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Abstract
We propose two automatic parameter tuning methods for

Plug-and-Play (PnP) algorithms that use CNN denoisers. We

focus on linear inverse problems and propose an iterative algo-

rithm to calculate generalized cross-validation (GCV) and Stein’s

unbiased risk estimator (SURE) functions for a half-quadratic

splitting-based PnP (PnP-HQS) algorithm that uses a state-of-

the-art CNN denoiser. The proposed methods leverage forward

mode automatic differentiation to calculate the GCV and SURE

functions and tune the parameters of a PnP-HQS algorithm au-

tomatically by minimizing the GCV and SURE functions using

grid search. Because linear inverse problems appear frequently

in computational imaging, the proposed methods can be applied

in various domains. Furthermore, because the proposed meth-

ods rely on GCV and SURE functions, they do not require access

to the ground truth image and do not require collecting an addi-

tional training dataset, which is highly desirable for imaging ap-

plications for which acquiring data is costly and time-consuming.

We evaluate the performance of the proposed methods on deblur-

ring and MRI experiments and show that the GCV-based pro-

posed method achieves comparable performance to that of the or-

acle tuning method that adjusts the parameters by maximizing the

structural similarity index between the ground truth image and the

output of the PnP algorithm. We also show that the SURE-based

proposed method often leads to worse performance compared to

the GCV-based proposed method.

Introduction
Various computational imaging problems, such as magnetic

resonance imaging (MRI) [1], computational microscopy [2],

radar imaging [3], and ultrasound imaging [4], can be described

with an observation model for which the underlying image is ob-

served through a linear forward operator representing the transfor-

mation applied by the imaging system followed by additive white

Gaussian noise. For such observation models, the linear inverse

problem refers to recovering the underlying latent signal from the

observations, which is often ill-posed.

Plug-and-Play priors [5] is a framework that aims to solve

imaging inverse problems by utilizing off-the-shelf denoisers as

priors in model-based image reconstruction frameworks. Com-

pared to end-to-end deep learning-based image reconstruction

methods, such as deep unrolling methods [6], the main advan-
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tage of the PnP priors is that it is more modular in the sense

that after training a CNN denoiser, the same denoiser can be used

as a prior for different configurations of the imaging setup. Be-

cause of its modularity and state-of-the-art performance, several

studies [7, 8, 9, 10, 11] have developed variants of the original

PnP algorithm based on the principles of PnP priors. Numerous

works [12, 13, 14, 15] have applied the PnP algorithms to various

computational imaging problems, and several works [13, 16, 17]

have investigated the theoretical properties of PnP algorithms. For

more details about the current status of the PnP literature, please

refer to [18] and the references therein.

Although PnP algorithms have achieved state-of-the-art re-

construction performance for various imaging problems, care-

ful tuning of the parameters of a PnP algorithm is needed to

achieve such performance (see Figure 2 for an example). Even

before the PnP priors and deep learning-based image reconstruc-

tion methods, a diverse set of methods, such as discrepancy prin-

ciple [19], L-curve [20], generalized cross validation (GCV) [21],

and Stein’s unbiased risk estimation (SURE) [22], have been uti-

lized to tune the parameters of image reconstruction methods.

Motivated by this prior work, in this article, we propose GCV

and SURE-based parameter tuning methods for a half-quadratic

splitting-based (HQS-based) [25] PnP algorithm that uses a state-

of-the-art Gaussian CNN denoiser called DRUNet [23]. To calcu-

late the GCV and SURE functions for the PnP algorithm, we pro-

pose a computationally efficient algorithm that leverages forward

mode automatic differentiation. We leverage the well-known

parameter tying strategy employed by some of the PnP algo-

rithms [5, 16] to reduce the number of parameters that need to

be tuned and minimize the GCV and SURE functions using a

grid search. The proposed methods do not require the knowl-

edge of the underlying ground truth image and do not require

collecting an additional dataset containing ground truth images

and measurements. To evaluate the performance of the GCV and

SURE-based tuning methods, we test those methods on deblur-

ring and MRI experiments. We show that the GCV-based tuning

method achieves comparable reconstruction performance to the

oracle tuning method that uses the ground truth image to tune

the parameters and that SURE-based tuning method often leads

to over-regularization and worse performance in terms of recon-

struction quality compared to the GCV-based tuning method.

We note that various semi-automatic parameter tuning strate-

gies for PnP algorithms [16, 32, 33, 34, 23] have been proposed

in the literature. As the main difference from those methods, the

proposed methods tune all of the parameters automatically. Re-



cently, Wei et al. [35] have proposed an automatic parameter tun-

ing strategy using deep reinforcement learning. Compared to the

proposed methods, the method proposed in [35] is more flexible

in the sense that parameters of different iterations are not tied to-

gether, and it is applicable to non-linear inverse problems as well.

Moreover, the inference time of the method in [35] is shorter than

the methods proposed in this article. However, the method pro-

posed in [35] requires an additional policy learning stage after

training a CNN denoiser, introducing another set of hyperparam-

eters that need to be tuned in the policy learning stage. Further-

more, although the method in [35] can handle different configura-

tions of the same imaging problem, the policy learning stage must

be repeated for different imaging problems. The proposed meth-

ods, on the other hand, do not require an additional training stage

after training a CNN denoiser and can be used for different imag-

ing problems straightforwardly without following an additional

training stage, making the proposed methods more modular for

different computational imaging problems.

Plug-and-Play Priors with HQS
Imaging process of several imaging modalities [1, 2, 3, 4]

can be expressed by the following equation:

y = Ax+n, (1)

where y ∈ F
M is the vector containing the measurements; A ∈

F
M×N is the forward operator representing the transformation ap-

plied by the imaging system; x ∈ F
N is the underlying image;

and n ∼ N (0,σ2I) is FM-valued additive white Gaussian noise,

where F stands for either R or C. In this work, we consider the

general case for which F= C.

The main goal of an image reconstruction method is to re-

cover the underlying image from the measurements, which is of-

ten referred to as the inverse problem. One way to solve the

inverse problem is to formulate it as a regularized optimization

problem defined by

x̂ = argmin
x∈CN

{
1

2
‖Ax−y‖2

2 +λψ(x)

}

, (2)

where λ > 0 is the regularization parameter, and ψ : CN → R is

the regularizer representing the prior knowledge about the under-

lying image. After choosing a suitable regularizer, such as to-

tal variation semi-norm [24], model-based image reconstruction

methods solve the optimization problem in (2) using an appropri-

ate splitting method such as HQS. After using the HQS method

and replacing the prior dependent update step with a denoiser as

proposed by the PnP idea, we obtain the following iterative recon-

struction algorithm, which we refer to as the PnP-HQS algorithm.

z(k) = Q(k)(AHy+µ(k)x(k−1))

x(k) =Cτ(k)(z(k)),
(3)

where µ(k) is the penalty parameter at the kth iteration; Q(k) ,

(AHA + µ(k)I)−1; the operator Cτ(k) : CN → C
N is a complex

Gaussian denoiser; and τ(k) is the parameter controlling the

strength level of the denoiser. Because most CNN denoisers are

designed to handle real-valued inputs, we further assume that the

complex Gaussian denoiser Cτ(k) is defined by

Cτ(k)(z) = Dτ(k)(zR)+ iDτ(k)(zI), (4)

for all z ∈ C
N , where Dτ(k) : RN → R

N is a real CNN Gaussian

denoiser; i is the unit imaginary number; τ(k) is the parameter

controlling the strength level of the denoiser Dτ(k) ; and the vectors

zR,zI ∈R
N are the real and imaginary parts of the complex vector

z, respectively.

Proposed Method
In this section, we present a computationally efficient algo-

rithm to compute the GCV and SURE functions for the PnP-HQS

algorithm and a grid search-based minimization procedure to min-

imize the GCV and SURE functions by using a parameter tying

strategy.

Calculating the GCV and SURE for PnP-HQS
Suppose that the number of iterations of the PnP-HQS algo-

rithm is fixed to K ∈ Z
+. Then, we can interpret the output of the

PnP-HQS algorithm x(K) as a function of the measurement vector

y parameterized by the set θ , {K,µ(1), · · · ,µ(K),τ(1), · · · ,τ(K)}
containing all parameters of the PnP-HQS algorithm. Thus, we

can write down the corresponding GCV function as follows [26].

GCV(θ) =
(1/M)‖y−Ax(K)‖2

2
(
1− (1/M)R

{
Tr

{
AJ(x(K),y)

}})2
, (5)

where R{·} computes the real part of a complex number, and

J(x(K),y) denotes the Jacobian of the output of the PnP-HQS al-

gorithm evaluated at the measurement vector y. Similarly, SURE

function for the PnP-HQS algorithm is defined by [26]

SURE(θ) =
1

M
‖y−Ax(K)‖2

2+
2σ2

M
R{Tr{AJ(x(K),y)}}, (6)

where we have ignored the constant term that does not depend

on θ . For the PnP-HQS algorithm, computational challenges in

calculating the GCV and SURE functions are (i) calculating the

trace of a high-dimensional matrix and (ii) calculating the Jaco-

bian matrix J(x(K),y) of the PnP-HQS algorithm.

To provide a computationally efficient trace estimate of a

high dimensional matrix, several studies [27, 28] have provided

a simple trace estimation method based on a lemma similar to the

one provided below.

Lemma 1. Let B ∈ C
M×M be a matrix and b be a R

M-valued

random vector with mean 0 and covariance matrix I. Then,

Tr{B}= E[b>Bb], (7)

where E denotes the expectation operator.

Proof. Proof of this lemma directly follows from the properties

of the trace and expectation operators.

Using this lemma, we approximate the trace term of the GCV

and SURE functions using a single realization of a standard mul-

tivariate normal random variable, which satisfies the conditions

in Lemma 1. The resulting trace approximation has the following

form:

Tr
{

AJ(x(K),y)
}

≈ b̃>AJ(x(K),y)b̃ (8)

where b̃ ∈ R
M is a realization of a standard multivariate normal

random variable.



The remaining challenge is to compute the Jacobian matrix

J(x(K),y) of the PnP-HQS algorithm. We can obtain an iterative

algorithm to calculate the Jacobian matrix J(x(K),y) by manipu-

lating the update equations of the PnP-HQS algorithm and using

the chain rule, which is the result of the following lemma.

Lemma 2. For the PnP-HQS algorithm in (3), assume that

J(x(0),y) can be computed efficiently. Then, the Jacobian ma-

trix J(x(K),y) can be computed iteratively by following the update

rule below.

J(x(k),y) = J(Cτ(k) ,z(k))Q(k)(AH +µ(k)J(x(k−1),y)). (9)

Proof. The PnP-HQS algorithm in (3) can be alternatively written

as follows:

x(k) =Cτ(k)

(

Q(k)(AHy+µ(k)x(k−1))
)

. (10)

Then, the desired expression can be obtained by calculating

Wirtinger derivatives of both sides and using the chain rule.

We note that calculating the Jacobian matrix J(x(K),y) us-

ing this lemma assumes that J(x(0),y) is known. This is a rea-

sonable assumption since this term often has an analytical form.

For instance, if we choose x(0) = AHy, then the Jacobian matrix

J(x(0),y) is equal to AH.

Although we can compute the exact Jacobian matrix

J(x(K),y) of the PnP-HQS algorithm by using Lemma 2, storing

the Jacobian matrix in memory is computationally expensive for

imaging problems. Since we only need the Jacobian-vector prod-

uct J(x(K),y)b̃ to calculate the trace approximation in (8), we can

multiply both sides of the update equation in (9) with b̃ and end

up with the following update rule.

j(x(k),y) = J(Cτ(k) ,z(k))Q(k)(AHb̃+µ(k)j(x(k−1),y))
︸ ︷︷ ︸

r(k)

(11)

where j(x(k),y) , J(x(k),y)b̃ is the vector that we store in mem-

ory. By using the definition of the complex denoiser Cτ(k) in (4)

and Wirtinger calculus, we can alternatively write the update rule

in (11) as follows:

j(x(k),y) =
1

2

[

J(Dτ(k) ,z
(k)
R )+J(Dτ(k) ,z

(k)
I )

]

(r
(k)
R + ir

(k)
I ). (12)

We note that this update rule requires calculating four Jacobian-

vector products at each iteration, where the Jacobian matrices are

of the real CNN denoiser Dτ(k) evaluated at either z
(k)
R or z

(k)
I and

the vectors are either r
(k)
R or r

(k)
I . In this work, we propose to use

forward mode automatic differentiation (see [31] for a survey) to

calculate those Jacobian-vector products. With forward mode au-

tomatic differentiation, those four Jacobian-vector products can

be calculated exactly without storing and obtaining the Jacobian

of the CNN denoiser explicitly as a matrix. Thus, we can evalu-

ate the GCV and SURE functions efficiently for a given set θ of

parameters by following the update rule in (12) together with for-

ward mode automatic differentiation and the trace approximation

in (8).

Figure 1. Test images used for the MRI and deblurring experiments. The

image dimensions are 256×256.

Minimization of GCV and SURE Functions
So far, we have provided a computationally efficient algo-

rithm to evaluate the GCV and SURE functions for the PnP-HQS

algorithm for a given set of parameters. The next step is to ad-

just the parameters of the PnP-HQS algorithm by minimizing the

GCV or SURE functions. In this work, for simplicity, we consider

a grid search to perform the minimization; however, a hybrid of a

grid search and a derivative-free optimization method can be also

used. We leave the investigation of such alternative optimization

methods for future work.

At this point, we must note that performing a grid search is

not computationally feasible since the number of elements of the

set θ grows linearly with the number of iterations K. Fortunately,

in the PnP literature, parameter tying strategies have been em-

ployed, e.g., [5, 16], to reduce the number of parameters of a PnP

algorithm. By following [5, 16], we can introduce dependencies

between the parameters as follows:

τ(k) =

√

λ/µ(k) and µ(k) = αµ(k−1), (13)

where λ > 0 is a shared parameter between the denoiser strength

and penalty parameters, and α > 0 is a scaling parameter con-

trolling the increase of the penalty parameters. As a result, after

parameter tying, the set θ containing the parameters of the PnP-

HQS algorithm boils down to {K,µ(0),α,λ}. The advantage of

parameter tying is that the number of elements of the set contain-

ing the parameters of the PnP-HQS algorithm does not depend on

K, making the grid search computationally feasible.

Experiments and Results
In this section, we evaluate the GCV and SURE-based pa-

rameter tuning methods on deblurring (F = R) and MRI experi-

ments (F=C) and compare them with the oracle method (SSIM-

optimal) that adjusts the parameters by maximizing the structural

similarity index (SSIM) between the ground truth image and the

output of the PnP-HQS algorithm. We first analyze the recon-

struction performance of the proposed methods and provide both

visual and quantitative results for different configurations of the

deblurring and MRI setups. Then, we present experiments for

which we tune only a subset of the four parameters using the pro-

posed methods to investigate the stability of the parameter choices

and to better visualize the closeness of the parameter choices to

the oracle method in the SSIM sense.

Experimental Setup
For the deblurring experiments, we implemented the for-

ward operator using a two-dimensional convolution operation

with cyclic boundary conditions and used the blur kernels in [29].

For the MRI experiments, we used the subsampled Fourier trans-

form to implement the forward operator. The test images used for

the deblurring and MRI experiments are shown in Figure 1. The
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