




Figure 3. Many carton class images in the ImageNet training set

contain the watermark. Saliency maps [78] of ResNet-50 [31] show

that the watermark serves as the shortcut for the carton class.

to form the urban background. The country background

images are from classes such as forest road and field road.

Regarding co-occurring objects, we use LVIS [29] to obtain

the urban ones (e.g., fireplug and stop sign), and country ones

(e.g., cow and horse). After obtaining the source images, we

paste the car and co-occurring object onto the background.

UrbanCars Metrics We first report the In Distribu-

tion Accuracy (I.D. Acc) on UrbanCars. It computes the

weighted average over accuracy per group, where weights

are proportional to the training set’s correlation strength (i.e.,

frequency in Fig. 2) by following ªaverage accuracyº [74]

to measure the performance when no group shift happens.

To measure robustness against the group shift, previous

single-shortcut benchmarks [15,59,74] use worst-group ac-

curacy [74], i.e., the lowest accuracy among all groups. How-

ever, this metric does not capture multi-shortcut mitigation

well since it only focuses on groups where both shortcut

categories are uncommon (cf . the last column in Fig. 2).

To address this shortcoming, we introduce three new met-

rics: BG Gap, CoObj Gap, and BG+CoObj Gap. BG Gap

is the accuracy drop from I.D. Acc to accuracy in groups

where BG is uncommon but CoObj is common (cf . 1st yel-

low column in Fig. 2). Similarly, CoObj Gap computes the

accuracy drop from I.D. Acc to groups where only CoObj is

uncommon (cf . 2nd yellow column in Fig. 2). BG+CoObj

Gap computes accuracy drop from I.D. Acc to groups where

both BG and CoObj are uncommon (cf . red column in Fig. 2).

The first two metrics measure the robustness against the

group shift for each shortcut, and the last metric evaluates

the model’s robustness when both shortcuts are absent.

2.2. ImageNet-Watermark (ImageNet-W)

In addition to the precisely controlled spurious corre-

lations in UrbanCars, we study naturally occurring short-

cuts in the most popular computer vision benchmark: Im-

ageNet [18]. While ImageNet lacks shortcut labels, we

can evaluate models’ reliance on texture [27] and back-

ground [93] shortcuts. We additionally discovered a perva-

sive watermark shortcut and contribute ImageNet-Watermark

(ImageNet-W or IN-W), an evaluation set to expose models’

watermark shortcut reliance. Along with texture and back-

ground, this forms a comprehensive suite to evaluate reliance

on the multiple naturally occurring shortcuts in ImageNet.

Watermark Shortcut in ImageNet In the training set of

the carton class, many images contain a watermark at the

center written in Chinese characters and ImageNet-trained

ResNet-50 [31] focuses on the watermark region to predict

Figure 4. Carton images from LAION [75,76], a large-scale dataset

with 400 million to 2 billion images used in CLIP [67] pretraining,

also contain watermarks, enabling CLIP’s reliance on the water-

mark shortcut in zero-shot transfer to ImageNet and ImageNet-W.

the carton class (Fig. 3). Since the watermark reads carton

factory names or contact person’s names of a carton factory,

we conjecture that this watermark shortcut originates from

the real-world spurious correlation of web images. In the

validation set, none of the carton class images contain the

watermark, so ResNet-50 underperforms on the carton class

(48%) relative to overall accuracy (76%) across 1k classes.

Data Construction To test the robustness against

the watermark shortcut, we create ImageNet-Watermark

(ImageNet-W or IN-W) dataset, a new out-of-distribution

evaluation set of ImageNet. As shown in Tab. 1, we overlay

a transparent watermark written in ª捷径捷径捷径º at the

center of all images from ImageNet validation set to mimic

the watermark pattern in IN-1k, where ª捷径º means ªshort-

cutº in Chinese. We do this because we find that models

use the watermark even when the content is not identical

to the watermark in the training set of carton images, sug-

gesting that it is watermark’s presence rather than its content

that serves as the shortcut. We evaluate watermark in other

contents and languages in Appendix A.2.

ImageNet-W Metrics We mainly use two metrics to mea-

sure watermark shortcut reliance: (1) IN-W Gap is the ac-

curacy on IN-W minus the accuracy on IN-1k validation

set. A smaller accuracy drop indicates less reliance on the

watermark shortcut across all 1000 classes. (2) Carton Gap

is the carton class accuracy increase from IN-1k to IN-W. A

smaller Carton Gap indicates less reliance on the watermark

shortcut for predicting the carton class.

To demonstrate that the watermark shortcut is used for

predicting carton, we use the following in Tab. 1: (1)

P (ŷ = carton), the predicted probability of carton on all

IN-1k validation set images, (2) ∆P (ŷ = carton), the pre-

dicted probability increase from IN-1k to IN-W of all 1k

classes, and (3) ∆P (ŷ = carton | y = carton), the predicted

probability increase from IN-1k to IN-W of the carton class.

Ubiquitous reliance on the watermark shortcut To

study reliance on the watermark shortcut, we use ImageNet-

W to benchmark a broad range of State-of-The-Art (SoTA)

vision models, including standard supervised training, using

different architectures [22,31,68], augmentations and regu-

larizations [27,36,94,95]. We also benchmark foundation

models [10] pretrained on larger datasets [28,67,75,76,81]

with different pretraining supervision and transfer learning

techniques [13,28,30,67,81,91]. In Tab. 1, we find a consid-

erable IN-W Gap of up to -26.7 and -10.7 on average and
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Prediction: goldfish w/ Watermark: carton w/ Watermark: pencil sharpener → carton

method architecture (pre)training data IN-1k Acc ↑ P (ŷ = carton) (%) IN-W Gap ↑ ∆P (ŷ = carton) (%) ↓ Carton Gap ↓ ∆P (ŷ = carton | y = carton) (%) ↓

Supervised ResNet-50 [31] IN-1k [18] 76.1 0.07 -26.7 +7.56 +40 +42.46

MoCov3 [13] (LP) ResNet-50 IN-1k 74.6 0.08 -20.7 +2.94 +44 +44.37

Style Transfer [27] ResNet-50 SIN [27] 60.1 0.10 -17.3 +4.91 +52 +50.06

Mixup [95] ResNet-50 IN-1k 76.1 0.07 -18.6 +3.43 +38 +39.78

CutMix [94] ResNet-50 IN-1k 78.5 0.09 -14.8 +1.92 +22 +29.61

Cutout [20,98] ResNet-50 IN-1k 77.0 0.08 -18.0 +2.93 +32 +38.06

AugMix [36] ResNet-50 IN-1k 77.5 0.09 -16.8 +2.61 +36 +34.44

Supervised RG-32gf IN-1k 80.8 0.09 -14.1 +3.74 +32 +33.43

SEER [28] (FT) RG-32gf [68] IG-1B [28] 83.3 0.09 -6.5 +0.56 +18 +24.26

Supervised ViT-B/32 [22] IN-1k 75.9 0.09 -8.7 +1.20 +34 +34.31

Uniform Soup [91] (FT) ViT-B/32 WIT [67] 79.9 0.09 -7.9 +0.32 +24 +23.87

Greedy Soup [91] (FT) ViT-B/32 WIT 81.0 0.09 -6.5 +0.35 +16 +23.87

Supervised ViT-L/16 IN-1k 79.6 0.08 -6.2 +0.82 +34 +32.57

CLIP [67] (zero-shot) ViT-L/14 WIT 76.5 0.06 -4.4 +0.01 +12 +1.75

CLIP (zero-shot) ViT-L/14 LAION-400M [76] 72.7 0.05 -4.9 +0.03 +12 +13.76

MAE [30] (FT) ViT-H/14 IN-1k 86.9 0.08 -3.5 +0.43 +30 +29.59

SWAG [81] (LP) ViT-H/14 IG-3.6B [81] 85.7 0.09 -4.9 +0.19 +8 +12.80

SWAG (FT) ViT-H/14 IG-3.6B 88.5 0.09 -3.1 +0.35 +18 +20.25

CLIP (zero-shot) ViT-H/14 LAION-2B [75] 77.9 0.06 -3.6 +0.03 +16 +12.01

average 78.6 0.08 -10.7 +1.74 +26.7 +27.96

Table 1. Models rely on the watermark as a shortcut for the carton class. LP and FT denote linear probing and fine-tuning on ImageNet-

1k, respectively. Because models exhibit drops (i.e., IN-W Gap) and an increase in accuracy and predicted probability of the carton class

from IN-1k to IN-W, we conclude that various vision models suffer from the watermark shortcut (more results in Appendices E.1 and E.2).

a Carton Gap of up to +52 and +26.7 on average. While

all models exhibit uniform (1/1000 = 0.1%) predicted

probabilities for carton class (P (ŷ = carton)) on IN-1k,

we observe a considerable increase in the predicted proba-

bility of carton on IN-W (∆P (ŷ = carton)) and a signifi-

cant predicted probability increase in carton class images

(∆P (ŷ = carton | y = carton)). Although compared to su-

pervised ResNet-50, some models with larger architectures

or extra training data can decrease reliance on the water-

mark shortcut, none of them fully close the performance

gaps. Interestingly, CLIP with zero-shot transfer still suf-

fers from the watermark shortcut with +12 to +16 Carton

Gap, which could be explained by many carton images in the

pretraining data (e.g., LAION) also containing watermarks

(cf . Fig. 4). To the best of our knowledge, this is the first

real-world example of the existence of shortcut in billion-

scale datasets for foundation model pretraining, which

also confirms findings that data quality, not quantity [25,62],

matters most to CLIP’s robustness.

Multi-Shortcut Mitigation Metrics on ImageNet To

measure the mitigation of multiple shortcuts, we evaluate

models on multiple OOD variants of ImageNet. In this work,

we study three shortcuts on ImageNetÐbackground, texture,

and watermark. The background shortcut is evaluated on

ImageNet-9 (IN-9) [93], and we use IN-9 Gap (i.e., BG-Gap

in [93]) as the evaluation metric, which is the accuracy drop

from Mixed-Same to Mixed-Rand in IN-9, where a lower ac-

curacy drop implies less background shortcut reliance. The

texture shortcut is evaluated on Stylized ImageNet (SIN) [27]

and ImageNet-R (IN-R) [34], where we use SIN Gap, top-1

accuracy drop from IN-1k to SIN, and IN-R Gap, the top-1

accuracy drop from IN-200 (i.e., a subset of IN-1k with 200

classes used in IN-R) to IN-R.

3. Benchmark Methods and Settings

On all datasets, we first evaluate standard training

that minimizes the empirical risk on the training set (i.e.,

ERM [85]) using ResNet-50 [31] as the network architec-

ture, which serves as the baseline. On ImageNet, we addi-

tionally show ERM’s results with other architectures, pre-

training datasets, and supervision.

In addition to ERM, we comprehensively evaluate short-

cut mitigation methods across four categories based on the

level of shortcut information required (Tab. 2).

Category 1: Standard Augmentation and Regulariza-

tion Methods in this category use general data augmenta-

tion or regularization without prior knowledge of the short-

cut, which are commonly used to improve accuracy on IN-1k,

e.g., new training recipes [86,90]. Some works [11,65] show

Category Summary Shortcut Information Methods

1 Standard Aug-

mentation and

Regularization

None Mixup [95], Cutout [20,98],

CutMix [94], AugMix [36],

SD [64]

2 Targeted Augmen-

tation for Mitigat-

ing Shortcuts

Types of shortcuts (w/o

shortcut labels)

CF+F Aug [11], Style Trans-

fer (TXT Aug) [27], BG

Aug [73,93], WMK Aug

3 Using Shortcut

Labels

Image-level ground-

truth shortcut label

gDRO [74], DI [89],

SUBG [39], DFR [46]

4 Inferring Pseudo

Shortcut Labels

Image-level pseudo

shortcut label

LfF [61], JTT [59],

EIIL [15], DebiAN [54]

Table 2. Existing methods for multi-shortcut mitigation benchmark.
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