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Abstract

We propose two automatic parameter tuning methods for
Plug-and-Play (PnP) algorithms that use CNN denoisers. We
focus on linear inverse problems and propose an iterative algo-
rithm to calculate generalized cross-validation (GCV) and Stein’s
unbiased risk estimator (SURE) functions for a half-quadratic
splitting-based PnP (PnP-HQS) algorithm that uses a state-of-
the-art CNN denoiser. The proposed methods leverage forward
mode automatic differentiation to calculate the GCV and SURE
functions and tune the parameters of a PnP-HQS algorithm au-
tomatically by minimizing the GCV and SURE functions using
grid search. Because linear inverse problems appear frequently
in computational imaging, the proposed methods can be applied
in various domains. Furthermore, because the proposed meth-
ods rely on GCV and SURE functions, they do not require access
to the ground truth image and do not require collecting an addi-
tional training dataset, which is highly desirable for imaging ap-
plications for which acquiring data is costly and time-consuming.
We evaluate the performance of the proposed methods on deblur-
ring and MRI experiments and show that the GCV-based pro-
posed method achieves comparable performance to that of the or-
acle tuning method that adjusts the parameters by maximizing the
structural similarity index between the ground truth image and the
output of the PnP algorithm. We also show that the SURE-based
proposed method often leads to worse performance compared to
the GCV-based proposed method.

Introduction

Various computational imaging problems, such as magnetic
resonance imaging (MRI) [1], computational microscopy [2],
radar imaging [3], and ultrasound imaging [4], can be described
with an observation model for which the underlying image is ob-
served through a linear forward operator representing the transfor-
mation applied by the imaging system followed by additive white
Gaussian noise. For such observation models, the linear inverse
problem refers to recovering the underlying latent signal from the
observations, which is often ill-posed.

Plug-and-Play priors [5] is a framework that aims to solve
imaging inverse problems by utilizing off-the-shelf denoisers as
priors in model-based image reconstruction frameworks. Com-
pared to end-to-end deep learning-based image reconstruction
methods, such as deep unrolling methods [6], the main advan-
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tage of the PnP priors is that it is more modular in the sense
that after training a CNN denoiser, the same denoiser can be used
as a prior for different configurations of the imaging setup. Be-
cause of its modularity and state-of-the-art performance, several
studies [7, 8, 9, 10, 11] have developed variants of the original
PnP algorithm based on the principles of PnP priors. Numerous
works [12, 13, 14, 15] have applied the PnP algorithms to various
computational imaging problems, and several works [13, 16, 17]
have investigated the theoretical properties of PnP algorithms. For
more details about the current status of the PnP literature, please
refer to [18] and the references therein.

Although PnP algorithms have achieved state-of-the-art re-
construction performance for various imaging problems, care-
ful tuning of the parameters of a PnP algorithm is needed to
achieve such performance (see Figure 2 for an example). Even
before the PnP priors and deep learning-based image reconstruc-
tion methods, a diverse set of methods, such as discrepancy prin-
ciple [19], L-curve [20], generalized cross validation (GCV) [21],
and Stein’s unbiased risk estimation (SURE) [22], have been uti-
lized to tune the parameters of image reconstruction methods.
Motivated by this prior work, in this article, we propose GCV
and SURE-based parameter tuning methods for a half-quadratic
splitting-based (HQS-based) [25] PnP algorithm that uses a state-
of-the-art Gaussian CNN denoiser called DRUNet [23]. To calcu-
late the GCV and SURE functions for the PnP algorithm, we pro-
pose a computationally efficient algorithm that leverages forward
mode automatic differentiation. We leverage the well-known
parameter tying strategy employed by some of the PnP algo-
rithms [5, 16] to reduce the number of parameters that need to
be tuned and minimize the GCV and SURE functions using a
grid search. The proposed methods do not require the knowl-
edge of the underlying ground truth image and do not require
collecting an additional dataset containing ground truth images
and measurements. To evaluate the performance of the GCV and
SURE-based tuning methods, we test those methods on deblur-
ring and MRI experiments. We show that the GCV-based tuning
method achieves comparable reconstruction performance to the
oracle tuning method that uses the ground truth image to tune
the parameters and that SURE-based tuning method often leads
to over-regularization and worse performance in terms of recon-
struction quality compared to the GCV-based tuning method.

‘We note that various semi-automatic parameter tuning strate-
gies for PnP algorithms [16, 32, 33, 34, 23] have been proposed
in the literature. As the main difference from those methods, the
proposed methods tune all of the parameters automatically. Re-



cently, Wei et al. [35] have proposed an automatic parameter tun-
ing strategy using deep reinforcement learning. Compared to the
proposed methods, the method proposed in [35] is more flexible
in the sense that parameters of different iterations are not tied to-
gether, and it is applicable to non-linear inverse problems as well.
Moreover, the inference time of the method in [35] is shorter than
the methods proposed in this article. However, the method pro-
posed in [35] requires an additional policy learning stage after
training a CNN denoiser, introducing another set of hyperparam-
eters that need to be tuned in the policy learning stage. Further-
more, although the method in [35] can handle different configura-
tions of the same imaging problem, the policy learning stage must
be repeated for different imaging problems. The proposed meth-
ods, on the other hand, do not require an additional training stage
after training a CNN denoiser and can be used for different imag-
ing problems straightforwardly without following an additional
training stage, making the proposed methods more modular for
different computational imaging problems.

Plug-and-Play Priors with HQS

Imaging process of several imaging modalities [1, 2, 3, 4]
can be expressed by the following equation:

y=Ax+n, (@))]

where y € FM is the vector containing the measurements; A €
FM*N is the forward operator representing the transformation ap-
plied by the imaging system; x € FV is the underlying image;
and n ~ A4 (0,6%1) is F¥-valued additive white Gaussian noise,
where F stands for either R or C. In this work, we consider the
general case for which F = C.

The main goal of an image reconstruction method is to re-
cover the underlying image from the measurements, which is of-
ten referred to as the inverse problem. One way to solve the
inverse problem is to formulate it as a regularized optimization
problem defined by

= argmin {3 Jax—yI3 + 2w(x) . @
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where A > 0 is the regularization parameter, and y : CV — R is
the regularizer representing the prior knowledge about the under-
lying image. After choosing a suitable regularizer, such as to-
tal variation semi-norm [24], model-based image reconstruction
methods solve the optimization problem in (2) using an appropri-
ate splitting method such as HQS. After using the HQS method
and replacing the prior dependent update step with a denoiser as
proposed by the PnP idea, we obtain the following iterative recon-
struction algorithm, which we refer to as the PnP-HQS algorithm.
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where ,u(k) is the penalty parameter at the k' iteration; Q<k) £

(AMA + u®1)~1; the operator C.w : CV — CV is a complex
Gaussian denoiser; and %) is the parameter controlling the
strength level of the denoiser. Because most CNN denoisers are
designed to handle real-valued inputs, we further assume that the
complex Gaussian denoiser C is defined by

Cow(z) = Dy (Zr) + D (21), @)

for all z € CV, where D w : RN — RY is a real CNN Gaussian
denoiser; i is the unit imaginary number; 7 s the parameter
controlling the strength level of the denoiser D) ; and the vectors
2R,z € RY are the real and imaginary parts of the complex vector
z, respectively.

Proposed Method

In this section, we present a computationally efficient algo-
rithm to compute the GCV and SURE functions for the PnP-HQS
algorithm and a grid search-based minimization procedure to min-
imize the GCV and SURE functions by using a parameter tying
strategy.

Calculating the GCV and SURE for PnP-HQS
Suppose that the number of iterations of the PnP-HQS algo-
rithm is fixed to K € Z™". Then, we can interpret the output of the
PnP-HQS algorithm x) as a function of the measurement vector
y parameterized by the set 6 £ {K,u(") ... u&) (1) ... (K]}
containing all parameters of the PnP-HQS algorithm. Thus, we
can write down the corresponding GCV function as follows [26].
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where #{-} computes the real part of a complex number, and
J(x%) y) denotes the Jacobian of the output of the PnP-HQS al-
gorithm evaluated at the measurement vector y. Similarly, SURE
function for the PnP-HQS algorithm is defined by [26]
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where we have ignored the constant term that does not depend
on 0. For the PnP-HQS algorithm, computational challenges in
calculating the GCV and SURE functions are (i) calculating the
trace of a high-dimensional matrix and (ii) calculating the Jaco-
bian matrix J(x(X) | y) of the PnP-HQS algorithm.

To provide a computationally efficient trace estimate of a
high dimensional matrix, several studies [27, 28] have provided
a simple trace estimation method based on a lemma similar to the
one provided below.

Lemma 1. Let B € CY*M pe g matrix and b be a RM-valued
random vector with mean 0 and covariance matrix 1. Then,

Tr{B} = E[b Bb), (7
where E denotes the expectation operator.

Proof. Proof of this lemma directly follows from the properties
of the trace and expectation operators. O

Using this lemma, we approximate the trace term of the GCV
and SURE functions using a single realization of a standard mul-
tivariate normal random variable, which satisfies the conditions
in Lemma 1. The resulting trace approximation has the following
form:

Tr {AJ(X<K),y)} ~b AJ(xX) y)b (8)

where b € R is a realization of a standard multivariate normal
random variable.



The remaining challenge is to compute the Jacobian matrix
J(xX) y) of the PnP-HQS algorithm. We can obtain an iterative
algorithm to calculate the Jacobian matrix J (X(K ), y) by manipu-
lating the update equations of the PnP-HQS algorithm and using
the chain rule, which is the result of the following lemma.

Lemma 2. For the PnP-HQS algorithm in (3), assume that
J (X(O),y) can be computed efficiently. Then, the Jacobian ma-
trixJ (X(K ) ,¥) can be computed iteratively by following the update
rule below.

JxW,y) = J(Cr, 2M)QW AT+ O J(x* D y)) (9

Proof. The PnP-HQS algorithm in (3) can be alternatively written
as follows:

x) = ) (QU(Ally + p®Ixt-D)) . (10)

Then, the desired expression can be obtained by calculating
Wirtinger derivatives of both sides and using the chain rule. [

We note that calculating the Jacobian matrix J (X(K),y) us-
ing this lemma assumes that J(x(?)y) is known. This is a rea-
sonable assumption since this term often has an analytical form.
For instance, if we choose x(©) = AHy, then the Jacobian matrix
J(x©)y) is equal to AH.

Although we can compute the exact Jacobian matrix
J(x)y) of the PnP-HQS algorithm by using Lemma 2, storing
the Jacobian matrix in memory is computationally expensive for
imaging problems. Since we only need the Jacobian-vector prod-
uct J (X(K ),y)f) to calculate the trace approximation in (8), we can
multiply both sides of the update equation in (9) with b and end
up with the following update rule.

J(x9.y) = J(Cr,2®) QW (ATB + uWj(x =V y)) (11)
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where j(x<k>,y) 2] (x(k),y)f) is the vector that we store in mem-
ory. By using the definition of the complex denoiser C ) in (4)
and Wirtinger calculus, we can alternatively write the update rule
in (11) as follows:

. 1 k k K .k
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We note that this update rule requires calculating four Jacobian-
vector products at each iteration, where the Jacobian matrices are

of the real CNN denoiser D) evaluated at either ch ) or z§k> and

() o )

the vectors are either rp” or ry . In this work, we propose to use
forward mode automatic differentiation (see [31] for a survey) to
calculate those Jacobian-vector products. With forward mode au-
tomatic differentiation, those four Jacobian-vector products can
be calculated exactly without storing and obtaining the Jacobian
of the CNN denoiser explicitly as a matrix. Thus, we can evalu-
ate the GCV and SURE functions efficiently for a given set 6 of
parameters by following the update rule in (12) together with for-
ward mode automatic differentiation and the trace approximation
in (8).

Figure 1. Test images used for the MRI and deblurring experiments. The
image dimensions are 256 x 256.

Minimization of GCV and SURE Functions

So far, we have provided a computationally efficient algo-
rithm to evaluate the GCV and SURE functions for the PnP-HQS
algorithm for a given set of parameters. The next step is to ad-
just the parameters of the PnP-HQS algorithm by minimizing the
GCYV or SURE functions. In this work, for simplicity, we consider
a grid search to perform the minimization; however, a hybrid of a
grid search and a derivative-free optimization method can be also
used. We leave the investigation of such alternative optimization
methods for future work.

At this point, we must note that performing a grid search is
not computationally feasible since the number of elements of the
set O grows linearly with the number of iterations K. Fortunately,
in the PnP literature, parameter tying strategies have been em-
ployed, e.g., [5, 16], to reduce the number of parameters of a PnP
algorithm. By following [5, 16], we can introduce dependencies
between the parameters as follows:

) = /A /uk) and

where A > 0 is a shared parameter between the denoiser strength
and penalty parameters, and & > 0 is a scaling parameter con-
trolling the increase of the penalty parameters. As a result, after
parameter tying, the set 6 containing the parameters of the PnP-
HQS algorithm boils down to {K,u(?), &, A}. The advantage of
parameter tying is that the number of elements of the set contain-
ing the parameters of the PnP-HQS algorithm does not depend on
K, making the grid search computationally feasible.

p® = aut=h), (13)

Experiments and Results

In this section, we evaluate the GCV and SURE-based pa-
rameter tuning methods on deblurring (IF = R) and MRI experi-
ments (F = C) and compare them with the oracle method (SSIM-
optimal) that adjusts the parameters by maximizing the structural
similarity index (SSIM) between the ground truth image and the
output of the PnP-HQS algorithm. We first analyze the recon-
struction performance of the proposed methods and provide both
visual and quantitative results for different configurations of the
deblurring and MRI setups. Then, we present experiments for
which we tune only a subset of the four parameters using the pro-
posed methods to investigate the stability of the parameter choices
and to better visualize the closeness of the parameter choices to
the oracle method in the SSIM sense.

Experimental Setup

For the deblurring experiments, we implemented the for-
ward operator using a two-dimensional convolution operation
with cyclic boundary conditions and used the blur kernels in [29].
For the MRI experiments, we used the subsampled Fourier trans-
form to implement the forward operator. The test images used for
the deblurring and MRI experiments are shown in Figure 1. The
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Figure 3. Average SSIM results for the deblurring and MRI experiments.
Blue color represents the results of the deblurring experiments, and green
color represents the results of the MRI experiments. The eight blur kernels
are obtained from [29].

MRI images are obtained from the IXI Dataset [30]. For the ex-
periments, we normalized each test image so that each pixel has a
value between 0 and 1, and unless otherwise stated, we fixed the
noise level o to 0.03.

For the deblurring and MRI experiments, we implemented
the z-update step of the PnP-HQS algorithm using the Fourier
transform. We used the DRUNet as a denoiser for the PnP-HQS
algorithm and obtained its pre-trained weights from its public
implementation in https://github.com/cszn/DPIR/. To ensure that
the PnP-HQS algorithm is differentiable with respect to its input,
which is required to have a well-defined Jacobian matrix for the
PnP-HQS algorithm, we replaced each ReLU activation function
of the DRUNet with the Softplus function whose beta value was
set to 10%. To minimize the GCV and SURE functions, we per-
formed a grid search with the parameters that were selected as fol-
lows. For the number of iterations K, we tried all of the integers
in the interval [1,50]. For the stating point u(®) and the shared
parameter A, we tried 5 different values logarithmically spaced

SSIM: 0.7660

SSIM: 0.8989 SSIM: 0.8998

(d) SURE (f) SSIM-optimal

SSIM: 0.7403 SSIM: 0.8762

(j) SURE (k) GCV

(1) SSIM-optimal
Figure 2. Visual reconstruction results for a deblurring test example and an MRI test example. For the deblurring example, the blur kernel is obtained from
[29]. For the MRI example, the sampling mask has the radial pattern with the sampling rate of 20%.

between the interval [107>,10']. For the scaling parameter o, we
tried 5 values logarithmically spaced between the interval [1,2].
The implementation of the proposed methods is available online!.

Visual Results

In this subsection, we visually evaluate the reconstruction
performance of the proposed methods by comparing the result-
ing reconstructions to the reconstructions obtained by the oracle
method. For different configurations of the deblurring and MRI
setups, we tuned all four parameters of the PnP-HQS algorithm
using the proposed methods. Visual results for a deblurring test
example and an MRI test example are shown in Figure 2.

As can be seen in Figure 2, we observe that the GCV-based
tuning method leads to reconstructions that are comparable to or
the same as the reconstructions provided by the oracle tuning
strategy. On the other hand, we observe that SURE-based tun-
ing usually leads to over-regularization and results in the loss of
fine details, such as thin edges and localized small structures, on
the reconstructed image.

Quantitative Results

To quantitatively evaluate the reconstruction performance
achieved by the proposed methods, we used the proposed meth-
ods to tune the parameters of the PnP-HQS algorithm for different
configurations of the deblurring and MRI setups and calculated
the SSIM index between the resulting reconstructions and the
ground truth images. Figure 3 shows the resulting average SSIM
results of the deblurring and MRI experiments, where the aver-
age SSIM values were calculated over the test images depicted in
Figure 1.

As can be seen in Figure 3, the reconstruction quality of
the PnP-HQS algorithm tuned by the GCV-based tuning method
is comparable to the PnP-HQS algorithm tuned by the oracle
method, which is consistent with our visual observations made
in the previous subsection. On the other hand, we observe that the
reconstruction performance achieved by the SURE-based tuning

Thttps://github.com/cekmekci/SURE-GCV-PnP-Tuning



Figure 4.  Parameter stability results for a deblurring test example. For
each plot, we have tuned a pair of parameters while fixing the remaining two
parameters to the oracle-optimal values and plotted the SSIM contour plot as
a function of the tuned pair of parameters. Best viewed in zoom and color.

strategy is significantly inferior to the GCV-based tuning method
and the oracle tuning strategy. This observation matches with our
visual observations presented in the previous subsection, where
we have observed that the SURE-based tuning often leads to over-
regularization.

Visualization of the SSIM Optimization Landscape

In the previous two subsections, we demonstrated the recon-
struction performance achieved by the proposed methods visually
and quantitatively. However, evaluating the stability of the pa-
rameter choices made by the proposed methods is challenging
since it is not possible to visualize the parameter choices on a
four-dimensional SSIM hypersurface. For this purpose, in this
subsection, we fixed two of the parameters of the PnP-HQS al-
gorithm to their SSIM-optimal values and adjusted the remaining
two parameters using the proposed methods. We repeated this
process for all pairs of the four parameters. Figure 4 and Figure
5 show the parameter choices made by the proposed methods and
the oracle method and the contour plots of the SSIM surfaces for
a deblurring test example and an MRI test example, respectively.

From Figure 4 and Figure 5, we observe that the GCV-
based tuning methodology sometimes leads to different param-
eters than the SSIM-optimal parameters obtained by the oracle
method, but achieves comparable reconstruction performance and
similar SSIM values to the oracle method. Moreover, we observe
that the GCV-based tuning strategy sometimes leads to the same
parameters as the SSIM-optimal parameters obtained by the or-
acle method. On the other hand, we observe that the SURE-
based tuning method often results in different parameters than
the SSIM-optimal parameters and leads to worse reconstruction
performance and suboptimal SSIM values compared to the GCV-
based tuning method. These results show that the proposed pa-
rameter tuning methods are stable in the sense that the observa-
tions we made by tuning only a subset of the parameters match
the observations made in the previous two subsections, where we
tuned all of the four parameters.

Conclusion
In this paper, we have proposed an algorithm to calculate
the GCV and SURE functions for the PnP-HQS computational

Figure 5. Parameter stability results for an MRI test example. For each plot,
we have tuned a pair of parameters while fixing the remaining two parameters
to the oracle-optimal values and plotted the SSIM contour plot as a function
of the tuned pair of parameters. Best viewed in zoom and color.

imaging algorithm by using forward mode automatic differenti-
ation. We have utilized parameter tying for the PnP-HQS algo-
rithm to reduce the number of parameters that need to be tuned
and to make the grid search used to minimize the GCV and SURE
functions computationally feasible. The resulting parameter tun-
ing strategies do not require access to the ground truth image and
do not need an additional training dataset, which is desirable for
practical computational imaging applications, especially for the
ones for which collecting data is time-consuming and costly. In
our experiments, we have evaluated the two strategies on deblur-
ring and MRI and observed that the GCV-based tuning method
can achieve comparable performance to the oracle method. On
the other hand, we have observed that the SURE-based tuning
strategy often leads to worse performance compared to the GCV-
based tuning method. Our plans for future work are to apply the
parameter tuning idea presented in this work to other variants of
the PnP algorithms and to further investigate alternative optimiza-
tion algorithms to minimize the GCV and SURE functions.
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