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Computational Imaging
Canberk Ekmekci , Graduate Student Member, IEEE, and Mujdat Cetin , Fellow, IEEE

Abstract—Deep unrolling is an emerging deep learning-based
image reconstruction methodology that bridges the gap between
model-based and purely deep learning-based image reconstruction
methods. Although deep unrolling methods achieve state-of-the-art
performance for imaging problems and allow the incorporation
of the observation model into the reconstruction process, they do
not provide any uncertainty information about the reconstructed
image, which severely limits their use in practice, especially for
safety-critical imaging applications. In this article, we propose a
learning-based image reconstruction framework that incorporates
the observation model into the reconstruction task and that is
capable of quantifying epistemic and aleatoric uncertainties, based
on deep unrolling and Bayesian neural networks. We demonstrate
the uncertainty characterization capability of the proposed frame-
work on magnetic resonance imaging and computed tomography
reconstruction problems. We investigate the characteristics of the
epistemic and aleatoric uncertainty information provided by the
proposed framework to motivate future research on utilizing uncer-
tainty information to develop more accurate, robust, trustworthy,
uncertainty-aware, learning-based image reconstruction and anal-
ysis methods for imaging problems. We show that the proposed
framework can provide uncertainty information while achieving
comparable reconstruction performance to state-of-the-art deep
unrolling methods.

Index Terms—Image reconstruction, uncertainty quantification,
uncertainty characterization, deep unrolling, computational
imaging, learning-based imaging.

I. INTRODUCTION

T
HIS article concerns imaging problems where the target

image is observed through a linear transformation followed

by additive noise. This observation model is quite general and

has been used to model a variety of imaging techniques such as

computed tomography (CT) [1], magnetic resonance imaging

(MRI) [2], microscopy [3], and radar imaging [4].

For this observation model, classical model-based iterative

reconstruction methods cast the image reconstruction problem
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as a regularized least squares problem whose objective function

is the sum of a data-fidelity term and a regularizer. The obser-

vation model of the imaging problem determines the form of

the data-fidelity term, and the prior knowledge about the target

image governs the form of the regularizer. After obtaining an

analytical expression for the data-fidelity term and choosing a

regularization function, such as the total variation (TV) semi-

norm [5], the resulting optimization problem is solved iteratively

by using an appropriate iterative optimization algorithm such

as alternating direction method of multipliers (ADMM) [6],

half-quadratic splitting (HQS), and proximal gradient descent

(PGD) method [7].

Inspired by model-based iterative reconstruction methods and

the pioneering work of Gregor and LeCun [8] on sparse coding, a

deep learning-based image reconstruction methodology, which

is often referred to as deep unrolling [9], [10], [11], [12], [13],

[14], [15], [16] has emerged to bridge the gap between model-

based image reconstruction methods and purely deep neural

network-based image reconstruction methods. The common

theme among deep unrolling methods is that they often design

a deep neural network by replacing some parts of the unrolled

iterative reconstruction algorithm with trainable parameters and

neural networks. The main advantages of deep unrolling meth-

ods are that they explicitly incorporate the observation model

into the neural network, hence they enforce data consistency, and

the resulting deep neural network is interpretable in the sense that

the resulting deep learning-based image reconstruction method

is essentially classical model-based reconstruction algorithm

with some learnable components.

Although deep unrolling methods have the advantage of incor-

porating domain knowledge and the physics of the imaging prob-

lem into the neural network architecture, existing deep unrolling

methods do not provide any predictive uncertainty information

about the reconstructed image since they rely on non-Bayesian

(standard) neural networks to reconstruct the target image from

the corrupted measurements. This severely limits their appli-

cability in safety-critical real-world imaging applications such

as medical imaging, where uncertainty information is crucial to

make accurate decisions. Our perspective is that we can solve

this problem by taking a Bayesian approach for uncertainty

estimation and using Bayesian neural networks (BNNs) [17].

BNNs are probabilistic models that can quantify the inherent

uncertainty on the target image for a given measurement vector

due to the ill-posed nature of the inverse problem, which is

referred to as the aleatoric uncertainty [18], and the uncertainty

on the parameters of a neural network, which is referred to as the
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epistemic uncertainty [18], by putting a probability distribution

on the parameters and computing the posterior distribution of

the parameters given a training dataset. By using BNNs together

with the idea of deep unrolling, we claim that we can provide

predictive uncertainty information for the reconstructed image

while preserving the advantages of deep unrolling.

The contribution of this article is three-fold:

1) By bringing the idea of deep unrolling and Bayesian neural

networks together, we propose an uncertainty-quantifying

learning-based image reconstruction framework. Our ap-

proach characterizes the overall predictive uncertainty,

which is composed of aleatoric and epistemic uncertain-

ties. The proposed method first assumes that the aleatoric

uncertainty has the form of an additive Gaussian noise,

which is implicitly assumed by most state-of-the-art deep

unrolled networks as shown in Section III-B, and defines

a likelihood function such that the aleatoric uncertainty

is modeled with a U-shaped neural network [19] and, the

mean of the likelihood function is represented with a deep

unrolled neural network. Then, by following the princi-

ples of Bayesian neural networks, the proposed method

approximates the posterior distribution of the parameters

of the likelihood function using a scalable variational

inference method called Monte Carlo (MC) Dropout [20].

Next, for a given test measurement and a training dataset,

the proposed method computes the predictive distribution,

which can be later used to obtain the reconstructed image

and the epistemic and aleatoric uncertainty maps, via

Monte Carlo integration.

2) We qualitatively evaluate the proposed method on MRI

and CT reconstruction problems to validate whether the

epistemic and aleatoric uncertainty information provided

by the proposed method exhibits the theoretical char-

acteristics of epistemic and aleatoric uncertainties. We

show that the epistemic and aleatoric uncertainty maps

obtained by the proposed method display some of the

key theoretical characteristics of epistemic and aleatoric

uncertainties.

3) To assess the quality of the probabilistic predictions quan-

titatively, we generate the calibration plots and calculate

the calibration metrics of the proposed method for MRI

and CT reconstruction problems. We show that due to

the modeling assumptions made by the proposed method,

the proposed method may output slightly underconfident

predictions. We later show that the proposed model can

be easily calibrated by using the recalibration method

introduced by Kuleshov et al. [21] to output calibrated

probabilistic predictions.

We show that the proposed framework can achieve compa-

rable reconstruction performance to a state-of-the-art deep un-

rolling method and provide epistemic and aleatoric uncertainty

information about the reconstructed image while incorporating

the domain knowledge into the reconstruction process.

II. RELATED WORK

The problem of uncertainty quantification for image recon-

struction tasks, e.g., [22], [23], [24], [25], [26], [27], [28], [29],

[30], [31], [32], [33], [34], [35], [36], [37], [38], [39], [40],

[41], [42], [43], has attracted the attention of the computational

imaging community again recently due to recent advancements

in deep generative modeling [44] and BNNs [17], [18], [20].

The state-of-the-art deep learning-based image reconstruction

methods performing uncertainty characterization, e.g., [22],

[24], [27], [28], [29], [30], [31], [32], [33], [34], [35], [37],

[38], [39], [40], [41], [42], [43], can be divided into two groups:

deep generative model-based reconstruction methods and BNN-

based reconstruction methods.

Deep generative model-based reconstruction methods,

e.g., [22], [24], [28], [29], [40], [42], seek to approximate the

posterior distribution of the target image with the help of a

generative model to characterize the inherent uncertainty in the

reconstruction task, i.e., the uncertainty on the target image for a

given measurement vector. For example, Adler and Oktem [22]

approximate the posterior distribution of the target image given a

measurement vector using a conditional Wasserstein generative

adversarial network [45], [46]. Bohm et al. [24] use a variational

autoencoder [47] to represent the prior distribution of the target

image and perform variational inference to learn the true pos-

terior distribution of the latent variable given a measurement

vector. Sun and Bouman [40] utilize another popular genera-

tive model, a flow-based model [48], [49], to approximate the

posterior distribution of the target image given a measurement

vector and adjust the parameters of the flow-based model by min-

imizing the reverse Kullback-Leibler divergence [49] between

the output distribution of the flow-based model and the posterior

distribution. After training the generative model, the uncertainty

on the target image for a given measurement vector can be

quantified by calculating the sample variance of the samples

generated from the approximation of the posterior distribution

of the target image.

While deep generative model-based reconstruction methods

aim to quantify the inherent uncertainty in the reconstruction

task, the goal of Bayesian neural network-based reconstruction

methods, e.g., [27], [30], [31], [33], [37], [38], [39], [41],

[43], is to quantify either the uncertainty on the parameters

of the statistical model or both the inherent uncertainty in the

reconstruction task and the uncertainty on the parameters of

the statistical model. To the best of the authors’ knowledge,

Schlemper et al. [37] presented the first two BNN-based image

reconstruction methods for the MRI reconstruction problem,

showing the potential of BNNs for uncertainty quantification

for imaging problems. Subsequently, many BNN-based im-

age reconstruction methods were developed for various prob-

lems such as the neuroimage enhancement [41], phase imag-

ing [43], seismic imaging [39], computational optical form

measurements [33], single-pixel imaging [38], imaging through

scattering media [27], and more general image reconstruction

problems [30], [31]. Table I shows the functional models of

and the types of uncertainties quantified by BNN-based image

reconstruction methods.

Table I highlights the main differences between the proposed

framework and the aforementioned BNN-based image recon-

struction methods. The main difference between the proposed

framework and the methods presented in [27], [33], [37], [38],

[39], [41], [43] is that the proposed framework utilizes the idea
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TABLE I
HIGH-LEVEL COMPARISON OF BAYESIAN NEURAL NETWORK-BASED IMAGE

RECONSTRUCTION METHODS

of deep unrolling to integrate the observation model into the

reconstruction process. Incorporation of physics-based models

through data-consistency layers provides some level of inter-

pretability. The DCCNN [50] based method presented in [37]

contains data-consistency layers; however, the data-consistency

layer in [37] leverages the characteristic properties of the for-

ward operator of the MRI observation model, making it highly

specialized for MRI reconstruction. On the other hand, the

proposed framework only requires the computation of the adjoint

of the forward operator of the observation model, which is a

considerably less restrictive requirement. If the forward operator

deviates from a Fourier operator, the data consistency layer of the

DCCNN-based method requires matrix inversion, which is not

computationally feasible for large scale inverse problems. The

difference between the proposed framework and the framework

presented in [30] lies in the difference between end-to-end

models and Plug-and-Play (PnP) methods [54]. While the BNN-

based image reconstruction method presented in [30] is built

upon the idea of Plug-and-Play (PnP) priors [54], which does

not require end-to-end training, the proposed framework uses a

deep unrolled network as its functional model, which is trained

in an end-to-end manner.

We note that the preliminary version of this work appeared

in [31] as a conference paper. The work presented in this

manuscript extends the preliminary work in [31] in several sig-

nificant ways. First, [31] involved the quantification of epistemic

uncertainty only, whereas this article proposes both epistemic

and aleatoric uncertainty quantification. Second, unlike [31],

the unrolled neural network in the framework we propose here

contains different CNN blocks at each iteration. We have ex-

perimentally observed that this change leads to a faster and

more stable training stage. Finally, this manuscript contains an

extensive set of experiments demonstrating the characteristics

of epistemic and aleatoric uncertainties.

III. PROPOSED FRAMEWORK

In this section, we present a learning-based image recon-

struction framework that can incorporate the observation model

into the reconstruction process and quantify epistemic and

aleatoric uncertainties arising in imaging problems. We start

by introducing the assumed observation model and presenting a

probabilistic formulation of deep unrolling methods along with

a motivation for bringing in BNNs. This provides the basis for

our BNN-based image reconstruction and uncertainty charac-

terization approach, the components of which are described in

the rest of this section.

A. Observation Model and the Inverse Problem

We consider the following observation model.

m = As+ n, (1)

where m ∈ F
M is the measurement vector; A ∈ F

M×N is the

forward operator, which is the discrete approximation of the

transformation applied by the imaging system; s ∈ F
N is the

target image; and n ∼ N (0, σ2
nI) is additive white Gaussian

noise, where F stands for either R or C. In this section, without

loss of generality, we only consider the case where F = R since

generalizing the proposed framework to cover the case F = C

is straightforward (see [31] for details).

For an underdetermined system (M < N ), the inverse prob-

lem, i.e., recovering the target image s from the measurement

vector m, is an ill-posed problem. To narrow down the solution

space, we can utilize any prior knowledge about the target

image. One way to use such prior knowledge systematically is

to treat the inverse problem as a maximum a posteriori (MAP)

estimation problem, which is defined by

ŝ = argmin
s∈RN

{
‖As−m‖22 + βψ(s)

}
, (2)

where ŝ is the MAP estimate of the target image, the term

‖As−m‖22 is the data-fidelity term, the function ψ : RN → R

is the regularizer that comes from the prior knowledge on the

target image, and β > 0 is the parameter controlling the balance

between the data-fidelity term and the regularizer. After deciding

on the form of the regularizer, e.g., total variation semi-norm or

wavelet transform domain regularization, model-based recon-

struction methods solve the problem in (2) iteratively by using

an appropriate optimization algorithm, e.g., ADMM [6], HQS,

or PGD [7].

B. Probabilistic Formulation of Deep Unrolling and BNNs

For the inverse problem, which is essentially a regression

problem, suppose that the likelihood function p(s|m, θ) has the

following form.

p(s|m, θ) = N
(
s|fθ(m), σ2

I
)
, (3)

where fθ : RM → R
N is a deep unrolled network parametrized

by the set of parameters θ, and σ > 0 is a fixed constant.

Assuming that the training dataset D contains i.i.d. pairs of

measurement vectors and target images, we can compute a

MAP estimate of the set of parameters by solving the following

optimization problem.

θ̂MAP = argmin
θ

{

1

2σ2

ND∑

i=1

‖s[i] − fθ(m
[i])‖22 − log p(θ)

}

(4)
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where (m[i], s[i]) is the ith example in the training dataset, ND

is the number of examples in the training dataset, and the distri-

bution p(θ) is the prior distribution of the set of parameters. In

the inference stage, for a given measurement vector m∗, we can

compute the distribution p(s∗|m∗, θ̂MAP) to make predictions

about the target image.

This probabilistic formulation implicitly appears in the train-

ing and inference stages of state-of-the-art deep unrolling meth-

ods. For instance, if we choose the prior p(θ) to be standard

Gaussian distribution, then finding the MAP estimate of the

set of parameters boils down to training the neural network

fθ using the squared error loss with weight decay, which is a

cost function frequently used by deep unrolling methods. In the

inference stage, for a given measurement vector m∗, outputting

the mean of the distribution p(s∗|m∗, θ̂MAP) as the reconstructed

image is equivalent to feeding the measurement vector m∗ into

the trained neural network f
θ̂MAP

. Hence, training and inference

procedures followed by many existing deep unrolling methods

can be interpreted probabilistically using the formulation above.

Although such procedures are frequently used to train deep

unrolling methods, there are two problems with this approach

regarding the characterization of uncertainties. The first problem

is that this formulation does not model the uncertainty on the

target image for a given measurement vector, i.e., the inherent

uncertainty on the reconstruction task, since it assumes that the

covariance matrix of the likelihood function is a fixed model

parameter. The second problem is that this formulation does not

model the uncertainty on the set of parameters because it only

uses a point estimate of the set of parameters by following MAP

estimation principles.

BNNs [17], [18], [55] can solve these two problems. BNNs

solve the first problem by defining a likelihood function that

models the inherent uncertainty on the reconstruction task. In

the case of a Gaussian likelihood, this can be accomplished by

representing the covariance matrix of the likelihood function

with a neural network. To solve the second problem, BNNs place

a prior distribution on the set of parameters of the likelihood

function and compute the posterior distribution of the parameters

given a training dataset. Then, at the inference stage, BNNs

compute the predictive distribution for a given measurement

vector m∗ by computing the following integral:

p(s∗|m∗,D) =

∫

p(s∗|m∗, θ)p(θ|D)dθ, (5)

where the distribution p(s∗|m∗,D) is the predictive distribution,

and the integral is taken over all possible values of θ. The first

term of the integrand, which is the likelihood function, incor-

porates the inherent uncertainty on the reconstruction task (i.e.,

aleatoric uncertainty), which is created by the ill-posedness of

the inverse problem, into the predictive distribution. The second

term of the integrand, on the other hand, which is the posterior

distribution of the parameters, incorporates the uncertainty on

the set of parameters (i.e., epistemic uncertainty), which is

created by the lack of training examples in the training dataset

around the test measurement vector, into the predictive distri-

bution through an integral over the possible parameter values.

Thanks to this conceptually simple probabilistic formulation,

we can utilize BNNs to quantify both epistemic and aleatoric

uncertainties in computational imaging problems.

C. Form of the Likelihood Function

Based on our observations presented in Section III-B, we

define the form of likelihood function as follows.

p(s|m, θ) = N (s|fγ(m), diag(σ2
δ (m))), (6)

where θ = γ ∪ δ, and fγ : RM → R
N and σ2

δ : RM → R
N are

two neural networks parametrized by sets of parameters γ and δ,

respectively. The neural network fγ maps a given measurement

vector to a point in the target image space, and the neural network

σ2
δ aims to capture the inherent uncertainty on the target image

for a given measurement vector. The form of the likelihood

function implicitly assumes that s = fγ(m) + nl, where nl ∼
N (0, diag(σ2

δ (m))), i.e., the aleatoric uncertainty is modeled

as additive Gaussian noise. This assumption may be restrictive

for severely ill-posed inverse problems since the distribution of

the underlying image s for a given measurement vector m can

be quite multimodal. To circumvent this issue, the likelihood

function can be defined as a mixture of Gaussians distribution by

following the idea of mixture density networks [56, Chapter 5.6];

however, this does not scale well to most imaging inverse prob-

lems since it requires training several neural networks (in the

order of the number of mixture components). Another alternative

is to introduce a latent variable for the deep neural network

f to model complex uncertainty patterns on the target image,

which is referred to as Bayesian neural networks with latent

variables [57]. However, most deep unrolled networks are not

latent variable models, and it is not straightforward to integrate

latent variables into the deep unrolled architectures. Due to these

reasons, we have decided to model the aleatoric uncertainty as

additive Gaussian noise using the neural network σ2
δ .

To incorporate the observation model into the neural network

fγ , which maps a given measurement vector to a point on the

target image space, we start constructing fγ by first solving the

optimization problem in (2) using the proximal gradient descent

(PGD) method. The main advantage of using PGD over methods

such as ADMM and HQS is that the data dependent update

equation of PGD requires computing only the adjoint of the

forward operator and does not involve any inversion step, which

makes it suitable for large scale imaging problems with non-

structured forward operators. Assuming that the regularizer ψ in

(2) is a closed proper convex function, PGD yields the following

iterative image reconstruction algorithm.

z
(k+1) =

(
I− 2αA�

A
)
s
(k) + 2αA�

m

s
(k+1) = proxαβψ

(

z
(k+1)

)

(7)

where z(k+1) ∈ R
N is an intermediate vector of the algorithm at

the (k + 1)st iteration, s(k+1) ∈ R
N is the reconstructed image

at the (k + 1)st iteration, the operator prox : RN → R
N is the

proximal operator [7], and α > 0 is the step size. To learn the

prior information implicitly from the training data, we replace

the proximal operator in the second step with a neural network,

which has been frequently done by deep unrolling methods such
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Fig. 1. The structure of the neural networks fγ and σ2

δ
at a high level. The

neural network fγ maps a measurement vector to a point in the target image

space, and the neural networkσ2

δ
aims to capture the aleatoric uncertainty. These

two neural networks completely specify the form of the Gaussian likelihood in
(6).

as [16]. Then, the resulting update equations become

z
(k+1) =

(
I− 2αA�

A
)
s
(k) + 2αA�

m

s
(k+1) = Dγk+1

(

z
(k+1)

)

, (8)

where Dγk+1
: RN → R

N is a residual neural network [58]

parametrized by the set of parameters γk+1. For a fixed number

of iterations K, the series of update equations in (8) correspond

to a deep neural network fγ , where γ =
⋃K

k=1 γk. Fig. 1 displays

the high-level summary of the neural network fγ , and the details

of the architecture are provided in the Supplementary Material.

To completely specify the form of the likelihood function

given in (6), we have to specify the architecture of the neural

network σ2
δ as well. The neural network we use for the neural

network σ2
δ is a U-shaped neural network [19] followed by an

element-wise exponentiation to ensure that the output contains

positive entries. Fig. 1 depicts a high-level summary of the neural

network σ2
δ , the details of which are given in the Supplementary

Material. We must remark that we can also use a dual-head

architecture to jointly represent the neural networks fγ and σ2
δ .

A brief discussion on the dual-head variant of the proposed

framework is also provided in the Supplementary Material for

interested readers.

D. Approximating the Posterior Distribution

To be able to compute the predictive distribution using (5),

we have to compute the posterior distribution p(θ|D). However,

exact computation of the posterior distribution is not tractable

for deep neural networks because of the massive number of

parameters and complex hierarchical structures. Thus, we either

have to approximate the posterior distribution with a parametric

distribution, or we have to generate samples from the posterior

distribution to approximate the integral in (5). In our framework,

we use a variational inference method called MC Dropout to

approximate the posterior distribution with a parametric dis-

tribution. The advantages of using MC Dropout are that it is

scalable for deep neural networks since it does not introduce

additional parameters, variational inference and inference pro-

cedures can be straightforwardly implemented in deep learning

frameworks because this only requires small changes on the

training and testing procedures of the standard neural network

pipelines, and it has been shown that MC Dropout provides reli-

able uncertainty estimates for several problems such as camera

relocalization [59], depth completion [18], [60] and semantic

segmentation [18], [60].

For the sake of completeness, we state the assumptions of

MC Dropout explicitly and discuss the variational inference and

inference steps. For a more detailed discussion, the reader can

refer to [18], [20], [61]. Suppose that the neural networks fγ and

σ2
δ containC andE convolutional layers, respectively. Then, we

can write the two sets γ and δ as follows:

γ =

C⋃

i=1

{

W
f
i

}

and δ =

E⋃

j=1

{
W

σ
j

}
, (9)

where W
f
i and W

σ
j are the matrices whose rows contain the

vectorized filter coefficients of the ith and jth convolutional

layers of the neural networks fγ and σ2
δ , respectively. The

assumptions [18], [20], [61] on the parametric distribution qω(θ)
that we use to approximate the true posterior distribution p(θ|D)
are as follows: i) For the parametric distribution, we assume that

the layers of the neural networks fγ and σ2
δ are independent, and

layers within the neural networks are mutually independent, i.e.,

qω(θ) =

(
C∏

i=1

q
(

W
f
i

)
)⎛

⎝

E∏

j=1

q
(
W

σ
j

)

⎞

⎠ ; (10)

ii) Filters of a convolutional layer are assumed to be mutually

independent, more explicitly

q
(

W
f
i

)

=

K
[out]
i,f∏

l=1

q

([

W
f
i

]

l,:

)

, q
(
W

σ
j

)
=

K
[out]
j,σ∏

m=1

q
([

W
σ
j

]

m,:

)

,

(11)

whereK
[out]
i,f is the number of filters in the ith convolutional layer

of fγ , and K
[out]
j,σ is the number of filters in the jth convolutional

layer of σ2
δ ; iii) The distribution of the filter coefficients of each

filter is a mixture of Gaussians distribution defined by

q

([

W
f
i

]

l,:

)

= p
(

zfi,l=1
)

N

([

W
f
i

]

l,:
|afi,l, ε

2
I

)

+ p
(

zfi,l=0
)

N

([

W
f
i

]

l,:
|0, ε2I

)

,

q
([

W
σ
j

]

m,:

)

= p
(
zσj,m=1

)
N

([
W

σ
j

]

m,:
|aσj,m, ε2I

)

+ p
(
zσj,m=0

)
N

([
W

σ
j

]

m,:
|0, ε2I

)

,

(12)

where the variables zfi,l and zσj,m are the latent variables, and

the scalars pfi,l � p(zfi,l = 1) and pσj,m � p(zσj,m = 1) are fixed

constants. The scalar ε is a very small fixed constant, and the sets

∆f � {afi,l} and ∆σ � {aσj,m} are the adjustable parameters of

the parametric distribution. Previously we have denoted the set

of adjustable parameters of the parametric distribution qω(θ)
with ω, so we can write the set ω explicitly as ω = ∆f ∪∆σ .
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Under these assumptions, we adjust the parameters of the

parametric distribution by minimizing the Kullback-Leibler

divergence between the parametric distribution and the true

posterior distribution, i.e.,

ω̂ = argmin
ω

DKL (qω(θ)||p(θ|D)) . (13)

Under certain approximations and mathematical manipulations

(see the Supplementary Material or the Appendix of [20] for the

details), the above optimization problem can be approximated

with the following optimization problem.

ω̂ ≈ argmin
ω

{g(ω) + h(ω)} , (14)

where

g(ω) �
1

ND

ND∑

n=1

N∑

k=1

[
1

2
log[σ2

δ̃(n)(m
[n])]k

+
1

2
exp(− log[σ2

δ̃(n)(m
[n])]k)([s

[n]]k − [fγ̃(n)(m[n])]k)
2

]

,

h(ω) �
C∑

i=1

K
[out]
i,f∑

l=1

pfi,l
2ND

‖afi,l‖
2
2 +

E∑

j=1

K
[out]
j,σ∑

m=1

pσj,m
2ND

‖aσj,m‖22,

(15)

and θ̃(n) = δ̃(n) ∪ γ̃(n) is the nth sample generated from the

parametric distribution qω(θ).
After approximating the true posterior distribution p(θ|D)

with the parametric distribution qω̂(θ), we approximate the

integral in (5) using Monte Carlo integration with T samples

as follows.

p (s∗|m∗,D) ≈
1

T

T∑

t=1

N
(

s∗|fγ̂(t)(m∗), diag
(

σ2
δ̂(t)

(m∗)
))

(16)

where θ̂(t) = δ̂(t) ∪ γ̂(t) is the tth sample from the parametric

distribution qω̂(θ). The approximation of the predictive dis-

tribution is a mixture of T Gaussians with uniform weights;

therefore, we can compute its mean vector and element-wise

variance analytically as follows.

E [s∗|m∗,D] ≈
1

T

T∑

t=1

fγ̂(t) (m∗) , (17)

Var [[s∗]k |m∗,D] ≈
1

T

T∑

t=1

[

σ2
δ̂(t)

(m∗)
]

k

︸ ︷︷ ︸

Aleatoric variance

+
1

T

T∑

t=1

[
fγ̂(t)(m∗)

]2

k
−

(

1

T

T∑

t=1

[
fγ̂(t)(m∗)

]

k

)2

︸ ︷︷ ︸

Epistemic variance

, (18)

where θ̂(t) = δ̂(t) ∪ γ̂(t) is the tth sample from the optimized

parametric distribution qω̂(θ). The first term of the predictive

variance, which we refer to as the aleatoric variance, reflects

the aleatoric uncertainty in the reconstruction task, and the

remaining residual sum, which we refer to as the epistemic

variance, represents the epistemic uncertainty.

At this point, we have to be aware that we have treated

the parameters of the neural networks fγ and σ2
δ as random

variables and have to generate samples from the parametric

distribution to solve the optimization problem in (14) and to

obtain the predictive mean and variance given by (17) and (18).

Because we have assumed that filters of convolutional layers

are mutually independent, one naive way to generate a sample

from the parametric distribution is to generate samples from

the distributions in (12). Sampling from those distributions is

equivalent to sampling from a mixture of Gaussians distribution

with two components, so, first, we need to sample a Bernoulli

random variable, and based on that sample, we generate a sample

from one of the two multivariate Gaussian distributions. Because

the scalar ε is assumed to be a very small non-zero constant,

generating a sample from the multivariate Gaussian distribu-

tions in (12) can be approximated by directly reporting the

mean. Thus, the whole process of generating a sample from the

parametric distribution qω(θ) boils down to generating samples

from Bernoulli random variables and multiplying them with the

adjustable parameters of the parametric distribution. Hence we

can write

γ̃(n) ≈
{

z̃
(n)
i,l a

f
i,l|sample z̃

(n)
i,l ∼ Bernoulli

(

pfi,l

)}

,

δ̃(n) ≈
{

z̃
(n)
j,ma

σ
j,m|sample z̃

(n)
j,m ∼ Bernoulli

(
pσj,m

)}

,

θ̃(n) = δ̃(n) ∪ γ̃(n). (19)

An interesting observation is that the sampling operation

described above resembles the dropout [62] operation. Hence,

solving the optimization problem in (14) boils down to training

two neural networks f̄ and σ̄2 only once using the loss function

defined by

L(ω) =
1

NB

NB∑

n=1

N∑

k=1

[
1

2
log[σ̄2

∆σ
(m[n])]k

+
1

2
exp

(

− log
[

σ̄2
∆σ

(m[n])
]

k

)

×
([

s
[n]

]

k
−

[

f̄∆f
(m[n])

]

k

)2
]

, (20)

where B is a mini-batch from the training dataset D, and NB

is the size of the mini-batch, with weight decay parameters

pfi,l/(2ND) and pσj,m/(2ND) and with dropout rates 1− pfi,l and

1− pσj,m. After the training stage, the resulting weights of the

dropout-added neural networks will be the optimal parameters

ω̂ of the parametric distribution qω̂(θ), and generating a sample

from the parametric distribution qω̂(θ) simply boils down to

applying dropout to the weights of the dropout-added neural

networks. Furthermore, calculating the approximation of the

predictive distribution using (16) boils down to feeding the test

measurement vector to the trained dropout-added neural net-

works f̄∆̂f
and σ̄∆̂σ

exactly T times while the dropout is on. To

obtain a reconstruction, we can either generate samples from the

approximation of the predictive distribution or compute its mean
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using (17). To obtain the epistemic and aleatoric uncertainty

maps, we use the expression in (18).

We must remark that we have not included the step size

parameter α used in the deep unrolled network f and the pa-

rameters of the batch normalization layers of the neural network

σ2, in the sets γ and δ. In other words, we have not taken

those parameters into account in the Bayesian formulation. If we

want to include the parameters of a batch normalization layer

in the formulation, we have to randomly set the parameters of

the batch normalization layer to zero, which is not a common

practice in deep learning literature. Thus, we decide to treat

the parameters of the batch normalization layers as trainable

deterministic parameters. Similarly, randomly setting the step

size parameter to zero violates the positivity requirement of the

step size. We could choose other, preferably more expressive,

parametric distributions on the step size parameter to perform

variational inference or use deep ensembling [63] to capture

the uncertainty on the step size parameter. However, we have

experimentally observed that treating the step size parameter

and the parameters of the batch normalization layers as train-

able deterministic parameters is enough to obtain meaningful

uncertainty estimates without introducing more complexity to

the model.

IV. EXPERIMENTS AND RESULTS

In this section, we present experimental results demonstrating

the behavior of our proposed approach. Although the proposed

framework can be applied to any inverse problem that can be

cast as the optimization problem in (2), we evaluate the pro-

posed framework on basic MRI and CT reconstruction problems

as representative applications. We investigate the behavior of

epistemic and aleatoric uncertainties under various experimental

conditions and show that the epistemic and aleatoric uncertainty

information provided by the proposed framework is consistent

with the definitions of those uncertainties. We then investigate

the calibration properties of the proposed method by generating

calibration plots for the MRI and CT reconstruction problems.

Finally, we compare the image reconstruction performance of

the proposed framework with other image reconstruction meth-

ods to demonstrate the image reconstruction capability of the

proposed framework. Supplementary Material also contains a

toy problem illustrating the concepts of epistemic and aleatoric

uncertainties.

A. Experimental Setup

Datasets: For the MRI reconstruction problem, we extracted

530 256× 256 target images from the IXI Dataset [64]. Each

target image was normalized between 0 and 1. We split the

530 target images into training, validation, and test datasets

containing 500, 15, and 15 target images, respectively. The

training, validation, and test datasets were constructed such that

they contain target images collected from different subjects.

The measurement vectors, i.e., k-space measurements, were

generated by computing the subsampled Fourier transform of the

target images. For the CT reconstruction problem, we extracted

530 512× 512 target images from the LUNA Dataset [65].

Each image was resized to 256× 256 pixels and normalized

between 0 and 1. The training dataset was created by using 500

target images, and the remaining 30 images were split into two

sets to generate validation and test datasets, each containing 15

target images. The training, validation, and test datasets were

constructed such that they contain target images collected from

different subjects. The measurement vectors, i.e., sinogram data,

were generated by computing the sparse Radon transform of the

target images. Finally, we added white Gaussian noise to the

measurement vectors to obtain the final measurement vectors

we used in our experiments, where the SNR of the measurement

vector is defined as follows:

SNR(mnoiseless + n,mnoiseless) = 20 log10

(
‖mnoiseless‖2

‖n‖2

)

.

(21)

Training and Inference Procedures: Training of the proposed

framework refers to solving the optimization problem in (14),

where the first term of the objective function is replaced with its

mini-batch approximation [20]. We obtained the neural network

f̄ by fixing the number of iterations K of the PGD to be 5 and

taking the starting point s(0) to be the result of zero-filling and

filtered backprojection for MRI and CT reconstruction prob-

lems, respectively. Each residual block of the neural network

f̄ contains 5 convolutional layers, and each convolutional layer

is followed by a dropout layer and the leaky ReLU activation

function. We used the U-Net architecture for the neural network

σ̄2, where each convolutional layer is followed by a dropout

layer. For the MRI reconstruction problem, the batch size for the

training was set to 4, and the learning rate was fixed to 1× 10−4.

For the CT reconstruction problem, we used a batch size of 2

for the training and set the learning rate to 1× 10−5. The initial

step size α of the PGD algorithm was set to 1.0 for the MRI

experiments and 1× 10−4 for the CT experiments. The dropout

rate of the dropout layers of the neural networks f̄ and σ̄2 was

set to 0.1, and the neural networks f̄ and σ̄2 were trained for 100

epochs. At the inference stage, a given measurement vector was

fed to the neural networks f̄ and σ̄2 T = 100 times while the

dropout was still activated. The reconstructed image was then

obtained by following the approximation in (17). The epistemic

and aleatoric uncertainty maps were obtained by calculating

three times of the epistemic and aleatoric standard deviations

given by (18).

B. Epistemic Uncertainty

In theory, epistemic uncertainty is the uncertainty created by

the lack of training data around test data and can be explained

away by making appropriate changes on the training data. In this

subsection, we investigate the characteristics of epistemic un-

certainty information provided by the proposed framework and

show that the behavior and results of our approach are consistent

with the theoretical characteristics of epistemic uncertainty.

To show that the proposed framework outputs epistemic

uncertainty information that reflects the uncertainty caused by

the lack of training data that can explain the test sample well,

we consider two scenarios. In the first scenario, we assess the

impact of the size of the training dataset on the inferred epistemic
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Fig. 2. Epistemic uncertainty maps on an MRI (top) and a CT (bottom) test sample as a function of the training dataset size (TDS). As we increase the number
of examples in the training dataset, the overall epistemic uncertainty decreases. For the MRI experiments, the percentage of observed k-space coefficients is 20%,
and SNR is 70 dB. For the CT experiments, number of views is 36, and SNR is 70 dB.

uncertainty. A good uncertainty characterization method should

yield larger epistemic uncertainties for smaller training datasets,

as it is less probable for such data to represent a random test

sample well. In our experiments, we generated five subsets of

the MRI training dataset containing 10, 50, 125, 250, and 500

examples, and trained five instances of the proposed framework

using these subsets as training datasets. Then, for a given test

measurement, we obtained the epistemic uncertainty maps us-

ing the five trained instances of the proposed framework. We

repeated the same procedure for the CT reconstruction prob-

lem. The resulting epistemic uncertainty maps are illustrated in

Fig. 2. For both MRI and CT reconstruction problems, epistemic

uncertainty achieves its highest value for the case where we

use only 10 training examples. Then, as we add more examples

to the training dataset, epistemic uncertainty on the same test

image decreases. To confirm these visual results quantitatively,

we calculated the average epistemic uncertainty per pixel taken

over the test dataset as a function of the size of the training

dataset. Fig. 5 shows the quantitative results for both MRI and

CT reconstruction problems. From this figure, we observe that an

increase in the number of training examples leads to a decrease

in the overall epistemic uncertainty, which is consistent with the

visual results presented in Fig. 2. For a discussion about the effect

of the size of the training dataset on the aleatoric uncertainty,

please refer to the Supplementary Material.

For the second scenario, we insert an artificial feature that

is not well-represented by the training dataset to a test target

image. Then, we vary the intensity of the inserted abnormal

feature to modify the degree of deviation of the test data from

the training data. A good uncertainty characterization method

would result in larger epistemic uncertainty as the test sample

deviates more from the training data. In our experiments, we

first trained the proposed framework on the MRI training dataset.

Next, we picked a target image from the test dataset and inserted

a 25× 25 square with the intensity value of 1.0 to the test target

image. Then, we obtained the epistemic uncertainty map. We

repeated the same procedure for different values of the intensity

of the inserted abnormal feature and for the CT reconstruction

problem. Fig. 3 shows the epistemic uncertainty maps obtained

by the proposed framework for different intensity values of the

inserted abnormal feature for both MRI and CT reconstruction

problems. We observe that the epistemic uncertainty in the

abnormal region decreases as the intensity of the inserted square

gets close to a value that makes the inserted square visually

similar to the target images in the training dataset. Thus, our

experiment shows that the epistemic uncertainty map obtained

by the proposed framework shows high epistemic uncertainty

for test data that are not well-represented by the training data,

confirming that for this experiment, the proposed framework

successfully captures the uncertainty caused by the lack of

training data around the test data.

Now, we demonstrate that the epistemic uncertainty provided

by the proposed framework possesses the reducibility property.

For the first scenario, we have already shown in Figs. 2 and

5 that we can reduce the epistemic uncertainty by collecting

more training data having similar characteristics to the test data.

For the second scenario, if the proposed framework is capable

of capturing the epistemic uncertainty well, we expect to see

that using training examples containing features similar to the

abnormal feature encountered in the test data would result in

reduced epistemic uncertainty. To this end, we added 25× 25
white squares on the training target images and trained the

proposed framework with such training data containing the

abnormal features. We repeated the same procedure for the CT

reconstruction problem. Fig. 4 shows the resulting epistemic un-

certainty maps obtained by the proposed framework for both CT

and MRI reconstruction problems. We observe that the epistemic

uncertainty around the white square is decreased significantly

after we added target images containing white squares into

the training dataset, confirming that the epistemic uncertainty
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Fig. 3. Epistemic uncertainty as a function of the intensity of the abnormal feature. The first row contains the ground truth test images, i.e., the target test
images. The second row contains the corresponding epistemic uncertainty maps obtained by the proposed framework, and the third row contains the corresponding
reconstructed images. As the inserted square deviates more from the pattern of intensities in the test image (which would be well-represented by the training data),
the inferred epistemic uncertainty in the abnormal region increases. For the MRI experiments, the percentage of observed k-space coefficients is 20%, and SNR is
70 dB. For the CT experiments, number of views is 36, and SNR is 70 dB.

Fig. 4. Effect of the structure of the training dataset on epistemic uncertainty maps. The first row contains the ground truth test images, i.e., the target test images,
and the second row contains the corresponding epistemic uncertainty maps. The images on the first and fourth columns show the performance of the proposed
framework on normal data (i.e., no abnormal features in training and set data). The images on the second and fifth columns show the performance of the proposed
framework on a case where an abnormal feature exists in the test data. The images on the third and sixth columns show the performance of the proposed framework
with abnormal features present in both training and test data. For the MRI experiments, the percentage of observed k-space coefficients is 20%, and SNR is 70 dB.
For the CT experiments, number of views is 36, and SNR is 70 dB.

provided by the proposed framework can be explained away

with additional training data that can represent the test data

well. These results qualitatively show that the epistemic uncer-

tainty estimates provided by the proposed method display the

reducibility property of the epistemic uncertainty.

C. Aleatoric Uncertainty

We now focus on aleatoric uncertainty characterization using

our proposed framework. The experiments we present here

demonstrate successful aleatoric uncertainty characterization,

in particular, the aleatoric uncertainty captured by the proposed

framework is high for the regions where the reconstruction is

challenging due to the ill-posed nature of the inverse problem.

Furthermore, we show that the overall aleatoric uncertainty

provided by the proposed framework is an indication of how

challenging the inverse problem is. For this analysis, we trained

the proposed framework for various configurations of the imag-

ing setups. We considered different percentages of observed

k-space coefficients and SNR values for the MRI reconstruction

problem and different number of views and SNR values for

the CT reconstruction problem. Fig. 6 shows the starting points
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Fig. 5. Mean and standard deviation of epistemic uncertainty as a function of
training dataset size. The mean and standard deviation are calculated using all
pixels in the test dataset. For the MRI experiments, the percentage of observed
k-space coefficients is 20%, and SNR is 70 dB. For the CT experiments, number
of views is 36, and SNR is 70 dB. Mean SSIM values along with the standard
deviations for the corresponding reconstructions are provided for reference.

of the proposed framework, i.e., the results of zero-filling and

filtered backprojection, and the aleatoric uncertainty maps for

different test measurement vectors generated from the two test

target images using different configurations of the MR and CT

imaging setups.

For both MRI and CT reconstruction problems, we observe

that the aleatoric uncertainty is high for the regions where the

reconstruction is challenging for the unrolled network, such as

the small localized structures and thin edges on the target images.

On the other hand, we observe that the aleatoric uncertainty is

low around the regions where the corruption is negligible or can

be recovered using the spatial information, such as the smooth

regions in the target images. This behavior can be understood

analytically with a careful inspection of the objective function

of the optimization problem in (14). To minimize the objective

function of the optimization problem given in (14), the opti-

mization algorithm needs to minimize the term log[σ̄2(m[n])]k
for the kth pixel. However, the term exp(− log[σ̄2(m[n])]k)
would increase exponentially if the aforementioned term is

minimized. Hence, the value of the term log[σ̄2(m[n])]k could

be made small by the optimization algorithm if the squared error

between the output of the neural network f̄ and the target image,

i.e., ([s[n]]k − [f̄(m[n])]k)
2, is small. In other words, solving

optimization problem in (14), which corresponds to performing

variational inference using MC Dropout, explicitly forces the

dropout added neural network σ̄2 to output lower values where

the reconstruction is relatively easy. On the other hand, for the

regions where the reconstruction is challenging, i.e., for the

regions where the squared error between the output of the neural

network f̄ and the target image is high, solving this optimization

problem forces the neural network σ̄2 to output high values.

Moreover, we observe that the overall aleatoric uncertainty

levels show a decrease as SNR decreases for a fixed percentage

of the observed k-space coefficients/number of views. Similarly,

for a fixed value of the SNR, we observe a decrease in the overall

aleatoric uncertainty levels as the percentage of the observed

k-space coefficients/number of views increases. Fig. 7 shows the

average aleatoric uncertainty over all pixels in the test dataset

for different configurations of the imaging setups. From this

figure, we observe that the overall aleatoric uncertainty increases

when the SNR decreases for a fixed percentage of the observed

k-space coefficients/number of views or when the percentage of

the observed k-space coefficients/number of views decreases for

a fixed value of the SNR. Hence, the quantitative results shown in

Fig. 7 confirm our visual observations about the overall aleatoric

uncertainty. This result can be also understood by analyzing the

objective function of the optimization problem in (14). Because

the neural network f̄ does not have an infinite learning capability

in practice, we expect that the squared error between the output

of the trained neural network f̄ and the target image will increase

as the reconstruction problem gets more challenging, leading to

higher overall aleatoric uncertainty levels for the relatively more

challenging image reconstruction problems.

D. Calibration Plots of the Proposed Method

So far, we have observed that epistemic and aleatoric uncer-

tainty maps convey useful information about the confidence of

the reconstruction method and the imaging problem; however,

we need to perform a more quantitative analysis to evaluate the

probabilistic predictions of the proposed framework more reli-

ably. One way of assessing the accuracy of the probabilistic pre-

dictions is to look at the calibration and the sharpness properties

of the proposed model. In this subsection, we present calibration

plots of the proposed method for the MRI and CT reconstruction

problems. Furthermore, we briefly touch on the recalibration of

the proposed method to achieve more calibrated probabilistic

predictions. Since the sharpness metric is useful to compare

two probabilistic models, we have included the discussion of

the sharpness of the proposed method in the supplementary

material, where we compare the probabilistic predictions of the

uncertainty-quantifying PnP method presented in [30] with the

proposed method.

A calibration plot is a diagnostic tool that allows visually

inspecting the calibration properties of a probabilistic model to

understand whether the model is providing underconfident or

overconfident predictions. In this section, to obtain calibration

plots, we approximate the predictive distribution of the proposed

method, which is a mixture of Gaussians distribution with T
mixture components, with a multivariate Gaussian distribution.

More specifically, we approximate the predictive distribution of
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Fig. 6. Effect of the configuration of the imaging setup on aleatoric uncertainty. The first and the third rows contain the ground truth test images, i.e., target test
images, as well as the starting points obtained by applying zero-filling (ZF) or filtered backprojection (FBP) to observations. The second and fourth rows contain
the corresponding aleatoric uncertainty maps obtained by the proposed framework for different percentages of observed k-space coefficients (POC), numbers of
views (NOV), and signal-to-noise ratios (SNR). Regions where the reconstruction from the starting point is challenging are the regions for which the aleatoric
uncertainty is high. Moreover, the overall aleatoric uncertainty increases as the reconstruction problem gets more challenging in terms of data quality and quantity
limitations.

each pixel with a Gaussian distribution as follows:

p ([s∗]k |m∗,D)

≈ N ([s∗]k | [E [s∗|m∗,D]]k ,Var [[s∗]k |m∗,D]) , (22)

where the mean and the variance of the distribution are defined

in (17) and (18), respectively. Using this approximation, we

generated calibration plots on the test datasets using Uncertainty

Toolbox [66] for different configurations of the MRI and CT

observation models. Figs. 8 and 9 show those calibration plots for

the MRI and CT experiments, respectively. The red curves in the

plots represent the calibration curves of the proposed method for

different configurations of the imaging setups. The dashed green

line, on the other hand, represents the ideal calibration curve.

Figs. 8 and 9 show that the proposed model may provide

slightly underconfident predictions. The main reason behind this

bias, which is sometimes referred to as the model bias, is the

assumptions we have made about the form of the likelihood

function, the prior distribution of the parameters of the like-

lihood function, and the choice of the parametric distribution

that we use to approximate the true posterior distribution of

the parameters. Luckily, we can easily recalibrate the proposed

method by following the recalibration method introduced by

Kuleshov et al. [21]. In our experiments, we used the validation

dataset as the calibration dataset to recalibrate the proposed

method. Calibration curves of the calibrated proposed method

are represented with the blue color in Figs. 8 and 9. After

recalibration, we observe that the calibrated proposed model is

capable of outputting more calibrated probabilistic predictions.

E. Reconstruction Performance

In this subsection, we demonstrate the reconstruction perfor-

mance of the proposed framework. We compare the proposed
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Fig. 7. Mean and standard deviation of aleatoric uncertainty for different con-
figurations of the imaging setups. For MRI experiments, they are calculated for
different percentages of observed k-space coefficients (POC) and signal-to-noise
ratios (SNR). For CT experiments, they are calculated for different numbers
of views (NOV) and signal-to-noise ratios (SNR). The averages and standard
deviations are calculated using all pixels in the test dataset. Mean SSIM values
along with the standard deviations for the corresponding reconstructions are
provided for reference.

framework with six methods: 1) zero-filling (ZF) / filtered

backprojection (FBP), 2) total variation reconstruction (TV), 3)

PGD-based deep unrolling method (PUM), 4) PGD-based deep

unrolling method without batch normalization (PUMw/oBN),

5) proposed only epistemic model (POEM), and 6) proposed

only aleatoric model (POAM).

The methods ZF/FBP, and TV are the baseline reconstruction

methods that we use to demonstrate how challenging the re-

construction problem is. PUM is a deep unrolling method using

PGD. Each residual block of PUM consists of a series of con-

volutional layers, batch normalization layers, and an activation

function. PUMw/oBN is the same model as the PUM, except

that there are no batch normalization layers in residual blocks.

POEM is the variant of the proposed framework that assumes

that the covariance matrix of the likelihood function in (6) is a

fixed model parameter. POEM is also the probabilistic model

that was used in the experiments of the preliminary version of

this article [31]. As its name implies, POEM quantifies only

the epistemic uncertainty, not the aleatoric uncertainty. POAM

is also a variant of the proposed framework where a maximum

likelihood estimate of the parameters of the likelihood function

in (6) is used. POAM is capable of quantifying the aleatoric

uncertainty, but not the epistemic uncertainty since it only uses

the MAP estimate of the parameters. Implementation details of

these methods are provided in the Supplementary Material.

Fig. 8. Calibration plots of the proposed method for different configurations
of the MRI setup. Subcaptions specify the percentage of observed k-space
coefficients and the SNR (dB).

Table II shows the performance of the seven methods for CT

and MRI reconstruction problems under different configurations

of the imaging setups. Among these image reconstruction meth-

ods, FBP and ZF achieve the worst reconstruction performance

among the seven reconstruction methods. The TV method im-

proves upon FBP and ZF by promoting a piecewise-constant

reconstruction. The deep unrolling method PUM surpasses the

TV method by implicitly learning the prior using the training

dataset. The deep unrolling method PUM was trained using a

small mini-batch size since it requires storing the intermediate

variables having the same spatial dimensions as the target image

in the memory to carry out the backpropagation. We empirically

observed that the removal of the batch normalization layers from

the unrolled network leads to an increase in the reconstruction

performance. Specifically, we observe that the PUMw/oBN out-

performs PUM in all the experiments. This empirical observa-

tion is mathematically justified in [67] where Yong et al. showed

that batch normalization introduces a high level of noise for small

mini-batch sizes, making the training difficult. This observation

is the main reason why the unrolled network f in the proposed

framework does not contain any batch normalization layers. On

the other hand, we experimentally observed that the addition

of the batch normalization layers into the neural network σ2

is necessary to have a stable training stage. Comparing POAM

with PUMw/oBN, POAM shows an average SSIM decrease of

0.022 for the MRI reconstruction problem and 0.002 for the CT

reconstruction problem. On the other hand, when compared

to the state-of-the-art deep unrolling method PUM, POAM

achieves average SSIM gains of 0.031 and 0.011 for the MRI
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TABLE II
COMPARISON OF AVERAGE SSIM FOR DIFFERENT IMAGE RECONSTRUCTION METHODS

Fig. 9. Calibration plots of the proposed method for different configurations
of the CT setup. Subcaptions specify the number of views and the SNR (dB).

and CT reconstruction problems, respectively. The reconstruc-

tion performance of POEM shows a decrease compared to

PUMw/oBN due to using dropout after every convolutional

layer, which is a strong form of regularization. Similarly, we

observe that the reconstruction performance of POEM is slightly

worse than that of POAM. The reconstruction performance of the

proposed framework shows a decrease compared to POAM be-

cause of using dropout after every convolutional layer, which is

a strong form of regularization. Comparing the proposed frame-

work with POAM, the proposed framework shows an average

SSIM decrease of 0.010 for the MRI reconstruction problem and

0.007 for the CT reconstruction problem. We observe a similar

trend for the proposed framework and PUMw/oBN. On the other

hand, the proposed framework achieves average SSIM gains of

0.010 and 0.006 for the MRI and CT reconstruction problems

when compared to POEM, respectively. Similarly, the proposed

framework surpasses the state-of-the-art deep unrolling method

PUM. Due to space limitations, only representative visual results

are presented in Fig. 10. Detailed visual results are provided in

the Supplementary Material.

V. DISCUSSION

Quantification of the epistemic uncertainty is crucial for

learning-based image reconstruction methods, especially in

safety-critical imaging applications, for quantifying the confi-

dence on a reconstruction obtained using a model learned from

available, potentially limited or unrepresentative training data.

Our experimental results presented in Section IV showed that

the epistemic uncertainty information provided by the proposed

method exhibits the reducibility property of the epistemic un-

certainty. Moreover, the epistemic uncertainty provided by the

proposed framework can be used to assess how uncertain the

learning-based image reconstruction method is and to detect

cases where the input contains abnormal features not present

in the training data.

For ill-posed inverse problems encountered in most imaging

problems, inherent uncertainty on the target image for a given

measurement vector is inevitable. Hence, it is essential to quan-

tify the aleatoric uncertainty for imaging problems to capture

the inherent randomness in the reconstruction task. Our exper-

iments presented in Section IV demonstrated that the proposed

framework is capable of capturing the aleatoric uncertainty in

the sense that the aleatoric uncertainty provided by the proposed

framework shows the regions where the reconstruction is ex-

pected to be challenging for the unrolled network. The aleatoric

uncertainty provided by the proposed framework can be utilized

to determine the possible errors in the reconstructed image and

can be used as a mechanism to further assess the reliability of

the reconstructed image. As a result, the aleatoric and epistemic

uncertainties provided by the proposed framework would open

the possibility of developing more accurate, robust, trustwor-

thy, uncertainty-aware, learning-based image reconstruction and

analysis methods. While the uncertainty estimates provided by

our proposed methodology appear to reflect expected behavior

of epistemic and aleatoric uncertainties, further analysis of the

implications of the variational inference approximations used

here would be beneficial.

The benefits of obtaining the epistemic and aleatoric uncer-

tainty maps come with a price. Because the proposed framework

requires feeding the measurement vector into the neural net-

works T times for inference, the inference time of the proposed

framework increases by T times compared to the state-of-the-art

deep unrolling method PUM. To shorten the inference time of

the proposed framework, we can perform thoseT forward passes

in parallel. Assuming that the GPU memory allows using a

batch size of B in the inference stage, the proposed framework

requires only 
T/B�+ 1 forward passes for inference. If we
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Fig. 10. Visual comparison of the image reconstruction performance of zero-filling (ZF) / filtered backprojection (FBP), total variation reconstruction (TV),
state-of-the-art PGD-based deep unrolling method without batch normalization (PUMw/oBN), and the proposed method. Proposed method achieves comparable
reconstruction performance to the state-of-the-art deep unrolling method PUMw/oBN, while providing uncertainty quantification.

have multiple GPUs, the inference time of the proposed frame-

work can be further reduced. Hence, the proposed framework

can achieve shorter inference times at the expense of using

more computational power. Another way to shorten the inference

time of the proposed framework is to decrease the number of

parameters the proposed framework so that a larger batch size B
can be used to parallelize the inference stage. To that end, we can

design a variant of the proposed framework that uses a dual-head

network. For the sake of brevity, we have not discussed this

variant; however, a brief discussion on that variant is provided

in the Supplementary Material.

VI. CONCLUSION

In this article, we utilized the idea of deep unrolling and

Bayesian neural networks to propose a learning-based image re-

construction framework that is capable of quantifying epistemic

and aleatoric uncertainties while incorporating the imaging ob-

servation model into the reconstruction process. Our experimen-

tal results showed that the proposed framework provides epis-

temic and aleatoric uncertainty maps while providing a recon-

struction performance comparable to the state-of-the-art deep

unrolling methods. The proposed framework can be applied to

a broad set of imaging problems and can be easily implemented

in deep learning frameworks. We hope that the proposed frame-

work and the provided discussion on epistemic and aleatoric

uncertainties for imaging problems motivate further research

on uncertainty characterization for imaging problems and on

leveraging the uncertainty information for image reconstruction

and analysis tasks.
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