 cm along the top 15 m of the domain falls
to below 0.2 mm by the trailing edge of the vegetation band at X ≈ 419 m.
Parameter values used in Eqs. (7) and (9) are given by Table 2 with δ = 1.
(For interpretation of the references to colour in this figure legend, the reader
is referred to the web version of this article.)

1% of its original amount after traveling through an 80 m wide
band of vegetation with peak biomass value of 0.18 kg/m2. The
water travels with a speed of approximately 4 cm/s through the
vegetation band and 13 cm/s over the bare soil. This simulation,
which is shown in Fig. 5, is initialized with the state reached just
prior to a rain event at 200 yr from the simulation shown in Fig. 8
of Section 5.2.

5. Numerical results for fast–slow model

In this section, we explore pattern formation within the fast–
slow switching model, Eqs. (7) and (9), through numerical simu-
lation. Inspired by the biannual rainy seasons shown in Fig. 1(b),
we take as a base-case scenario two major rain events each

year, spaced six months apart, with a mean annual precipitation
of 160 mm/yr. In this case, each rain event lasts for six hours,
and deposits half of the mean annual precipitation at a constant
rate during that short time-frame. Unless otherwise noted, we
use parameter values from Table 2 with δ = 1, correspond-
ing to dimensional quantities given in Table 1, throughout this
section. We also report all quantities in dimensional units, with
the conversions described in Section 3.4. (See also parameters in
Table 1.)

We first study characteristics of stable periodic solutions ob-
tained using sinusoidal perturbations of the uniform state as
initial conditions in Section 5.1. These solutions provide a basis
for interpreting the results of simulations initialized with random
initial perturbations, which we discuss in Section 5.2. We pro-
vide a detailed picture of transients that persist on ecologically
relevant timescales, e.g. decades to centuries, for this case and de-
scribe the observed model behavior on the timescale of millennia.
We then, in Section 5.4, study the influence that the amount of
rainfall has on pattern characteristics. Finally, in Section 5.5, we
explore the role that biomass feedback plays in infiltration and
surface water transport in the pattern forming process. Additional
supporting simulation results are reported in Appendix A of the
online supplement.

5.1. Stable periodic states

We consider a spatial domain of length L = 500 m and take the
positive x-direction to be uphill. We initialize the fast–slow sys-
tem with a 1% sinusoidal perturbation of wavenumber kj = 2π j/L,
j = 1 . . . 30, to the uniform solution with constant precipitation
given by Eq. (4). For 1 ≤ j ≤ 19, the simulation converges
to a periodic traveling wave solution with wavenumber kj, and
for j > 19 the simulation converges to a periodic pattern with
different wavenumber (typically kj with 4 ≤ j ≤ 6). These
stable wavenumbers correspond to a stripe spacing from ∼26 m
(j = 19) all the way to the size of the domain 500 m (j = 1). Fig. 6
shows examples of spatial profiles of two different wavenumber
solutions for the fixed parameter set considered here. The solid
line in each plot represents the annual average while the dotted
lines indicate the pointwise maximum and minimum. The aver-
age biomass, the surface water and soil moisture all peak at the
leading edge of the vegetation bands. While the surface water
and infiltration rates are near zero on average, the maximum
values are at around 2 cm and 100 cm/day, respectively, during
rain events. The soil moisture within the vegetation bands also

Fig. 6. Spatial profiles of patterns with initial perturbation of wavenumber (a) k = 2π/250 m−1 and (b) k = 2π/100 m−1 . For each wavenumber, surface water
height H , Infiltration rate I, soil moisture s, and biomass density B at t = 3000 yr with mean annual precipitation of 160 mm/yr are shown. The solid line is the
annually averaged profile while the dotted lines show the pointwise minimum and maximum values over the course of the year. Parameter values used in Eqs. (7)
and (9) are given by Table 2, and the rain is input uniformly over two evenly-spaced six-hour rainstorms per year.
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Fig. 7. Characteristics of solutions from simulation as a function of pattern
wavenumber. (a) Biomass averaged over time and space, and peak value of
annually-averaged biomass are indicated by solid and dotted lines, respectively.
(b) Fraction of wavelength covered by vegetation band. (c) Uphill migration
frequency of biomass pulse in wavelengths of the pattern per century. Parameter
values used in Eqs. (7) and (9) are given by Table 2, and the rain is input
uniformly over two evenly-spaced six-hour rainstorms per year with mean
annual precipitation of 160 mm/yr.

varies significantly in time, going from s = 0.5 just after a
rain event to below 0.05 just before the start of the next one.
The seasonal variations in biomass, on the other hand, are less
dramatic. We note that, during rain events, the surface water
height is expected to decrease in the vegetated regions for flat-
terrain patterns because of increased infiltration [25]. However,
on a hillslope, the flow induced by the elevation gradient along
with the increased surface roughness of vegetation leads to an
increase in predicted surface water height within the vegetation
bands in the fast–slow model.

Fig. 7 indicates that many pattern characteristics (e.g. average
biomass, fraction of wavelength covered by vegetation) show
remarkably little variation with respect to wavenumber. Panel (a)
indicates a monotonic decrease in the maximum biomass value as
a function of wavenumber. The fraction of the wavelength with
vegetation cover, shown in Panel (b), varies little with k, on the
order of 5% with a maximum at around n = 5. To compute
the fractional cover, we take the edges of the vegetation band
to be the points of steepest increase/decrease in biomass. Using
a threshold value of Q = 0.1 kg/m2 to define the edges leads to
nearly identical fractional cover values.

Unlike the average biomass and fractional cover, the aver-
age migration speed of the bands does vary significantly with
wavenumber: it decreases monotonically from about 200 cm/yr
for the largest band spacing of 500 m (k1 = 2π/500 m−1) to
about 10 cm/yr for a small spacing of 28 m (k18 = 36π/500
m−1), and has a value of 65 cm/yr for patterns with a wavelength
of 100 m. As a possible reference point, observational studies
of banded patterns in the Horn of Africa record typical wave-
lengths of 40 − 250 m and migration speeds measured in 10 s
of centimeters per year, on slopes with typical elevation grades
0.1 − 1.2%. [5,52,53]. The model predictions are therefore of the
right order of magnitude, and this is without these characteristics
being a factor in our parameter selection.

Since there is a significant (increasing) trend in migration
speed with wavelength, we choose to plot the migration fre-
quency (wavelengths of the pattern per century) in Fig. 7(c). For

this we find a relatively modest range of 0.4 − 0.6/century with
a peak speed for a wavelength of 100 m. Deblauwe et al. [5],
drawing on pattern observations around the globe, report slightly
smaller mean migration speed values in the range of 0.1 −

0.3/century, although with error bars that can bring these to our
higher range.

We note that predictions of wavelength and migration speed
that are based on a constant rain input to the coupled model (1)
are way off, both in comparison to the reported observations and
to our fast–slow simulations that incorporate short rain events.
For instance, the onset of Turing patterns for a constant rain
input have wavelength of 26 m, and travel rapidly at a speed
of ∼3.5 m/yr (i.e. ∼13 wavelengths per century). Moreover, the
associated Turing–Hopf bubble of Fig. 3(b) extends all the way
to a MAP ≈ 309 mm/yr, giving a rather high lower bound to
where patterns would occur. Using linear predictions from the
case of constant rain input, and trying to adjust the parameters to
fit those observed pattern characteristics, would lead to different
parameter choices.

5.2. Random initial conditions and asymptotic behavior

While the periodic states summarized in Figs. 6 and 7 persist
for at least 5000 yr and are stable to small perturbations, long-
time simulations with random initial perturbations eventually
approach the long-wavelength patterns. We first provide a de-
tailed account of long-lived transients that persist on ecologically
relevant timescales of centuries before discussing this asymptotic
behavior on the scale of millennia.

Figs. 8 to 10 show details of a 200-yr simulation on a 500 m
domain with mean annual precipitation of 160 mm/yr. These are
the same parameters we used for the periodic patterns in the
previous section. However, we modify the initial condition to be
a 1% random perturbation of the uniformly vegetated state that is
obtained for constant precipitation, given by Eq. (4). These values,
B = 0.126 kg/m2 and s = 0.154, are a good estimate for the mean
of the uniform state in the seasonal case. A spacetime diagram of
the annually-averaged biomass along with spatial profiles of the
surface water, infiltration rate, soil moisture and biomass during
the last year of the simulation are shown in Fig. 8.

The simulation evolves the fast system, Eq. (7), during and
shortly after each rain event. Specifically, constant precipitation,
at a rate of about 13 mm/h, is input during the first six hours and
none during the next six hours, during which time the surface
water height drops to below 10−3 cm. The biomass profile,
which remains fixed during this time, is shown in Fig. 9(a).
Fig. 9(b) shows the initial and final soil water content ΦZr s in
units of cm. A total of 8 cm of water is input uniformly across
the domain by the rain storm and the vegetation bands collect
approximately 10.6 cm on average, while the bare soil regions
collect approximately 1.7 cm on average. The vegetated regions
therefore absorb, on average, approximately 6.2 times the amount
of rainfall because of runoff from the bare soil regions. Fig. 9(c,d)
show spacetime diagrams for surface water height H and in-
stantaneous infiltration rate I over the 12 h period that the fast
system is run. During the rain, both the surface water height and
the infiltration rate are enhanced by the presence of biomass.
The surface water is increased in the vegetation bands because
increased surface roughness slows water transport. This increased
height, along with a positive feedback of biomass directly on
infiltration rate, lead to the heightened accumulation of soil water
content in the vegetation bands that is seen in Fig. 9(b).

At the end of the 12-hour period of the fast system, we then
initialize the slow system with the updated soil moisture from
the fast system and the same biomass profile. Fig. 10 tracks soil
moisture s and biomass B at locations in the vegetation band (blue
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Fig. 8. (a) Spatial profile of surface water height H , infiltration rate I, soil
moisture s, and biomass density B at t = 200 yr. The solid line is the annually
averaged profile while the dotted lines show the pointwise minimum and
maximum values over the course of the year. (b) Spacetime plot of annually
averaged biomass B in units of kg/m2 over the course of the 200 yr simulation.
Yellow indicates low biomass while green indicates high biomass, and the color
scale range is 0 < B < 1 kg/m2 . All subsequent biomass spacetime plots use
the same color scale described here. Parameter values used in Eqs. (7) and (9)
are given by Table 2 with δ = 1, and the rain is input uniformly over two
evenly-spaced six-hour rainstorms per year with mean annual precipitation of
160 mm/yr. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)

and green) and in bare soil (orange) over time for the slow system
during the final year of the simulation shown in Fig. 8. The soil
moisture in the vegetation band initially increases significantly,
but eventually falls to nearly the same level as the bare soil
just before the next rain event. The biomass peak is delayed by
approximately two months after the rain event.

While the behavior in Figs. 8 to 10, initialized with random
perturbation, persists for a millennium, 3500-yr simulations (see
Fig. A2) reveal it to be transient. This is in contrast to the cases
where a periodic perturbation of specific wavenumber is intro-
duced, as described in Section 5.1. The periodic states in Figs. 6
and 7 persist as traveling wave solutions (on annually averaged
timescales) for at least 5000 yr.

The long transients persist on ecologically relevant timescales
and have wavelengths consistent with predictions from linear
stability analysis of the coupled model, Eq. (1), with identical
rain input (i.e. six-hour constant rain intensity storms every six
months). Those calculations indicate an onset of the pattern-
forming instability occurs for a total annual rain of ∼175 mm

(input in two large rain events), and are associated with a wave-
length of ∼94 m. For mean annual precipitation of 160 mm/yr,
the ‘‘Turing–Hopf bubble’’ has a width that indicates the uniform
state is unstable to perturbations with wavenumbers between
k = 0.006 m−1 and k = 0.305 m−1, corresponding to wave-
lengths greater than ∼20 m and all the way up to a kilometer
scale; the most unstable mode for these conditions occurs for
k ≈ 0.06 m−1 (a wavelength of ∼105 m), where the Flo-
quet multiplier reaches a peak value of 1.15. Simulations of the
fast–slow system on a 500 m domain, with an initial periodic
perturbation of fixed wavenumber within this Turing instability
range, appear to be stable, at least for wavelengths greater than
∼25 m, i.e. they do not undergo band-merging events on the
millennial simulation timescale. (See results presented in Fig. 7.)

5.3. Nonlinear dependence of transport on surface water height

The theory for open channel flow suggests a nonlinear de-
pendence of surface water height on transport, e.g. δ = 5/3 in
Eq. (1a). However, we use δ = 1 out of numerical convenience
for the majority of simulations presented here in Section 5. The
predictions of the linear theory for the three-field coupled model
presented in Fig. 3(a) show relatively modest differences between
the δ = 1 and δ = 5/3 cases. The linear theory, however, is
about the stability of the spatially uniform solutions and does
not provide information about the fully nonlinear states. Our
limited simulations suggest that the nonlinear behavior may also
be qualitatively unchanged for δ = 5/3, compared to δ = 1. To
illustrate the minor quantitative differences in periodic solutions
for the two cases, we take the solution with k = 2π/100 m−1

for the case of δ = 1, shown in Fig. 6(b), as an initial condition
for a simulation with δ = 5/3. A comparison of this initial
condition to the final state that the simulation converges to is
shown in Fig. 11. The resulting periodic state exhibits slightly less
biomass for δ = 5/3: the bands are slightly narrower with slightly
lower peak values. Despite these minor quantitative differences,
the overall qualitative character of the solution profiles is the
same. (Another example, presented as Fig. A3 in Appendix A of
the online supplement, starts with a random perturbation of the
uniform state, and shows a much slower development of patterns
for δ = 5/3, indicating another aspect of the numerical speed-up
we achieve for δ = 1.)

5.4. Dependence on mean annual precipitation

In this section we explore the impact on the patterns of
ramping down the mean annual precipitation and then ramping
it back up, with details on our protocol for this provided below.
We find that the range of existence for patterns is considerably
greater than suggested by the linear theory of Section 3.3; rather
than patterns only existing in the range of 109−175 mm/yr, they
exist as highly nonlinear states in the range of ∼35–201 mm/yr.
We also find that on gradually decreasing the precipitation there
are a number of discrete steps that reduce the number of bands
on the 500 m domain until only one band persists. However, as
we then increase the precipitation, these jumps in the number
of bands do not reverse themselves. Instead the single band
persists but with ever increasing width until it eventually fills the
domain as a spatially uniform vegetation state. We find that the
average biomass decreases approximately linearly with precipi-
tation level, but that the peak biomass values in the bands are
relatively constant. In particular, it is the fraction coverage per
wavelength that contributes most significantly to the change in
average biomass on the domain, and not the peak biomass level
in the bands.
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Fig. 9. Fast system during last year of simulation shown in Fig. 8. (a) Fixed biomass profile during simulation of fast system. (b) Initial (final) soil water content
(φZr s) in units of cm shown with dotted (solid) line. (c) Spacetime plot of surface water height H in units of cm during and shortly after a 6-hour storm with 80 mm
of rainfall in the final year of a 200-yr simulation. (d) Spacetime plot of instantaneous infiltration rate in units of cm/day during the same time period.

Fig. 10. Time series of (a) soil moisture and (b) biomass during the last year
of the simulation shown in Figs. 8 and 9. The blue (green) lines indicate soil
moisture (biomass) at the peak of the vegetation band (x ≈ 220 m), and the
orange lines indicate the center of the uphill bare soil region (x ≈ 255 m). The
cyan vertical lines indicate the time of the rain events. (For interpretation of
the references to colour in this figure legend, the reader is referred to the web
version of this article.)

Results associated with decreasing mean annual precipitation
are summarized in Fig. 12. In order to determine where the
uniform state loses stability, we begin with the stable uniform
vegetation state at 240 mm/yr and decrease the precipitation
amount in steps of 2 mm/yr. At each step, we add 1% pertur-
bations and allow the simulation to run for 300 yr (or shorter
if it converges to a uniform state more quickly). We find that
the uniform state of the fast–slow system remains stable until
174 mm/yr. Perturbing the uniform state at 174 mm/yr with 1%
sinusioidal perturbations of wavenumber kj = 2π j/L with j =

1 . . . 19, we find that the uniform state is unstable to the 3 ≤ j ≤
8 wavenumbers, corresponding to wavelengths between about 63
and 167 m. This is quantitatively consistent with the predictions
of linear theory for the three-field coupled model presented in
Section 3. Interestingly, the average biomass on the domain for
these highly nonlinear patterned states is approximately equal to
the maximum biomass obtained for the uniform vegetation state.

Fig. 11. Nonlinear dependence of transport on surface water height (δ = 5/3).
Profiles at end of 200 yr simulation using δ = 5/3 and initialized with the
solution shown in Fig. 6(b) that was obtained using δ = 1. Colored lines show,
from top to bottom: spatial profile of surface water height H , infiltration rate
I, soil moisture s, and biomass density B at t = 200 yr. The solid line is the
annually averaged profile while the dotted lines show the pointwise minimum
and maximum values over the course of the year. The profiles of the initial
condition, a solution when δ = 1, are shown in light gray for reference.
Parameter values used in Eqs. (7) and (9) are given by Table 2, and the rain
is input uniformly over two evenly-spaced six-hour rainstorms per year with
mean annual precipitation of 160 mm/yr. (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this
article.)

We continue decreasing the mean annual precipitation from
174 mm/yr, in 2 mm/yr steps, starting with the j = 5 wavenum-
ber pattern, corresponding to a wavelength of 100 m. This state
persists until the precipitation reaches 52 mm/yr, well below
the transcritical bifurcation that creates the uniform state at
109 mm/yr. Moreover, the patterned state sustains more biomass
on average than the uniform state, for precipitation values where
the uniform state does exist. While the patterns maximum
biomass value does not change very much over this range, the
fraction of the domain covered by vegetation decreases linearly
with precipitation, i.e. there is a linear decrease in the width of
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Fig. 12. Decreasing Precipitation. The green solid (dotted) line indicates average (minimum and maximum) values of biomass for uniformly vegetated state. At 174
mm/yr, this spatially uniform state is unstable to a periodic perturbation with wavenumber k = 2π/100 m−1 . The red left arrow (dot) indicate the maximum
(average) value of the pattern that emerges. At 52 mm/yr this pattern with wavelength 100 m is unstable and a pattern with wavelength 250 m emerges, and
at 40 mm/yr a pattern with a single wavelength on the domain is selected. At 34 mm/yr this single-wavelength pattern collapses to the bare soil state. Average
and min/max values of the biomass profiles are shown for the three different wavelengths. When it exists, the uniform vegetation state is included in gray for the
given precipitation value. A plot of the fraction of a wavelength covered by biomass shows linearly decreasing coverage with precipitation. Parameter values used
in Eqs. (7) and (9) are given by Table 2, and the rain is input uniformly over two evenly-spaced six-hour rainstorms per year. (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 13. The green lines and red left-arrows, from Fig. 12, indicate the uniform vegetation state and the patterns obtained by decreasing precipitation with steps of 2
mm/yr. The blue right-arrows indicate the maximum of the biomass for increasing precipitation. At each step of 2 mm/yr, the state remains a single biomass pulse
on the domain but with increased width. Parameter values used in Eqs. (7) and (9) are given by Table 2, and the rain is input uniformly over two evenly-spaced
six-hour rainstorms. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

the vegetation bands with MAP . At 52 mm/yr, a pattern with 250
m wavelength emerges from the simulation and transitions to a
single band on the 500 m domain at 40 mm/yr. This so-called
‘oasis state’ finally collapses to the bare soil state at 34 mm/yr.

As shown in Fig. 13, we also scan up in precipitation, starting
with the oasis state at 35 mm/yr and moving in increments of
2 mm/yr as before. This state with a single vegetation band on
the domain persists all the way up to 201 mm/yr before losing
stability to the uniform vegetation state. As the precipitation
increases, the width of the vegetation band increases. We note
that at around 179 mm/yr, there is a qualitative change in the
shape of biomass profile, in terms of its concavity. Above 179
mm/yr, the biomass values at the trailing edge of the vegetation

band correspond to those of the uniform vegetation state for
the given precipitation level. If we again decrease precipitation,
starting now with a one-pulse solution, we find an apparent
bistability of two distinct single-pulse states for precipitation
between approximately 175 and 177 mm/yr, which is in a region
where the uniform state is also (barely) stable. See Fig. A4 in
Appendix A of the online supplement for more details.

5.5. Influence of biomass feedback on infiltration and transport

The fast component of our model (7) incorporates two im-
portant feedbacks between the biomass and the water resource
re-distribution, and in this section we explore the relative impact



14 P. Gandhi, S. Bonetti, S. Iams et al. / Physica D 410 (2020) 132534

Fig. 14. Influence of biomass feedback on surface water transport and infiltration rate with mean annual precipitation of 140 mm/yr. For each of the following
choices of (f ,N), we show spatial profiles during the last year of the simulation above the spacetime plot of the biomass from a 1000-yr simulation. Below those,
we present the time series of soil moisture during the last year at the location associated with peak biomass in a vegetation band (blue) and in the center of a bare
soil region (orange). Standard parameter choices from Table 1 are used in each case except that: (a) transport feedback is turned off, N = 0 m2/kg and f = 0.1
(b) standard parameters are used, N = 20 m2/kg and f = 0.1 (c) infiltration feedback is turned off, N = 20 m2/kg and f = 1. All other parameter values used in
Eqs. (7) and (9) are given by Table 2 with δ = 1, and the rain is input uniformly over two evenly-spaced six-hour rainstorms per year. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)

of those feedbacks on the pattern characteristics. The presence
of biomass is known to enhance infiltration of surface water
into the soil within the dryland ecosystems that exhibit banded
vegetation patterns. This positive feedback plays a central role
in the pattern formation process within many conceptual mod-
els [22,28,46]. The model we consider here captures an additional
feedback of biomass on the hydrology, namely an increase in sur-
face roughness that can slow down water flow where biomass is
present [24,25]. Our standard choice of parameters includes both
kinds of biomass feedback but, as Fig. 14 illustrates, patterns are
possible with either feedback alone. These results are consistent
with linear predictions from the three-field coupled model shown
in Fig. 3(d).

The simulations for Fig. 14 are initialized with a random per-
turbation of the uniform state, and carried out with mean annual
precipitation of 140 mm/yr. The parameters characterizing the
biomass feedback on surface water transport, N in Eq. (1a), and
infiltration rate, f in the infiltration function I in Eqs. (1a) and
(1b), are varied with all other parameter values taking the default
parameters from Table 1. Simulation results with the standard
parameters, N = 20 m2/kg and f = 0.1, are shown in Fig. 14(b).
These results are to be contrasted with those of columns (a) and
(c) for which either the transport or the infiltration feedback
is turned off by setting N = 0 or f = 1, respectively. The
top row shows plots of the spatial profiles of surface water,
infiltration rate, soil moisture and biomass during the last year
of the simulation. The middle row shows spacetime diagrams

of the annually-averaged biomass. The bottom plots show time
series of the soil moisture at the peak biomass location within
the vegetation band (blue) and in the center of a bare soil region
(orange) during the last year of the simulation. The soil moisture
plot provides a qualitative comparison for field measurements, as
shown in Fig. 2.

We make the following observations about Fig. 14:

• While the width of the bare soil region is somewhat compa-
rable between all three cases, the widths of the vegetation
bands are significantly greater when there is no feedback
in the transport, i.e. N = 0 m2/kg. This leads to far fewer
bands on the domain in this case, compared to the cases
with transport feedback.

• In absence of the infiltration feedback i.e. f = 1, the
bands are more regular in spacing and travel approximately
twice as fast across the domain and with uniform speed. In
contrast, when there is no transport feedback, i.e. N = 0,
then we see a lag between the leading edge colonization and
trailing edge death.

• The asymmetry in the profiles of the vegetation bands, be-
tween leading uphill edge and trailing downhill edge, is
much more pronounced in the presence of the transport
feedback. In fact, the profiles are almost triangular when
the infiltration feedback is turned off, and almost rectan-
gular when there is no transport feedback. This difference
in profiles is also quite pronounced in the soil moisture
profiles.
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• The transport feedback is required to concentrate the sur-
face water in the bands. Moreover, the peaks of the sur-
face water are lower without an infiltration feedback, and
greatest when both feedbacks are present.

• The time series of the soil moisture in the lower plots
shows then when there is no infiltration feedback there is
a decreased contrast in soil moisture between the bare soil
and vegetation band immediately following the rain event.

• When there is no infiltration feedback the soil moisture
at the peak of the biomass actually falls below the soil
moisture in the bare soil zone. Specifically, a switching point
at around 100 days after the rain event is seen in the time
series of the soil moisture, where s of the bare soil becomes
higher than s within the vegetation band. This switching
behavior is also observed in some drought phases of the field
observations illustrated by Fig. 2.

6. Discussion

In this paper we have motivated and then investigated a fast–
slow mathematical modeling framework, Eqs. (7) and (9), for
vegetation pattern formation. This fast–slow framework exploits
the inherent separation of timescales between fast hydrologi-
cal processes and slow biomass dynamics. Our fast–slow model
switches between a fast system, Eq. (7), that resolves aspects
of the surface water and soil moisture dynamics during rain
events at the fast timescale of minutes to hours, and a slow
system, Eq. (9), that captures the dynamics of biomass and soil
moisture interactions on the slow timescale of weeks to months
when no surface water is present. By modeling key processes
on the timescales at which they occur, we are able to employ a
conceptual-level model with parameter values that are consistent
with observations of the processes being modeled. Soil moisture
dynamics occur on the fast timescale, through infiltration, as well
as the slow timescale, through evapotranspiration. A comprehen-
sive set of appropriately resolved time series data on soil moisture
for banded vegetation patterns would be useful to probe this
modeling framework on its multiple timescales.

We do not choose parameters to fit predicted pattern char-
acteristics to observations of banded vegetation patterns, as has
been done for models that were developed for the slow timescale
of the biomass dynamics alone (See, e.g. [37]). Even still, the fast–
slow switching model is able to accurately capture certain details
of the phenomenon with hydrologically-informed parameter val-
ues. Numerical simulation of the model reveals that the spacing of
the vegetation bands, and their up-slope colonization speeds are
of the right order of magnitude. Another focus of our investigation
relates to the distribution of the soil moisture relative to the
biomass. Our expectation, based on limited ground-based studies
of this, is that the soil moisture should be trapped for much of
the year where the biomass is located. Our simulation results are
consistent with this. However, we make a number of simplify-
ing modeling assumptions, including to neglect subsurface water
transport and the influence of lateral spreading of roots. More
careful thought must also be given to the biomass model in future
work to ensure that their key processes are being captured.

Many model studies suggest that bare-soil areas should in-
crease in size to compensate for a decrease in precipitation
level [54]. The fast–slow switching model further predicts that
whether this compensation occurs by adjusting the band spacing
or the band width depends on whether the rainfall is increas-
ing or decreasing. Our most extensive model simulation results
focus on a situation where there are two heavy rain events
of equal strength per year, which drive the pattern formation
process. From those simulations, there is strong evidence for
multi-stability, history-dependence, and hysteresis. In some of

the longest simulations we gradually decrease and then increase
the annual precipitation levels. As precipitation levels decrease,
a gradual decrease in band width is observed. This narrowing is
accompanied by occasional losses of bands leading to increases in
band spacing. For low precipitation levels, the vegetation bands
are narrow, with large swaths of bare soil in between them. As
the precipitation level increases, the widths of the bands increase
without any change to the wavelength of the pattern. These
results are consistent with predictions suggested to Hemming by
his detailed observations of banded patterns in Northern Somalia
that he reported in 1965 [10]. In particular, he predicted that
increasing rainfall might widen individual arcs while decreasing
rainfall might reduce the number of arcs.

The fast–slow modeling framework is well-suited for explor-
ing the impact that the temporal rainfall pattern has on spatial
vegetation pattern formation in these ecosystems, and this will
be a major focus of future efforts. Preliminary simulation results,
which are described further in the online supplement, indicate
that the temporal distribution of rain events influences whether
patterns will occur at a given level of mean annual precipitation,
but more work is needed to understand this in detail. With fewer
rain events (at the same annual precipitation level), patterns
occur within a smallerMAP range. For one twelve-hour rain event
each year, at our standard parameters (see Table 2), patterns
occur at a range of 89 to 147 mm/yr. With the same rain amount
spread between two six hour events each year, the range grows
to 34 to 201 mm/yr (Fig. 13). A previous study by Guttal et al. [30]
on the effect of seasonal rain input within the three-field model
by Rietkerk et al. [23] found the opposite trend. However they
did not attempt to incorporate timescales associated with indi-
vidual rain events and instead focused on capturing the impact
of drought on the biomass dynamics.

It may be tempting to interpret the presence of patterns as a
sign of stress in the ecosystem, with their existence at higherMAP
levels indicating reduced resilience. However, we caution against
this. In the fast–slow model presented here, the patterned states
have a higher total biomass than the corresponding uniform
vegetation state for the same precipitation level. In our ramped
precipitation simulations summarized by Fig. 13, we find that the
pattern state only disappears (around 201 mm/yr) when it is no
longer ‘‘an advantage’’ to the system over the uniform vegetation
case.

While the fast–slow switching model is motivated by a small
parameter in a three-field coupled timescale model, Eq. (6), we
do not consider the fast–slow model as an approximation of
the coupled model in the sense of singular perturbation theory.
However we do show that linear predictions of the coupled model
are consistent with simulations of the fast–slow model when the
same temporal rain profile is used. The mathematical relationship
between these two models will be explored at a more formal level
in future work. Our goal is to be able to start from a more detailed
model that captures fast hydrological processes and formally
make the reduction to a two-field model that operates on the
slow timescale. While this has been done in the high infiltration
limit where there is no overland water flow [55], capturing the
influence of surface water transport on soil moisture through
an effective transport could help make a direct link to models
like those of Klausmeier. Moreover, it may provide insight into
how well rainfall is approximated by the inclusion of an additive
constant to the soil moisture rate equation, as is commonly done,
or suggest alternate approaches that may be more appropriate.

In future work, we are particularly interested in considering
the influence of stochastic rainfall within the fast–slow switching
framework. One approach for doing so, conceptually similar to
the work of Siteur et al. [35], is to develop the interpretation
that the fast system provides a kick to the slow evolution of soil
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moisture and biomass. The kicks from the fast system, under cer-
tain simplifying approximations, can be solved in closed form via
the method of characteristics. This may lead to progress towards
analytic insights as well as an increased speed-up of numerical
simulations. Alternatively, numerical speed-up could be achieved
by machine learning approaches [56], or by more parsimonious
modeling of the fast system.

The fast–slow framework introduced in this paper is a con-
ceptual model that captures the natural timescales of important
processes. In particular, it resolves the fast hydrological pro-
cesses that contribute important positive feedbacks between the
biomass and the water resource. It produces physically reason-
able predictions in the absence of parameter tuning and pro-
vides a testbed for exploring the impact of different precipitation
regimes on patterns. At a practical level, this framework’s advan-
tage is two-fold: (1) capturing both the fast and slow timescales
in the model allows for the parameters to be chosen based on
information about the particular processes being modeled, and
(2) separating fast and slow processes in a switching model
provides a computational speed-up over a coupled timescale
model. We also believe that there is a conceptual advantage in
that the fast–slow switching framework captures the qualitatively
different behaviors of the system when surface water is and is not
present in a very transparent way.
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