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Abstract

Machine learning models have been found to learn
shortcuts—unintended decision rules that are unable to
generalize—undermining models’ reliability. Previous works
address this problem under the tenuous assumption that only
a single shortcut exists in the training data. Real-world im-
ages are rife with multiple visual cues from background to
texture. Key to advancing the reliability of vision systems
is understanding whether existing methods can overcome
multiple shortcuts or struggle in a Whac-A-Mole game, i.e.,
where mitigating one shortcut amplifies reliance on others.
To address this shortcoming, we propose two benchmarks:
1) UrbanCars, a dataset with precisely controlled spuri-
ous cues, and 2) ImageNet-W, an evaluation set based on
ImageNet for watermark, a shortcut we discovered affects
nearly every modern vision model. Along with texture and
background, ImageNet-W allows us to study multiple short-
cuts emerging from training on natural images. We find
computer vision models, including large foundation models—
regardless of training set, architecture, and supervision—
struggle when multiple shortcuts are present. Even methods
explicitly designed to combat shortcuts struggle in a Whac-
A-Mole dilemma. To tackle this challenge, we propose Last
Layer Ensemble, a simple-yet-effective method to mitigate
multiple shortcuts without Whac-A-Mole behavior. Our re-
sults surface multi-shortcut mitigation as an overlooked chal-
lenge critical to advancing the reliability of vision systems.
The datasets and code are released: https://github.
com/facebookresearch/Whac—-A-Mole.

1. Introduction

Machine learning often achieves good average perfor-
mance by exploiting unintended cues in the data [26]. For
instance, when backgrounds are spuriously correlated with
objects, image classifiers learn background as a rule for ob-
ject recognition [93]. This phenomenon—called “shortcut
learning”—at best suggests average metrics overstate model
performance and at worst renders predictions unreliable as
models are prone to costly mistakes on out-of-distribution
(OOD) data where the shortcut is absent. For example,
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COVID diagnosis models degraded significantly when spuri-
ous visual cues (e.g., hospital tags) were removed [17].

Most existing works design and evaluate methods under
the tenuous assumption that a single shortcut is present in
the data [33,61,74]. For instance, Waterbirds [74], the most
widely-used dataset, only benchmarks the mitigation of the
background shortcut [7,15,59]. While this is a useful simpli-
fied setting, real-world images contain multiple visual cues;
models learn multiple shortcuts. From ImageNet [18,82]
to facial attribute classification [51] and COVID-19 chest
radiographs [17], multiple shortcuts are pervasive. Whether
existing methods can overcome multiple shortcuts or strug-
gle in a Whac-A-Mole game—where mitigating one shortcut
amplifies others—remains a critical open question.

We directly address this limitation by proposing two
datasets to study multi-shortcut learning: UrbanCars and
ImageNet-W. In UrbanCars (Fig. 1a), we precisely inject
two spurious cues—background and co-occurring object. Ur-
banCars allows us to conduct controlled experiments probing
multi-shortcut learning in standard training as well as short-
cut mitigation methods, including those requiring shortcut
labels. In ImageNet-W (IN-W) (Fig. 1b), we surface a new
watermark shortcut in the popular ImageNet dataset (IN-
1k). By adding a transparent watermark to IN-1k validation
set images, ImageNet-W, as a new test set, reveals vision
models ranging from ResNet-50 [31] to large foundation
models [10] universally rely on watermark as a spurious cue
for the “carton” class (c¢f. cardboard box in Fig. 1b). When
a watermark is added, ImageNet top-1 accuracy drops by
10.7% on average across models. Some, such as ResNet-50,
suffer a catastrophic 26.7% drop (from 76.1% on IN-1k to
49.4% on IN-W) (Sec. 2.2)). Along with texture [27,34]
and background [93] benchmarks, ImageNet-W allows us to
study multiple shortcuts emerging in natural images.

We find that across a range of supervised/self-supervised
methods, network architectures, foundation models, and
shortcut mitigation methods, vision models struggle when
multiple shortcuts are present. Benchmarks on UrbanCars
and multiple shortcuts in ImageNet (including ImageNet-W)
reveal an overlooked challenge in the shortcut learning prob-
lem: multi-shortcut mitigation resembles a Whac-A-Mole
game, i.e., mitigating one shortcut amplifies reliance on oth-
ers. Even methods specifically designed to combat shortcuts
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(b) We discover the new watermark shortcut emerged from a natural image dataset—
ImageNet, and create ImageNet-W test set for ImageNet.

Figure 1. Our benchmark results on both datasets reveal the overlooked Whac-A-Mole dilemma in shortcut mitigation, i.e., mitigating one

shortcut &~ amplifies the reliance on other shortcuts a

decrease reliance on one shortcut at the expense of amplify-
ing others (Sec. 5). To tackle this open challenge, we propose
Last Layer Ensemble (LLE) as the first endeavor to mitigate
multiple shortcuts jointly without Whac-A-Mole behavior.
LLE uses data augmentation based on only the knowledge
of the shortcut type without using shortcut labels—making
it scalable to large-scale datasets.

To summarize, our contributions are (1) We create Ur-
banCars, a dataset with precisely injected spurious cues, to
better benchmark multi-shortcut mitigation. (2) We curate
ImageNet-W—a new out-of-distribution (OOD) variant of
ImageNet benchmarking a pervasive watermark shortcut we
discovered— to form a more comprehensive multi-shortcut
evaluation suite for ImageNet. (3) Through extensive bench-
marks on UrbanCars and ImageNet shortcuts (including
ImageNet-W), we uncover that mitigating multiple short-
cuts is an overlooked and universal challenge, resembling
a Whac-A-Mole game, i.e., mitigating one shortcut ampli-
fies reliance on others. (4) Finally, we propose Last Layer
Ensemble as the first endeavor for multi-shortcut mitigation
without the Whac-A-Mole behavior. We hope our contri-
butions advance research into the overlooked challenge of
mitigating multiple shortcuts.

2. New Datasets for Multi-Shortcut Mitigation

While most previous datasets [4,60,61,74] are based on
the oversimplified single-shortcut setting, we introduce the
UrbanCars dataset (Sec. 2.1) and the ImageNet-Watermark
dataset (Sec. 2.2) to benchmark multi-shortcut mitigation.

2.1. UrbanCars Dataset

Overview We construct the UrbanCars dataset with mul-
tiple shortcuts: background (BG) and co-occurring object
(CoObj). As shown in Fig. 2, each image in UrbanCars has
a car at the center on a natural scene background with a
co-occurring object on the right. The task is to classify the
car’s body type (i.e., target) by overcoming two shortcuts in
the training set, which correlate with the target label.
Formally, we denote the dataset as a set of N tuples,
{(z:,yi, bi, ;) } ¥, where each image z; is annotated with

three labels: target label y; for the car body type, background
label b;, and co-occurring object label c;. We use a shared
label space for all three labels with two classes: urban and
country, i.e., y;, b;,¢; € {urban, country}. Based on
the combination of three labels, the dataset is partitioned
into 22 = 8 groups, i.e., {urban, country} car on the
{urban, country} BG with the {urban, country}
CoObj. We introduce the data distribution and construction
below and include details in Appendix A.1.

Data Distribution  The training set of UrbanCars has two
spurious correlations of BG and CoObj shortcuts, whose
strengths are quantified by P(b =y | y) and P(c =y | y),
respectively. That is, the ratio of common BG (or CoObj)
given a target class. We set both to 0.95 by following the
correlation strength in [74]. We assume that two shortcuts
are independently correlated with the target, i.e., P(b,c |
y) =P(b|y)P(c|y). As shown in Fig. 2, most urban car
images have the urban background (e.g., alley) and urban co-
occurring object (e.g., fire plug), and vice versa for country
car images. The frequency of each group in the training set
is in Fig. 2. The validation and testing sets are balanced
without spurious correlations, i.e., ratios are 0.5.

Data Construction The UrbanCars dataset is created
from several source datasets. The car objects and labels are
from Stanford Cars [50], where the urban cars are formed
by classes such as sedan and hatchback. The country cars
are from classes such as truck and van. The backgrounds are
from Places [99]. We use classes such as alley and crosswalk
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Figure 2. Unbalanced groups in UrbanCars’s training set based on
two shortcuts: background (BG) and co-occurring object (CoOby).
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Figure 3. Many carton class images in the ImageNet training set
contain the watermark. Saliency maps [78] of ResNet-50 [31] show
that the watermark serves as the shortcut for the carton class.

to form the urban background. The country background
images are from classes such as forest road and field road.
Regarding co-occurring objects, we use LVIS [29] to obtain
the urban ones (e.g., fireplug and stop sign), and country ones
(e.g., cow and horse). After obtaining the source images, we
paste the car and co-occurring object onto the background.

UrbanCars Metrics We first report the In Distribu-
tion Accuracy (I.D. Acc) on UrbanCars. It computes the
weighted average over accuracy per group, where weights
are proportional to the training set’s correlation strength (i.e.,
frequency in Fig. 2) by following “average accuracy” [74]
to measure the performance when no group shift happens.

To measure robustness against the group shift, previous
single-shortcut benchmarks [15,59,74] use worst-group ac-
curacy [74], i.e., the lowest accuracy among all groups. How-
ever, this metric does not capture multi-shortcut mitigation
well since it only focuses on groups where both shortcut
categories are uncommon (cf. the last column in Fig. 2).

To address this shortcoming, we introduce three new met-
rics: BG Gap, CoObj Gap, and BG+CoObj Gap. BG Gap
is the accuracy drop from I.D. Acc to accuracy in groups
where BG is uncommon but CoObj is common (cf. 1st yel-
low column in Fig. 2). Similarly, CoObj Gap computes the
accuracy drop from I.D. Acc to groups where only CoObj is
uncommon (cf. 2nd yellow column in Fig. 2). BG+CoObj
Gap computes accuracy drop from [.D. Acc to groups where
both BG and CoObj are uncommon (cf. red column in Fig. 2).
The first two metrics measure the robustness against the
group shift for each shortcut, and the last metric evaluates
the model’s robustness when both shortcuts are absent.

2.2. ImageNet-Watermark (ImageNet-W)

In addition to the precisely controlled spurious corre-
lations in UrbanCars, we study naturally occurring short-
cuts in the most popular computer vision benchmark: Im-
ageNet [18]. While ImageNet lacks shortcut labels, we
can evaluate models’ reliance on texture [27] and back-
ground [93] shortcuts. We additionally discovered a perva-
sive watermark shortcut and contribute ImageNet-Watermark
(ImageNet-W or IN-W), an evaluation set to expose models’
watermark shortcut reliance. Along with texture and back-
ground, this forms a comprehensive suite to evaluate reliance
on the multiple naturally occurring shortcuts in ImageNet.
Watermark Shortcut in ImageNet In the training set of
the carton class, many images contain a watermark at the
center written in Chinese characters and ImageNet-trained
ResNet-50 [31] focuses on the watermark region to predict

O re—
Figure 4. Carton images from LAION [75,76], a large-scale dataset
with 400 million to 2 billion images used in CLIP [67] pretraining,
also contain watermarks, enabling CLIP’s reliance on the water-
mark shortcut in zero-shot transfer to ImageNet and ImageNet-W.

the carton class (Fig. 3). Since the watermark reads carton
factory names or contact person’s names of a carton factory,
we conjecture that this watermark shortcut originates from
the real-world spurious correlation of web images. In the
validation set, none of the carton class images contain the
watermark, so ResNet-50 underperforms on the carton class
(48%) relative to overall accuracy (76%) across 1k classes.

Data Construction To test the robustness against
the watermark shortcut, we create ImageNet-Watermark
(ImageNet-W or IN-W) dataset, a new out-of-distribution
evaluation set of ImageNet. As shown in Tab. 1, we overlay
a transparent watermark written in “FE{ZHEIZHEIE” at the
center of all images from ImageNet validation set to mimic
the watermark pattern in IN-1k, where “3£1%” means “short-
cut” in Chinese. We do this because we find that models
use the watermark even when the content is not identical
to the watermark in the training set of carton images, sug-
gesting that it is watermark’s presence rather than its content
that serves as the shortcut. We evaluate watermark in other
contents and languages in Appendix A.2.

ImageNet-W Metrics We mainly use two metrics to mea-
sure watermark shortcut reliance: (1) IN-W Gap is the ac-
curacy on IN-W minus the accuracy on IN-1k validation
set. A smaller accuracy drop indicates less reliance on the
watermark shortcut across all 1000 classes. (2) Carton Gap
is the carton class accuracy increase from IN-1k to IN-W. A
smaller Carton Gap indicates less reliance on the watermark
shortcut for predicting the carton class.

To demonstrate that the watermark shortcut is used for
predicting carton, we use the following in Tab. 1: (1)
P(§ = carton), the predicted probability of carton on all
IN-1k validation set images, (2) AP(§ = carton), the pre-
dicted probability increase from IN-1k to IN-W of all 1k
classes, and (3) AP(g = carton | y = carton), the predicted
probability increase from IN-1k to IN-W of the carton class.
Ubiquitous reliance on the watermark shortcut To
study reliance on the watermark shortcut, we use ImageNet-
W to benchmark a broad range of State-of-The-Art (SoTA)
vision models, including standard supervised training, using
different architectures [22,31,68], augmentations and regu-
larizations [27,36,94,95]. We also benchmark foundation
models [10] pretrained on larger datasets [28,67,75,76,81]
with different pretraining supervision and transfer learning
techniques [13,28,30,67,81,91]. In Tab. 1, we find a consid-
erable IN-W Gap of up to -26.7 and -10.7 on average and
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Prediction: goldfish w/ Watermark: carton w/ Watermark: pencil sharpener — carton
method architecture (pre)training data \ IN-1k Acc T P(y = carton) (%) \ IN-W Gap +  AP(3 = carton) (%) | \ Carton Gap |, AP(g = carton | y = carton) (%) |
Supervised ResNet-50 [31] IN-1k [18] 76.1 0.07 -26.7 +7.56 +40 +42.46
MoCov3 [13] (LP) ResNet-50 IN-1k 74.6 0.08 -20.7 +2.94 +44 +44.37
Style Transfer [27] ResNet-50 SIN [27] 60.1 0.10 -17.3 +4.91 +52 +50.06
Mixup [95] ResNet-50 IN-1k 76.1 0.07 -18.6 +3.43 +38 +39.78
CutMix [94] ResNet-50 IN-1k 78.5 0.09 -14.8 +1.92 +22 +29.61
Cutout [20,98] ResNet-50 IN-1k 77.0 0.08 -18.0 +2.93 +32 +38.06
AugMix [36] ResNet-50 IN-1k 71.5 0.09 -16.8 +2.61 +36 +34.44
Supervised RG-32¢gf IN-1k | 80.8 0.09 | -14.1 +3.74 | +32 +33.43
SEER [28] (FT) RG-32gf [68]  IG-1B [28] | 833 0.09 |65 +0.56 | +18 +24.26
Supervised ViT-B/32 [22]  IN-1k 759 0.09 -8.7 +1.20 +34 +34.31
Uniform Soup [91] (FT)  ViT-B/32 WIT [67] 79.9 0.09 -79 +0.32 +24 +23.87
Greedy Soup [91] (FT) ~ ViT-B/32 WIT 81.0 0.09 -6.5 +0.35 +16 +23.87
Supervised ViT-L/16 IN-1k 79.6 0.08 -6.2 +0.82 +34 +32.57
CLIP [67] (zero-shot) ViT-L/14 WIT 76.5 0.06 -4.4 +0.01 +12 +1.75
CLIP (zero-shot) VIiT-L/14 LAION-400M [76] 72.7 0.05 -4.9 +0.03 +12 +13.76
MAE [30] (FT) ViT-H/14 IN-1k 86.9 0.08 -3.5 +0.43 +30 +29.59
SWAG [81] (LP) ViT-H/14 1G-3.6B [81] 85.7 0.09 -4.9 +0.19 +8 +12.80
SWAG (FT) ViT-H/14 1G-3.6B 88.5 0.09 -3.1 +0.35 +18 +20.25
CLIP (zero-shot) ViT-H/14 LAION-2B [75] 71.9 0.06 -3.6 +0.03 +16 +12.01

average | 78.6 0.08 | -10.7 +1.74 | +26.7 +27.96

Table 1. Models rely on the watermark as a shortcut for the carton class. LP and FT denote linear probing and fine-tuning on ImageNet-
1k, respectively. Because models exhibit drops (i.e., IN-W Gap) and an increase in accuracy and predicted probability of the carton class
from IN-1k to IN-W, we conclude that various vision models suffer from the watermark shortcut (more results in Appendices E.1 and E.2).

a Carton Gap of up to +52 and +26.7 on average. While
all models exhibit uniform (1/1000 = 0.1%) predicted
probabilities for carton class (P(§ = carton)) on IN-1Kk,
we observe a considerable increase in the predicted proba-
bility of carton on IN-W (AP(y = carton)) and a signifi-
cant predicted probability increase in carton class images
(AP(§ = carton | y = carton)). Although compared to su-
pervised ResNet-50, some models with larger architectures
or extra training data can decrease reliance on the water-
mark shortcut, none of them fully close the performance
gaps. Interestingly, CLIP with zero-shot transfer still suf-
fers from the watermark shortcut with +12 to +16 Carton
Gap, which could be explained by many carton images in the
pretraining data (e.g., LAION) also containing watermarks
(cf. Fig. 4). To the best of our knowledge, this is the first
real-world example of the existence of shortcut in billion-
scale datasets for foundation model pretraining, which
also confirms findings that data quality, not quantity [25,62],
matters most to CLIP’s robustness.

Multi-Shortcut Mitigation Metrics on ImageNet To
measure the mitigation of multiple shortcuts, we evaluate
models on multiple OOD variants of ImageNet. In this work,
we study three shortcuts on ImageNet—background, texture,
and watermark. The background shortcut is evaluated on
ImageNet-9 (IN-9) [93], and we use IN-9 Gap (i.e., BG-Gap
in [93]) as the evaluation metric, which is the accuracy drop
from Mixed-Same to Mixed-Rand in IN-9, where a lower ac-
curacy drop implies less background shortcut reliance. The
texture shortcut is evaluated on Stylized ImageNet (SIN) [27]
and ImageNet-R (IN-R) [34], where we use SIN Gap, top-1

accuracy drop from IN-1k to SIN, and IN-R Gap, the top-1
accuracy drop from IN-200 (i.e., a subset of IN-1k with 200
classes used in IN-R) to IN-R.

3. Benchmark Methods and Settings

On all datasets, we first evaluate standard training
that minimizes the empirical risk on the training set (i.e.,
ERM [85]) using ResNet-50 [31] as the network architec-
ture, which serves as the baseline. On ImageNet, we addi-
tionally show ERM’s results with other architectures, pre-
training datasets, and supervision.

In addition to ERM, we comprehensively evaluate short-
cut mitigation methods across four categories based on the
level of shortcut information required (Tab. 2).

Category 1: Standard Augmentation and Regulariza-
tion Methods in this category use general data augmenta-
tion or regularization without prior knowledge of the short-
cut, which are commonly used to improve accuracy on IN-1k,
e.g., new training recipes [86,90]. Some works [11,65] show

Category| Summary

1

| Shortcut Information | Methods

Mixup [95], Cutout [20,98],
CutMix [94], AugMix [36],

Standard ~ Aug- | None

mentation  and

Regularization SD [64]

2 Targeted Augmen- | Types of shortcuts (w/o | CF+F Aug [11], Style Trans-
tation for Mitigat- | shortcut labels) fer (TXT Aug) [27], BG
ing Shortcuts Aug [73,93], WMK Aug

3 Using  Shortcut | Image-level  ground- | gDRO [74], DI [89],
Labels truth shortcut label SUBG [39], DFR [46]

4 Inferring Pseudo | Image-level pseudo | LfF  [61], JTT [59],

Shortcut Labels shortcut label EIIL [15], DebiAN [54]

Table 2. Existing methods for multi-shortcut mitigation benchmark.
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that they can also improve OOD robustness.

Category 2: Targeted Augmentation for Mitigating
Shortcuts Other works use data augmentation that modifies
shortcut cues. We evaluate CF+F Aug [11] on UrbanCars.
On ImageNet, we benchmark texture augmentation (TXT
Aug) via style transfer [27] and background augmentation
(BG Aug) [73,93]. To counter the watermark shortcut, we
design watermark augmentation (WTM Aug) that randomly
overlays the watermark onto images (cf. Appendix B.1).
Category 3: Using Shortcut Labels In this category,
methods use shortcut labels for mitigation, which are gen-
erally used to reweight [74] or resample training data [39,
46,74]. We only benchmark methods in this category on
UrbanCars since ImageNet does not have shortcut labels.
Category 4: Inferring Pseudo Shortcut Labels Follow-
ing the ideas of methods using shortcut labels, one line of
works [15,54,59,61] estimates the pseudo shortcut labels
when ground-truth labels are unavailable.

Benchmark Settings We introduce the experiment set-
tings here (details in Appendix B.3). On UrbanCars, we use
worst-group accuracy [74] on the validation set to select the
early stopping epoch and report test set results. All methods
except DFR [46] use end-to-end training on UrbanCars. On
ImageNet, following the last layer re-training [46] setting,
we only train the last classification layer upon a frozen fea-
ture extractor. On both datasets, we use ResNet-50 as the
network architecture. On ImageNet, we also benchmark
self-supervised and foundation models.

4. Our Approach

Motivation  Our multi-shortcut benchmark results (Sec. 5)
show that many existing methods suffer from the Whac-A-
Mole problem, motivating us to design a method to mitigate
multiple shortcuts simultaneously.

We focus on mitigating multiple known shortcuts—the
number and types of shortcuts are given, but shortcut labels
are not. The absence of shortcut labels makes it scalable
to large datasets (e.g., ImageNet). Although mitigating un-
known numbers and types of shortcuts seems more desir-
able, not only do our empirical results show their under-
performance, but also it is theoretically impossible to miti-
gate shortcuts without any inductive biases [58].

We follow methods that use data augmentation to mod-
ify the shortcut cues (i.e., category 2). Formally, given a
set of K shortcuts {s;}% ;| for mitigation, we create a set
of augmentations Sy, = {A;}X, U {Z}, where the aug-
mentation A; (e.g., style transfer [27]) modifies the visual
cue of the shortcut s; (e.g., texture). Z denotes the identity
transformation, i.e., no augmentation applied.

Based on the augmentation set Sy, a straightforward way
is to minimize the empirical risk [85] over all augmented
and original images. However, different augmentations can
be incompatible, leading to suboptimal results. That is, aug-

Prediction 1, [ 1
per shift P(y|d,z) P@|dz) P@{ldaz) predicted

7
shlft
Ensemble of
last layers
dlstr‘ibutlunal
Features

-Featur‘e extractor

Augmented
image

Watermark Texture
Augmentation Augmentat ion

Figure 5. An overview of Last Layer Ensemble (LLE). LLE trains
an ensemble of the last classification layers upon a feature extractor,
where each last layer is trained with images in one augmentation
type. The distributional shift classifier, supervised by the aug-
mentation type, is trained to predict the distributional shift and
dynamically aggregates the predictions per shift during testing.

No Augmentation

Augmentation

Original
image

mentation A; could be detrimental to mitigating a different
shortcut s, where ¢ # j. For example, mitigating the texture
shortcut via style transfer [27] augmentation unexpectedly
amplifies the saliency of the watermark (Fig. 1b), leading to
worse watermark mitigation results (Tab. 1).

Last Layer Ensemble To address this issue, we propose
Last Layer Ensemble (LLE), a new method for mitigating
multiple shortcuts simultaneously (Fig. 5). Since it is hard
to use a single model to learn the invariance among incom-
patible augmentations, we instead train an ensemble [21]
of classification layers (i.e., last layers) on top of a shared
feature extractor so that each classification layer only trains
on data from a single type of augmentation that simulates
one type of distributional shift d. In this way, each last layer
predicts the probability of the target P (g | d, x).

At the same time, we train a distributional shift classifier,
another classification layer on top of the feature extractor, to
predict the type of augmentation that simulates the distribu-
tional shift, i.e., P(d | ). During testing, LLE dynamically
aggregates the logits from the ensemble of the last layers
based on the predicted distributional shift. E.g., when the
testing image contains the texture shift, the distributional
shift classifier gives higher weights for the logits from the
classifier trained with texture augmentation, alleviating the
impact from other classification layers trained with incom-
patible augmentations. In addition, when the weights of
the feature extractor are not frozen, we stop the gradient
from the distributional shift classifier to the feature extractor,
preventing the feature extractor from learning the shortcut in-
formation. Compared to standard ensemble approaches [21]
that train multiple full networks and add significant infer-
ence overhead, our method uses minimal additional training
parameters and has better computational efficiency.
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‘ shortcut reliance

| shorteut reliance

Watermark (WTM) Texture (TXT) Background (BG)

ID. Acc | BG Gap T CoObj Gap T BG+CoObj Gap 1 IN-Ik | IN-W Gapt  Carton Gap |, | SINGap 1 IN-R Gap IN-9 Gap 1
ERM 97.6 1153 112 -69.2 ERM 7639 -25.40 430 69.43 56.22 -5.19
. Mixup 76.17  -24.87 +34 (x1.138)  -68.18 -55.79 -5.60 (x1.08 £
Mixup 98.3 -12.6 93 -61.8 CutMix 7590 2578 (x1018) 432(x1068) -69.31 -56.36 -5.65 (x1.09 B
CutMix 96.6 -45.0 (x2.94 L) -438 -86.5 Cutout 7640  -25.11 +32(x1.060)  -69.39 -55.93 -5.35 (x1.03 &)
) AugMix 76.23  -23.41 +38 (x1.26 )  -68.51 -54.91 -5.85 (x1.13 )
Cutout 978 -158(x1.03L) -104 o 4 SD 7639 2603 (x1.028)  +30 6942 -56.36 45,33 (x1.03 8
AugMix 982 -10.3 121 (x1.08 ) -702 WIMAug 7632 -5.78 +14 6931 5622 534 (x1.03 8
SD 97.3 -15.0 -3.6 -36.1 TXT £Aug 7594 -25.93 (x1.028) 436 (x1.208) -63.99 -53.24 -5.66 (x1.09 &)
P BG < Aug 7603 -25.01 +36 (x1.20£) -68.41 -54.51 -4.67
CF+F Aug 96.8 -16.0 (x1.04 )  +0.4 -19.4 -
LfF 7635  -26.19 (x1.032) 436 (x1.208) -69.34 -56.02 -5.61 (x1.08 £)
~ _ 4 A ~ JTIT 76.33  -26.40 (x1.048)  +32(x1.06L) -69.48 -56.30 -5.55 (x1.07 £
LfF 972 11.6 184 (x1.64 &‘) 632 EIIL 7155 -33.48 (x1.318) +24 -66.04 -61.35(x1.098)  -6.42 (x1.218)
JTT (E=1) 95.9 -8.1 -13.3(x1.18 ) -40.1 DebiAN 7633 <2640 (x1.018)  +36 (x1208) -69.37 -56.29 -5.53 (x1.07 &)
EIIL (E=1) 95.5 -4.2 247 (x2218)  -449 LLE (ours) 7625 -6.18 +10 -61.00 -54.89 382

JTT (E=2) 946  -233(x1.528) 53 52.1
EIL (E=2) 955 -21.5(x140£) 638 496
DebiAN 980  -14.9 -10.5 69.0
LLE (ours) 967  -2.1 27 5.9

Table 3. Many methods not using shortcut labels (category
1,2,4) amplify shortcut on UrbanCars. £ increased reliance
on a shortcut relative to ERM. x2.94: 2.94 times larger than ERM.

5. Experiments

Based on UrbanCars and ImageNet-W datasets, we show
results on multi-shortcut mitigation. We first study if stan-
dard supervised training (i.e., ERM) relies on multiple short-
cuts (Sec. 5.1). Next, we show the multi-shortcut setting is
significantly challenging: mitigating one shortcut increases
reliance on other shortcuts compared to ERM. We name
this phenomenon Whac-A-Mole, which is observed in many
SoTA methods, including mitigation methods (Sec. 5.2) and
self-supervised/foundation models (Sec. 5.3). Finally, we
show that our Last Layer Ensemble method can reduce re-
liance across multiple shortcuts more effectively (Sec. 5.4).

5.1. Standard training relies on multiple shortcuts

On both datasets, we find that standard training (i.e.,
ERM [85]) relies on multiple shortcuts. On UrbanCars,
Tab. 3 shows that ERM achieves near zero in-distributional
error (97.6% 1.D. Acc.). However, ERM’s performance
drops when group shift happens. When the background
shortcut is absent, ERM’s performance drops by 15.3% in
BG Gap. Similarly, the accuracy drops by 11.2% in CoObj
Gap when the CoObj shortcut is absent. When neither short-
cut is present, models suffer catastrophic drops of 69.2%
in BG+CoObj Gap. On ImageNet, Tab. 4 shows that ERM
achieves good top-1 accuracy of 76.39% on IN-1k. However,
it suffers considerable drops in accuracy when watermark,
texture, or background cues are altered, e.g., 30% Carton
Gap for watermark, 56-69% for texture, and 5.19% for back-
ground, suggesting that standard training on natural images
from ImageNet leads to reliance on multiple shortcuts.

5.2. Results: Mitigation Methods

Results: Standard Augmentation and Regularization
(Category 1) We first show the results of methods us-

Table 4. Existing methods fail to combat multiple shortcuts by
amplifying at least one shortcut relative to ERM on ImageNet.
All models use ResNet-50 with last layer re-training [46].

ing augmentation and regularization without using inductive
biases of shortcuts. On UrbanCars (Tab. 3), we observed
that CutMix and Cutout amplify the background shortcut
with a larger BG Gap relative to ERM. AugMix increases
the reliance on the CoObj shortcut with a larger CoObj Gap
(i.e., -12.2%) compared to ERM. Although Mixup and SD do
not produce Whac-A-Mole results, they only yield marginal
improvement or can only mitigate one shortcut well. On Ima-
geNet, the results in Tab. 4 show that all approaches amplify
at least one shortcut. For instance, AugMix achieves a worse
Carton Gap to amplify the watermark shortcut compared to
ERM. For CutMix, we again observe that it amplifies the
BG shortcut on ImageNet. We show more results of CutMix
and analyze its background shortcut reliance in Appendix G.

Takeaway: Standard augmentation and regularization
methods can mitigate some shortcuts (e.g., texture) F
but amplify others a

Results: Targeted Augmentation for Mitigating Short-
cuts (Category 2) Further, we benchmark methods using
data augmentation to mitigate a specific shortcut. Compared
to methods in category 1, augmentations here use stronger
inductive biases about the shortcut by modifying the short-
cut visual cue. On UrbanCars, although CF+F Aug achieves
good results for the CoObj shortcut, it amplifies the BG
shortcut. On ImageNet, texture and background augmenta-
tion improve the reliance on the watermark shortcut, which
can be explained by the retained or even increased saliency
of the watermark in Fig. 1b and Appendix’s Figs. 9 and 10.

Takeaway: Augmentations tackling a specific type of
shorteut = (e.g., style transfer for texture shortcut) can
amplify other shortcuts a (e.g., watermark).

Results: Using Shortcut Labels (Category 3) Then, we
show the results of methods using shortcut labels on Urban-
Cars in Tab. 5. Methods can mitigate multiple shortcuts
when labels of both shortcuts are used (cf. first section in
Tab. 5). However, when using labels of either shortcut, which
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shortcut label shortcut reliance

Train Val LD. Acc | BG Gap 1 CoObj Gap 1 BG+CoObj Gap 1

ERM X BG+CoObj 97.6 -15.3 -11.2 -69.2
gDRO  BG+CoObj BG+CoObj  91.6  -10.9 3.6 -16.4
DI BG+CoObj  BG+CoObj 89.0 -2.2 -1.0 +0.4
SUBG BG+CoObj BG+CoObj 71.1 -4.7 -0.3 -6.3

DFR BG+CoObj  BG+CoObj 89.7 -10.7 -6.9 -452
ERM X BG 97.8 14.6 11.3 68.5
gDRO  BG = BG 96.0 -4.2 269 (x239) -56.5
DI BG = BG 94.7 +2.2 -27.0 (x2.40 L) -25.2
SUBG BG= BG 92.6 +1.3 -36.4(x3.24d) -358
DFR BG = BG 97.4 9.8 -13.6 (x1.21 L) -58.9
ERM X CoObj 97.6 -15.4 -11.0 -68.8
gDRO  CoObj = CoObj 95.7 314(x2.038) 05 -54.9
DI CoObj = CoObj 94.2 36,1 (234 8) 428 -35.8
SUBG CoObj = CoObj 93.1 -60.2 (x3.90 U) +2.5 -62.4
DFR CoObj = CoObj 97.4 -19.1 (x1.24 U) -8.6 -64.9

Table 5. Methods using shortcut labels (category 3) amplify
the unlabeled shortcut when mitigating the labeled shortcut
on UrbanCars. < : mitigate a shortcut, e.g., using shortcut labels.

is the typical situation for in-the-wild datasets where shortcut
labels are incomplete, they exhibit a higher performance gap
in the other shortcut relative to ERM. E.g., when only using
the CoObj labels, models achieve poorer BG Gap results.

Takeaway: Methods using shortcut labels mitigate the
labeled shortcut = but amplifies the unlabeled one a

Results: Inferring Pseudo Shortcut Labels (Category 4)
The Whac-A-Mole problem of methods using shortcut la-
bels motivates us to study whether the problem can be solved
by inferring pseudo labels of multiple shortcuts. Here we
analyze the results of LfF, JTT, EIIL, and DebiAN. Their
key idea is based on ERM’s training dynamics of learning
different visual cues. LfF infers soft shortcut labels by as-
suming that the shortcut is learned earlier. Similarly, JTT
and EIIL use an under-trained ERM trained with E epochs
as the reference model to infer pseudo shortcut labels. We
use E=1 and E=2 for JTT and EIIL. Instead of using a fixed
reference model, DebiAN jointly trains the reference and
mitigation models. The results in Tab. 3 show that LfF, JTT
(E=1), and EIIL (E=1) still exhibit Whac-A-Mole results
by achieving a larger CoObj Gap than ERM. On the other
hand, JTT (E=2) and EIIL (E=2) also show the Whac-A-
Mole results by achieving larger BG Gap than ERM. On
ImageNet, we observe Whac-A-Mole results produced by
LfF, JTT, EIIL, and DebiAN in Tab. 4.

To investigate the reason for their Whac-A-Mole re-
sults, we analyze the training dynamics of ERM. In Fig. 6,
we plot the accuracy of three visual cues—object (i.e., car
body type), background, and co-occurring object on the val-
idation set. The accuracy is computed based on ERM’s
{urban, country} predictions against labels of object,
BG, and CoObj. We observe a Whac-A-Mole game in
ERM'’s training. At epoch 1, ERM mainly predicts the back-
ground (82.6%), suggesting that the background shortcut is
learned first. Thus, LfF, JTT (E=1), and EIIL (E=1) can infer
the BG shortcut labels well to amplify the CoObj shortcut.
As the training continues to epoch 2, the reliance on the BG

2]
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Figure 6. On UrbanCars, ERM learns BG and CoObj shortcuts
at different training epochs, making it difficult to infer pseudo
labels (category 4) of multiple shortcuts from ERM.

shortcut decreases (82.6% to 71.2%), but the reliance on the
CoObj shortcut is increased (60.6% to 71.8%). It renders
JTT (E=2) and EIIL (E=2) better infer CoObj shortcut labels,
which, in turn, amplifies the BG shortcut.

Takeaway: Methods inferring pseudo shortcut labels
still amplify shortcuts £ because ERM learns different
shortcuts asynchronously during training, making it
hard to infer labels of all shortcuts = for mitigation.

5.3. Results: Self-Supervised & Foundation Models

On ImageNet, we further benchmark self-supervised pre-
training methods, i.e., MoCov3 [13], MAE [30], SEER [28].
We also benchmark foundation models that use extra training
data, i.e., Uniform Soup [91], Greedy Soup [91], CLIP [67],
SEER [28], and SWAG [81]. The results in Tab. 6 show that
many of them fail to mitigate multiple shortcuts jointly. Re-
garding self-supervised methods, MoCov3 achieves worse
results on all three shortcuts, and MAE achieves a worse
SIN Gap for the texture shortcut relative to ERM. Regarding
foundation models, although SWAG with linear probing (LP)
achieves a much better IN-R Gap (-19.79%), it also has a
stronger reliance on the background in BG Gap compared
to ERM. Similarly, SEER, Uniform Soup, and Greedy Soup
mitigate the watermark shortcut but amplify the background
shortcut. When using ViT-L, although CLIP with zero-shot
transfer does not produce Whac-A-Mole results, they do not
fully close the performance gap. Besides, they also show
much lower IN-1k accuracy than other foundation models.
We show results using other architectures in Appendix F.2.

Takeaway: Self-supervised and foundation models can
mitigate some shortcuts 2 but amplify others a

5.4. Results: Last Layer Ensemble (LLE)

We show that our Last Layer Ensemble (LLE) can better
tackle multi-shortcut mitigation. LLE mitigates shortcuts via
a set of data augmentations. Specifically, we augment back-
ground (BG) and co-occurring object (CoObj) by swapping
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| shorteut reliance

Watermark Texture Background
IN-1k | IN-W 1 Carton | | SIN® IN-R IN-9 1
Gap Gap Gap Gap Gap
arch: RG-32gf
ERM 80.88 14.15 +32 -69.27 52.43 -6.40
SEER (FTIG-1B) 8335 -6.50 +18 <73.04 (<1058 -50.42 114 a1 By
arch: ViT-B/32
ERM 5.92 8.71 +34 -57.16 49.45 -6.86
Uniform Soup Ft.wim)  79.96  -7.90 +24 -59.67 (x1.018) -27.51 <178 (<1138
Greedy Soup (FT.wIT) 81.01 -6.47 +16 -59.61 (x1.042)  -30.01 <7.21 (x1.05 &)
arch: ViT-B/16
ERM 81.0° -6.69 +26 -62.60 -50.36 -5.36
SWAG (LPIG-3.6B) 81.89  -7.76 (x1.162) +18 6733 (x1.088) -19.79 -10.39 (x1.048)
SWAG (FTIG-3.6B) 8529 543 +24 -66.99 (x1.078) -29.55 -4.44
MoCov3 wp) 76.65  -16.0 (x2398) +22 -63.36 (x1.018)  -56.86 (x1.128)  -7.80 (x1.458)
MAE (1) 8372  -4.60 +24 -65.20 (x1.018)  -47.10 -4.45
MAE+LLE (ours) 83.68 -2.48 +6 -58.78 -44.96 -3.70
arch: ViT-L/16 or 14
ERM 9.65 6.14 +34 61.43 53.17 6.50
SWAG (LPIG-3.6B) 8513 -5.73 +6 -60.26 -10.17 -7.26 (x1.128)
SWAG (1. B) 88.07 -3.16 +20 -63.45 («1.038)  -12.29 -2.92
T) 76.57 -4.47 +12 -61.27 -6.26 -3.68
7297 -4.94 +12 -56.85 -8.43 -4.54
MAE 1 8595 -436 +22 -62.48 (x1.028)  -36.46 -3.53
MAE+LLE (ours) 8584 -1.74 +12 -56.32 -34.64 -2.77

Table 6. On ImageNet, many self-supervised and foundation
models amplify shortcuts, whereas LLE mitigates multiple short-
cuts jointly. (-): transfer learning (and extra data).

BG and CoObj across target classes on UrbanCars (details
in Appendix B.5). On ImageNet, we use watermark aug-
mentation (WMK Aug), style transfer [27] (TXT Aug), and
background augmentation [73,93] (BG Aug) for watermark,
texture, and background shortcuts, respectively.

The results on UrbanCars in Tab. 3 show that LLE beats

all other methods in BG Gap and BG+CoObj Gap metrics
and achieves second best CoObj Gap to CF+F Aug, a method
amplifies the background shortcut. The results of ImageNet
with ResNet-50 are in Tab. 4. LLE achieves the best multi-
shortcut mitigation results in Carton Gap, SIN Gap, and IN-9
Gap. Regarding IN-W Gap and IN-R Gap, LLE achieves
better results than ERM. I.e., no Whac-A-Mole problems.
On ImageNet, we further use MAE as the feature extractor,
and the results on ImageNet are in Tab. 6. LLE achieves the
best results in IN-W Gap, SIN Gap, and IN-9 Gap. LLE also
achieves the best results in the remaining metrics comparing
to methods not using extra pretraining data.
Ablation Study In Tab. 7, we show the ablation study of
LLE: (1) w/o ensemble: training a single last layer. (2) Aug-
Mix (without ensemble): based on (1) and use JS divergence
in AugMix to improve the invariance across augmentations.
(3) w/o dist cls.: remove domain shift classifier and directly
take the mean over the output of ensemble classifiers. Except
for IN-R Gap, the full model achieves better results in all
other metrics. Although the w/o ensemble achieves a better
IN-R Gap, it suffers from reliance on other shortcuts.

6. Related Work

Group Shift Datasets Most previous works use single-
shortcut datasets [4,33,44,48,56,60,61,74] to benchmark
group shift robustness [74]. Although [8,79,97] use labels
of multiple attributes [60] for evaluation, there lacks a sanity
check on whether the selected attributes are learned as spu-
rious shortcuts. [54,80] create MNIST-based [53] synthetic

Shortcut Reliance

Watermark Texture Background

IN-1k | IN-W Gap 1 Carton Gap ] | SINGap 1T IN-RGap 1 | IN-9 Gap 1
w/o ensemble 76.03 -6.71 +18 -66.81 -52.55 -5.08
AugMix 7517 -1.27 +22 -66.33 -56.38 -5.38
w/o dist. cls. 75.82 -17.77 +36 -66.45 -53.58 -4.81
LLE (full model)  76.25 -6.18 +10 -61.20 -54.89 -3.82

Table 7. Ablation study of Last Layer Ensemble on ImageNet.

datasets with multiple shortcuts, where the shortcuts are
unrealistic. In contrast, our UrbanCars dataset is more photo-
realistic and contains commonly seen shortcuts. Besides, our
ImageNet-W dataset better evaluates shortcut mitigation on
the large-scale and real-world ImageNet dataset.

OOD Datasets of ImageNet  While many models achieve
great performance on ImageNet [18], they suffer under vari-
ous distributional shifts, e.g., corruption [35], sketches [87],
rendition [34], texture [27], background [93], or unknown
distributional shifts [37,69]. In this work, we construct
ImageNet-W, where SoTA vision models rely on our newly
discovered watermark shortcut.

Shortcut Mitigation and Improving OOD Robustness
To address the shortcut learning problem [26], [39,74,89]
use shortcut labels for mitigation. With only knowledge
of the shortcut type, [5,88] use architectural inductive bi-
ases. [27,73,93] use augmentation and [42,46] re-trains the
last layer for mitigation. Without knowledge of shortcut
types, [3,15,54,59,61,79,84,96] infer pseudo shortcut labels,
which is theoretically impossible [58], and we show that they
struggle to mitigate multiple shortcuts. Other works suggest
that self-supervised pretraining [30,45] and foundation mod-
els [10,28,28,41,67,91,92] improve OOD robustness. We
show that many of them suffer from the Whac-A-Mole prob-
lem or struggle to close performance gaps.

7. Conclusion

We propose novel benchmarks to evaluate multi-shortcut
mitigation. The results show that state-of-the-art models,
ranging from shortcut mitigation methods to foundation mod-
els, fail to mitigate multiple shortcuts in a Whac-A-Mole
game. To tackle this open challenge, we propose Last Layer
Ensemble method to mitigate multiple shortcuts jointly. We
leave to future work for shortcut mitigation without knowl-
edge of shortcut types. Another promising future direction
is to provide a theoretical analysis of the Whac-A-Mole
phenomenon. Finally, we call for discarding the tenuous
single-shortcut assumption and hope our work can inspire fu-
ture research into the overlooked challenge of multi-shortcut
mitigation.
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