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Abstract
Ultrasound elasticity images which provide quantitative vi-

sualization of tissue stiffness are reconstructed based on solving

an inverse problem. Classical model-based methods are usually

formulated in terms of constrained optimization problems com-

posed of a data-fidelity term and a regularization term. The

data-fidelity term incorporates the physical forward model which

arises from the governing equilibrium equation discretized by fi-

nite element methods (FEMs). In elastography, the physical for-

ward model is directly governed by the measured displacement

image which leads to an inaccurate forward model in the pres-

ence of an intermediate level of noise. To tackle this issue, in

the first step, we utilize a statistical representation of the physi-

cal forward model which incorporates the noise statistics with a

signal-dependent correlated noise model. Next, for compensat-

ing the inaccurate forward operator error, we introduce an ex-

plicit data-driven approach for correcting the data-fidelity gradi-

ent, which can be integrated with any regularization term. The

constrained optimization problem is solved using the fixed-point

gradient descent where the analytical gradient of the data-fidelity

term is corrected using the nonlinear mapping of a deep neural

network (DNN). Finally, the proposed approach is integrated with

a data-driven regularizer based on REgularization by Denoising

(RED) for incorporating the prior information about the under-

lying elasticity patterns. Our simulation and experimental results

demonstrate the improved performance of the proposed approach

in various scenarios.

1. Introduction
Ultrasound elasticity imaging has achieved popularity by

generating quantitative images of tissue stiffness as the most

prominent indicator for characterizing bio-mechanical tissue

properties [1]. In quasi-static ultrasound elastography (USE)

problems [2], the general principle is, first, perturbing the tissue;

second, measuring the internal tissue displacement; and finally,

inferring the tissue bio-mechanical properties based on measured

mechanical responses. In more detail, quasi-static loading (about

1-2% of the quasi-static axial dimension) is applied on the exte-

rior surface of the medium resulting in some small deformation

fields inside the tissue. The second step in quasi-static USE re-

quires estimating the axial component of the internal tissue de-

formation by speckle tracking method which computes the cor-
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relation of B-mode ultrasound images, captured before and after

applying quasi-static force loading on the surface. Moreover, for

improving the accuracy of the deformation image, accumulated,

averaged, or compounded multiple small deformation fields can

be used.

FEMs are typically used for discretizing the medium and describ-

ing the equilibrium equations as the spatial distribution of the

underlying physical law [4]. In USE, the physical model repre-

sents the relationship between the spatial elasticity distribution,

the displacement spatial distribution, and applied force. The un-

derlying equilibrium equations for linear elastic tissues can be

reduced to a global stiffness equation as the governing forward

model; therefore, the elasticity image can be reconstructed by

solving the inverse problem of the linear global stiffness equa-

tion. Many classical model-based methods for elasticity recon-

struction rely on Gaussian-Newton approaches with unstable and

inaccurate performance in presence of noisy displacement mea-

surements. Moreover, the forward operator is directly governed

by the noisy displacement measurement resulting in an inaccu-

rate forward operator which has to be taken into account to pre-

vent degradation in the reconstruction quality when solving the

ill-posed inverse problem.

In this regard, for obtaining a more accurate elasticity image, it

is essential to compensate for the error due to noisy measurement

and the resulting imperfect forward operator. In the first step for

improving the performance of the existing model-based methods

for ultrasound elastography using noisy measurements, we intro-

duce a statistical representation of the forward problem by com-

bining the elasticity forward model and displacement realization

model, which leads to a signal-dependent colored noise model [5].

To address the inaccurate forward operator problem, some au-

thors [6] use an application-specific model-based method based

on explicitly correcting the gradient, while [7] suggests using the

data-driven approaches to correct the approximate operator us-

ing a neural network. The major drawback of such data-driven

techniques when solving an inverse problem is that correcting the

forward operator using a parameterized model in the measure-

ment manifold is not sufficient for generating gradients close to

the gradients that would be produced by the exact forward op-

erator [8]. With a different perspective, [9] suggests correcting

the gradient implicitly in terms of a learning-based unfolding ap-

proach. Further, [8] performs correcting the forward and adjoint

operators using two explicit networks. In this work, we aim to

perform explicit correction of the data-fidelity gradient in the im-

age domain using a neural network that can be integrated with



data-driven regularizers such as RED. In this case, if the gradient

correction network trains sufficiently, convergence to the neigh-

borhood of the true solution can be guaranteed during solving the

inverse problem.

The rest of this paper is organized as follows. We overview the

classical approaches for solving the inverse problem for elasticity

reconstruction in Section 2. The statistical approach for improv-

ing the elasticity reconstruction is presented in Section 3. The

learning-based method for correcting the data-fidelity gradient is

elaborated in Section 4. The simulation and experimental results

for evaluating the elasticity reconstruction performance are pre-

sented in Section 5, and finally, concluding remarks are outlined

in Section 6.

2. Classical approaches for elasticity recon-
struction

As depicted in Fig. 1, elasticity distribution of the tissue

cross-section, discretized over the nodes of a mesh, is known

for the forward elasticity problem. Using the known force as

boundary conditions (BCs) and applying this information to the

global stiffness equilibrium equation as the governing physical

model, the lateral and axial displacement image can be obtained.

This equation is a linear function of u and non-linear function of

E. For the inverse problem, the noisy version of the displacement

Figure 1. Elasticity image reconstruction using a classical iterative ap-

proach.

image um is available and the main goal is to estimate the

elasticity modulus distribution E. Such existing methods are

based on iterative reconstruction of the modulus, which try to

estimate the clean displacement u as well as the latent elasticity

image E by minimizing an objective function consisting of the

displacement data-fidelity term and a total variation (TV) or ℓ2

norm regularizer, subject to the constraint that these estimations

satisfy the equilibrium equation [10]. The solution to this

optimization problem [11] is obtained with an iterative scheme

that requires the Jacobian computation of the global stiffness as a

function of unknown elasticity parameters leading to significant

computation time for a large number of nodes. Moreover, for

updating the elasticity modulus, the Jacobian matrix is multiplied

with the noisy displacement measurements; this causes instability

and inaccuracy for elasticity reconstruction even in the presence

of a small level of noise as illustrated in Fig. 1 in comparison

with the ground-truth elasticity modulus image.

3. Statistical Formulation for Elasticity Re-
construction

In the first step for addressing some of the weaknesses of

classical methods for elasticity imaging, we use a new statistical

framework to reconstruct the elasticity modulus by solving a reg-

ularized optimization problem. In this approach, a joint objective

function is utilized by integrating the equilibrium equation as the

forward model and the displacement observation model into the

data-fidelity term. In practice, the equilibrium equation of elastic-

ity imaging presented in Fig. 1 would be contaminated by some

noise in the applied force which results in the following statistical

representation of the forward model:

f = D(u)E+w w ∼ N (0, Σw) (1)

where f represents the applied force BCs and w ∈ R2N×1 (N

is the number of nodes) denotes the axial and lateral Gaussian

noise which implies an imperfection in the force measurements.

Furthermore, we utilize the displacement realization model as

um = u+ n where n ∼ N (0, Σn), u is the clean displacement

measurement and um is the corrupted displacement measurement

with noise n ∈ R2N×1 with covariance Σn. Combining the statisti-

cal forward model in (1) with the displacement realization model

yields to:

f = K(E)u+w = K(E)(um −n)+w

= K(E)um −K(E)n+w (2)

Defining w̃ =−K(E)n+w and utilizing D(um)E = K(E)um and

employing these in (1) leads to the following unified statistical

forward model:

f = D(um)E+ w̃ w̃ ∼ N (0, Γ) (3)

where Γ is defined as:

Γ = Σw +K(E)ΣnK(E)T (4)

This joint forward model introduced in (3) describes the under-

lying noise with a signal-dependent colored noise model. For

reconstructing the elasticity image E, it is required to solve the

inverse problem using f and um measurements. To this end, we

use the following regularized objective function to estimate of the

elasticity image:

Ê = argminE
1
2 ∥f−D(um)E∥2

Γ−1 + N
2 log |Γ|+λR(E)

s.t. E > 0
(5)

where ∥A∥2
B := (AT BA) and λ is the regularization parameter.

The first term in (5) (g(E) = 1
2 ∥f−D(um)E∥) denotes the data-

fidelity term, R(E) describes the regularization term, and E > 0 is

the positivity constraint. For solving (5), we utilize the fixed-point

gradient descent method [12] by fixing Γ while estimating E, and

plugging the estimated E into (4) to update Γ. For estimating E in

each iterate of the fixed-point method, we use the gradient descent

update rule as follows:

En+1 = [En − γ(∇g(En)+∇R(En))]+ (6)

where []+ indicates the positivity constraint on the estimated elas-

ticity modulus and γ is the step size. It is worth mentioning that,

the physical forward operator D(um) for elasticity imaging prob-

lem is directly governed by the measured displacement images. In
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Figure 4. Denoiser training procedure.

prior information about the underlying elasticity structure of the

tissue. In the RED approach, this data-driven prior information

is learned using a DNN denoiser Cw and the residual of such de-

noiser is plugged into the optimization task as the gradient of the

regularizer. The denoiser training procedure is depicted in Fig. 4.

We utilize residual learning for capturing more details and high-

frequency prior information about the underlying elasticity pat-

tern. The network is trained using clean and poor unregularized

elasticity images with a pixel-wise loss function.

In Fig. 5, the overall reconstruction pipeline is depicted based

on the gradient descent scheme which requires the data-fidelity

gradient denoted as ∇g and regularizer gradient as ∇R. In each

iteration, the data-fidelity gradient is adjusted using Gθ and the

regularizer gradient is replaced by the residual of learned denoiser

Cw.

Gθ

Cw

E0

∇R

∇E f − D(un)E
Γ−1

∇g

E = [E − γ∇e]+

∇e
Update Γ

En

−λ

λ

Figure 5. Elasticity image reconstruction pipeline using learned gradient

correction method and RED regularizer.

5. Simulations and experimental results
To validate the performance of the proposed approach, we at-

tempt to reconstruct the latent elasticity image E, using low SNR

measured displacement un and applied force f as Neumann BCs.

The gradient correction network Gθ needs to be trained using two

different acquisitions of the displacement for each phantom. To

this end, we generate a dataset of 653 simulated phantoms where

for each phantom, the ground truth elasticity image E and two

acquisitions of the displacement images are produced. For gener-

ating the dataset of simulated phantoms, some mask B-mode im-

ages [14] are used as the phantom cross-section images. In partic-

ular, each mask B-mode image contains a lesion with an irregular

shape embedded in the background tissue and random scalar val-

ues are assigned to the lesion and background elasticity modulus

resulting in a synthetic map of the ground truth elasticity image.

Moreover, the displacement images of each phantom are acquired

by solving the forward problem K(E)u− f = 0 and adding Gaus-

sian noise with SNR = 26dB for un and SNR = 35dB for um.

We train the gradient correction network Gθ with the DnCNN ar-

chitecture with 10 layers by feeding un images as the inputs and

um images as the target images using the aforementioned gradient

consistency loss function. Then, we solve the unregularized opti-

mization problem for the low SNR displacement image un utiliz-

ing the trained Gθ for adjusting the gradients and reconstructing

the elasticity images. Although the elasticity reconstruction per-

formance is improved compared to not employing the gradient

correction approach, we aim to reduce the remaining artifacts by

training a denoiser for learning the underlying prior elasticity pat-

terns. In this regard, we train the denoiser network Cw with 10

layers of DnCNN by feeding the reconstructed elasticity images

from the previous step as the input and the ground truth elastic-

ity images as the target images. Finally, we solve the optimization

problem for the test images where the data-fidelity gradient is cor-

rected by the learned gradient correction network Gθ and the reg-

ularizer gradient is replaced by the learned denoiser Cw residual.

Figs. 6-8 demonstrate the reconstruction performances for two

simulated test phantoms and one experimental phantom based on

real measurements. In the first and second rows of Figs. 6-8, we

use high SNR displacement image um, where the results of the

conventional method and our RED-based approach are illustrated

without the need for operator correction. In the third row of these

Figs., we use the low-SNR displacement image un where meth-

ods without gradient correction are not able to generate acceptable

results while our proposed approach involving RED and operator

correction indicates significant reconstruction improvement.

6. Conclusion
In this article, we proposed an explicit data-driven method

for correcting the gradient when solving the inverse problem for

ultrasound elastography. In this application, the forward operator

is directly governed by the noisy measured displacement image

which leads to an imperfect forward operator in scenarios with

low SNR. The introduced statistical method is able to compen-

sate for the error where a small amount of noise is present in

the displacement image. To improve the potential of this method

for compensating the error in low SNR scenarios with the con-

sequent inaccurate forward operator, we used a data-driven net-

work for adjusting the data-fidelity gradient. Moreover, this ap-

proach is able to be integrated with any regularization term where

we used the RED paradigm for replacing the regularizer gradi-

ent with the learned denoiser residual. The simulation and ex-

perimental results verify the effectiveness and robustness of the

proposed method.
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