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Abstract

The idea of using generative models to perform posterior sampling for imaging
inverse problems has elicited attention from the computational imaging community.
The main limitation of the existing generative model-based posterior sampling
methods is that they do not provide any information about how uncertain the
generative model is. In this work, we propose a quick-to-adopt framework that
can transform a given generative model-based posterior sampling method into a
statistical model that can quantify the generative model uncertainty. The proposed
framework is built upon the principles of Bayesian neural networks with latent
variables and uses ensembling to capture the uncertainty on the parameters of a
generative model. We evaluate the proposed framework on the computed tomogra-
phy reconstruction problem and demonstrate its capability to quantify generative
model uncertainty with an illustrative example. We also show that the proposed
method can improve the quality of the reconstructions and the predictive uncer-
tainty estimates of the generative model-based posterior sampling method used
within the proposed framework.

1 Introduction

In recent years, posterior sampling problem has regained considerable attention from the computa-
tional imaging community, thanks to the recent advancements in generative modeling [1], which
have enabled learning high-dimensional multimodal posterior probability distributions for imag-
ing applications. Several studies, e.g., [2–20], have utilized a variety of state-of-the-art generative
models such as generative adversarial networks [21], variational autoencoders [22, 23], normalizing
flows [24–28], and diffusion models [29–33] to develop generative model-based posterior sampling
methods, and numerous papers have applied these techniques to various imaging inverse problems
including computed tomography [10, 12], magnetic resonance imaging [7, 12], phase retrieval [8],
optical diffraction tomography [8], radio interferometric astronomical imaging [19], and image
restoration [2, 3, 5, 6, 14, 20] (see [34] for a recent survey on this topic).

Although generative model-based posterior sampling methods are capable of quantifying the inherent
uncertainty on the underlying image given some measurements, which is sometimes referred to as
the aleatoric uncertainty [35,36], by learning the posterior distribution of the underlying image given
the measurements, they do not provide any information about how uncertain the generative model is
about the generated samples. This generative model uncertainty information is especially important
for safety-critical imaging applications, such as medical imaging, as well as imaging applications
that require statistical model uncertainty information, e.g., for active learning [37]. It is also desirable
to hold such uncertainty information at hand as a spatial map of confidence for imaging applications
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To specify the form of the likelihood term, we follow the original BNN+LV formulation [51, 52] and
define the likelihood term as follows:

p(x∗|y∗, z, θ) = N (x∗|G(y∗, z; θ), ε
2I), (3)

where ε is a fixed small constant. This definition implicitly assumes that x∗ = G(y∗, z; θ) + εn,
where n ∼ N (0, I) and z ∼ p(z). In other words, the inherent randomness on the underlying image
is modeled with the random noise n and the latent variable z. Because the generative model is
capable of applying complex transformations on the latent variable, the likelihood function in (3) can
represent a rich class of randomness patterns on the underlying image.

To calculate the predictive distribution by using (2), we also need to compute the posterior distribution
of the parameters of the generative model p(θ|Dtrain). Unfortunately, calculating the exact posterior
distribution of the parameters is intractable due to the deep non-linear structure of modern generative
models. Several methods, e.g., [53–61], have been proposed to tackle this problem for deep neural
networks in Bayesian deep learning literature (see [62] for an in-depth discussion). In our framework,
we have decided to utilize a variant of the deep ensembling method introduced in [61]. In our
ensembling process, we train T2 copies of the generative model G, whose parameters are initialized
with T2 different random seeds, on the training dataset Dtrain by following the training procedure
T . From a probabilistic perspective, this approach can be perceived as an attempt to approximate
the true posterior distribution of the parameters by a simpler distribution q defined by q(θ) =
1
T2

∑T2

t2=1 δ(θ − θ̃(t2)), where the set {θ̃(t2)|t2 = 1, . . . , T2} contains the weights of the T2 trained

generative models. The main motivation behind this choice is that this ensembling process does not
require any changes in the training and inference pipelines of the existing generative model-based
posterior sampling methods, making the proposed framework remarkably practitioner-friendly.

Finally, we approximate the predictive distribution by replacing the intractable posterior distribution
of parameters with the distribution q and approximating the intractable integrals using Monte Carlo
integration with T1 and T2 samples. The resulting approximation has the following mixture of
Gaussians form:

p(x∗|y∗,Dtrain) ≈
1

T1T2

T1
∑

t1=1

T2
∑

t2=1

N (x∗|G(y∗, z̃
(t1); θ̃(t2)), ε2I), (4)

where the set {z̃(t1)}T1

t1=1 contains samples from the prior distribution of the latent variable. We can
generate samples from this distribution to obtain an ensemble of reconstructions and calculate its mean
to obtain a single reconstructed image. Moreover, we can compute its covariance matrix to obtain
a predictive uncertainty estimate and acquire aleatoric and generative model uncertainty estimates
by calculating Eθ[Var(x∗|y∗, θ)] and Varθ(E[x∗|y∗, θ]) respectively, thanks to the decomposition
principle presented in [52]. Appendix A provides analytical expressions for these estimates, and
Figure 1 summarizes the training and inference stages of the proposed framework.

3 Experiments

In this section, we provide a CT reconstruction experiment that demonstrates the efficacy of quantify-
ing generative model uncertainty with the proposed method. Due to space limitations, we provide
the results of the experiments that evaluate the reconstruction performance and the quality of the
predictive uncertainty estimates in Appendices B and C, respectively. We built the proposed method
on a generative-model based posterior sampling method called deep posterior sampling [15] (DPS).
Further details of the experimental setup can be found in Appendix D.

For this example, we chose a reference CT image from the LUNA dataset [63] and generated the
corresponding test measurement vector in accordance with the simulation procedure described in
Appendix D. Then, we used that test measurement vector as an input to the DPS method with and
without the proposed generative model uncertainty quantification approach. The top row of Figure
2 shows the results. Next, we inserted an abnormal feature to the reference CT image (a synthetic
metal implant in the spine) by following the simulation procedure described in [64, 65] and obtained
the corresponding test measurement vector. We used the resulting test measurement vector as an
input to the DPS method with and without the proposed generative model uncertainty quantification
approach and obtained the corresponding reconstructed images and uncertainty maps. The bottom
row of Figure 2 shows the results.
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Appendix

A Inference Details of the Proposed Framework

We have approximated the predictive distribution as a mixture of Gaussians distribution in (4) in
the main manuscript. We are now ready to obtain reconstructed images and uncertainties maps to
complete the inference stage.

• To obtain an ensemble of reconstructed images, we can generate samples from the distribu-
tion in (4) in the main manuscript. Because ε is assumed to be a very small constant, we

can directly use the set of means, i.e., the set {G(y∗, z̃
(t1); θ̃(t2))|t1 = 1, . . . , T1, and t2 =

1, . . . , T2}, as the set of reconstructed images.

• To obtain a single reconstructed image, we can calculate the mean of the distribution in (4)
in the main manuscript as follows:

µµµ∗ =
1

T1T2

T1
∑

t1=1

T2
∑

t2=1

G(y∗, z̃
(t1); θ̃(t2)). (5)

• To obtain a predictive uncertainty estimate, we can compute the covariance matrix of the
predictive distribution in (4) in the main manuscript as follows:

Σpredictive = ε2I+
1

T1T2

T1
∑

t1=1

T2
∑

t2=1

(

µµµ
(t1,t2)
∗

)(

µµµ
(t1,t2)
∗

)>

−µµµ∗µµµ
>

∗ , (6)

where µµµ
(t1,t2)
∗ , G(y∗, z̃

(t1); θ̃(t2)) for t1 = 1, . . . , T1 and t2 = 1, . . . , T2; and (·)>
denotes the transpose operation.

• By following the uncertainty decomposition idea presented in [52], we can obtain an
aleatoric uncertainty estimate as follows:

Σaleatoric = ε2I+
1

T1T2

T1
∑

t1=1

T2
∑

t2=1

(

µµµ
(t1,t2)
∗

)(

µµµ
(t1,t2)
∗

)>

− 1

T2

T2
∑

t2=1

(

µµµ
(t2)
∗

)(

µµµ
(t2)
∗

)>

,

(7)

where µµµ
(t2)
∗ , 1

T1

∑T1

t1=1µµµ
(t1,t2)
∗ for t2 = 1, . . . , T2.

• Similarly, by following the uncertainty decomposition principle introduced in [52], we can
obtain an epistemic uncertainty estimate as follows:

Σepistemic =
1

T2

T2
∑

t2=1

(

µµµ
(t2)
∗

)(

µµµ
(t2)
∗

)>

−µµµ∗µµµ
>

∗ , (8)
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To create the predictive, aleatoric, and epistemic uncertainty maps, we can use the diagonal entries of
the matrices Σpredictive, Σaleatoric, and Σepistemic, respectively. It may be desirable to also calculate the
square root of the diagonal entries of these matrices so that the uncertainty maps have the same units
as the reconstructed images. Unless otherwise stated, all uncertainty maps provided in this work are
obtained by calculating the square root of the diagonal entries of these matrices.

B Evaluating the Quality of Reconstructed Images

In this section, we compare the reconstruction performance of the proposed method with that of deep
posterior sampling (DPS) [15], which is a state-of-the-art generative model-based posterior sampling
method that does not quantify the generative model uncertainty. The purpose of this comparison is to
examine the impact of the proposed framework on the reconstruction quality. Since we already have
T2 = 5 different instances of the DPS method to be used within the proposed method, we compare
the reconstruction performance of the proposed method with that of each individual DPS method
used within the ensemble to also demonstrate how the reconstruction performance of the DPS method
varies with different random initializations of the weights. The following visual and quantitative
results illustrate the effect of the proposed framework on the quality of reconstructed images.

B.1 Visual Results

We randomly chose 3 test measurement vectors from the test dataset and obtained the corresponding
reconstructed images using four different methods: (i) the traditional filtered backprojection (FBP)
method; (ii) the FBPConvNet method [66], which is a state-of-the-art deep neural network-based
image reconstruction method; (iii) five instances of the DPS method initialized with different random
initializations of the weights of the generator; and (iv) the proposed framework, for which an ensemble
of T2 = 5 DPS methods are used. Figure 3 shows the results.

We observe that the proposed framework and all instances of the DPS method achieve similar
visual results. Accordingly, it is challenging to evaluate impact of the proposed framework on the
reconstruction quality just visually. This observation serves as the motivation for the following
subsection.

B.2 Quantitative Results

In this subsection, we quantitatively explore how the proposed framework impacts the reconstruction
quality. We first introduce the evaluation metrics that we have used for this purpose, and then we
provide the quantitative results calculated over the entire test dataset.

Evaluation Metrics: To evaluate the reconstruction performance of different methods, we used
four different variants of the original structural similarity index (SSIM) [67] metric, namely SSIM-
Predictive, SSIM-Max, SSIM-Min, and SSIM-Avg. We define these metrics as follows:

• SSIM-Predictive metric calculates the SSIM between the predictive mean provided by a
reconstruction method and the ground truth image.

• SSIM-Max metric calculates the maximum of the set of SSIM values calculated between
each reconstruction provided by a reconstruction method and the ground truth image.

• SSIM-Min metric calculates the minimum of the set of SSIM values calculated between
each reconstruction provided by a reconstruction method and the ground truth image.

• SSIM-Avg metric calculates the average of the set of SSIM values calculated between each
reconstruction provided by a reconstruction method and the ground truth image.

We note that because the FBP and FBPConvNet methods only provide a single reconstruction, the
SSIM-Predictive, SSIM-Max, SSIM-Min, and the SSIM-Avg metrics boil down to the original SSIM
metric for the FBP and FBPConvNet methods. The results of the FBP and FBPConvNet methods are
provided only for reference.

Results: Table 1 shows the results averaged across the test dataset. We observe that different
initializations of the same generative model-based posterior sampling method (DPS) can yield
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Table 1: Quantitative results demonstrating the reconstruction performance of different methods. The
best and second best results are highlighted in red and blue colors, respectively.

Methods SSIM-Pred SSIM-Min SSIM-Max SSIM-Avg

FBP 0.4591 0.4591 0.4591 0.4591
FBPConvNet [66] 0.8968 0.8968 0.8968 0.8968
DPS #1 [15] 0.9183 0.8699 0.8839 0.8771
DPS #2 [15] 0.9166 0.8712 0.8860 0.8788
DPS #3 [15] 0.9231 0.8648 0.8805 0.8728
DPS #4 [15] 0.9241 0.8725 0.8896 0.8815
DPS #5 [15] 0.9013 0.8526 0.8677 0.8604

Proposed Method 0.9330 0.8509 0.8917 0.8741

This shows that the quality of the reconstructed images obtained by the DPS method is somewhat
sensitive to the initial values of the parameters of the generative model.

For the proposed method, we observe that it improves the quality of the reconstructed image (i.e.,
the predictive mean) over all DPS methods used within the proposed framework. The observed
phenomenon can likely be attributed to averaging performed by the proposed method over larger
number of reconstructed images compared to the DPS instances, leading to smoother images. It is
worth noting that this averaging operation can also lead to loss of local structures and fine details,
hence using an ensemble of reconstructions instead of a single reconstructed image may or may not
be desirable for particular applications. To evaluate the quality of a given ensemble of reconstructions,
we can examine the values of the SSIM-Min, SSIM-Max, and SSIM-Avg metrics. Since the proposed
framework is capable of generating all of the samples generated by all of the DPS methods, by the
definitions of the metrics, we expect the proposed framework to achieve the best SSIM-Max value
and the worst SSIM-Min value and to obtain an SSIM-Avg value that is neither the best nor the worst
compared to the DPS instances used within the proposed method. Table 1 shows that the results
match our expectations.

C Evaluating the Quality of the Predictive Uncertainty Estimates

In this section, we compare the quality of the predictive uncertainty estimates provided by the
proposed method with those provided by the deep posterior sampling (DPS) method [15]. The goal of
this comparison is to investigate the effect of the proposed framework on the quality of the predictive
uncertainty estimates. Since we already have T2 = 5 different instances of the DPS method to be used
within the proposed method, we compare the quality of the predictive uncertainty estimates obtained
by the proposed method with those of each individual DPS method used within the ensemble to also
demonstrate how the quality of the predictive uncertainty estimates obtained by the DPS method
varies with different random initializations.

C.1 Calibration Metrics, Sharpness, and Scoring Rules

In this subsection, we provide the details of the metrics that we have employed to assess the quality
of the predictive uncertainty estimates. The motivations for using these metrics will be discussed in
Appendix C.2.

Preliminaries: Suppose that we have a test dataset Dtest = {(y[n]
∗ ,x

[n]
∗ )|n = 1, · · · , NDtest

} that
contains NDtest

pairs of test examples. For a given test measurement vector, the proposed framework
provides a predictive distribution whose form is given in (4) in the main manuscript. To be able to
evaluate the calibration metrics and the scoring rules conveniently, we approximate the predictive
distribution of each pixel in the test dataset with a Gaussian distribution, whose mean is determined
by the mean of the predictive distribution, and variance is calculated by the diagonal entries of
the covariance matrix of the the predictive distribution. Mathematically speaking, for a given test

measurement vector y
[n]
∗ , we have the following predictive distribution approximation for the kth
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pixel of the underlying image:

p([x∗]k|y[n]
∗ ,Dtrain) ≈ N ([x∗]k|[µµµ[n]

∗ ]k, [Σ
[n]
predictive]k,k), (9)

where µµµ
[n]
∗ ∈ R

N is the predictive mean; and Σ
[n]
predictive ∈ R

N×N is the covariance matrix of the

predictive distribution. In the rest of this section, we denote the cumulative distribution function
(CDF) that corresponds to the probability density function given in (9) with Fk,n.

Calibration Metrics: To compute the calibration metrics, we choose C confidence levels, namely
0 ≤ p1 < · · · < pC ≤ 1. Then, by following [68], for each confidence level pc, we calculate the
fraction of pixels p̂c for which the CDF provided by the proposed method evaluated at the true value
of the pixel is less then or equal to the confidence level. In other words, we calculate p̂c by following
the recipe below:

p̂c =
card({[x[n]

∗ ]k|Fk,n([x
[n]
∗ ]k) ≤ pc, n = 1, · · · , NDtest

, and k = 1, · · · , N})
NDtest

N
, (10)

where the operator card calculates the cardinality of a given set. We then calculate the mean-absolute
calibration error (MACE) and the root-mean-squared calibration error (RMSCE) over the test dataset
as follows:

MACE =
1

C

C
∑

c=1

|p̂c − pc| and RMSCE =

√

√

√

√

1

C

C
∑

c=1

(p̂c − pc)2. (11)

We calculate the miscalibration area (MA) by calculating the area between the calibration curve
defined by the points {(p1, p̂1), · · · , (pC , p̂C)} and the calibration curve of the optimal calibrated
method, which is defined by the points {(p1, p1), · · · , (pC , pC)}.

Sharpness: To compute the sharpness metric, we calculate the square root of the average variance
over all pixels in the test dataset. More specifically, we calculated the sharpness over the test dataset
by using the following definition:

Sharpness =

√

√

√

√

1

NDtest
N

NDtest
∑

n=1

N
∑

k=1

[Σ
[n]
predictive]k,k. (12)

Scoring Rules: In our experiments, we have reported the values of four different scoring rules,
namely negative log-likelihood (NLL), continuous ranked probability score (CRPS), check score
(CS), and interval score (IS). We compute the negative log-likelihood metric by calculating the
average of the negative log-likelihood of each pixel in the test dataset:

NLL = − 1

NDtest
N

NDtest
∑

n=1

N
∑

k=1

logN ([x
[n]
∗ ]k|[µµµ[n]

∗ ]k, [Σ
[n]
predictive]k,k). (13)

We calculate the CRPS metric by calculating the average of the negatively oriented variant of the
continuous ranked probability score [69] of each pixel in the test dataset:

CRPS = − 1

NDtest
N

NDtest
∑

n=1

N
∑

k=1

σ
[n]
k

[

1√
2π

− 2N (r
[n]
k |0, 1)− r

[n]
k

(

2Φ(r
[n]
k )− 1

)

]

(14)

where the residual r
[n]
k , ([x

[n]
∗ ]k − [µµµ

[n]
∗ ]k)/[Σ

[n]
predictive]

1/2
k,k ; the function Φ is the CDF of the standard

Gaussian random variable; and σ
[n]
k , ([Σ

[n]
predictive]k,k)

1/2. To compute the check score (CS) metric,

we first choose L confidence levels 0 < α1 < · · · < αL < 1 and then we calculate the average of the
check loss [69] of each pixel in the test dataset:

CS =
1

LNDtest
N

L
∑

l=1

NDtest
∑

n=1

N
∑

k=1

(

F−1
k,n(αl)− [x

[n]
∗ ]k

) [

1{[x[n]
∗ ]k ≤ F−1

k,n(αl)} − αl

]

, (15)
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Table 2: Quantitative results demonstrating quality of the predictive uncertainty estimates obtained by
different methods. The best and second best results are highlighted in red and blue colors, respectively.

Average Calibration Metrics Scoring Rules

Methods RMSCE MACE MA Sharpness NLL CRPS CS IS

DPS #1 [15] 0.3602 0.3179 0.3211 0.0136 219.6864 0.0977 0.0489 0.9536
DPS #2 [15] 0.2647 0.2074 0.2095 0.0134 265.7947 0.0972 0.0487 0.9501
DPS #3 [15] 0.2819 0.2332 0.2355 0.0156 247.8570 0.0973 0.0488 0.9432
DPS #4 [15] 0.2674 0.2092 0.2113 0.0139 255.2597 0.0974 0.0488 0.9493
DPS #5 [15] 0.4110 0.3695 0.3732 0.0138 194.1955 0.0976 0.0489 0.9491

Proposed Method 0.2606 0.2183 0.2205 0.0154 162.6719 0.0960 0.0481 0.9280

where 1 is the indicator function. Similarly, to calculate the interval score (IS) metric, we first choose
L confidence levels 0 < α1 < · · · < αL < 1 and then we calculate the average of the negatively
oriented interval score [69] of each pixel in the test dataset:

IS =
1

LNDtest
N

L
∑

l=1

NDtest
∑

n=1

N
∑

k=1

[

(lk,n,l − uk,n,l) +
2

αl

(

lk,n,l − [x
[n]
∗ ]k

)

1{[x[n]
∗ ]k < lk,n,l}

+
2

αl

(

[x
[n]
∗ ]k − uk,n,l

)

1{uk,n,l < [x
[n]
∗ ]k}

]

(16)

where the lower bound of the prediction interval lk,n,l , F−1
k,n(

αl

2 ), and the upper bound of the

prediction interval uk,n,l , F−1
k,n(1− αl

2 ).

It is worth noting that although we have provided the definitions of the evaluation metrics for the
proposed method, these definitions can be straightforwardly adapted to any reconstruction method that
provides a distribution as an output, such as generative model-based posterior sampling methods or
Bayesian neural network-based image reconstruction methods, by making the Gaussian approximation
that we have made in (9).

Implementation: In our experiments, for the calibration metrics, we used C = 100 confidence
levels that are linearly spaced between 0 and 1. For the scoring rules, we used L = 99 confidence
levels that are linearly spaced between 0.01 and 0.99. We used the Uncertainty Toolbox [70] to
compute the calibration metrics, sharpness, and the scoring rules.

C.2 Quantitative Evaluation of the Predictive Uncertainty Estimates

Calibration: One widely used approach to evaluate the quality of the predictive uncertainty esti-
mates of a statistical model is to investigate its calibration behavior [68]. To measure how calibrated
the proposed method and each DPS instance used within the ensemble are, we computed the
root-mean-squared calibration error (RMSCE), mean-absolute calibration error (MACE), and the
miscalibration area (MA) metrics. Table 2 shows the results.

Similar to the reconstruction performance case, we observe that the calibration performance of the
DPS method varies with different initializations of the parameters. When we examine the calibration
performance of the proposed method, we observe that it achieves the best RMSCE value, indicating
that the proposed method is better calibrated than all DPS methods used within the ensemble in terms
of root-mean-squared calibration error. On the other hand, reviewing the MACE and the MA metrics
reveals that the calibration performance of the proposed method is neither the best nor the worst
compared to the calibration performance of the DPS methods.

Sharpness: Using only calibration metrics is not sufficient to accurately assess the quality of the
predictive uncertainty estimates of a statistical model [68]. Hence, besides how well the statistical
model is calibrated, we would also like to know how tight the prediction intervals provided by the
statistical model are. For this purpose, we calculated the sharpness of the proposed framework and
of each DPS instance used within the ensemble. Table 2 presents the results. We observe that the
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proposed framework leads to a decrease in the sharpness of the predictions due to the ensembling
operation.

Scoring Rules: The need for two metrics (one for calibration and one for sharpness) to evaluate
the quality of the predictive uncertainty estimates provided by a statistical model is problematic.
Ideally, we would like to have a single metric that we can use to judge the quality of the predictive
uncertainty estimates. This is where proper scoring rules [69] come into play since proper scoring
rules take both the calibration and the sharpness into account [69, 70]. Table 2 provides the values
of the four different proper scoring rules, namely the negative log-likelihood (NLL), continuous
ranked probability score (CRPS), check score (CS), and the interval score (IS), for the proposed
framework and for each DPS instance used within the ensemble. We observe that the proposed
framework achieves the best results, indicating that the proposed framework can improve the quality
of the predictive uncertainty estimates of the generative model-based posterior sampling methods
used within the proposed framework.

D Reproducibility

Dataset: We collected 11420 512× 512 reference images from the LUNA dataset [63] and resized
each reference image to 256× 256 pixels. Then, each reference image was normalized such that the
interval [−1000, 3000] Hounsfield unit (HU) is mapped into the interval [0, 1]. 11220 of the reference
images were used as the underlying images for training, and the remaining reference images were split
into two parts to be used as underlying images for the validation and test datasets, each containing 100
reference images. For each reference image in the training, validation, and test datasets, we generated
the corresponding measurements, i.e., the sinogram, by calculating its sparse Radon transform with
72 views (corresponding to approximately 5× dose reduction) and adding additive Gaussian noise
such that signal-to-noise ratio is approximately 50 decibels, where the signal-to-noise ratio is defined
by

SNR(y,ynoiseless) = 20 log10

( ‖ynoiseless‖2
‖ynoiseless − y‖2

)

, (17)

where y is the measurement vector, and ynoiseless is the noiseless version of the measurement vector
y.

Details of FBPConvNet: We used the U-Net [47] architecture proposed in [66] as the deep neural
network and trained the deep neural network on the training dataset for 50 epochs, which took
approximately 5 hours on an NVIDIA A10 GPU. During training, we used the mean squared error
as the loss function and set the mini-batch size to 16. We utilized the Adam [71] optimizer with the
default parameter values provided in PyTorch [72], with the exception of fixing the learning rate
and the weight decay to 10−4. At the inference stage, for a given test measurement vector, we first
calculated the filtered backprojection of the test measurement vector and then used it as an input to
the deep neural network to obtain the reconstructed image.

Details of Deep Posterior Sampling (DPS): We used the conditional Wasserstein GAN [73, 74]
architecture proposed in [15] as the generative model and trained the generative model on the training
dataset for 10 epochs by following the training procedure described in [15], with the difference that
during training, we set the mini-batch size to 16 and did not use any learning rate decay. Training
took approximately 10 hours on an NVIDIA A10 GPU. At the inference stage, for a given test
measurement vector, we first calculated the filtered backprojection of the test measurement vector
and then used it as an input to the generative model together with a sample from the prior distribution
of the latent variable to obtain a sample from the posterior distribution of the underlying image.
To obtain an ensemble of reconstructed images, i.e., to generate more samples from the posterior
distribution, we generated 128 samples from the prior distribution of the latent variable and repeated
the previously discussed procedure 128 times.

Details of the Proposed Method: Note that proposed method requires using an ensemble of
generative models. For this purpose, we used the conditional Wasserstein GAN architecture proposed
in [15] as the generative model G and trained T2 = 5 instances of this generative model with
different random initializations. Details of the training stage are already provided in the above
paragraph. Since we trained T2 = 5 instances of this generative model for 10 epochs, the training
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stage took approximately 50 hours in total on an NVIDIA A10 GPU. At the inference stage, for a
given measurement vector, we first calculated the filtered backprojection of the test measurement
vector and then used it as an input to all of the generative models together with a sample from the
prior distribution of the latent variable. We repeated this procedure T1 = 128 times to obtain the
means of the mixture components of the predictive distribution.
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