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Uncertainty Quantification for Deep Unrolling-Based
Computational Imaging

Canberk Ekmekci

Abstract—Deep unrolling is an emerging deep learning-based
image reconstruction methodology that bridges the gap between
model-based and purely deep learning-based image reconstruction
methods. Although deep unrolling methods achieve state-of-the-art
performance for imaging problems and allow the incorporation
of the observation model into the reconstruction process, they do
not provide any uncertainty information about the reconstructed
image, which severely limits their use in practice, especially for
safety-critical imaging applications. In this article, we propose a
learning-based image reconstruction framework that incorporates
the observation model into the reconstruction task and that is
capable of quantifying epistemic and aleatoric uncertainties, based
on deep unrolling and Bayesian neural networks. We demonstrate
the uncertainty characterization capability of the proposed frame-
work on magnetic resonance imaging and computed tomography
reconstruction problems. We investigate the characteristics of the
epistemic and aleatoric uncertainty information provided by the
proposed framework to motivate future research on utilizing uncer-
tainty information to develop more accurate, robust, trustworthy,
uncertainty-aware, learning-based image reconstruction and anal-
ysis methods for imaging problems. We show that the proposed
framework can provide uncertainty information while achieving
comparable reconstruction performance to state-of-the-art deep
unrolling methods.

Index Terms—Image reconstruction, uncertainty quantification,
uncertainty characterization, deep unrolling, computational
imaging, learning-based imaging.

1. INTRODUCTION

HIS article concerns imaging problems where the target
T image is observed through a linear transformation followed
by additive noise. This observation model is quite general and
has been used to model a variety of imaging techniques such as
computed tomography (CT) [1], magnetic resonance imaging
(MRI) [2], microscopy [3], and radar imaging [4].
For this observation model, classical model-based iterative
reconstruction methods cast the image reconstruction problem
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as a regularized least squares problem whose objective function
is the sum of a data-fidelity term and a regularizer. The obser-
vation model of the imaging problem determines the form of
the data-fidelity term, and the prior knowledge about the target
image governs the form of the regularizer. After obtaining an
analytical expression for the data-fidelity term and choosing a
regularization function, such as the total variation (TV) semi-
norm [5], the resulting optimization problem is solved iteratively
by using an appropriate iterative optimization algorithm such
as alternating direction method of multipliers (ADMM) [6],
half-quadratic splitting (HQS), and proximal gradient descent
(PGD) method [7].

Inspired by model-based iterative reconstruction methods and
the pioneering work of Gregor and LeCun [8] on sparse coding, a
deep learning-based image reconstruction methodology, which
is often referred to as deep unrolling [9], [10], [11], [12], [13],
[14], [15], [16] has emerged to bridge the gap between model-
based image reconstruction methods and purely deep neural
network-based image reconstruction methods. The common
theme among deep unrolling methods is that they often design
a deep neural network by replacing some parts of the unrolled
iterative reconstruction algorithm with trainable parameters and
neural networks. The main advantages of deep unrolling meth-
ods are that they explicitly incorporate the observation model
into the neural network, hence they enforce data consistency, and
the resulting deep neural network is interpretable in the sense that
the resulting deep learning-based image reconstruction method
is essentially classical model-based reconstruction algorithm
with some learnable components.

Although deep unrolling methods have the advantage of incor-
porating domain knowledge and the physics of the imaging prob-
lem into the neural network architecture, existing deep unrolling
methods do not provide any predictive uncertainty information
about the reconstructed image since they rely on non-Bayesian
(standard) neural networks to reconstruct the target image from
the corrupted measurements. This severely limits their appli-
cability in safety-critical real-world imaging applications such
as medical imaging, where uncertainty information is crucial to
make accurate decisions. Our perspective is that we can solve
this problem by taking a Bayesian approach for uncertainty
estimation and using Bayesian neural networks (BNNs) [17].
BNNSs are probabilistic models that can quantify the inherent
uncertainty on the target image for a given measurement vector
due to the ill-posed nature of the inverse problem, which is
referred to as the aleatoric uncertainty [18], and the uncertainty
on the parameters of a neural network, which is referred to as the

2333-9403 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: UNIVERSITY OF ROCHESTER. Downloaded on November 08,2023 at 18:08:57 UTC from |IEEE Xplore. Restrictions apply.



1196

epistemic uncertainty [18], by putting a probability distribution
on the parameters and computing the posterior distribution of
the parameters given a training dataset. By using BNNs together
with the idea of deep unrolling, we claim that we can provide
predictive uncertainty information for the reconstructed image
while preserving the advantages of deep unrolling.

The contribution of this article is three-fold:

1) By bringing the idea of deep unrolling and Bayesian neural
networks together, we propose an uncertainty-quantifying
learning-based image reconstruction framework. Our ap-
proach characterizes the overall predictive uncertainty,
which is composed of aleatoric and epistemic uncertain-
ties. The proposed method first assumes that the aleatoric
uncertainty has the form of an additive Gaussian noise,
which is implicitly assumed by most state-of-the-art deep
unrolled networks as shown in Section III-B, and defines
a likelihood function such that the aleatoric uncertainty
is modeled with a U-shaped neural network [19] and, the
mean of the likelihood function is represented with a deep
unrolled neural network. Then, by following the princi-
ples of Bayesian neural networks, the proposed method
approximates the posterior distribution of the parameters
of the likelihood function using a scalable variational
inference method called Monte Carlo (MC) Dropout [20].
Next, for a given test measurement and a training dataset,
the proposed method computes the predictive distribution,
which can be later used to obtain the reconstructed image
and the epistemic and aleatoric uncertainty maps, via
Monte Carlo integration.

2) We qualitatively evaluate the proposed method on MRI
and CT reconstruction problems to validate whether the
epistemic and aleatoric uncertainty information provided
by the proposed method exhibits the theoretical char-
acteristics of epistemic and aleatoric uncertainties. We
show that the epistemic and aleatoric uncertainty maps
obtained by the proposed method display some of the
key theoretical characteristics of epistemic and aleatoric
uncertainties.

3) To assess the quality of the probabilistic predictions quan-
titatively, we generate the calibration plots and calculate
the calibration metrics of the proposed method for MRI
and CT reconstruction problems. We show that due to
the modeling assumptions made by the proposed method,
the proposed method may output slightly underconfident
predictions. We later show that the proposed model can
be easily calibrated by using the recalibration method
introduced by Kuleshov et al. [21] to output calibrated
probabilistic predictions.

We show that the proposed framework can achieve compa-
rable reconstruction performance to a state-of-the-art deep un-
rolling method and provide epistemic and aleatoric uncertainty
information about the reconstructed image while incorporating
the domain knowledge into the reconstruction process.

II. RELATED WORK

The problem of uncertainty quantification for image recon-
struction tasks, e.g., [22], [23], [24], [25], [26], [27], [28], [29],
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(301, [311, [32], [33], [34], [35], [36]. [37], [38], [39], [40],
[41], [42], [43], has attracted the attention of the computational
imaging community again recently due to recent advancements
in deep generative modeling [44] and BNNs [17], [18], [20].
The state-of-the-art deep learning-based image reconstruction
methods performing uncertainty characterization, e.g., [22],
(241, [271, [28], [29], [30], [31], [32], [33], [34], [35], [37],
[38], [39], [40], [41], [42], [43], can be divided into two groups:
deep generative model-based reconstruction methods and BNN-
based reconstruction methods.

Deep generative model-based reconstruction methods,
e.g., [22], [24], [28], [29], [40], [42], seek to approximate the
posterior distribution of the target image with the help of a
generative model to characterize the inherent uncertainty in the
reconstruction task, i.e., the uncertainty on the target image for a
given measurement vector. For example, Adler and Oktem [22]
approximate the posterior distribution of the target image given a
measurement vector using a conditional Wasserstein generative
adversarial network [45], [46]. Bohm et al. [24] use a variational
autoencoder [47] to represent the prior distribution of the target
image and perform variational inference to learn the true pos-
terior distribution of the latent variable given a measurement
vector. Sun and Bouman [40] utilize another popular genera-
tive model, a flow-based model [48], [49], to approximate the
posterior distribution of the target image given a measurement
vector and adjust the parameters of the flow-based model by min-
imizing the reverse Kullback-Leibler divergence [49] between
the output distribution of the flow-based model and the posterior
distribution. After training the generative model, the uncertainty
on the target image for a given measurement vector can be
quantified by calculating the sample variance of the samples
generated from the approximation of the posterior distribution
of the target image.

While deep generative model-based reconstruction methods
aim to quantify the inherent uncertainty in the reconstruction
task, the goal of Bayesian neural network-based reconstruction
methods, e.g., [27], [30], [31], [33], [37], [38], [39], [41],
[43], is to quantify either the uncertainty on the parameters
of the statistical model or both the inherent uncertainty in the
reconstruction task and the uncertainty on the parameters of
the statistical model. To the best of the authors’ knowledge,
Schlemper et al. [37] presented the first two BNN-based image
reconstruction methods for the MRI reconstruction problem,
showing the potential of BNNs for uncertainty quantification
for imaging problems. Subsequently, many BNN-based im-
age reconstruction methods were developed for various prob-
lems such as the neuroimage enhancement [41], phase imag-
ing [43], seismic imaging [39], computational optical form
measurements [33], single-pixel imaging [38], imaging through
scattering media [27], and more general image reconstruction
problems [30], [31]. Table I shows the functional models of
and the types of uncertainties quantified by BNN-based image
reconstruction methods.

Table I highlights the main differences between the proposed
framework and the aforementioned BNN-based image recon-
struction methods. The main difference between the proposed
framework and the methods presented in [27], [33], [37], [38],
[39], [41], [43] is that the proposed framework utilizes the idea
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TABLE I
HIGH-LEVEL COMPARISON OF BAYESIAN NEURAL NETWORK-BASED IMAGE
RECONSTRUCTION METHODS

Method Functional Model  Quantified Uncertainties
Schlemper et al. [37] U-Net [19] Epistemic & Aleatoric
Schlemper et al. [37] DCCNN [50] Epistemic & Aleatoric
Tanno et al. [41] ESPCN [51] Epistemic & Aleatoric
Xue et al. [43] U-Net [19] Epistemic & Aleatoric
Siahkoohi et al. [39] DIP [52] Epistemic
Hoffmann et al. [33] U-Net [19] Epistemic
Shang et al. [38] U-Net [19] Epistemic & Aleatoric
Ekmekci and Cetin [30] DRUNet [53] Epistemic
Ekmekci and Cetin [31]* Deep Unrolling Epistemic
Cochrane et al. [27] U-Net [19] Epistemic

Proposed Framework Deep Unrolling Epistemic & Aleatoric

*Preliminary version of this work

of deep unrolling to integrate the observation model into the
reconstruction process. Incorporation of physics-based models
through data-consistency layers provides some level of inter-
pretability. The DCCNN [50] based method presented in [37]
contains data-consistency layers; however, the data-consistency
layer in [37] leverages the characteristic properties of the for-
ward operator of the MRI observation model, making it highly
specialized for MRI reconstruction. On the other hand, the
proposed framework only requires the computation of the adjoint
of the forward operator of the observation model, which is a
considerably less restrictive requirement. If the forward operator
deviates from a Fourier operator, the data consistency layer of the
DCCNN-based method requires matrix inversion, which is not
computationally feasible for large scale inverse problems. The
difference between the proposed framework and the framework
presented in [30] lies in the difference between end-to-end
models and Plug-and-Play (PnP) methods [54]. While the BNN-
based image reconstruction method presented in [30] is built
upon the idea of Plug-and-Play (PnP) priors [54], which does
not require end-to-end training, the proposed framework uses a
deep unrolled network as its functional model, which is trained
in an end-to-end manner.

We note that the preliminary version of this work appeared
in [31] as a conference paper. The work presented in this
manuscript extends the preliminary work in [31] in several sig-
nificant ways. First, [31] involved the quantification of epistemic
uncertainty only, whereas this article proposes both epistemic
and aleatoric uncertainty quantification. Second, unlike [31],
the unrolled neural network in the framework we propose here
contains different CNN blocks at each iteration. We have ex-
perimentally observed that this change leads to a faster and
more stable training stage. Finally, this manuscript contains an
extensive set of experiments demonstrating the characteristics
of epistemic and aleatoric uncertainties.

III. PROPOSED FRAMEWORK

In this section, we present a learning-based image recon-
struction framework that can incorporate the observation model
into the reconstruction process and quantify epistemic and
aleatoric uncertainties arising in imaging problems. We start
by introducing the assumed observation model and presenting a
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probabilistic formulation of deep unrolling methods along with
a motivation for bringing in BNNs. This provides the basis for
our BNN-based image reconstruction and uncertainty charac-
terization approach, the components of which are described in
the rest of this section.

A. Observation Model and the Inverse Problem

We consider the following observation model.
m = As + n, (D)

where m € FM is the measurement vector; A € FM*N is the
forward operator, which is the discrete approximation of the
transformation applied by the imaging system; s € FV is the
target image; and n ~ N(0,021) is additive white Gaussian
noise, where [F stands for either R or C. In this section, without
loss of generality, we only consider the case where F = R since
generalizing the proposed framework to cover the case F = C
is straightforward (see [31] for details).

For an underdetermined system (// < ), the inverse prob-
lem, i.e., recovering the target image s from the measurement
vector m, is an ill-posed problem. To narrow down the solution
space, we can utilize any prior knowledge about the target
image. One way to use such prior knowledge systematically is
to treat the inverse problem as a maximum a posteriori (MAP)
estimation problem, which is defined by

§ = argmin {||As — m||3 + By (s)}, )
seRN

where s is the MAP estimate of the target image, the term
|| As — ml||3 is the data-fidelity term, the function v : RY — R
is the regularizer that comes from the prior knowledge on the
target image, and 8 > 0 is the parameter controlling the balance
between the data-fidelity term and the regularizer. After deciding
on the form of the regularizer, e.g., total variation semi-norm or
wavelet transform domain regularization, model-based recon-
struction methods solve the problem in (2) iteratively by using
an appropriate optimization algorithm, e.g., ADMM [6], HQS,
or PGD [7].

B. Probabilistic Formulation of Deep Unrolling and BNNs

For the inverse problem, which is essentially a regression
problem, suppose that the likelihood function p(s|m, #) has the
following form.

p(s|m, 0) = N (s[fo(m), 0°T) 3)

where fp : RM — R is a deep unrolled network parametrized
by the set of parameters 6, and o > 0 is a fixed constant.
Assuming that the training dataset D contains i.i.d. pairs of
measurement vectors and target images, we can compute a
MAP estimate of the set of parameters by solving the following
optimization problem.

Np

i ; 1 i iy(12
Ovap = argmin 575 ; s — fo(m)||3 — log p(6)
“
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where (ml?, sl"]) is the i example in the training dataset, Np
is the number of examples in the training dataset, and the distri-
bution p(0) is the prior distribution of the set of parameters. In
the inference stage, for a given measurement vector m,, we can
compute the distribution p(s,|m., fyap) to make predictions
about the target image.

This probabilistic formulation implicitly appears in the train-
ing and inference stages of state-of-the-art deep unrolling meth-
ods. For instance, if we choose the prior p(f) to be standard
Gaussian distribution, then finding the MAP estimate of the
set of parameters boils down to training the neural network
fo using the squared error loss with weight decay, which is a
cost function frequently used by deep unrolling methods. In the
inference stage, for a given measurement vector m,, outputting
the mean of the distribution p(s, |m,, O Ap) as the reconstructed
image is equivalent to feeding the measurement vector m, into
the trained neural network féMAP' Hence, training and inference
procedures followed by many existing deep unrolling methods
can be interpreted probabilistically using the formulation above.

Although such procedures are frequently used to train deep
unrolling methods, there are two problems with this approach
regarding the characterization of uncertainties. The first problem
is that this formulation does not model the uncertainty on the
target image for a given measurement vector, i.e., the inherent
uncertainty on the reconstruction task, since it assumes that the
covariance matrix of the likelihood function is a fixed model
parameter. The second problem is that this formulation does not
model the uncertainty on the set of parameters because it only
uses a point estimate of the set of parameters by following MAP
estimation principles.

BNNs [17], [18], [55] can solve these two problems. BNNs
solve the first problem by defining a likelihood function that
models the inherent uncertainty on the reconstruction task. In
the case of a Gaussian likelihood, this can be accomplished by
representing the covariance matrix of the likelihood function
with a neural network. To solve the second problem, BNNs place
a prior distribution on the set of parameters of the likelihood
function and compute the posterior distribution of the parameters
given a training dataset. Then, at the inference stage, BNNs
compute the predictive distribution for a given measurement
vector m, by computing the following integral:

p(s,m,, D) = / p(s./m..O)p(@E|D)0, (5

where the distribution p(s.|m., D) is the predictive distribution,
and the integral is taken over all possible values of . The first
term of the integrand, which is the likelihood function, incor-
porates the inherent uncertainty on the reconstruction task (i.e.,
aleatoric uncertainty), which is created by the ill-posedness of
the inverse problem, into the predictive distribution. The second
term of the integrand, on the other hand, which is the posterior
distribution of the parameters, incorporates the uncertainty on
the set of parameters (i.e., epistemic uncertainty), which is
created by the lack of training examples in the training dataset
around the test measurement vector, into the predictive distri-
bution through an integral over the possible parameter values.
Thanks to this conceptually simple probabilistic formulation,
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we can utilize BNNs to quantify both epistemic and aleatoric
uncertainties in computational imaging problems.

C. Form of the Likelihood Function

Based on our observations presented in Section III-B, we
define the form of likelihood function as follows.

p(s|m, 0) = N (s| f,(m), diag(o3 (m))), (6)

where § =~y U §, and f, : RM — RY and 02 : RM — R are
two neural networks parametrized by sets of parameters y and 9,
respectively. The neural network f., maps a given measurement
vector to a point in the target image space, and the neural network
02 aims to capture the inherent uncertainty on the target image
for a given measurement vector. The form of the likelihood
function implicitly assumes that s = f.,(m) + n;, where n; ~
N (0, diag(c?(m))), i.e., the aleatoric uncertainty is modeled
as additive Gaussian noise. This assumption may be restrictive
for severely ill-posed inverse problems since the distribution of
the underlying image s for a given measurement vector m can
be quite multimodal. To circumvent this issue, the likelihood
function can be defined as a mixture of Gaussians distribution by
following the idea of mixture density networks [56, Chapter 5.6];
however, this does not scale well to most imaging inverse prob-
lems since it requires training several neural networks (in the
order of the number of mixture components). Another alternative
is to introduce a latent variable for the deep neural network
f to model complex uncertainty patterns on the target image,
which is referred to as Bayesian neural networks with latent
variables [57]. However, most deep unrolled networks are not
latent variable models, and it is not straightforward to integrate
latent variables into the deep unrolled architectures. Due to these
reasons, we have decided to model the aleatoric uncertainty as
additive Gaussian noise using the neural network o3.

To incorporate the observation model into the neural network
f~» which maps a given measurement vector to a point on the
target image space, we start constructing f., by first solving the
optimization problem in (2) using the proximal gradient descent
(PGD) method. The main advantage of using PGD over methods
such as ADMM and HQS is that the data dependent update
equation of PGD requires computing only the adjoint of the
forward operator and does not involve any inversion step, which
makes it suitable for large scale imaging problems with non-
structured forward operators. Assuming that the regularizer ¢ in
(2) is a closed proper convex function, PGD yields the following
iterative image reconstruction algorithm.

kD) — (I- 20¢ATA) s®) 4 20ATm
s = prox, 4, (z(k+1)) @)

where z(*+1) € R is an intermediate vector of the algorithm at
the (k + 1)* iteration, s(**1) € RY is the reconstructed image
at the (k + 1)% iteration, the operator prox : RY — R is the
proximal operator [7], and a > 0 is the step size. To learn the
prior information implicitly from the training data, we replace
the proximal operator in the second step with a neural network,
which has been frequently done by deep unrolling methods such
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Fig. 1.  The structure of the neural networks f. and a? at a high level. The
neural network f. maps a measurement vector to a point in the target image
space, and the neural network crg aims to capture the aleatoric uncertainty. These
two neural networks completely specify the form of the Gaussian likelihood in

(6).

as [16]. Then, the resulting update equations become

zFHD) = (I — 2aATA) s + 20ATm
(=20, ®)

where D, RN 5 RY is a residual neural network [58]
parametrized by the set of parameters 741 . For a fixed number
of iterations K, the series of update equations in (8) correspond
to a deep neural network f.,, wherey = | 5:1 k. Fig. 1 displays
the high-level summary of the neural network £, and the details
of the architecture are provided in the Supplementary Material.

To completely specify the form of the likelihood function
given in (6), we have to specify the architecture of the neural
network o2 as well. The neural network we use for the neural
network 0% is a U-shaped neural network [19] followed by an
element-wise exponentiation to ensure that the output contains
positive entries. Fig. 1 depicts a high-level summary of the neural
network o3, the details of which are given in the Supplementary
Material. We must remark that we can also use a dual-head
architecture to jointly represent the neural networks f., and 0.
A brief discussion on the dual-head variant of the proposed
framework is also provided in the Supplementary Material for
interested readers.

k+1
S(+):D7k+

D. Approximating the Posterior Distribution

To be able to compute the predictive distribution using (5),
we have to compute the posterior distribution p(6|D). However,
exact computation of the posterior distribution is not tractable
for deep neural networks because of the massive number of
parameters and complex hierarchical structures. Thus, we either
have to approximate the posterior distribution with a parametric
distribution, or we have to generate samples from the posterior
distribution to approximate the integral in (5). In our framework,
we use a variational inference method called MC Dropout to
approximate the posterior distribution with a parametric dis-
tribution. The advantages of using MC Dropout are that it is
scalable for deep neural networks since it does not introduce
additional parameters, variational inference and inference pro-
cedures can be straightforwardly implemented in deep learning
frameworks because this only requires small changes on the
training and testing procedures of the standard neural network
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pipelines, and it has been shown that MC Dropout provides reli-
able uncertainty estimates for several problems such as camera
relocalization [59], depth completion [18], [60] and semantic
segmentation [18], [60].

For the sake of completeness, we state the assumptions of
MC Dropout explicitly and discuss the variational inference and
inference steps. For a more detailed discussion, the reader can
referto [18], [20], [61]. Suppose that the neural networks f. and
o2 contain C and FE convolutional layers, respectively. Then, we
can write the two sets v and § as follows:

E

fy:LCJ{Wf} and 0= | J{W7}, )

i=1 j=1

where Wf and W7 are the matrices whose rows contain the
vectorized filter coefficients of the i™ and j™ convolutional
layers of the neural networks f, and o3, respectively. The
assumptions [18], [20], [61] on the parametric distribution g, ()
that we use to approximate the true posterior distribution p(6|D)
are as follows: i) For the parametric distribution, we assume that
the layers of the neural networks f., and o2 are independent, and
layers within the neural networks are mutually independent, i.e.,

C E
0.0 = ([Ta(W!) | [TTa(W5)): a0
i=1 j=1

ii) Filters of a convolutional layer are assumed to be mutually
independent, more explicitly

K out] K .nu,t]

o

s jio
VA f o\ _ o

(11)

where K 1[ ;‘t] is the number of filters in the i convolutional layer

of f,and K ][ " 1is the number of filters in the ™ convolutional

layer of ag; iii) The distribution of the filter coefficients of each
filter is a mixture of Gaussians distribution defined by

. ([Wﬂl ) —p (=) N <[W{L7: o, 621)

+p(=0) NV ({W{L’: |0,621> :

0 (IW31,,.) =0 (2, =D N (W3], laF,,. 1)

Lyt 5t

)

+p (5, =0) N ([W5],, 10.€T),
(12)

where the variables zlf ; and 27 are the latent variables, and

Jim
the scalars p'i’il = p(zzl =1)and p7,, = p(z7,, = 1) are fixed
constants. The scalar € is a very small fixed constant, and the sets
Ay 2 {a{ Jand A, £ {af,, } are the adjustable parameters of
the parametric distribution. Previously we have denoted the set
of adjustable parameters of the parametric distribution g, ()

with w, so we can write the set w explicitly as w = Ay U A,.
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Under these assumptions, we adjust the parameters of the
parametric distribution by minimizing the Kullback-Leibler
divergence between the parametric distribution and the true
posterior distribution, i.e.,

@ = argmin Dy (¢.,(6)||p(0|D)) . (13)
Under certain approximations and mathematical manipulations
(see the Supplementary Material or the Appendix of [20] for the
details), the above optimization problem can be approximated
with the following optimization problem.

w & argmin {g(w) + h(w)}, (14)

where

Np N
3 2 3o tm
=1 k=1

1
+ 2 exp(~ oo, (mI ) (8 ~ [f500 <m[”1>}k>2} 7
XA
4,0
M) 23S Sl Y Y 5k
i=1 [=1 j=1 m=1

5)
and (") = 5" U 7" is the n™ sample generated from the
parametric distribution g, (6).

After approximating the true posterior distribution p(6|D)
with the parametric distribution ¢;(6), we approximate the
integral in (5) using Monte Carlo integration with 7" samples
as follows.

p(s«|m,, D) =~

'ﬂ \

A (sl o) ing (o, )

(16)
where () = §(® U4 is the ¢ sample from the parametric
distribution ¢ (6). The approximation of the predictive dis-
tribution is a mixture of 7' Gaussians with uniform weights;
therefore, we can compute its mean vector and element-wise
variance analytically as follows.

T
1
Efs./m., D]~ = fyo (m.), (17
t=1
1 T
Var [[s.], |m., D Z [ 5<t> }
t:l
Aleatoric variance
1« 1« ’
+TZ f (t) m* - (TZ [f'"y(t)(m*):lk> ) (18)
t=1 t=1

Epistemic variance

where 0() = §() U1 is the ™ sample from the optimized
parametric distribution g (). The first term of the predictive
variance, which we refer to as the aleatoric variance, reflects
the aleatoric uncertainty in the reconstruction task, and the
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remaining residual sum, which we refer to as the epistemic
variance, represents the epistemic uncertainty.

At this point, we have to be aware that we have treated
the parameters of the neural networks f., and o2 as random
variables and have to generate samples from the parametric
distribution to solve the optimization problem in (14) and to
obtain the predictive mean and variance given by (17) and (18).
Because we have assumed that filters of convolutional layers
are mutually independent, one naive way to generate a sample
from the parametric distribution is to generate samples from
the distributions in (12). Sampling from those distributions is
equivalent to sampling from a mixture of Gaussians distribution
with two components, so, first, we need to sample a Bernoulli
random variable, and based on that sample, we generate a sample
from one of the two multivariate Gaussian distributions. Because
the scalar € is assumed to be a very small non-zero constant,
generating a sample from the multivariate Gaussian distribu-
tions in (12) can be approximated by directly reporting the
mean. Thus, the whole process of generating a sample from the
parametric distribution ¢, (6) boils down to generating samples
from Bernoulli random variables and multiplying them with the
adjustable parameters of the parametric distribution. Hence we
can write

:y(n) ~ {Zi(,rzl)a{ﬂsample 51(7;) ~ Bernoulli (pfl)} )
a7, |sample " Bernoulli (p7 )}
3,m Jim Jsml o

19)

An interesting observation is that the sampling operation
described above resembles the dropout [62] operation. Hence,
solving the optimization problem in (14) boils down to training
two neural networks f and 2 only once using the loss function
defined by

(], ]

where 5 is a mini-batch from the training dataset D, and Nj
is the size of the mini-batch, with weight decay parameters
p‘if’l/(2ND) and p?,, /(2Np) and with dropout rates 1 — pfil and
1 —pj . After the training stage, the resulting weights of the
dropout-added neural networks will be the optimal parameters
@ of the parametric distribution ¢; (@), and generating a sample
from the parametric distribution ¢ (@) simply boils down to
applying dropout to the weights of the dropout-added neural
networks. Furthermore, calculating the approximation of the
predictive distribution using (16) boils down to feeding the test
measurement vector to the trained dropout-added neural net-
works £ A, and 65  exactly T" times while the dropout is on. To
obtain a reconstmctlon we can either generate samples from the
approximation of the predictive distribution or compute its mean

(20)
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using (17). To obtain the epistemic and aleatoric uncertainty
maps, we use the expression in (18).

We must remark that we have not included the step size
parameter « used in the deep unrolled network f and the pa-
rameters of the batch normalization layers of the neural network
o2, in the sets ~ and §. In other words, we have not taken
those parameters into account in the Bayesian formulation. If we
want to include the parameters of a batch normalization layer
in the formulation, we have to randomly set the parameters of
the batch normalization layer to zero, which is not a common
practice in deep learning literature. Thus, we decide to treat
the parameters of the batch normalization layers as trainable
deterministic parameters. Similarly, randomly setting the step
size parameter to zero violates the positivity requirement of the
step size. We could choose other, preferably more expressive,
parametric distributions on the step size parameter to perform
variational inference or use deep ensembling [63] to capture
the uncertainty on the step size parameter. However, we have
experimentally observed that treating the step size parameter
and the parameters of the batch normalization layers as train-
able deterministic parameters is enough to obtain meaningful
uncertainty estimates without introducing more complexity to
the model.

IV. EXPERIMENTS AND RESULTS

In this section, we present experimental results demonstrating
the behavior of our proposed approach. Although the proposed
framework can be applied to any inverse problem that can be
cast as the optimization problem in (2), we evaluate the pro-
posed framework on basic MRI and CT reconstruction problems
as representative applications. We investigate the behavior of
epistemic and aleatoric uncertainties under various experimental
conditions and show that the epistemic and aleatoric uncertainty
information provided by the proposed framework is consistent
with the definitions of those uncertainties. We then investigate
the calibration properties of the proposed method by generating
calibration plots for the MRI and CT reconstruction problems.
Finally, we compare the image reconstruction performance of
the proposed framework with other image reconstruction meth-
ods to demonstrate the image reconstruction capability of the
proposed framework. Supplementary Material also contains a
toy problem illustrating the concepts of epistemic and aleatoric
uncertainties.

A. Experimental Setup

Datasets: For the MRI reconstruction problem, we extracted
530 256 x 256 target images from the IXI Dataset [64]. Each
target image was normalized between 0 and 1. We split the
530 target images into training, validation, and test datasets
containing 500, 15, and 15 target images, respectively. The
training, validation, and test datasets were constructed such that
they contain target images collected from different subjects.
The measurement vectors, i.e., k-space measurements, were
generated by computing the subsampled Fourier transform of the
target images. For the CT reconstruction problem, we extracted
530 512 x 512 target images from the LUNA Dataset [65].
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Each image was resized to 256 x 256 pixels and normalized
between 0 and 1. The training dataset was created by using 500
target images, and the remaining 30 images were split into two
sets to generate validation and test datasets, each containing 15
target images. The training, validation, and test datasets were
constructed such that they contain target images collected from
different subjects. The measurement vectors, i.e., sinogram data,
were generated by computing the sparse Radon transform of the
target images. Finally, we added white Gaussian noise to the
measurement vectors to obtain the final measurement vectors
we used in our experiments, where the SNR of the measurement
vector is defined as follows:

SNR(mnoiseless +n, mnoiseless) =20 10%10 ( Hn”Q

Training and Inference Procedures: Training of the proposed
framework refers to solving the optimization problem in (14),
where the first term of the objective function is replaced with its
mini-batch approximation [20]. We obtained the neural network
f by fixing the number of iterations K of the PGD to be 5 and
taking the starting point s(°) to be the result of zero-filling and
filtered backprojection for MRI and CT reconstruction prob-
lems, respectively. Each residual block of the neural network
f contains 5 convolutional layers, and each convolutional layer
is followed by a dropout layer and the leaky ReLU activation
function. We used the U-Net architecture for the neural network
&2, where each convolutional layer is followed by a dropout
layer. For the MRI reconstruction problem, the batch size for the
training was set to 4, and the learning rate was fixed to 1 x 107%.
For the CT reconstruction problem, we used a batch size of 2
for the training and set the learning rate to 1 x 10~°. The initial
step size a of the PGD algorithm was set to 1.0 for the MRI
experiments and 1 x 10~ for the CT experiments. The dropout
rate of the dropout layers of the neural networks f and 52 was
set to 0.1, and the neural networks f and 52 were trained for 100
epochs. At the inference stage, a given measurement vector was
fed to the neural networks f and 2 T' = 100 times while the
dropout was still activated. The reconstructed image was then
obtained by following the approximation in (17). The epistemic
and aleatoric uncertainty maps were obtained by calculating
three times of the epistemic and aleatoric standard deviations
given by (18).

B. Epistemic Uncertainty

In theory, epistemic uncertainty is the uncertainty created by
the lack of training data around test data and can be explained
away by making appropriate changes on the training data. In this
subsection, we investigate the characteristics of epistemic un-
certainty information provided by the proposed framework and
show that the behavior and results of our approach are consistent
with the theoretical characteristics of epistemic uncertainty.

To show that the proposed framework outputs epistemic
uncertainty information that reflects the uncertainty caused by
the lack of training data that can explain the test sample well,
we consider two scenarios. In the first scenario, we assess the
impact of the size of the training dataset on the inferred epistemic
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Epistemic uncertainty maps on an MRI (top) and a CT (bottom) test sample as a function of the training dataset size (TDS). As we increase the number

of examples in the training dataset, the overall epistemic uncertainty decreases. For the MRI experiments, the percentage of observed k-space coefficients is 20%,
and SNR is 70 dB. For the CT experiments, number of views is 36, and SNR is 70 dB.

uncertainty. A good uncertainty characterization method should
yield larger epistemic uncertainties for smaller training datasets,
as it is less probable for such data to represent a random test
sample well. In our experiments, we generated five subsets of
the MRI training dataset containing 10, 50, 125,250, and 500
examples, and trained five instances of the proposed framework
using these subsets as training datasets. Then, for a given test
measurement, we obtained the epistemic uncertainty maps us-
ing the five trained instances of the proposed framework. We
repeated the same procedure for the CT reconstruction prob-
lem. The resulting epistemic uncertainty maps are illustrated in
Fig. 2. For both MRI and CT reconstruction problems, epistemic
uncertainty achieves its highest value for the case where we
use only 10 training examples. Then, as we add more examples
to the training dataset, epistemic uncertainty on the same test
image decreases. To confirm these visual results quantitatively,
we calculated the average epistemic uncertainty per pixel taken
over the test dataset as a function of the size of the training
dataset. Fig. 5 shows the quantitative results for both MRI and
CT reconstruction problems. From this figure, we observe that an
increase in the number of training examples leads to a decrease
in the overall epistemic uncertainty, which is consistent with the
visual results presented in Fig. 2. For a discussion about the effect
of the size of the training dataset on the aleatoric uncertainty,
please refer to the Supplementary Material.

For the second scenario, we insert an artificial feature that
is not well-represented by the training dataset to a test target
image. Then, we vary the intensity of the inserted abnormal
feature to modify the degree of deviation of the test data from
the training data. A good uncertainty characterization method
would result in larger epistemic uncertainty as the test sample
deviates more from the training data. In our experiments, we
first trained the proposed framework on the MRI training dataset.
Next, we picked a target image from the test dataset and inserted
a 25 x 25 square with the intensity value of 1.0 to the test target

image. Then, we obtained the epistemic uncertainty map. We
repeated the same procedure for different values of the intensity
of the inserted abnormal feature and for the CT reconstruction
problem. Fig. 3 shows the epistemic uncertainty maps obtained
by the proposed framework for different intensity values of the
inserted abnormal feature for both MRI and CT reconstruction
problems. We observe that the epistemic uncertainty in the
abnormal region decreases as the intensity of the inserted square
gets close to a value that makes the inserted square visually
similar to the target images in the training dataset. Thus, our
experiment shows that the epistemic uncertainty map obtained
by the proposed framework shows high epistemic uncertainty
for test data that are not well-represented by the training data,
confirming that for this experiment, the proposed framework
successfully captures the uncertainty caused by the lack of
training data around the test data.

Now, we demonstrate that the epistemic uncertainty provided
by the proposed framework possesses the reducibility property.
For the first scenario, we have already shown in Figs. 2 and
5 that we can reduce the epistemic uncertainty by collecting
more training data having similar characteristics to the test data.
For the second scenario, if the proposed framework is capable
of capturing the epistemic uncertainty well, we expect to see
that using training examples containing features similar to the
abnormal feature encountered in the test data would result in
reduced epistemic uncertainty. To this end, we added 25 x 25
white squares on the training target images and trained the
proposed framework with such training data containing the
abnormal features. We repeated the same procedure for the CT
reconstruction problem. Fig. 4 shows the resulting epistemic un-
certainty maps obtained by the proposed framework for both CT
and MRI reconstruction problems. We observe that the epistemic
uncertainty around the white square is decreased significantly
after we added target images containing white squares into
the training dataset, confirming that the epistemic uncertainty
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Epistemic uncertainty as a function of the intensity of the abnormal feature. The first row contains the ground truth test images, i.e., the target test

images. The second row contains the corresponding epistemic uncertainty maps obtained by the proposed framework, and the third row contains the corresponding
reconstructed images. As the inserted square deviates more from the pattern of intensities in the test image (which would be well-represented by the training data),
the inferred epistemic uncertainty in the abnormal region increases. For the MRI experiments, the percentage of observed k-space coefficients is 20%, and SNR is

70 dB. For the CT experiments, number of views is 36, and SNR is 70 dB.
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Effect of the structure of the training dataset on epistemic uncertainty maps. The first row contains the ground truth test images, i.e., the target test images,

and the second row contains the corresponding epistemic uncertainty maps. The images on the first and fourth columns show the performance of the proposed
framework on normal data (i.e., no abnormal features in training and set data). The images on the second and fifth columns show the performance of the proposed
framework on a case where an abnormal feature exists in the test data. The images on the third and sixth columns show the performance of the proposed framework
with abnormal features present in both training and test data. For the MRI experiments, the percentage of observed k-space coefficients is 20%, and SNR is 70 dB.

For the CT experiments, number of views is 36, and SNR is 70 dB.

provided by the proposed framework can be explained away
with additional training data that can represent the test data
well. These results qualitatively show that the epistemic uncer-
tainty estimates provided by the proposed method display the
reducibility property of the epistemic uncertainty.

C. Aleatoric Uncertainty

We now focus on aleatoric uncertainty characterization using
our proposed framework. The experiments we present here
demonstrate successful aleatoric uncertainty characterization,

in particular, the aleatoric uncertainty captured by the proposed
framework is high for the regions where the reconstruction is
challenging due to the ill-posed nature of the inverse problem.
Furthermore, we show that the overall aleatoric uncertainty
provided by the proposed framework is an indication of how
challenging the inverse problem is. For this analysis, we trained
the proposed framework for various configurations of the imag-
ing setups. We considered different percentages of observed
k-space coefficients and SNR values for the MRI reconstruction
problem and different number of views and SNR values for
the CT reconstruction problem. Fig. 6 shows the starting points
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Fig.5. Mean and standard deviation of epistemic uncertainty as a function of
training dataset size. The mean and standard deviation are calculated using all
pixels in the test dataset. For the MRI experiments, the percentage of observed
k-space coefficients is 20%, and SNR is 70 dB. For the CT experiments, number
of views is 36, and SNR is 70 dB. Mean SSIM values along with the standard
deviations for the corresponding reconstructions are provided for reference.

of the proposed framework, i.e., the results of zero-filling and
filtered backprojection, and the aleatoric uncertainty maps for
different test measurement vectors generated from the two test
target images using different configurations of the MR and CT
imaging setups.

For both MRI and CT reconstruction problems, we observe
that the aleatoric uncertainty is high for the regions where the
reconstruction is challenging for the unrolled network, such as
the small localized structures and thin edges on the target images.
On the other hand, we observe that the aleatoric uncertainty is
low around the regions where the corruption is negligible or can
be recovered using the spatial information, such as the smooth
regions in the target images. This behavior can be understood
analytically with a careful inspection of the objective function
of the optimization problem in (14). To minimize the objective
function of the optimization problem given in (14), the opti-
mization algorithm needs to minimize the term log[52(m[™)];,
for the k™ pixel. However, the term exp(— log[a?(m[™)];)
would increase exponentially if the aforementioned term is
minimized. Hence, the value of the term log[#%(m!"™))]; could
be made small by the optimization algorithm if the squared error
between the output of the neural network f and the target image,
ie., ([s!], — [f(ml™)];)2, is small. In other words, solving
optimization problem in (14), which corresponds to performing
variational inference using MC Dropout, explicitly forces the
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dropout added neural network &2 to output lower values where
the reconstruction is relatively easy. On the other hand, for the
regions where the reconstruction is challenging, i.e., for the
regions where the squared error between the output of the neural
network f and the target image is high, solving this optimization
problem forces the neural network &2 to output high values.
Moreover, we observe that the overall aleatoric uncertainty
levels show a decrease as SNR decreases for a fixed percentage
of the observed k-space coefficients/number of views. Similarly,
for a fixed value of the SNR, we observe a decrease in the overall
aleatoric uncertainty levels as the percentage of the observed
k-space coefficients/number of views increases. Fig. 7 shows the
average aleatoric uncertainty over all pixels in the test dataset
for different configurations of the imaging setups. From this
figure, we observe that the overall aleatoric uncertainty increases
when the SNR decreases for a fixed percentage of the observed
k-space coefficients/number of views or when the percentage of
the observed k-space coefficients/number of views decreases for
afixed value of the SNR. Hence, the quantitative results shown in
Fig. 7 confirm our visual observations about the overall aleatoric
uncertainty. This result can be also understood by analyzing the
objective function of the optimization problem in (14). Because
the neural network f does not have an infinite learning capability
in practice, we expect that the squared error between the output
of the trained neural network f and the target image will increase
as the reconstruction problem gets more challenging, leading to
higher overall aleatoric uncertainty levels for the relatively more
challenging image reconstruction problems.

D. Calibration Plots of the Proposed Method

So far, we have observed that epistemic and aleatoric uncer-
tainty maps convey useful information about the confidence of
the reconstruction method and the imaging problem; however,
we need to perform a more quantitative analysis to evaluate the
probabilistic predictions of the proposed framework more reli-
ably. One way of assessing the accuracy of the probabilistic pre-
dictions is to look at the calibration and the sharpness properties
of the proposed model. In this subsection, we present calibration
plots of the proposed method for the MRI and CT reconstruction
problems. Furthermore, we briefly touch on the recalibration of
the proposed method to achieve more calibrated probabilistic
predictions. Since the sharpness metric is useful to compare
two probabilistic models, we have included the discussion of
the sharpness of the proposed method in the supplementary
material, where we compare the probabilistic predictions of the
uncertainty-quantifying PnP method presented in [30] with the
proposed method.

A calibration plot is a diagnostic tool that allows visually
inspecting the calibration properties of a probabilistic model to
understand whether the model is providing underconfident or
overconfident predictions. In this section, to obtain calibration
plots, we approximate the predictive distribution of the proposed
method, which is a mixture of Gaussians distribution with T’
mixture components, with a multivariate Gaussian distribution.
More specifically, we approximate the predictive distribution of
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Effect of the configuration of the imaging setup on aleatoric uncertainty. The first and the third rows contain the ground truth test images, i.e., target test

images, as well as the starting points obtained by applying zero-filling (ZF) or filtered backprojection (FBP) to observations. The second and fourth rows contain
the corresponding aleatoric uncertainty maps obtained by the proposed framework for different percentages of observed k-space coefficients (POC), numbers of
views (NOV), and signal-to-noise ratios (SNR). Regions where the reconstruction from the starting point is challenging are the regions for which the aleatoric
uncertainty is high. Moreover, the overall aleatoric uncertainty increases as the reconstruction problem gets more challenging in terms of data quality and quantity

limitations.

each pixel with a Gaussian distribution as follows:

p ([s:]y, [m., D)

~ N (sl | [E [s.Jm., D], , Var [[s.],, jm., D)), (22)

where the mean and the variance of the distribution are defined
in (17) and (18), respectively. Using this approximation, we
generated calibration plots on the test datasets using Uncertainty
Toolbox [66] for different configurations of the MRI and CT
observation models. Figs. 8 and 9 show those calibration plots for
the MRI and CT experiments, respectively. The red curves in the
plots represent the calibration curves of the proposed method for
different configurations of the imaging setups. The dashed green
line, on the other hand, represents the ideal calibration curve.
Figs. 8 and 9 show that the proposed model may provide
slightly underconfident predictions. The main reason behind this
bias, which is sometimes referred to as the model bias, is the

assumptions we have made about the form of the likelihood
function, the prior distribution of the parameters of the like-
lihood function, and the choice of the parametric distribution
that we use to approximate the true posterior distribution of
the parameters. Luckily, we can easily recalibrate the proposed
method by following the recalibration method introduced by
Kuleshov et al. [21]. In our experiments, we used the validation
dataset as the calibration dataset to recalibrate the proposed
method. Calibration curves of the calibrated proposed method
are represented with the blue color in Figs. 8 and 9. After
recalibration, we observe that the calibrated proposed model is
capable of outputting more calibrated probabilistic predictions.

E. Reconstruction Performance

In this subsection, we demonstrate the reconstruction perfor-
mance of the proposed framework. We compare the proposed

Authorized licensed use limited to: UNIVERSITY OF ROCHESTER. Downloaded on November 08,2023 at 18:08:57 UTC from |IEEE Xplore. Restrictions apply.



1206

MRI
=@==Aleatoric uncertainty ;
016 7 = sSIM 7 Zam
) -
g o - 0.90
8
o}
] 0.12 + =
= - 0.85 &
2 %]
£ 0.10
g
< 0.8 - - 080
0.06 - 0.75
T T T T
10/10 10770 20/10 20/70
POC / SNR (dB)
CT
0.085 =@=Aleatoric uncertainty
0.080 — — 0.96
2
£ 0.075
5 - 0.94
£ 0,070 g
2 2
=
£ 0.065 - 0.92
o
=<
0.060 —
- 0.90
0.055 =
I 1 1 I
36/40 36/70 60/40 60/70
NOV / SNR (dB)
Fig.7. Mean and standard deviation of aleatoric uncertainty for different con-

figurations of the imaging setups. For MRI experiments, they are calculated for
different percentages of observed k-space coefficients (POC) and signal-to-noise
ratios (SNR). For CT experiments, they are calculated for different numbers
of views (NOV) and signal-to-noise ratios (SNR). The averages and standard
deviations are calculated using all pixels in the test dataset. Mean SSIM values
along with the standard deviations for the corresponding reconstructions are
provided for reference.

framework with six methods: 1) zero-filling (ZF) / filtered
backprojection (FBP), 2) total variation reconstruction (TV), 3)
PGD-based deep unrolling method (PUM), 4) PGD-based deep
unrolling method without batch normalization (PUMw/0BN),
5) proposed only epistemic model (POEM), and 6) proposed
only aleatoric model (POAM).

The methods ZF/FBP, and TV are the baseline reconstruction
methods that we use to demonstrate how challenging the re-
construction problem is. PUM is a deep unrolling method using
PGD. Each residual block of PUM consists of a series of con-
volutional layers, batch normalization layers, and an activation
function. PUMw/0BN is the same model as the PUM, except
that there are no batch normalization layers in residual blocks.
POEM is the variant of the proposed framework that assumes
that the covariance matrix of the likelihood function in (6) is a
fixed model parameter. POEM is also the probabilistic model
that was used in the experiments of the preliminary version of
this article [31]. As its name implies, POEM quantifies only
the epistemic uncertainty, not the aleatoric uncertainty. POAM
is also a variant of the proposed framework where a maximum
likelihood estimate of the parameters of the likelihood function
in (6) is used. POAM is capable of quantifying the aleatoric
uncertainty, but not the epistemic uncertainty since it only uses
the MAP estimate of the parameters. Implementation details of
these methods are provided in the Supplementary Material.
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Fig. 8. Calibration plots of the proposed method for different configurations
of the MRI setup. Subcaptions specify the percentage of observed k-space
coefficients and the SNR (dB).

Table II shows the performance of the seven methods for CT
and MRIreconstruction problems under different configurations
of the imaging setups. Among these image reconstruction meth-
ods, FBP and ZF achieve the worst reconstruction performance
among the seven reconstruction methods. The TV method im-
proves upon FBP and ZF by promoting a piecewise-constant
reconstruction. The deep unrolling method PUM surpasses the
TV method by implicitly learning the prior using the training
dataset. The deep unrolling method PUM was trained using a
small mini-batch size since it requires storing the intermediate
variables having the same spatial dimensions as the target image
in the memory to carry out the backpropagation. We empirically
observed that the removal of the batch normalization layers from
the unrolled network leads to an increase in the reconstruction
performance. Specifically, we observe that the PUMw/0oBN out-
performs PUM in all the experiments. This empirical observa-
tion is mathematically justified in [67] where Yong et al. showed
that batch normalization introduces a high level of noise for small
mini-batch sizes, making the training difficult. This observation
is the main reason why the unrolled network f in the proposed
framework does not contain any batch normalization layers. On
the other hand, we experimentally observed that the addition
of the batch normalization layers into the neural network o2
is necessary to have a stable training stage. Comparing POAM
with PUMw/oBN, POAM shows an average SSIM decrease of
0.022 for the MRI reconstruction problem and 0.002 for the CT
reconstruction problem. On the other hand, when compared
to the state-of-the-art deep unrolling method PUM, POAM
achieves average SSIM gains of 0.031 and 0.011 for the MRI
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TABLE II
COMPARISON OF AVERAGE SSIM FOR DIFFERENT IMAGE RECONSTRUCTION METHODS

POC NOV SNR | ZF FBP TV PUM  PUMw/oBN POAM POEM  Proposed
10 - 10 0.4910 - 0.7033  0.7979 0.8144 0.7773  0.7727 0.7674
MRI 10 - 70 0.5448 - 0.7261  0.8032 0.9227 0.8996  0.8638 0.8784
20 - 10 0.5609 - 0.7913  0.8611 0.8799 0.8589  0.8517 0.8568
20 - 70 0.6774 - 0.8414  0.9231 0.9780 0.9726  0.9407 0.9642
- 36 40 - 0.4919  0.7657  0.9053 0.9228 09178  0.9068 0.9129
CT - 36 70 - 0.5895 0.8232 09175 0.9319 0.9290 09133 0.9181
- 60 40 - 0.6726  0.8637  0.9390 0.9535 0.9520  0.9422 0.9467
- 60 70 - 0.7846  0.9204  0.9548 0.9625 0.9626  0.9507 0.9576
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Fig. 9. Calibration plots of the proposed method for different configurations
of the CT setup. Subcaptions specify the number of views and the SNR (dB).

and CT reconstruction problems, respectively. The reconstruc-
tion performance of POEM shows a decrease compared to
PUMw/0oBN due to using dropout after every convolutional
layer, which is a strong form of regularization. Similarly, we
observe that the reconstruction performance of POEM is slightly
worse than that of POAM. The reconstruction performance of the
proposed framework shows a decrease compared to POAM be-
cause of using dropout after every convolutional layer, which is
a strong form of regularization. Comparing the proposed frame-
work with POAM, the proposed framework shows an average
SSIM decrease of 0.010 for the MRI reconstruction problem and
0.007 for the CT reconstruction problem. We observe a similar
trend for the proposed framework and PUMw/0oBN. On the other
hand, the proposed framework achieves average SSIM gains of
0.010 and 0.006 for the MRI and CT reconstruction problems
when compared to POEM, respectively. Similarly, the proposed
framework surpasses the state-of-the-art deep unrolling method
PUM. Due to space limitations, only representative visual results
are presented in Fig. 10. Detailed visual results are provided in
the Supplementary Material.

V. DISCUSSION

Quantification of the epistemic uncertainty is crucial for
learning-based image reconstruction methods, especially in
safety-critical imaging applications, for quantifying the confi-
dence on a reconstruction obtained using a model learned from
available, potentially limited or unrepresentative training data.
Our experimental results presented in Section IV showed that
the epistemic uncertainty information provided by the proposed
method exhibits the reducibility property of the epistemic un-
certainty. Moreover, the epistemic uncertainty provided by the
proposed framework can be used to assess how uncertain the
learning-based image reconstruction method is and to detect
cases where the input contains abnormal features not present
in the training data.

For ill-posed inverse problems encountered in most imaging
problems, inherent uncertainty on the target image for a given
measurement vector is inevitable. Hence, it is essential to quan-
tify the aleatoric uncertainty for imaging problems to capture
the inherent randomness in the reconstruction task. Our exper-
iments presented in Section IV demonstrated that the proposed
framework is capable of capturing the aleatoric uncertainty in
the sense that the aleatoric uncertainty provided by the proposed
framework shows the regions where the reconstruction is ex-
pected to be challenging for the unrolled network. The aleatoric
uncertainty provided by the proposed framework can be utilized
to determine the possible errors in the reconstructed image and
can be used as a mechanism to further assess the reliability of
the reconstructed image. As a result, the aleatoric and epistemic
uncertainties provided by the proposed framework would open
the possibility of developing more accurate, robust, trustwor-
thy, uncertainty-aware, learning-based image reconstruction and
analysis methods. While the uncertainty estimates provided by
our proposed methodology appear to reflect expected behavior
of epistemic and aleatoric uncertainties, further analysis of the
implications of the variational inference approximations used
here would be beneficial.

The benefits of obtaining the epistemic and aleatoric uncer-
tainty maps come with a price. Because the proposed framework
requires feeding the measurement vector into the neural net-
works 7" times for inference, the inference time of the proposed
framework increases by 7' times compared to the state-of-the-art
deep unrolling method PUM. To shorten the inference time of
the proposed framework, we can perform those 1" forward passes
in parallel. Assuming that the GPU memory allows using a
batch size of B in the inference stage, the proposed framework
requires only |7'/B| + 1 forward passes for inference. If we
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SSIM: 0.9796

SSIM: 0.9677

PUMw/oBN Proposed

SSIM: 0.9782 SSIM: 0.9762

PUMw/oBN Proposed

Visual comparison of the image reconstruction performance of zero-filling (ZF) / filtered backprojection (FBP), total variation reconstruction (TV),

state-of-the-art PGD-based deep unrolling method without batch normalization (PUMw/0BN), and the proposed method. Proposed method achieves comparable
reconstruction performance to the state-of-the-art deep unrolling method PUMw/0oBN, while providing uncertainty quantification.

have multiple GPUs, the inference time of the proposed frame-
work can be further reduced. Hence, the proposed framework
can achieve shorter inference times at the expense of using
more computational power. Another way to shorten the inference
time of the proposed framework is to decrease the number of
parameters the proposed framework so that a larger batch size B
can be used to parallelize the inference stage. To that end, we can
design a variant of the proposed framework that uses a dual-head
network. For the sake of brevity, we have not discussed this
variant; however, a brief discussion on that variant is provided
in the Supplementary Material.

VI. CONCLUSION

In this article, we utilized the idea of deep unrolling and
Bayesian neural networks to propose a learning-based image re-
construction framework that is capable of quantifying epistemic
and aleatoric uncertainties while incorporating the imaging ob-
servation model into the reconstruction process. Our experimen-
tal results showed that the proposed framework provides epis-
temic and aleatoric uncertainty maps while providing a recon-
struction performance comparable to the state-of-the-art deep
unrolling methods. The proposed framework can be applied to
a broad set of imaging problems and can be easily implemented
in deep learning frameworks. We hope that the proposed frame-
work and the provided discussion on epistemic and aleatoric
uncertainties for imaging problems motivate further research
on uncertainty characterization for imaging problems and on
leveraging the uncertainty information for image reconstruction
and analysis tasks.
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