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Electroencephalogram
Experimentation to Understand
Creativity of Mechanical
Engineering Students
Electroencephalogram (EEG) alpha power (8–13 Hz) is a characteristic of various creative
task conditions and is involved in creative ideation. Alpha power varies as a function of cre-
ativity-related task demands. This study investigated the event-related potentials (ERPs),
alpha power activation, and potential machine learning (ML) to classify the neural
responses of engineering students involved with creativity task. All participants performed
a modified alternate uses task (AUT), in which participants categorized functions (or uses)
for everyday objects as either creative, nonsense, or common. At first, this study investigated
the fundamental ERPs over central and parietooccipital temporal areas. The bio-responses
to understand creativity in engineering students demonstrates that nonsensical and creative
stimuli elicit larger N400 amplitudes (−1.107 mV and −0.755 mV, respectively) than
common uses (0.0859 mV) on the 300–500 ms window. N400 effect was observed on
300–500 ms window from the grand average waveforms of each electrode of interest.
ANOVA analysis identified a significant main effect: decreased alpha power during creative
ideation, especially over (O1/2, P7/8) parietooccipital temporal area. Machine learning is
used to classify the specific temporal area data’s neural responses (creative, nonsense, and
common). A k-nearest neighbors (kNN) classifier was used, and results were evaluated in
terms of accuracy, precision, recall, and F1- score using the collected datasets from the par-
ticipants. With an overall 99.92% accuracy and area under the curve at 0.9995, the kNN
classifier successfully classified the participants’ neural responses. These results have
great potential for broader adaptation of machine learning techniques in creativity
research. [DOI: 10.1115/1.4056473]

Keywords: design, design education, occupant behavior, pattern recognition and
classification, sensors

1 Introduction
Defining creativity is challenging [1], and proposing a universal

definition is nearly impossible [2]. One reason behind such diffi-
culty is creativity is a multi-faceted and complex phenomenon
[3–7]. Researchers have provided definitions of creativity from dif-
ferent perspectives, and in his booklet, Treffinger [8] collected 124
creativity-related definitions published between 1926 and 2011.
Creativity definition varies based on discipline, for instance, crea-
tivity in music will have a different definition in science. Perfor-
mance techniques, composition, novel use of rhythm, beat, pitch,
improvisation, and expression may be some of the criteria of crea-
tivity in the music domain. Groundbreaking ideas, discoveries, and
theories are accepted criteria for creativity in the scientific field [9].
New, novel, or original are broadly used across diverse definitions
of creativity.
In the 21st century, “creativity” has become an essential skill, not

only in the fields of arts and humanities but also in the science, tech-
nology, engineering, and economic contexts of human life [10]. In
engineering, creativity has both novelty and appropriateness as
key components. Studies have revealed through utilizing behavioral
and neurological approaches that, after using creativity enhancing
exercises and techniques, changes in behavioral outcomes and brain

activity happen [11,12]. To study the impact of these exercises
and techniques on creativity by using behavioral approaches is
useful, however, it is not possible to direct way to investigate the
neural mechanisms that underlie creativity from behavioral
approaches. To study these underlying processes, neurological
approach is a possible way. Researchers are able to use neurological
approaches which allow them to obtain visible physical results.
These results connect stimuli or prompt related to creativity to bio-
logical processes and structures. Also, whether or not methods
claiming to improve creativity or aid in problem solving actually
happening or not researchers are able to test through these
approaches. Those methods which claim to aid in innovative
design or problem solving could be hypercritically validated using
neurological approaches that provide neurological and quantifiable
measurements [13].
Several neuroscientific studies have been conducted to under-

stand the underlying brain activations associated with creative
idea generation [14]. Many aspects of cognitive activity are
reflected by the changes in neural activity across different electroen-
cephalogram (EEG) frequency bands [15–17]. EEG frequencies in
the range of the alpha band (usually 8–13 Hz) have strong domi-
nance during an individual’s creative ideation [18]. Alpha band
power increases is tagged as synchronization of EEG response
and alpha band power decreases is known as a desynchronization
of the EEG response, which is generally associated with creative
task. EEG desynchronization also indicates cortical activity or
arousal. A cognitive task, during a reference interval, is usually
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assessed by alpha power in terms of changes in task-related power
(TRP), event-related synchronization (ERS), or event-related
desynchronization (ERD) [19].
Research has shown differences in alpha desynchronization for

regions of the alpha band [19]. Klimesch [20] first provided
evidence that general task (e.g., attention processes) is associated
with lower alpha ERD. On the other hand, the upper alpha
frequency band ERD is associated with intelligence-related
demands, like creative thinking and divergent thinking [21–23].
Starting from the pre-stimulus reference up to task activation, if
the alpha power activity increases, it is indicative of ERS, which
signifies active information processing in neuronal networks [24].
Klimesch et al. [25] found that alpha power is a functional correlate
of creative cognitive task demands.
Creativity is a multiple-stage (e.g., generative and exploratory)

process [6,19,26,27] and alternate uses task (AUT) is a standard
method utilized by researchers to assess divergent thinking. From
EEG studies [28,29], AUT has been associated with TRP in the
upper alpha band power. The process of idea generation to idea
elaboration task-related performance has been correlated with dis-
tinct patterns of upper alpha power in frontal areas and decreases
in centro-temporal areas [30]. Jauk et al. [31] had participants gen-
erate either common solutions (convergent thinking) or uncommon/
unusual solutions (divergent thinking) to tasks, which included an
AUT and a word association task. The authors reported that diver-
gent thinking (uncommon responses) showed synchronization of
alpha power on frontal cortical areas, whereas convergent thinking
(common solutions) showed more desynchronization of alpha
power. Wang et al. [32] confirmed the serial order effect in diver-
gent thinking alongside the use of an AUT. The article reports,
similar to previous findings, either early or late increases in upper
alpha synchronization for participants with lower inhibition across
epochs. Other studies [29,33] identified alpha power increases at
the beginning of creative idea generation for the AUT but decreases
during task involvement over time with a final re-increase at the
end. This U-shaped alpha phenomenon is not uncommon [34] for
creative individuals.
Machine learning (ML)/deep learning (DL) techniques have been

applied in recent years to understand the nature of EEG signals of
human emotions. In addition to ML approaches used for brain-
computer interface (BCI) applications, motor cortical activity has
also been classified and could control physical objects [35–38].
Recently, machine learning methods have been applied to creativity
research for feature collection and selection from EEG band and fre-
quency associated with creativity. Several research studies have
assessed individuals’ creativity, but it is not obvious and certain
that everyone’s level of creativity will be in the same manner
[19,29,31,39]. It is difficult to measure the level of creativity of dif-
ferent groups of professionals. However, having certain conditions
and assumptions for EEG features, which are subject-specific,
makes ML approach possible to identify creativity.
Predictions and trained ML models may be pivotal players in

identifying the creativity level of individuals. Among the various
ML algorithms, support vector machine (SVM), k-nearest neigh-
bors (kNN), artificial neural networks, and linear discriminant anal-
ysis are widely used [40]. Accuracy of the algorithms varies during
training of the datasets. A recent AUT study [41] achieved 80.08%
accuracy using SVM to classify 30 objects and items for two con-
ditions (common or uncommon) to classify more creative from
less creative persons.
To the best of the authors’ knowledge, the use of ML techniques

to classify divergent thinking (e.g., creativity) for engineering stu-
dents via a modified AUT is new.
Contributions from this paper are as follows:

• Experimental use of a modified AUT among engineering stu-
dents, including 57 different objects with three use categories
for each object (creative use, nonsense use, and common use),
totaling 171 object/use pairs without any repetition (see
Appendix for a full list of object/use pairs). Additionally,

there is an investigation of event-related potentials (ERPs)
focusing on the N400 component.

• Use of ERP technique within the engineering disciple to
understand creativity.

• Use of ERP techniques to understand neuro responses during
cognitive activities.

• Enhanced understanding of how alpha band power varies
during processing demands for creative tasks.

• Using statistical analyses to identify the significance of crea-
tive ideation based on hemispheres, temporal areas, and tasks.

• Successfully using kNN classifier to classify common, crea-
tive, and nonsense neuro responses for engineering students
from multiple trials, and less possible temporal position data
used to reduce the complexity.

The next section provides background on neuroimaging and
combining neuroimaging with ML methods (Sec. 2), followed by
the experimental setup and data acquisition procedure (Sec. 3).
Section 4 discusses the EEG signal analysis, and the statistical anal-
yses and results of this research are presented in Secs. 4 and 5.
Section 6 presents machine learning techniques used to classify cre-
ativity. Limitations (Sec. 7) are followed by conclusions, summary,
and future work.

2 Background
2.1. Neuroimaging. Even though there are many different

types of neuroimaging methods, functional magnetic resonance
imaging (fMRI) and EEG are two techniques widely used for
various reasons. When selecting these neuroimaging techniques,
an important consideration is the trade-off between spatial
and temporal resolutions. We discuss fMRI and EEG in this section.
fMRI detects changes in blood oxygenation and blood flow in the

brain. Therefore, different active brain areas require more oxygen
and more blood flow to sustain neural processes. Consequently,
fMRI has high spatial resolution and indicates which brain areas
are active. However, the drawback of this is that the temporal reso-
lution (detailing exactly when activation happened) is poor because
of delayed hemodynamic responses.
Functional near infrared spectroscopy (fNIRs) is similar to fMRI,

which uses differences in optical absorption and to detect the
changes of hemoglobin species inside the brain. The portability
and potential for long-term monitoring capability are advantages
of fNIRs. For applications where spatial and temporal resolutions
are crucial, multichannel NIRs have already improved the spatial
resolution of fNIRs for brain mapping. Limitations of fNIRs for
clinical use include averaging and group analysis, along with the
accuracy and precision [42]. One of the major disadvantages is
oxygen absorption in blood takes time which makes fNIRs prohib-
itive to use in time-related neuro response experiments, such as
ERPs. For fNIRs, it is critical to establish a stable contact
between source/detector and skin, also, the color and layering of
hair attenuate the light of NIR. fNIRs is time consuming to use
with participants because of setup time needed [43].
EEG works by using electrodes placed on the scalp to detect

changes in electrical activity as neurons release neurotransmitter
[44]. EEG provides excellent temporal resolution in the millisec-
ond range but lacks spatial resolution. Voltage fluctuations are
minimal, and the signals are sent to an amplifier for analysis
later. EEG signals are analyzed based on frequency, amplitude,
and electrode position. In general, the groups of frequency
bands include δ (0.1–4 Hz), θ (4–7 Hz), α (8–13 Hz), β (13–
30 Hz), and γ (30–45+ Hz). However, these classifications can
differ slightly based on the source and demographic parameters
such as gender and age [45].
EEG is utilized to examine time-locked activity called ERPs,

which are voltage fluctuations from responses to specific events
or stimuli at a given time (down to the millisecond) ERPs [46].
ERPs are labeled according to positive or negative signal amplitude
peaks or fluctuations, and according to the time when the peak
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occurs. The N400 and post-N400 components, which are the
negative-peaking potential around 300–500 ms and 500–900 ms
post-stimulus, respectively, have been tied to unusualness of
stimuli and cognitive processes essential to creativity [47,48]. Pre-
vious research [48] indicates that the N400 is responsive to unusu-
alness and novelty (two critical components of creativity [9])
stimuli presented during a modified AUT. Previous studies
[49–51] have mainly focused on design, concept generation, and
problem solving. Some new research focuses on studying divergent
thinking, creativity, or novelty using ERP tasks. An approach using
ERPs needs to be evaluated to better understand the timing of spe-
cific components related to unusualness, novelty, or creative stimuli
for engineering. More research is needed to understand how these
two components can assist in measuring conceptual expansion in
engineers.

2.2 Machine Learning and Neuroimaging. Research in neu-
roimaging techniques and machine learning or pattern classification
has significantly increased since the early 2000s [52]. Majority of
these researches utilizes fMRI alongside their machine learning
method of choice to gather results. Many of the applications have
been clinical up to this point, focusing on classifying patients
with certain pathologies, like Alzheimer’s disease [53], or classifi-
cation of patients with disorders, like schizophrenia, mood disor-
ders, or autism [54].
While there is an extensive amount of research related to fMRI

and machine learning, only a few studies utilize EEG with
machine learning methods. Some examples include classification
of emotional states [55], left- or right-hand movements [56], and
depressed patients from non-depressed patients [57]. In recent
years, machine learning techniques have been used in creativity
research to classify between more and less creative individuals
[58]. Our study uses machine learning techniques to classify the
participants’ neuro responses (creative, common, nonsense) for
the BCI applications.

3 Experimental Setup and Data Acquisition
3.1 Participants. This pilot study includes ten participants

(n = 10). Nine participants were mechanical engineering students
and one office administrator from mechanical engineering. Partici-
pants’ age is between 22 and 32 years (mean age= 26.6, SD=
3.13). Eight of the ten participants were male. Nine of the ten par-
ticipants were right-handed. All participants self-reported normal
vision or corrected to normal vision, currently not feeling any dis-
comfort, and were not taking any medication.

3.2 Experimental Equipment and Setup. A 24-channel EEG
system from mBrainTrain was used to record data at 500 Hz with
the corresponding SMARTING amplifier. M1/2 is the reference
electrode of the EEG system. Appropriately sized caps were
selected for participants and conductive gel was used to keep
impedance low (5–10 kΩ). The placement of the 24 electrodes fol-
lowed the 10/20 international placement system (see Fig. 1).
Neurobs Presentation (Neurobehavioral Systems, Inc., Albany,
CA) was used to synchronize the EEG acquisition with the stimulus
presentation.
Participants were seated in a low-noise environment and fitted

with the EEG cap. The experimental procedure was explained to
the participants and what to expect, which buttons they would
push, and any definitions they might need to complete the experi-
ment. Participants then performed a practice experiment, followed
by the actual experiment. The duration of the experiment including
practice session was approximately 25 min.

3.3 Experimental Tasks. This pilot study investigated con-
ceptual expansion as a central component of creative thinking in
engineering students. This study was based on work by Kröger
et al. [47,48]. Using a modified AUT, Kröger et al. [48] related the

N400 ERP component to varying levels of unusualness and/or
novelty of stimuli. During the current study, participants were
shown an object/function pairing as a stimulus, which differs from
a traditional AUT, where participants are given an object and
instructed to generate as many alternatives uses as possible for that
object. The difference between the current study and Kröger et. al.
[48] is that this study focuses on engineering participants to gain a
better understanding of the neural responses of engineering students.
Each experimental stimulus started with a fixation cross (+) in the

middle of the screen for 1000 ms. Participants then see a 500 ms
blank screen, followed by the object/function presented for
2000 ms (object > function). Again, after a 500 ms blank screen,
the participants are presented with the first question (“Unusual?”)
for 1700 ms. The participants would answer “yes” or “no” to this
question by using the left and right mouse buttons. The second
question (“Appropriate?”) is presented after another 500 ms blank
screen. Again, the participants answer “yes” or “no” using the
mouse buttons. The trial ends with another 500 ms blank screen,
and the cycle repeats for a new object/function pair. See Fig. 2
for a pictorial of the experimental design.
Each participant responded to 171 object/function pairs, 57

objects with three functions as stimuli (a creative function/use,
common function/use, and nonsense function/use). Table 1 gives
an example of what the participant might see. The participant ulti-
mately decided function/use. To be categorized as common use,
the participant would answer no–yes to the two questions, yes–
yes to categorize it as a creative use, and yes–no for a nonsense
use. There was no repetition on item-use pairs and pairs were pre-
sented randomly.

4 Electroencephalogram Signal Analysis
4.1 Event-Related Potentials. EEGlab, a MATLAB plugin, was

used to pre-process the EEG data collected from the participants. A

Fig. 1 Locations of electrodes on the scalp with lowest possible
impedance level during experiment
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broad filter (finite impulse response (FIR) filter) from 0.5 Hz to
100 Hz was applied, followed by a notch filter from 58 Hz to
62 Hz to remove electrical noise. An independent component anal-
ysis, using FastICA algorithm, was performed to remove artifacts
not related to brain data. The EEG data were prepared for ERP anal-
ysis by segmenting into 1200 ms blocks based on time-stamps indi-
cating the start of each object/function stimulus pair. Each segment,
or epoch, was baseline corrected with the 200 ms time window
before the presentation of the object/function pair and the remaining
1000 ms segment was used for analysis.
A 30 Hz low-pass filter, with a slope of 24 dB/Oct, was applied to

each segment and amplitudes exceeding approximately +/−100 μV
were removed. Grand averaged ERPs from all participants were cal-
culated for the 300–500 ms post-stimulus region. To be included in
the grand average, participants needed to have selected a minimum
of 15 object/function pairs for each of the three categories
(common, creative, and nonsense).

4.2 Task-Related Power. A set of MATLAB scripts (R2020b;
The MathWorks, Inc., Natick, MA) were used for TRP EEG
signal analysis. The collected raw EEG data were pre-processed
using a broad filter (FIR filter) and a notch filter. DC offset voltages
were removed by subtracting the temporal mean of the signal from
each data sample and for all EEG channels. Due to the non-zero
electrical conduction, the surface of the scalp between EEG elec-
trodes is prone to conducting surface electrical currents from
other artifacts. To lessen all the artifacts, a common average refer-
ence spatial filter was applied to the raw EEG data. Wavelet decom-
position was then applied to the artifacts free data. There is a close

association between the originality of the ideas or creative task
demands and the EEG alpha band power. A window size of
1000 ms of the EEG signal was notched from alpha band by squar-
ing the values (µV2) to calculate the band power. From each trial
and period, the artifact free time-intervals alpha band power was
averaged. Following previous studies [21,56], a mean TRP calcula-
tion quantified cortical activation changes. Power changes reference
and activation phases for each electrode and trial were considered.
The subtraction value of log-transformed power during pre-stimulus
reference intervals (Powi, reference) 1000 ms with fixation from the
log-transformed power 1000 ms window during AUT tasks (Powi,
activation) serves as activation for an electrode i for TRP calcula-
tions (see Eq. (1)).

TRPi = log(Powi, activation) − log(Powi, reference) (1)

From reference to activation, when there are negative values, it
evinces decreases in power familiar with desynchronization. On
the contrary, increased power with positive values is known as syn-
chronization [24]. The electrodes were aggregated into the follow-
ing temporal areas: anteriofrontal, frontal (F), centroparietal,
parietotemporal (P/T), and occipital (O); odd numbers represent
the left hemisphere and even numbers represent right hemisphere.
The electrodes in the central positions (AFz, Fz, Cz, CPz, Pz,
Poz) were not included for analysis because this study focused on
potential hemispheric differences.
A 9 × 2 × 3 analysis of variance (ANOVA) with the within-

subjects factors Area (nine electrode positions in each hemisphere),
Hemisphere (left, right), and Tasks (creative, nonsense, and
common) was statistically analyzed. Additionally, this study consid-
ers the continuous between subjects’ ideas in the ANOVA design to
evaluate the task performance. According to Ref. [59], considering
the violations of sphericity assumptions, this study employed the
multivariate approach. A significance level of p< 0.05 (two-tailed)
was applied for all statistical analyses. Statistical analysis was per-
formed using by Minitab: Data Analysis, Statistical & Process
Improvement Tools.

5 Results
5.1 N400 Results. A two-factor repeated-measures ANOVA

was used for analysis. The two factors for this study were: condition

Fig. 2 Schematic showing the experimental tasks AUT with time intervals

Table 1 Participant responses for an item with the three uses
[13]

Item Use Type

Expected response for
“Unusual?” and “Appropriate?”

questions, respectively

Shoe Pot Plant Creative Yes−Yes
Shoe Easter Bunny Nonsense Yes−No
Shoe Clothing Common No−Yes
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(common, creative, nonsense) and electrodes Cz, CPz, Pz, and POz.
These four electrodes of interest were chosen based on p-values
identified in previous studies [43,44], in addition to the known
centro-pariatel distribution of the N400 effect [58] was monitored.
Mauchly’s test of sphericity was first used to verify if the variances
were equal. In this case, the sphericity assumption was not violated
for the N400 time window for condition (Χ2 (2)= 2.174; p= 0.337)
but was violated for electrode (Χ2 (5)= 14.820; p= 0.016). There-
fore, degrees-of-freedom for the electrode factor were corrected
using Greenhouse–Gesser estimates of sphericity (e= 0.354), and
these corrected numbers are presented below.
The repeated measures ANOVA did not show significant main

effects for the factor condition (F (1.320, 5.279)= 0.664; p>
0.05; ηp

2= 0.142) or for the interaction of the factors condition*-
electrode (F (6, 24)= 0.992; p> 0.05; ηp

2= 0.199). Main effects
were significant for the factor electrode (F (1.063, 4.253)= 7.392;
p= 0.049 < .05; ηp

2= 0.649).
With more participants, it is probable that results similar to

those presented here would be statistically significant. Even
though not significant, results from the pilot study follow a
similar pattern presented by a previous study [48]. The results
indicate that stimuli classified as nonsensical or creative elicit
larger N400 amplitudes (−1.107 mV and −0.755 mV, respec-
tively) than common uses (0.0859 mV), as shown in Fig. 3.
Figure 3 shows the mean amplitudes for all participants for each
type of stimulus on electrodes Cz, CPz, Pz, and POz. Analysis
of the N400 may be an approach to understanding the creativity
of engineers. The grand average waveforms for all participants
for each electrode of interest are presented in Fig. 4, with an out-
lined window of time where the N400 was examined. For more
information on this study, see Ref. [13].

5.2 Alpha Task-Related Power Results. Task-related
changes in EEG alpha power during the generation of creative/orig-
inal, nonsense, and common uses in the modified AUT were calcu-
lated. Positive TRP indicates task-related alpha synchronization
increases in alpha power relative to rest, negative values indicate
desynchronization. Based on the originality of ideas, the individual
participant’s neuro response for both hemispheres is shown in
Fig. 5. Except for participant 1, all other participants showed
strong increases in alpha power (relative to a pre-stimulus reference
interval) over anteriofrontal sites. All the participants showed strong
decreases over parietooccipital temporal area.

The 9 × 2 × 3 ANOVA revealed a significant main effect Area (F
(8,486)= 18.22; p< 0.005; ηp

2= 0.230), indicating decreased alpha
power during creative ideation especially over (O1/2, P7/8,) area.
The main effect Hemisphere (F (1,486)= 0.266; p= 0.287; ηp

2=
0.00233) indicated stronger alpha power decreases over
right (SE = 0.0294) than left hemispheric sites. The interaction
Area ×Hemisphere was not significant (F (8,486)= 0.69;
p = 0.701; ηp

2= 0.0112). No significant main effect Task
(F (2,486)= 0.02; p= 0.984), creativity was associated with stron-
ger alpha power decreases than common and nonsense task. The
interaction Area ×Task (F (7,486)= 0.02) revealed that strong
power increases during three tasks at temporal sites (Tukey’s com-
parisons revealed significant task-related differences only at T7/8).
No other effect involving the within-subjects factor task was signif-
icant. General model prediction on O1/2 temporal area, right hemi-
sphere, and main effect creative task predicted.
Statistical analysis revealed a distinct pattern of alpha power—

positive value of participants’ TRP shows ERS on the frontal and
central cortical area, whereas the negative value of the TRP indi-
cates ERD on the parietooccipital cortical area. The alpha power
decrease indicates participants were task involved during the exper-
iment, which is similar to results reported by Benedek et al. and
Jauk et al. [19,31].

6 Classification of Neural Responses
Time-frequency analysis of EEG is performed using wavelet

transform because of the non-stationary nature of EEG. Transient
features of the signal can be accurately detected in time domains
by wavelet transform [60,61].
The wavelet analysis band the EEG signal for δ (0.1–4 Hz), θ (4–

8 Hz), α (8–13 Hz), β (13–30 Hz), and γ (30–45+ Hz) bands. In this
experiment, we analyze the α band (8–13 Hz) as slow temporal
modulations of (<16 Hz), aiming the classification of AUT neuro
responses primarily focused on creative response. We applied
00statistical analysis techniques to the wavelet coefficients, which
are decomposed EEG signals, for feature extraction. The following
statistical features were selected for α band (8–13 Hz) correspond-
ing to each object category (creative, nonsense, common): (1) min
value, (2) max value, (3) mean value, (4) standard deviation, (5)
skewness, (6) kurtosis, and (7) variance.
Task-related alpha power showed significance area placed over

parietooccipital (O1/2, P7/8,) area. Statistical results identified the
temporal area electrode for classification. Figure 6 illustrates that
creative task power has decreased more in O1/2 temporal position,
which is the parietooccipital area of the brain. Furthermore, this
study uses O1/2 temporal electrode position for kNN classifier to
classify creative, nonsense, and common response from AUT
tasks. For each participant, 57 trials for three object categories
summing to 171 trials were included for classification. All partici-
pants’ data were included for the classification purpose from O1/2
area location.
From each trial, features were collected for the classification.

kNN classifier was used to classify creative, nonsense, and
common uses of AUT task, aiming to achieve the highest possible
classification accuracy for creative, nonsense, and common task
usage. As commonly adopted in data mining techniques, this
study used 80% data for training, whereas the remaining 20%
was used for testing [62]. Table 2 illustrates the assignments of
data used in this study for training and testing. Performance
results are presented as model accuracy, precision, recall, and
F-1 score.

TPR =
tp

tp + fn
(2)

FPR =
fp

fp + tn
(3)

Fig. 3 Mean amplitudes of the four electrodes (Cz, CPz, Pz, and
POz) for creative uses, nonsensical uses, and common uses
investigating the N400 effect
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Accuracy =
tp + tn

tp + tn + fp + fn
(4)

Precision =
tp

tp + fp
(5)

Recall =
tp

tn + fp
(6)

F − 1 = 2 ×
Precison × Recall
Precison + Recall

(7)

Where, true positive rate (TPR), false positive rate (FPR), true
positive (tp), false positive ( fp), true negative (tn), and false nega-
tive ( fn).
Table 3 presents performance of the models in terms of accuracy,

precision, recall, and F-1 score. The accuracy of kNN classifier
was 99.92%. At the same time, this study also explored other clas-
sification models like SVM, Ensembles classifier, and Naïve Bayes
classifier. However, these models performed worse in terms of
accuracy, precision, recall, and F-1 score. kNN classifier was able
to achieve 100% accuracy to classify creative neuro responses,
99.89% of nonsense neuro responses, and 99.89% of common
neuro responses. Area under the curve (AUC) was 0.9995, which
demonstrates that the classifier can probably distinguish the positive
class values and negative class values. A recent study [41] presented
that machine learning techniques (quadratic discriminant analysis
and SVM) can classify more and less creative individuals and
also classify more or less creative brain states from EEG responses.
Studies [63–65] have reported results for EEG emotion

classification from the aggregation of 12 or more pairs of electrodes
to achieve high classification accuracy. This study achieved an
accuracy of 99.92% from statistically significant temporal area posi-
tion analysis, which is a faster classification than that of complex
methods.

7 Discussion
The aim of this study was to investigate the neurological

responses on creativity task in the engineering domain. N400 com-
ponent and alpha task-related power are analyzed to understand the
cognitive process of creativity. The ERP results with highest nega-
tive values associated with nonsense functions and most positive
values associated with common functions. These results support
the main hypothesis of this study that novelty and appropriateness
of a creative task will be exhibited in modulation of the N400 com-
ponent, with highest negative values associated with unusual-
inappropriate (nonsense) functions and most positive values associ-
ated with usual-appropriate (common) functions.
This is a pilot study to confirm modulation of the N400 with

respect to novelty and appropriateness in engineering. The results
show promise of this experimental design to further understand
modulation of the N400 in an engineering creativity context. The
findings allow for a more direct way to study the underlying cogni-
tive process and help improve creativity training.
Considering the EEG results, task-related frontal alpha synchro-

nization was observed which indicates high internal processing
demands [19,66] during creative tasks. Low internal processing
demands indicate strong desynchronization, especially in posterior
brain regions (parietooccipital), which reflect stronger demands on

Fig. 4 Averaged ERPs from the five participants and the box indicates the 300–500 ms
window of investigation of the N400 effect
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Fig. 5 Individual participants task-related power changes (log μV2) in EEG alpha power during the generation of
creative/original uses (a) left hemisphere, (b) right hemisphere; nonsense uses (c) left hemisphere, (d ) right hemi-
sphere; common uses (e) left hemisphere, (f ) right hemisphere in the modified AUT
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the visual system during creative activity information processing
[19,66]. Taken together, the results suggest that frontal brain
regions may exert control by means of temporal synchrony of
lower frequencies (especially α but also θ) with parietal brain
regions. The findings of this study are in agreement with func-
tional imaging and are also consistent with other studies
[19,25,66,67].
Using the widely used Brodmann areas (BA), which relate cog-

nitive functions to different scalp locations. Results from our
study show EEG (de)activation in BA 09 and BA 10 areas in the
right hemisphere. BA 09 and BA 10 areas are respectively associ-
ated with higher cognitive functions and decision-making [68].
Overall results from this study demonstrate that EEG is both a prac-
tical and relevant technique to studying neurophysiological activity
of creativity in engineering. This study also showed that ML tech-
niques can classify the neural responses (common, creative, non-
sense—responses) from modified AUT experiments. This

classification can be utilized to identify neuro responses associated
with more or less creative brain states.

8 Limitations
We present some limitations of our study to guide future works:

• Unbalanced male/female participants (80% male and 20%
female) could be an issue in EEG response patterns for the
classification of neural responses.

• This study did not consider categorical data such as age,
gender, etc. Participants’ age group was between 22 and 32.

• This study did not include functional connectivity and did not
explore the classification of more or less creative individuals.

• This study considered the preliminary screening of the
participants, however, didn’t use psycho-behavioral question-
naires to profile the participants in terms of personality and
attitude.

9 Conclusion and Future Directions
Although not statistically significant, our study found fundamen-

tal ERP effects for the N400 component of engineering students
when modified AUT is used as stimuli. In other words, larger neg-
ative responses for nonsense uses, followed by creative uses, and
then common uses with a positive response.
An ANOVA analysis of task-related power shows a significant

main effect for parietooccipital temporal area and the main effect
Hemisphere. The results indicated larger alpha power decreases
over right than left-hemispheric sites. The distinct pattern of alpha
power and positive values of TRP neuro responses show ERS on
the frontal and central cortical areas. The negative value of partici-
pants’ TRP neuro response indicates ERD on the parietooccipital
cortical area. Participants were actively involved during AUT

Fig. 6 ANOVA general pattern of task-related changes of EEG alpha band power (TRP) during modified AUT: (a) interaction
plot between Area and Hemisphere, (b) interaction plot between Area and Task, and (c) interaction plot between Hemisphere
and Task

Table 2 Assignment of data used for training and testing of ML
models

Label Training dataset Testing dataset

Creative 912 228
Nonsense 912 228
Common 912 228
Total 2736 684

Table 3 Overall model performance of the study

Model Accuracy Precision Recall F-1 score AUC

kNN 99.92% 99.93% 99.93% 99.93% 0.9995
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tasks, as the alpha power decreased during the modified AUT exper-
iment, as suggested by several previous studies.
Machine learning kNNmodel outperformed in terms of accuracy,

precision, recall, and F1-score. kNN classifier successfully achieved
high 99.92% overall accuracy to classify creative, nonsense, and
common neuro responses of the participants using O1/O2 temporal
area data. Other models like SVM, Ensembles classifier, and Naïve
Bayes classifier did not perform well.
A future extension of this study will explore the classification

between the more and less creative individuals. Also, future
works will investigate the real-time ML based neurofeedback and
the possibilities of DL techniques for human computer interaction.
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Appendix
Item-use pairs were presented randomly to the participants. Number in the first column is solely for count. Use category (common, cre-

ative, or nonsense) was for data keeping purposes only. Category was ultimately decided by the participant.

# Item Common use Creative use Nonsense use Status

1 Billiard Ball Billiards Doorknob Rocket Practice
2 Shoe Clothing Pot Plant Easter Bunny Practice
3 Screwdriver Screwing Pry Bar Dragon Practice
4 Toilet Seat Seating Picture Frame Golf Club Experimental
5 Brick Construction Material Paper Weight Electronic Device Experimental
6 Aluminum Foil Cover Food Hat Pen Experimental
7 Hanger Hang Clothing Unlock Car Door Telephone Experimental
8 Helmet Protect Head Basket Bus Experimental
9 Pencil Writing With Stir Stick Backpack Experimental
10 Pipe Transfer Liquid Weapon Library Experimental
11 Cardboard Box Storage Play Fort Car Engine Experimental
12 Shoe Lace Tie Shoe Belt Sunglasses Experimental
13 Band-Aid Cover Wound Tape Chair Experimental
14 Rolling Pin Cooking Tool Muscle Massager Hair Experimental
15 Rubber Band Hold Items Together Slingshot Charger Experimental
16 Sock Footwear Sock Puppets Time Machine Experimental
17 Mirror Reflection Signal For Help Camel Experimental
18 Magnifying Glass Magnify Image Start Fire Food Experimental
19 Sandpaper Smooth Surface Nail File Trampoline Experimental
20 Paint Brush Painting Broom Coffee Maker Experimental
21 Toothpick Clean Teeth Craft Item Spring Experimental
22 Mason Jar Preserve Food Light Bulb Cover Train Experimental
23 Lipstick Makeup Writing Utensil Amplifier Experimental
24 School Bus Transportation Mobile Home Sandals Experimental
25 Water Drink Generate Electricity Baseball Bat Experimental
26 Safety Pin Fastener Earring Fire Hydrant Experimental
27 Chewing Gum Breath Freshener Putty Fertilizer Experimental
28 Scissors Package Opener Pizza Cutter Toothbrush Experimental
29 Artificial Turf Football Turf Bath Mat Newspaper Experimental
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