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We provide faster algorithms for approximating the optimal transport distance, e.g. earth mover’s
distance, between two discrete probability distributions on n elements. We present two algorithms which
compute couplings between marginal distributions with an expected transportation cost that is within an
additive ε of optimal in time Õ (n2/ε); one algorithm is straightforward to parallelize and implementable 
in depth Õ (1/ε). Further, we show that additional improvements on our results must be coupled with
breakthroughs in algorithmic graph theory.
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1. Introduction

In this paper, we consider the discrete optimal transportation 
problem. That is, given two vectors r and c in the n-dimensional 
probability simplex �n , we seek to compute a coupling X ∈ �n×n

between r and c such that, for a given, non-negative cost function 
C : [n] × [n] → R≥0 the expected cost with respect to X is mini-
mized. Due to [24], this problem has a relatively simple expression 
as a linear program, namely

min
X∈U(r,c)

〈C, X〉 where U(r, c) :=
{
X ∈ Rn×n

≥0 : X1 = r, XT 1 = c
}

,

(1)

〈·, ·〉 is the element-wise inner product, X denotes our cou-
pling/transportation plan between r and c, and C ∈ Rn×n

≥0 is our
given cost function expressed as a matrix. In this paper, we focus 
on computing additive ε-optimal solutions to (1), i.e. X̂ ∈ U(r, c)
such that〈
C, X̂

〉 ≤ min
X∈U(r,c)

〈C, X〉 + ε (2)

The computation of such solutions, both for discrete distribu-
tions r, c and for distributions over more general metric spaces, 
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is playing an increasing role in varied tasks throughout machine 
learning and statistics. Recent applications in unsupervised learn-
ing [8], computer vision [36,11], distributionally-robust optimiza-
tion [30,10,9], and statistics [37,32] all leverage the ability to com-
pute solutions of (1) or it’s continuous analogues. Moreover, these 
applications have created a need for fast (nearly-linear time) al-
gorithms for (1) in settings where the cost function C is quite 
general– for instance, in the case where C does not satisfy met-
ric assumptions. Here, we consider nearly-linear time to be any 
complexity which is of input size O (n2) after neglecting factors in 
ε and logarithms in n.

As a consequence, recent efforts in the fields of optimization 
and machine learning [15,5,20,12,17] have focused on establish-
ing nearly-linear time guarantees through the development of new 
iterative algorithms for (1). This has led to a sequence of increas-
ingly sharper complexity bounds for (1).

In this paper we shed light on the complexity of (1) by giv-
ing a pair of simple reductions from optimal transport to canonical 
problems in theoretical computer science, namely packing linear 
programming and matrix scaling. Through these reductions we pro-
vide new algorithms for (1) with improved asymptotic running 
times to previous methods. Moreover, we show that these running 
times cannot be further improved without a major breakthrough 
in algorithmic graph theory.

1.1. Contributions and overview

The contribution of this paper is two-fold. First, we exhibit two 
separate algorithms for computing an ε-approximate solution to 
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(1) in Õ (n2 ‖C‖max /ε) time.1 This improves upon the following 
previous best known complexity for this problem of

Õ

(
min

{
n9/4

√‖C‖max

ε
,
n2 ‖C‖max

ε2

})
[17]

Additionally, the second of these two algorithms (presented in Sec-
tion 5), achieves Õ (‖C‖max /ε) parallel depth– an improvement 
on the previously best known parallel depth (among nearly-linear 
time algorithms) by a factor of 1/ε . Beyond differences in the tech-
nical machinery underlying these two algorithms, the improved 
parallelism in the second algorithm is the main complexity the-
oretic difference between the algorithms presented in Sections 4
and 5.

Each algorithm is derived via a black-box reduction to a dif-
ferent, canonical problem in theoretical computer science that can 
be solved using powerful iterative methods. The first of our reduc-
tions is to a standard packing linear program and the second of our 
reductions is to the matrix scaling problem.

Definition 1 (Packing Linear Program). A packing linear program is a 
linear program of the form

V∗ = max
x∈Rl≥0

{
dT x : Ax ≤ b

}
(3)

for b ∈ Rm≥0, d ∈ Rl≥0, and A ∈ Rm×l
≥0 . We say that xε ∈ Rm≥0 is an 

ε-approximate solution for (3) if Axε ≤ b and dT xε ≥ (1 − ε)V∗ .

Definition 2 (Matrix scaling). Let A be a non-negative matrix and 
r, c ∈ Rn≥0 be vectors such that 

∑n
i=1 ri = ∑n

i=1 ci and ‖A‖max,

‖r‖max, ‖c‖max ≤ 1. Two non-negative diagonal matrices X, Y are 
said to (r, c)-scale A if the matrix B = X AY satisfies B1 = r and 
BT 1 = c.

If, instead, ‖B1 − r‖1 + ∥∥BT 1 − c
∥∥
1 ≤ ε we say that X, Y ε-

approximately (r, c)-scale A. The matrix scaling problem is to com-
pute non-negative diagonal matrices X, Y that ε-approximately 
(r, c)-scale A, provided such matrices exist.

Beyond the gain of a O (1/ε) in complexity, the primary benefit 
of our results are that these reductions provide a precise character-
ization of the relationship between the optimal transport problem 
and breakthroughs in theoretical computer science. In particular, 
our results link foundational discoveries [2] in positive linear pro-
grams to optimal transport and also demonstrate how an orthogo-
nal sequence of techniques from fast Laplacian system solvers and 
second-order optimization methods [14] provide algorithmic gains 
for OT.

A secondary contribution of this paper is a precise explanation, 
in Section 6, of why the above running time of Õ (n2/ε) is bot-
tleneck for the approach of this paper or others [20,5,17,1,7,35]. 
We provide a reduction from the optimal transport problem to 
the problem of computing maximum cardinality matching in a bi-
partite graph (bipartite matching). This shows that any algorithm 
which improves on the runtime of Õ (n2/ε) yields an algorithm 
for bipartite matching with an efficient running time that, so far, 
has only been achieved by using sophisticated techniques of either 
fast matrix multiplication [21] or dynamic graph data structures 
[38,13]. This sheds light on the type and sophistication of the 
tools that are necessary for further improvements (barring another 
breakthrough and highlights a deep connection between optimal 

1 Throughout, we use Õ to hide logarithmic factors in n and ε and use ‖C‖max
to denote the largest entry of C .
2

transport and algorithmic graph theory that can be used to under-
stand the limitation of techniques similar to ours.

As a road-map for the reader, after covering previous work in 
Section 2 and preliminaries in Section 3, in Section 4 we give a re-
duction from (1) to a packing linear program (LP) and then show 
how a recently-developed fast solver for packing LPs [3] can be ap-
plied to yield our desired sequential run-time. In Section 5 we give 
a reduction from (1) to matrix scaling and then provide our sec-
ond algorithm, which obtains both our stated run-time and stated 
parallel depth. The surprising fact that we can recover the same 
overall complexity via these very different approaches then mo-
tivates Section 6 where we demonstrate the difficulty of further 
improvements with a reduction from maximum cardinality bipar-
tite matching.

Concurrent and subsequent work During the final revision process 
for this work, a paper [33] offering partially overlapping results 
was published to ArXiv. This concurrent work constitutes an inde-
pendent research effort. The result which is shared by [33] and this 
work is the serial, randomized running time for (1) that is obtained 
in Sections 4 and 5 of this paper and Theorem 2 of [33]. Indeed, 
a reduction to packing LPs which is similar to the one given in 
Section 4 appears in [33]. [33] also appeals to further results con-
cerning packing LP solvers and an additional reduction from (1) to 
mixed packing and covering LPs in order to provide determinis-
tic and parallel running times for (1) which do not appear in this 
paper– see Theorem 2 in [33].

Since, the release of [33], the parallel complexity for (1), which 
appears in Section 5, was added to highlight the difference be-
tween the reduction of Section 5 and the reductions obtained in 
[33]. Indeed, in the case of parallel, randomized running time, the 
result of Section 5 improves upon [33] by a factor of 1/ε . Beyond 
this, edits were made only to improve the presentation and clar-
ify the relationship of this paper to [33] and subsequent work, see 
Section 7.

Further, since the initial release of this paper there have been 
advances in obtaining parallel first-order methods matching our 
best results [22] and obtaining faster running times using more 
sophisticated optimization and algorithmic graph theory tools [38,
13]. See Section 7 for further discussion.

2. Previous work

In this paper, we focus on the case of obtaining nearly-linear 
running time results for (1). While we could consider solving (1)
as a general linear program, any approaches involving the fastest 
known methods (e.g. [26] via Laplacian system solvers or [27] for 
generic solvers) would be insufficient for our stated goal since they 
currently have running time at least �(n2.5) for (1).

Outside of such generic solvers and within the scope of previ-
ous algorithms which achieve nearly-linear running time (or bet-
ter) for (1), contemporary literature comprises two veins. The first 
vein, encompasses those algorithms which impose further condi-
tions on the costs of (1) in order to create a fast computational 
method for a more restricted subclass of applications. Examples in 
this line of work are [1,7,35], where nearly-linear run-times are 
obtained, but at the expense of assuming that the cost matrix C is 
induced by a metric– or, in the latter case, by a low dimensional 
lp metric. For the purposes of this paper, we will only make posi-
tivity/boundedness assumptions on our costs (as metric or related 
assumptions on C can often be violated in practice). Thus, this line 
of inquiry is less relevant for our efforts.

The second vein of results, however, is more directly related to 
the algorithm that we will present in Section 5 and stems from 
the use of entropy-regularization to solve (1). Beginning with the 
work of [15], this line of research [20,5,12,17] essentially centers 
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Table 1
Running times for computing ε-optimal solutions of (1): In the table, Õ hides 
polylogarithmic factors in ε, n. All results except for the interior point method also 
explicitly hide linear dependence on the norm of the cost matrix ‖C‖∞ .

Algorithm Running Time Paper

Interior Point Õ
(
n2.5

)
[26]

Sinkhorn/RAS Õ
(

n2

ε2

)
[17]

APDAGD Õ
(
min

{
n9/4

ε , n2

ε2

})
[17]

Box-constrained Newton and 
Packing LP Reductions

Õ
(

n2

ε

)
This paper

around applying a particular iterative technique, such as alter-
nating minimiziation (Sinkhorn/RAS) or an accelerated first order 
method (APDAGD), to solve the dual of an entropy-regularized ver-
sion of (1). As shown in Table 1, this leads to different approaches 
for solving (1) in nearly-linear time. It is worth noting that the 
procedure which appears in Section 5 is tangentially alluded to in 
[17], but no derivation or concrete running times were given.

3. Preliminaries

In this section, we define notation and several, canonical as-
sumptions concerning (1) that will be relevant for the subsequent 
reductions.

First, we denote the set of non-negative real numbers by R≥0, 
the set of integers {1, . . . , n} by [n], and the n dimensional prob-
ability simplex by �n = {x ∈ R≥0 : ∑

i∈[n] xi = 1}. Correspondingly, 
let �n×n = {x ∈ Rn×n

≥0 : 1T X1 = 1} where 1 is the all ones vector. 
Given a set S ⊆ [n] and r ∈ �n define r|S to be the conditional dis-
tribution induced by r given S . Denote the product distribution of 
r, c ∈ �n by r ⊗ c ∈ �n×n .

For A ∈ Rn×n , we define ‖A‖max to be maximum modulus of 
any element of A. Further, we denote the entry-wise exponential 
of A by eA and for A ∈Rn×n

≥0 define

H(A)
def= −

n∑
i, j=1

Ai, j
(
log Ai, j − 1

)
to be the (entry-wise) matrix entropy. For two matrices A, B ∈
Rn×n we denote the Frobenius inner product by 〈A, B〉 =∑

i, j∈[n] Ai, j Bi, j .
We will refer to the linear program (1) as the optimal trans-

port problem, Kantorovitch problem, or primal. As is standard, the 
cost matrix C ∈ Rn×n

≥0 has also been assumed to be non-negative 
and the marginals have been taken to be strictly positive (r, c > 0). 
Note, while we have implicitly assumed that the marginals r, c ∈
�n have the same dimension, this has been done for the sake 
of exposition and the complexities will suitably generalize for r
and c of differing dimensions– i.e. our running times will become 
Õ (mn/ε) for r of dimension m and c of dimension n.

4. Solving by packing LP algorithms

In this section, we give a procedure for computing an ε-optimal 
solution to the optimal transport problem in Õ

(
n2 ‖C‖max /ε

)
time. To obtain our reduction, consider solving the linear program:

max
X∈K(r,c)

〈B, X〉

K(r, c) :=
{
X ∈Rn×n+ : X1 ≤ r, XT 1 ≤ c

}
B := ‖C‖max 11

T − C

(4)

In other words, we turn the minimization problem (1) into a max-
imization problem by reversing the sign of C while adding a con-
stant of ‖C‖max to the constraint matrix to keep the new cost 
3

matrix, B , non-negative. This allows us to just solve under up-
per bound constraints, rather than both upper and lower bound 
constraints, on the row and column sums of X . Indeed, the new 
objective encourages using X to make the row and column con-
straints tight while still minimizing the original cost. Furthermore, 
since B is an entry-wise, uniform perturbation of C by ‖C‖max, 
(4) will maintain the same set of optimal solutions as (1) while 
only perturbing the objective function by an additive ‖C‖max term– 
since 

〈
X,11T

〉 = 1T X1 = 1.
Formally, we first show how to round solutions of (4) to solu-

tions of (1).

Lemma 1. Suppose X ∈Rn×n
≥0 satisfies X1 ≤ r and XT 1 ≤ c. Then, there 

exists a matrix D ∈ Rn×n
≥0 (which can be trivially computed in O (n2)

time) such that Y = X + D satisfies Y1 = r and Y T 1 = c.

Proof. Define er := r− X1 and ec := c− XT 1 and observe er, ec ≥ 0
coordinate-wise and that

‖er‖1 = 1T (r − X1) = 1− 1T X1 = (cT − 1T X)1 = ‖ec‖1
Hence, set D := 1

‖ec‖1 ere
T
c where, by convention, D = 0 if ‖ec‖1 =

0.
It is easy to verify that if ‖ec‖1 = 0, then Y = X + D has the 

prescribed marginals (row and column sums). Thus, assume that 
‖ec‖1 
= 0. Then,

Y1 =
(
X + 1

‖ec‖1
ere

T
c

)
1 = X1+ er = r

and, similarly, Y T 1 = c. �
Using this lemma, the main result quickly follows:

Theorem 1. Suppose there exists an oracle O which computes an ε′-
approximate solution (see Definition 1) to the packing LP (4) in time 
O (T

(
m, l,1/ε′)). Then, there is an algorithm which computes an ε-

approximate solution to the optimal transport problem (1) in time

O

(
n2 + T

(
n,n,

‖C‖max

ε

))
Proof. Let Xε′ be the ε′-approximate solution obtained by run-
ning O on (4) with approximation parameter ε′ = ε/ ‖C‖max. By 
Lemma 1, we can compute a D ∈ Rn×n

≥0 in O (n2) time such that 
Y = Xε′ + D is feasible for (1). Hence, denoting the optimal solu-
tion to the original transportation problem (1) by X∗ , we have

〈B, Y 〉 ≥ 〈B, Xε′ 〉 ≥ (1− ε′) 〈B, X∗〉
where we have used the definition of ε′-optimality for Xε′ and the 
fact that Y ≥ Xε′ entry-wise. Expanding this relationship in B and 
using the fact that 1T Y1 = 1 and 1T X∗1 = 1, we obtain

‖C‖max − 〈C, Y 〉 ≥ ‖C‖max − 〈C, X∗〉 − ε′ 〈B, X∗〉
Upon rearrangement this yields

〈C, Y 〉 ≤ 〈C, X∗〉 + ε′ 〈B, X∗〉
As ‖B‖max ≤ ‖C‖max and ε′ = ε/ ‖C‖max, Hölder’s inequality im-
plies that

〈C, Y 〉 ≤ 〈C, X∗〉 + ε

Hence, Y is an ε-approximate solution of the optimal transporta-
tion problem (1). Moreover, it quickly follows that the total time 
of this procedure is O  

(
n2 + T (n,n,‖C‖max /ε)

)
. �
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Using this reduction, we can now obtain our desired run-time 
for (1), simply by solving (4) using the current best packing algo-
rithm.

Theorem 2 ([3]). Given a packing linear program (3), there exists an 
algorithm that computes an ε-approximate solution to (3) in time 
Õ (m + l + nnz(A)/ε) with high probability.

With Theorem 2 providing the oracle in Theorem 1, we imme-
diately obtain the following corollary

Corollary 1. There exists an algorithm which computes an ε-approxi-
mate solution to (1) in time Õ (n2 ‖C‖max /ε) with high probability.

5. Solving by matrix scaling and box-constrained Newton

In this section, we provide another Õ (n2 ‖C‖∞ /ε)-time algo-
rithm for computing an ε-optimal solution to the optimal trans-
port problem. In comparison to the results of Section 4, the algo-
rithm presented in this section constitutes a different link between 
the optimal transport problem and recent advances in theoret-
ical computer science (in particular to constrained optimization 
techniques for matrix balancing). Further, the algorithm not only 
obtains the sequential run-time of Section 4 but also improves 
upon it in terms of parallel complexity; the algorithm achieves the 
fastest known, parallel complexity (Õ (‖C‖∞ /ε) depth) for solving 
(1) (while preserving total work). Indeed, the approach of Section 4
does not achieve a similar result due to the polynomial depth of 
[3] in problem dimension. Obtaining an efficient parallel packing 
algorithm that would yield both the sequential run-time and paral-
lel depth claimed in this section is a key outstanding open problem 
in positive linear programming. In contrast, the algorithm pre-
sented in the section uses certain graph theoretic advances which, 
potentially make the algorithm more complex and specialized to 
optimal transport, and enable the improved parallel complexity.

At present, the results of this section and Section 4 provide 
results of theoretical import. Such results, however, do not nec-
essarily clarify how the empirical performance of the algorithms 
in these sections would compare. While interesting, such a com-
parison is outside the scope of this work and, to the authors’ 
knowledge, could be hindered by the lack of an existing numerical 
implementation for the constrained-Newton step in [14]. Alongside 
such a comparison, it would be natural to compare these methods 
to other, canonical techniques for solving optimal transport (such 
as the Sinkhorn method [15]). However, improving upon the prac-
tical performance of state-of-the-art optimal transport methods is 
key line of work related to this paper that would constitute a dis-
tinct, significant, and notable contribution.

As a first step, we will note the following reduction to the ma-
trix scaling problem which appears in prior work [15,5,17]. The 
optimal transport problem naturally yields an entropy-regularized 
version

min
X∈ U(r,c)

〈C, X〉 − ηH(X) (5)

whose optimal value of (5) is called the Sinkhorn cost [15]. The 
namesake refers to the fact that the dual of (5) is equivalent to the 
problem

min
x,y∈Rn

ψ(x, y)
def= 1T BC/η(x, y)1− rT x− cT y where

(
BC/η(x, y)

)
i j

def= exi+y j−Cij/η (6)

More generally, we will write
4

min
x,y∈Rn

ψA,r,c(x, y)
def= 1T MA(x, y)1− rT x− cT y where(

MA(x, y)
)
i j

def= Aije
xi+y j (7)

for any non-negative matrix A ∈ Rn×n and positive vectors r, c ∈
Rn∗ . An optimal solution of (7) gives diagonal matrices which (r, c)-
scale A.

It is known that solving (6) is sufficient to solve the optimal 
transport problem in the following sense.

Lemma 2 (See proof of Theorem 1 in [5]). Let ̂x, ̂y be solutions which 
satisfy∥∥BC/η(̂x, ŷ)1− r

∥∥
1 +

∥∥∥BC/η(̂x, ŷ)T 1− c
∥∥∥
1
≤ ε

i.e. ‖∇ψ(̂x, ŷ)‖1 ≤ ε . Then, there exists a projection X̂ of BC/η(̂x, ̂y)
onto U(r, c) that can be computed in linear-time and work (i.e. O (n2)) 
and Õ (1) depth such that〈
C, X̂

〉 ≤ min
X∈U(r,c)

〈C, X〉 + 2η logn + 4ε ‖C‖∞

Moreover, using Lemma 2 and the following fact, the main re-
duction of this section is almost immediate.

Lemma 3. Given an instance of (1), there exist a pair of modified, input 
distributions ̃r, ̃c such that ̃ri, ̃ci ≥ ε

2‖C‖∞n for all i ∈ [n] and the solution
X̃∗ = min

X∈U (̃r,̃c)
〈C, X〉 (8)

can be extended to an ε-approximate solution X̂ of (1) in O  
(
n2

)
time/work and Õ (1) depth.

Proof. Let

Sr =
{
i ∈ [n] : ri ≥ ε

2‖C‖∞ n

}
and

Sc =
{
i ∈ [n] : ci ≥ ε

2‖C‖∞ n

}
and set ̃r and ̃c to be the corresponding marginal distributions of 
r|Sr ⊗ c|Sc ∈ �n×n . Let X̃∗ be the solution of (8) for such marginals 
r̃, ̃c, denote

μ =
∑

i∈Sr , j∈Sc

ric j ≤ 1

and set E = Sr × SC ∈ [n] × [n]. For the optimal solution X∗ of 
(1) with marginals r, c and let XE∗ be the distribution induced by 
conditioning X∗ on the set E .

The optimality of X̃∗ implies that〈
C, X̃∗

〉 ≤ 〈
C, XE∗

〉
≤ 1

μ
〈C, X∗〉

Further, if we let X̂ be the coupling such that

X̂i j =
{
μ X̃i j if i ∈ Sr, j ∈ Sc
ric j otherwise

it is easy to see that X̂ has marginals r and c and, by construction 
of Sr and Sc , satisfies〈
C, X̂

〉 ≤ μ
〈
C, X̃∗

〉 + ε ≤ 〈C, X∗〉 + ε

Clearly, r̃, ̃c and X̂ can be constructed in O (n2) time/work and 
Õ (1) depth. �



J. Blanchet, A. Jambulapati, C. Kent et al. Operations Research Letters 52 (2024) 107054
Theorem 3. Suppose there exists an oracle O which computes an ε′-
approximate solution (see Definition 2) to the matrix scaling problem 
in time O  

(
T

(
n,1/ε′, ν, ξ

))
where ν = maxi, j 1/Aij , ξ = maxi∈[n]

(
1/

min(ri, ci)
)
, and we let T

(
n,1/ε′, ν, ξ

) = ∞ when ν = ∞ or ξ = ∞. 
Then, there is an algorithm which computes an ε-approximate solution 
to the optimal transport problem (1) in time

O

(
n2 + T

(
n,

16‖C‖∞
ε

,n8‖C‖∞/ε,
4‖C‖∞ n

ε

))
Proof. By Lemma 3, we can assume without loss of generality that 
ξ ≤ (4‖C‖∞ n) /ε . Set η = ε/(4 logn). From [29] and the fact that 
e−Ci, j/η, ri, ci > 0 we know that e−C/η is (r, c)-scalable. Thus, by 
running O on the matrix e−C/η with ε′ = 8 ‖C‖∞ /ε , we can pro-
duce an approximate (r, c)-scaling B = Xe−C/ηY such that

‖B1− r‖1 +
∥∥∥BT 1− c

∥∥∥
1
≤ ε′

By Lemma 2, this scaling can be rounded in O (n2) time to produce 
a X̂ with〈
C, X̂

〉 ≤ min
X∈U(r,c)

〈C, X〉+2η logn+4ε′ ‖C‖∞ ≤ min
X∈U(r,c)

〈C, X〉+ε

Since

ν = max
i, j

1

e−Cij/η
≤ exp

(
4‖C‖∞ logn

ε

)
= n4‖C‖∞/ε

It follows that this procedure takes

O

(
n2 + T

(
n,

8‖C‖∞
ε

,n4‖C‖∞/ε

))
total time. �
Corollary 2. Suppose there exists an oracle O which computes an 
ε′-approximate solution to the matrix scaling problem in parallel in 
O  

(
Tw

(
n,1/ε′, ν, ξ

))
total work and ̃O

(
Td

(
n,1/ε′, ν, ξ

))
depth. Then, 

there is an algorithm which computes an ε-approximate solution to the 
optimal transport problem (1) in

O

(
n2 + Tw

(
n,

16‖C‖∞
ε

,n8‖C‖∞/ε,
4‖C‖∞ n

ε

))
work and

Õ

(
Td

(
n,

16‖C‖∞
ε

,n8‖C‖∞/ε,
4‖C‖∞ n

ε

))
depth.

Given this reduction between matrix scaling and optimal 
transport, it remains for us to provide concrete bounds for 
T

(
n,1/ε′, ν, ξ

)
in order to show our desired run-time. To this 

end, consider the following guarantee given by a currently best 
algorithm for the matrix scaling problem2

Theorem 4 (See Theorem 9 in [14]). Suppose that there exists a point 
z∗ε = (x∗

ε, y∗
ε) for which ψA,r,c(x∗

ε, y∗
ε) −ψ∗ ≤ ε2/(3n) and 

∥∥z∗ε∥∥∞ ≤ B, 
where ψ∗ = minx,y∈Rn ψA,r,c(x, y). Then, there exists a Newton-type 
algorithm which, with high probability, computes an ̂x, ̂y such that

‖MA (̂x, ŷ)1− r‖22 +
∥∥∥MA (̂x, ŷ)T 1− c

∥∥∥2

2
≤ ε

in Õ
(
n2B log2 (sA)

)
time– where sA is the sum of the entries in A.

2 It should be remarked that similar results to [14] were obtained independently 
by [4]. We focus on the guarantee stated in [14] since it is more amenable for our 
use.
5

The following parallel complexity for the Newton-type algo-
rithm of Theorem 4 is nearly trivial, but not explicitly stated in 
[14]. Hence, we provide a proof for completeness.

Theorem 5. Suppose that there exists a point z∗ε = (x∗
ε, y∗

ε) for which 
ψA,r,c(x∗

ε, y∗
ε) − ψ∗ ≤ ε2/(3n) and 

∥∥z∗ε∥∥∞ ≤ B, where ψ∗ =
minx,y∈Rn ψA,r,c(x, y). Then, there exists a Newton-type algorithm 
which, with high probability, computes an ̂x, ̂y such that

‖MA (̂x, ŷ)1− r‖22 +
∥∥∥MA (̂x, ŷ)T 1− c

∥∥∥2

2
≤ ε

in Õ
(
n2B log2 (sA)

)
total work and Õ

(
B log2 (sA)

)
depth.

Proof. From the proof of Theorem 3.4 in [14], observe that the 
Newton-type algorithm of Theorem 4 performs Õ

(
B log2 (sA)

)
se-

quential (box-constrained) Newton steps on the function

f (x, y) = ψA,r,c(x, y)+ ε2

36n2eB

⎛⎝∑
i∈[n]

(
exi + e−xi + eyi + e−yi

)⎞⎠
Hence, it suffices to show that each Newton iteration can be im-
plemented in Õ

(
n2

)
total work and Õ (1) depth.

From the proof of Theorem 5.11 in [14], each Newton-step 
consists of constructing a vertex sparsifier chain 

(
M(1), . . . , M(d);

F1, . . . , Fd−1
)
(see Definition 5.9 in [28]) for the Hessian ∇2 f (x(k),

y(k)) at the current Newton iterate x(k), y(k) and then apply-
ing the procedure OptimizeChain (see Figure 5.2 in [14]) to (
M(1), . . . , M(d); F1, . . . , Fd−1

)
and the gradient ∇ f (x(k), y(k)). Triv-

ially, the Hessian and gradient of f can be computed in O (n2)
work and Õ (1) depth. Further, by Theorem 5.10 in [28], we 
know that a vertex sparsifier chain 

(
M(1), . . . ,M(d); F1, . . . , Fd−1

)
of length d = O (logn) and total sparsity O (n) can be constructed 
for the Hessian in O (n2) work and Õ (1) depth. Thus, it need only 
be shown that OptimizeChain can be implemented in Õ (n2) total 
work and Õ (1) depth.

The procedure OptimizeChain applies the subroutines Approx-

Mapping (see Figure 5.1 in [14]) and FastSolve (see Lemma 5.3 in 
[14]) to the members 

(
M(t), Ft

)
of the vertex sparsifier chain. The 

approximate voltage extension subroutine ApproxMapping com-
putes O  (log (1/ε)) matrix-vector multiplications using M(t) and 
disjoint sub-matrices of ∇2 f (x(k), y(k)) induced by the vertices Ft . 
Hence, ApproxMapping can be applied to all of the O (logn) mem-
bers of the vertex sparsifier in Õ (n2) total work and Õ (1) depth.

Further, for each M(t) , FastSolve performs O (1) iterations of 
projected gradient descent on a quadratic function in M(t); where 
the projection is onto an 	∞ ball. Since the gradient of any 
quadratic in M(t) can be calculated in time equal to the sparsity of 
M(t) and projection onto an 	∞ ball can be implemented simply 
by truncating coordinates, it follows that FastSolve can be applied 
to all the members of 

(
M(1), . . . ,M(d); F1, . . . , Fd−1

)
in O (n) total 

work and Õ (1) depth. Thus, OptimizeChain can be implemented 
in Õ (n2) total work and Õ (1) depth. �

One would like to immediately apply Theorems 4 and 5 to give 
the oracles for Theorem 3 and Corollary 2. Unfortunately, there is 
a mismatch between the l1 guarantee required by Definition 2 and 
the l2 guarantee in Theorem 4 for which we need the following 
lemma.

Lemma 4. Suppose that there exists a point z∗ε = (x∗
ε , y∗

ε) for which 
ψA,r,c(x∗

ε, y∗
ε) − ψ∗ ≤ ε4/ 

(
3n3

)
and 

∥∥z∗ε∥∥∞ ≤ B, where ψ∗ =
minx,y∈Rn ψA,r,c(x, y). Then, there exists a Newton-type algorithm 
which computes an ̂x, ̂y such that
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‖MA (̂x, ŷ)1− r‖1 +
∥∥∥MA (̂x, ŷ)T 1− c

∥∥∥
1
≤ ε

in time/total work Õ
(
n2B log2 (sA)

)
and with Õ

(
B log2 (sA)

)
depth.

Proof. Let δ = ε2/(2n) be the error tolerance used in Theorem 4
and Theorem 5. Then, by Cauchy-Schwartz and the inequality (a +
b)2 ≤ 2(a2 + b2) we have(∥∥BC/η(̂x, ŷ)1− r

∥∥
1 +

∥∥∥BC/η(̂x, ŷ)T 1− c
∥∥∥
1

)2

≤ n
(∥∥BC/η(̂x, ŷ)1− r

∥∥
2 +

∥∥∥BC/η(̂x, ŷ)T 1− c
∥∥∥
2

)2

≤ ε2

Hence, for such a δ, the algorithms of Theorems 4 and 5 have the 
same sequential and parallel complexities, respectively, and pro-
duce a x̂, ŷ satisfying∥∥BC/η(̂x, ŷ)1− r

∥∥
1 +

∥∥∥BC/η(̂x, ŷ)T 1− c
∥∥∥
1
≤ ε �

The final step before combining Theorem 3, Corollary 2, and 
Lemma 4 is to bound the constant B in Lemma 4 in terms of ν =
maxi, j 1/Aij and ξ = maxi 1/ min(ri, ci).

Lemma 5. Suppose that A and r, c are strictly positive in (7) and sat-
isfy the hypotheses of Definition 2, then there exists an optimal solution 
z∗ = (x∗, y∗) such that ‖z∗‖∞ ≤ 2 log (nνξ) where ν, ξ are as defined 
in Theorem 3.

Proof. From [29] and the fact that A and r, c are strictly positive, 
there exists an optimal solution z∗ = (x∗, y∗). It is easy to see that 
for any α ∈ R, (x∗ + α1, y∗ − α1) is also optimal. Hence, without 
loss of generality, we can assume that z∗ is an optimal solution 
such that mini∈[n] {x∗

i } = 0.
Let m be such that x∗

m = 0. For such a z∗ , notice that first-order 
optimality conditions imply that

emaxi{y∗
i }

ν
≤ exm

∑
i∈[n]

eyi Am,i = rm ≤ 1 and

rm = exm
∑
i∈[n]

eyi Am,i ≤ nemaxi{y∗
i }

where we have used that fact that Ai, j , ri ≤ 1 for all i, j. This gives 
that maxi{y∗

i } ≤ log (ν) and − maxi{y∗
i } ≤ log (nξ). Additionally, for 

k = argmaxi{x∗
i } and t = argmini{y∗

i } we have

exk+maxi{y∗
i }

ν
≤ exk

∑
i∈[n]

eyi Ak,i = rk ≤ 1 and

ct = eyt
∑
i∈[n]

exi Ai,t ≤ neyt+xk

This yields maxi{x∗
i } ≤ log(nνξ) and − mini{y∗

i } ≤ 2 log (nνξ). 
Putting all these bounds together, it follows that 

∥∥z∗∥∥∞ ≤
2 log(nνξ). �

Using Lemma 5, we can now prove our final result.

Theorem 6. Consider an instance of the optimal transport problem (1). 
There exists an algorithm which computes an ε-approximate solution 
with high probability in time

Õ

(
n2 ‖C‖∞

)

ε

6

and in parallel with ̃O
(
n2 ‖C‖∞ /ε

)
total work and ̃O (‖C‖∞ /ε) depth.

Proof. Consider the Newton-type algorithm of Lemma 4. By 
Lemma 5, when A, r, c are strictly positive and satisfy the hypothe-
ses of the matrix scaling problem, it follows that B = O (log(nνξ))

and sA = O (n2)– where ν and ξ are as defined in Theorem 3. 
Hence, in this case, the algorithm runs in

Õ
(
n2 log (nνξ)

)
time/total work and Õ (log (nνξ)) depth

This gives an oracle satisfying the requirements of Theorem 3 and 
Corollary 2 where, respectively,

Õ

(
T

(
n,

1

ε
,ν, ξ

))
= Õ

(
Tw

(
n,

1

ε
,ν, ξ

))
= Õ

(
n2 log (nνξ)

)
and

Õ

(
Td

(
n,

1

ε
,ν, ξ

))
= Õ (log (nνξ))

Plugging in for ν and ξ , it follows that

Õ

(
T

(
n,

16‖C‖∞
ε

,n8‖C‖∞/ε,
4‖C‖∞ n

ε

))
= Õ

(
n2 ‖C‖∞

ε

)
and

Õ

(
Td

(
n,

16‖C‖∞
ε

,n8‖C‖∞/ε,
4‖C‖∞ n

ε

))
= Õ

(‖C‖∞
ε

)
giving the result. �
6. Reduction for bipartite matching

In this section, we show that further improvements to the 
Õ (n2 ‖C‖∞ /ε) complexity achieved in previous sections must de-
pend on breakthroughs for a long-standing open problem in al-
gorithmic graph theory. Specifically, we show that any additional 
improvement in the complexity of solving (1) yields a o(n2.5) al-
gorithm for maximum cardinality bipartite matching. Currently, the 
only known algorithms that achieve such a complexity are based 
on sophisticated techniques, e.g. fast matrix multiplication [21]or 
dynamic graph data structures [38,13].

Note that the identification of this relationship between opti-
mal transport and maximum cardinality bipartite matching does 
not imply that further complexity improvements for optimal trans-
port are impossible. Indeed, [38] have shown that a complex, 
breakthrough application of interior point methods and dynamic 
graph algorithms to solve maximum cardinality bipartite match-
ing in nearly-linear time can also yield a Õ (n2) time algorithm 
for optimal transport. Rather, this section highlights that addi-
tional improvements to our results must be significantly more 
sophisticated– appeals to standard, iterative/black-box algorithms 
([20,5,17,1,7,35,22,6,25,34]) are unlikely to offer additional im-
provements to our results without further assumptions.

In order to prove this reduction, consider an instance of the 
maximum cardinality bipartite matching problem where we have 
an undirected, bipartite graph G = (V , E) such that V is the union 
of disjoint sets of vertices L and R (each of size n) and all edges go 
exclusively between L and R , i.e. E ⊆ L × R . Our goal is to compute 
a matching, F ⊆ E with

degF (i)
def= |{ j ∈ V | {i, j} ∈ F }| ≤ 1, ∀i ∈ V

which maximizes |F |. Consider the following lemma
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Lemma 6. Given an oracle for computing an ε-approximate solution to 
the optimal transportation problem (1) (under the assumption ‖C‖∞ =
O (1)) in time T (n, ε), one can compute a maximum cardinality match-
ing F in time O (T (n, ε) + n3ε).

Proof. We reduce an instance of the bipartite matching problem to 
optimal transport as follows. Without loss of generality, let L = [n]
and R = [n] and let r = c = 1

n1. Furthermore, define a cost matrix 
C ∈ Rn×n with Cij = 0 if {i, j} ∈ E and Cij = 1 otherwise.

Now, suppose we solve the optimal transport problem corre-
sponding to these inputs to ε-accuracy. Define O P TT to be the 
optimal value of this transportation problem and let O P TM to 
be the optimal value of the maximum cardinality matching in 
our graph. Clearly, we have computed an X with X1 = XT 1 = 1

n1
and such that 〈C, X〉 ≤ O P TT + ε . Furthermore, notice that by 
taking the maximum matching in our graph adding an arbitrary 
matching between it’s unmatched vertices, we can create a perfect 
matching Y ∈ [0, 1]n×n such that 1

n Y is feasible for our optimal 
transportation problem and we have 〈C, Y 〉 = 1 − O P TM/n. Hence 
ε-optimality of X implies that

〈C, X〉 ≤ 1+ ε − O P TM

n

Hence, as Z = nX is a fractional perfect matching in our graph, 
this result immediately implies that our oracle for solving optimal 
transport gives us a fractional perfect matching Z where 〈C, Z〉 ≤
(1 + ε)n − O P TM . By removing all flow in Z along edges (i, j)
where Cij = 1 (i.e. edges which are non-existent in our original 
graph) and then rounding the corresponding fractional matching 
to an actual matching [23] (which can be done in nearly-linear 
time) we obtain an actual matching Ẑ such that〈
C, Ẑ

〉
≤ (1+ ε)n − O P TM

Hence, Ẑ is a matching which has at least O P TM −nε edges. Thus, 
by running augmenting paths [18] on Ẑ in O (n3ε) time (since G
is dense) we can find the remaining nε edges in the maximum 
matching. This yields an algorithm with complexity

O
(
T (n, ε) + n3ε

)
for finding a maximum matching in a dense graph. �

Using Lemma 6, we see that, if T (n, ε) = Õ (n2/ε), picking 
ε = 1/

√
n gives a Õ

(
n2.5

)
algorithm for matching. For any smaller 

T (n, ε) (more than log factors of course) an appropriate choice of 
ε would give a o(n2.5) algorithm for maximum cardinality bipartite 
matching.

7. Conclusions and additional subsequent work

In this work, we have demonstrated how to obtain nearly-linear 
run times for the optimal transportation problem (2) which im-
prove upon the best, previously-known complexities for this prob-
lem. Further, we have provided the first parallel method for this 
problem with Õ (‖C‖∞ /ε)-depth and nearly linear work- the pri-
mary achievement of the alternate approach provided in Section 5. 
Broadly, these improvements provide utility by linking optimal 
transport with algorithmic advances in theoretical computer sci-
ence. Further, our reduction from maximum cardinality bipartite 
matching shows why, without further assumptions, runtime im-
provements to our results must be coupled with breakthroughs on 
a long-standing problem in computer science.
7

Since the initial release of this work, additional, follow-up work 
by several of the authors of this paper [22] has replicated the run-
times of this paper (both sequential and parallel). The results of 
[22] are obtained using an different set of improvements for solv-
ing bilinear, minimax optimization problems and apply techniques 
that are notably different from those in this paper. Ultimately, [22]
provides a first-order, iterative scheme with the same complexity 
requirements as this work.

Additionally, [38] has obtained an improvement to the com-
plexity requirements of this work and [22] for solving the opti-
mal transport problem– achieving an Õ (n2) complexity. This im-
provement is achieved through a sophisticated use interior point 
methods and dynamic graph algorithms that is tailored for solving 
maximum cardinality bipartite matching. Such a result is consis-
tent with the finding of Section 6– that more sophisticated tech-
niques arising from algorithmic graph theory are likely necessary 
for further improvements to this work. Further, in recent work, 
[13] provides an additional use of interior point methods and dy-
namic graph algorithms to solve minimum-cost flow problems that 
obtain an O (n2+o(1)) algorithm for the optimal transport problem– 
via a similar reduction to the matrix balancing problem presented 
in Section 5. We note, however that the Õ (‖C‖∞ /ε)-depth, nearly-
linear work algorithm of Section 5 remains the state-of-the-art 
depth for nearly linear work algorithms– [38] has at least O (

√
n)

depth via lower-bounds on self-concordance [31].
Further, a number of papers have considered obtaining better 

computational performance for more structured problem instances 
and in high-accuracy regimes. For example, [6,34] have demon-
strated that, when the cost function is approximable via kernel de-
compositions, run times that are sublinear in input size, o(n2), are 
achievable for optimal transport– even using standard Sinkhorn-
based approaches. These results have been complemented by ef-
forts such as [25,16] which have shown that, when high accuracy 
solutions to (2) are desired (ε � 1), classical, combinatorial tech-
niques from network problems can provide methods which, prac-
tically, are highly computationally efficient.

Finally, we conclude with some notes on practical considera-
tions in implementing the methods Section 4 and Section 5. While 
implementing the algorithms for solving packing LPs (the compu-
tational task used in Section 4) seems straightforward there is no 
readily-available, numerical implementation for the algorithm of 
Section 5. One obstacle in obtaining an efficient implementation 
of this algorithm is that the Newton-step for the box-constrained 
Newton algorithm of Section 5, requires the construction of a spec-
tral sparsifier (see Theorem 5.7 of [14]). Therefore, future efforts 
to perform a numerical study of the method in Section 5 would 
involve developing a practically efficient method for constructing 
such spectral sparsifiers compatible with the Newton-step. Recent 
work [19] has made progress on this for the, arguably, simpler 
problem of Laplacian system solving; building upon this work for 
the implementing the method in Section 5 is outside the scope of 
the paper but an interesting direction for future work.
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