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ABSTRACT

Rate-induced tipping occurs when a ramp parameter changes rapidly enough to cause the system to tip between co-existing, attracting states.
We show that the addition of noise to the system can cause it to tip well below the critical rate at which rate-induced tipping would occur.
Moreover, it does so with significantly increased probability over the noise acting alone. We achieve this by finding a global minimizer in a
canonical problem of the Freidlin–Wentzell action functional of large deviation theory that represents the most probable path for tipping.
This is realized as a heteroclinic connection for the Euler–Lagrange system associated with the Freidlin–Wentzell action and we find it exists
for all rates less than or equal to the critical rate. Its role as the most probable path is corroborated by direct Monte Carlo simulations.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0129341

The Intergovernmental Panel on Climate Change (IPCC)1 defines
a tipping point as “a level of change in system properties beyond
which a system reorganizes, often in a nonlinear manner, and
does not return to the initial state even if the drivers of the change
are abated.” For climate systems, tipping points refer to critical
thresholds when global or regional climates switch stable states.1

Climate change is a rate-induced tipping problem. It is also a
noisy system. These two components are true for many relevant
climate subsystems. Since conceptual models of these climate sys-
tems contain multiple mechanisms that can induce tipping, there
is a clear need for mathematical approaches, which synthesize
techniques from these areas of research. To begin this analysis,
we look at this question in its most simple form: in the context
of a canonical problem. We study a system with a ramp param-
eter and impose additive noise on the dynamics to study to what
extent the ramp parameter and noise interact to facilitate tipping.
We approach the problem using a dynamical systems framework
and prove the existence of a heteroclinic orbit between a stable
base state and threshold boundary. We find that this hetero-
clinic orbit corresponds to the most probable path between these
points. For rate values less than some critical rate, a ramp param-
eter alone does not allow tipping. The addition of noise to the
system causes tipping well below the critical rate needed for rate-
induced tipping to occur. However, the noise alone acting on the
system induces tipping but only after a significantly longer time.

Therefore, a ramp parameter and noise conspire to cause tipping
with increased probability over either acting alone.

I. INTRODUCTION

There are three main mechanisms for tipping in dynamical sys-
tems: bifurcation-induced, rate-induced, and noise-induced.2 This
work focuses on when there is a parameter shift (R-tipping) and
the addition of random fluctuations (N-tipping), the schematics of
which are shown in Fig. 1. The aim is to assess the extent rate and
noise-induced tipping work together to facilitate tipping in cases
where neither readily tip on their own.

We consider a canonical one-dimensional system with a ramp
parameter and impose additive noise on its dynamics. We find that
the addition of noise to the system causes the system to tip for all
r values less than the critical rate needed for rate-induced tipping
and does so with significantly increased probability over the noise
or ramp acting alone. The most probable path to tip for all r values
corresponds to the global minimizer of the Freidlin–Wentzell rate
functional, which itself is a heteroclinic orbit. While we show these
results in the context of a canonical problem, the phenomenon we
find is suggestive of tipping between stable base states and threshold
boundaries.
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FIG. 1. Schematics for noise and rate-induced tipping in terms of a potential func-
tion and initializing with a particle at a minimum. N-tipping occurs when a noisy
fluctuation is strong enough to push the particle out of the minimum and to some
local maximum, where it can then fall to another minimum. R-tipping occurs when
an external input varies too fast compared to the response rate of the system,
resulting in a shift of the landscape and the deviation of a particle from its initial-
ized stable state and the start of tracking a different stable state. This figure is
inspired and recreated from van der Bolt and van Nes.4

Our methods are as follows. We compactify the system and
derive the Euler–Lagrange equations associated with the Frei-
dlin–Wentzell action functional.3 Using a dynamical systems frame-
work, including tracking invariant manifolds, using the Wazewski
principle, and applying shooting methods, we prove that there is
always an intersection of the unstable manifold of the base state
and stable manifold of the threshold state. Through numerical sim-
ulations, we find that this intersection is unique. The action values
indicate that the heteroclinic connection through this intersection
point is the global minimizer of the Freidlin–Wentzell functional.
The fact that it does correspond to the most probable path at the
appropriate noise levels is shown from Monte Carlo simulations.

As we consider nonzero rates within the ramp parameter, the
ramp is a nontrivial component of the system. Consequently, this
means that the additive noise should be of small levels, as oth-
erwise, the noise effects would come after the ramp finishes, and
we focus on the interplay of these phenomena. A drawback of the
Freidlin–Wentzell theory is that it necessitates vanishingly small
noise.3 In focusing on a small but not vanishingly small noise regime,
the transient behavior of the underlying deterministic system will
play an important role. We find that the Freidlin–Wentzell the-
ory still holds in regard to the dynamical structure for small noise
strengths, namely, the heteroclinic connection is the most probable
path, but more discussion is needed when considering the expected
time to tip. The extension from vanishingly small to small noise

levels is relevant for several applications of interest, especially in
environmental, social, or biological contexts.

The addition of noise, regardless of size, will always result in
the tipping of the system in infinite time. However, if we consider a
finite time horizon, the addition of noise will cause the system to tip
with a certain probability. The probability of tipping is dependent
on both the noise strength and the speed of the ramp parameter, r,
where the time horizon is chosen long enough to ensure the ramp
function completes its transition. The size of small noise will change
depending on the value of r being considered. Noise strengths are
chosen so that the probability of tipping is less than 21%.

Our analysis builds off the work of Ashwin et al.5 and Ritchie
and Sieber.6 Ashwin et al.5 introduced and studied the prototype
model for rate-induced tipping

ẋ = (x + λ)2 − 1, (1)

with a monotonically increasing time-dependent parameter,

λ(t) = λmax

2

(

1 + tanh

(

λmaxrt

2

))

, r > 0. (2)

Using a compactification,7 they augment the system to an
autonomous two-dimensional system containing equilibria and
compact invariant sets, and in turn, the rate-induced tipping prob-
lem turns into a heteroclinic connection problem between two
saddle equilibria. Perryman8 finds the critical rate needed for tipping
within the system is rc = 4/3. Ritchie and Sieber6 then considered
this canonical problem with additive noise and found that an inter-
play between the noise and ramp parameter results in the tipping of
the system before the critical rate, rc, is reached. However, they only
consider r values close to the critical rate. Ritchie and Sieber6 find
solutions of the variational problem of determining the most likely
tipping path using numerical continuation techniques. The majority
of their work focuses on the most likely tipping time in the plane of
two parameters: distance from tipping threshold and noise intensity.

The motivation of this work relates to climate subsystems. The
Earth’s climate is changing due to steadily warming temperatures
caused by rising levels of greenhouse gases.9 Moreover, there are
parts of the Earth system that have the potential for large, abrupt,
and irreversible transitions in response to this warming and could
lead to cascading effects.1 These changes can be characterized as tip-
ping points.1 As presented in Lenton10 and Lenton et al.,11 there are
many such examples: Greenland ice sheet loss, break-off of Antarc-
tic ice-sheets, boreal forest dieback, and permafrost loss, to name
a few. Given the magnitude of the impacts of these phenomena,
a comprehensive understanding of tipping phenomena is needed
to predict and prevent these irreparable changes. Many conceptual
models of climate systems contain multiple mechanisms that can
induce tipping and there is a clear need for mathematical approaches
that combine techniques from both rate-induced and noise-induced
tipping.

The paper is structured as follows. Section II begins with the
deterministic dynamics of the canonical problem. In Sec. III, we
build the stochastic framework by introducing additive noise to the
system. In Sec. IV, we derive and study the most probable path
equations. These equations lead to a theorem about the existence
of a heteroclinic orbit. Last, in Sec. V, we perform a numerical
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investigation of this problem that includes finding the heteroclinic
connections, path actions, and probability of tipping for different
values of the rate and noise strength. We finish with a discussion
and concluding remarks.

II. THE DETERMINISTIC DYNAMICS AND

RATE-INDUCED TIPPING

Rate-induced tipping is where a sufficiently quick change to a
parameter of a system may cause the system to move away from one
attractor to another.2 We consider

ẋ = (x + y)2 − 1, (3)

where · = d
dt

, and a monotonically increasing time-dependent
parameter, as proposed by Ashwin et al.,5

y(t) = 3

2

(

1 + tanh

(

3rt

2

))

, r > 0. (4)

Reformulating the nonautonomous system in (3) into the compact-
ified system using the ramp function, (4), itself as the coordinate
transformation, maps the real line onto the finite y-interval (0, 3).
The y-interval is closed by including y = 0, 3, which come from the
limits of (4) at ±infinity. This leads to the autonomous compactified
two-dimensional system

ẋ = (x + y)2 − 1,

ẏ = ry(3 − y).
(5)

The system given in (5) has four fixed points. We focus on the sad-
dle equilibria (−1, 0) and (−2, 3). At a critical r, which we denote
rc, there is a heteroclinic connection between the two saddle points.
Perryman8 found that rc = 4/3 and the connecting orbit is the line
given by x = − y

3
− 1. However, for 0 < r < rc, the system end-

point tracks the saddle equilibrium initialized at (−1, 0) to (−4, 3)
and when r > rc, the system tips to infinity. In Fig. 2, we show
trajectories for different values of r for the system given in (5),
demonstrating solution behaviors when initializing at the saddle
(−1, 0).

III. BUILDING THE STOCHASTIC FRAMEWORK

For the remainder of this work, we want to consider the effects
of additive noise on the dynamics of x in (5). However, for the
Freidlin–Wentzell theory, we have to consider noise on both the
dynamics of x and y and take the limit as noise goes to zero in the y
component. The stochastic version of the canonical problem is of
the form

dx = f(x, y)dt + σ1dW1 = ((x + y)2 − 1)dt + σ1dW1,

dy = g(x, y)dt + σ2dW1 = (ry(3 − y))dt + σ2dW2.
(6)

Speaking generally of this form, x, y are stochastic processes param-
eterized by time, f, g are the deterministic pieces of the system often
referred to as the drift, W1, W2 are standard Wiener processes, and
σ1, σ2 denote the noise strength and often referred to as the diffusion
coefficient.

With the addition of noise to the system, we will have, with
probability equal to one, tipping in the system between the two

FIG. 2. Solutions of the compactified system given by (5). The black dashed
curves track the fixed points x = 1 − y and x = −1 − y in the frozen sys-
tem over time. The colored trajectories are solution curves initialized at x = −1,
y = 2.807 29 × 10−13 for different values of r . Solution curves with 0 < r < 4/3
do not tip, whereas the solution curves with r ≥ 4/3 tip. There is a heteroclinic
connection between the two saddle equilibria at r = 4/3.

saddle equilibria. We want to find the most probable path to tip
between these two points. The tool we use to study these transitions
is the Freidlin–Wentzell theory of large deviations. This framework
is fully presented in Freidlin and Wentzel’s monograph,3 Forgoston
and Moore’s review article12 and for gradient systems in Berglund’s
review article.13

As presented in Freidlin and Wentzell,3 the most probable
path between two points (x0, y0) and (xf, yf) is a curve of the form
(c1(t), c2(t)) that minimizes the Freidlin–Wentzell functional, which
is given by

I[c1, c2] =
∫ tf

t0

(

(ċ1 − f)2

σ 2
1

+ (ċ2 − g)2

σ 2
2

)

dt, (7)

where (c1(t0), c2(t0)) = (x0, y0) and (c1(tf), c2(tf)) = (xf, yf). I[c1, c2]
is non-negative and vanishes if and only if both ċ1 = f and ċ2 = g
are solutions to the associated deterministic system. This functional
represents the cost of straying from the deterministic dynamics.
Minimizing this functional leads to the Euler–Lagrange equations,
given by

c̈1 = fyċ2 + ffx + σ 2
1

σ 2
2

(ggx − ċ2gx),

c̈2 = gxċ1 + ggy + σ 2
2

σ 2
1

(ffy − ċ1fy),

(8)

which are a condition that critical points, consequently minimizers,
of the Freidlin–Wentzell functional must satisfy. These conditions
are necessary but not sufficient for minimizers.3 We will use these
conditions to derive the most probable path equations in Sec. IV.
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IV. A DYNAMICAL SYSTEMS PERSPECTIVE ON THE

CANONICAL PROBLEM

Using the Euler–Lagrange equations given by (8), we use a Leg-
endre transform14 to create a degree four Hamiltonian system of the
form

ẋ = f + σ 2
1 p,

ṗ = −fxp,

ẏ = g + σ 2
2 q,

q̇ = −gyq.

(9)

The Hamiltonian function itself is

H(x, p, y, q) = fp + gq + σ 2
1

2
p2 + σ 2

2

2
q2. (10)

As mentioned earlier, we want to only consider noise on the dynam-
ics of x, as y is a time parameterization, and, thus, we send σ2 to
zero. It follows that ẋ, ṗ, ẏ are all independent of q and we are able
to project onto our equations into x, p, y space. Using this indepen-
dence of q and substituting f and g as they are defined in (6) results
in (9) becoming

ẋ = (x + y)2 − 1 + σ 2
1 p,

ṗ = −2(x + y)p,

ẏ = ry(3 − y).

(11)

In addition, notice that p = 0 is invariant and carries the deter-
ministic flow given by (5). These equations in (11) are the most
probable path equations. Throughout this work, x is the original
state variable, y is a time reparameterization, and p is the extra vari-
able representing the work a trajectory has to do against the vector
field.

We note that alternatively we could have used the Frei-
dlin–Wentzell functional on the nonautonomous system (3) to
derive the Euler–Lagrange equations, use a Legendre transform
to create a degree two Hamiltonian system, and finish by com-
pactifying the system. The compactification process and the
Euler–Lagrange and Legendre transform procedures commute, and
we would have the same resulting equations as shown in (11). This
alternative method is useful when we perform numerical experi-
ments in Sec. V B.

Performing a phase portrait analysis on (11), we have six equi-
libria: three on y = 0 and three on y = 3. We are interested in the
heteroclinic connection between the saddle points (−1, 0, 0) and
(−2, 0, 3), as these correspond to the saddles (−1, 0) and (−2, 3) in
our two-dimensional phase space. For notation purposes, we refer
to (−1, 0, 0) as s1 and (−2, 0, 3) as s2. A quick check of the eigenval-
ues of (11) linearized at s1 show s1 has a 1D stable manifold and a
2D unstable manifold. Similar methods show s2 has a 1D unstable
manifold and a 2D stable manifold. We denote unstable and sta-
ble manifolds of a point p by Wu(p) and Ws(p) respectively. Using
this notation, the desired heteroclinic will lie on Wu(s1) and also on
Ws(s2). See Fig. 3 for what the phase space looks like on y = 0. We
note that asymptotically the phase space dynamics are identical on
y = 3.

Using the Hamiltonian structure in the invariant planes y = 0
and y = 3 creates two possible tipping paths between the two saddles

FIG. 3. The phase space for (11) on the plane y = 0. We have two saddles
(black circles) and one center (black square). The black dashed lines represent
where H = 0. The blue arrows show the direction of the vector field. The phase
space is asymptotically identical on the plane y = 3.

of interest. The first possible path is to tip from s1 to (1, 0, 0) in y = 0
and then end-point track from (1, 0, 0) to s2 in p = 0. The second
possible path is to end-point track in p = 0 from s1 to (−4, 0, 3) and
then tip to s2 in y = 3. However, as we will see in Secs. V C and V D,
these paths have essentially an infinite time until tipping occurs and
have a high action value.

We claim that there is always a third heteroclinic connection
that is the most probable path and is the path of least action. We first
show the existence of a heteroclinic orbit between the two saddles s1

and s2 for all 0 < r ≤ rc by showing Wu(s1) is continuous on the
plane y = −x for y ≤ 3

2
for 0 < r ≤ rc, and that Wu(s1) and Ws(s2)

are symmetric.
Proposition 1: The primary intersection of Wu(s1) with the

plane y = −x is continuous on the plane y = −x for y < 3
2

and r > 0.
Proof. The Wazewski principle15 states the following: Let W−

be the immediate exit set of W and let W0 be the eventual exit set of
W. If W− is closed relative to W0, then W is a Wazewski set and the
map K : W0 → W−, which takes each point to the first where it exits
W is continuous.

We define the primary intersection of Wu(s1) with the plane
y = −x to be the first crossing of this plane from trajectories initial-
ized in the unstable subspace of s1 coming from −∞. For the system
given in (11), we say the Wazewski set, W, is the space bounded
by the following planes: y = −1 − x, y = −x, y = 0, y = 3/2, and
p = 0, and extends infinitely in the positive p direction. Based on
flow of the vector field, the following are true about the boundaries
of W: y = −1 − x is an entrance set, y = 0 and p = 0 are neither
entrance nor exit sets, as they are invariant planes, and y = 3/2 is
an exit set. On y = −x, below the curve p = 1

σ 2
1
(1 − ry(3 − y)) is an

entrance set and above it, an exit set. Refer to Fig. 4 for a visual of W.
We have to determine what happens on the curve p = 1

σ 2
1

(1 − ry(3 − y)) itself, which is the boundary between an entrance
set and an immediate exit set. Consider x and p as functions of y.
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FIG. 4. The boundary of the Wazewski set is in blue and extends infinitely in the positive p direction. It is the space bounded by y = −1 − x, y = 0, y = −x, y = 3
2
, and

p = 0. Taking a quarter circle of radius ε about s1 intersected with the piece ofW
u(s1) lying inW , and applying map K, results in the dotted red curve.

Looking at the first and second derivatives at the point z =
(

−y, 1

σ 2
1

(1 − ry(3 − y)), y
)

, representing any point on this curve, we have

dx

dy

∣

∣

∣

∣

z

= −1,

d2x

dy2

∣

∣

∣

∣

z

= 3 − 2y

y(3 − y)
> 0 for y < 3/2,

dp

dy

∣

∣

∣

∣

z

= 0,

d2p

dy2

∣

∣

∣

∣

z

= 0.

(12)

We see in (12) that dx
dy

= −1 and d2x
dy2 > 0. By the second derivative

test, we know a trajectory would be concave up at this point, forc-
ing any points to leave and consequently, not enter W. Therefore,
we have shown that the boundary of the immediate exit set is con-
tained in the immediate exit set. We conclude the following about
the immediate exit set and eventual exit set of W:

W− =
{

(x, p, y) | y = 3/2, y = −x for p ≥ 1

σ 2
1

(1 − ry(3 − y))

}

,

W0 = {(x, p, y) | W \ {y = 0, y = −1 − x, p = 0, (−1, 0, 0),

(0, 1, 0)}}.
The boundary of the immediate exit set is in the immediate exit set,
and it easily follows that W− is closed relative to W0. Therefore, W
is a Wazewski set and the map K : W0 → W−, is continuous for
y < 3

2
. This implies that Wu(s1) intersected with the plane y = −x

is continuous for y < 3
2

and r > 0. �

Proposition 2: Wu(s1) intersected with W− crosses the plane
y = 3

2
for 0 < r ≤ rc.

Proof. Notice y = 3
2

separates W− into two pieces. Take the
quarter circle of radius ε around the fixed point s1 intersected with
Wu(s1) that lies in W, and call this curve CW. Applying the map K to
CW results in a curve in R

3, specifically a curve lying in W− by the
definition of Wazewski map K.

Since CW is a closed curve, we track where the two end points of
CW map to under K. The first end point of CW has y = 0, p 6= 0 and

second end point of CW has p = 0, y 6= 0. Take the end point of CW

that lies in y = 0. Since the y = 0 plane is invariant, when we apply
K, the trajectory must stay in this plane and eventually exit through
y = −x and above p = 1

σ 2
1
(1 − ry(3 − y)). Take the end point of CW

that lies in p = 0. Since the p = 0 plane is invariant, when we apply
K, the trajectory must stay in this plane. Since ẏ > 0, this trajectory
will eventually exit through y = 3

2
, when 0 < r ≤ rc.

Wu(s1) intersected with W− actually intersects y = 3
2

by the
intermediate value theorem, as K is a continuous map, and one end
point of CW maps to the plane y = −x in y = 0 while the other end
point of CW maps to the plane y = 3/2 in p = 0. See Fig. 4 for an
illustration of this shooting argument.

Therefore, the intersection of Wu(s1) and the plane y = −x is
continuous for y ≤ 3

2
for 0 < r ≤ rc. �

Proposition 3: Wu(s1) and Ws(s2) are symmetric.
Proof. Recall our system given in (11). Making the change of

variables τ = −t, we get the time reversed system given by

x′ = −(x + y)2 + 1 − σ 2
1 p,

p′ = 2(x + y)p,

y′ = ry(y − 3).

(13)

We transform the variables x, p, y by

x̂ = −x − 3, p̂ = p, ŷ = 3 − y

and substitute them into the time reversed system we found in (13).
The equations simplify to

x̂′ = (x̂ + ŷ)
2 − 1 + σ 2

1 p̂,

p̂′ = −2(x̂ + ŷ)p̂,

ŷ′ = rŷ(3 − ŷ).

(14)

We see that (14) is in the original form, as given in (11), and it
follows that Wu(s1) and Ws(s2) are symmetric. �

Theorem 1: There exists a heteroclinic connection between the
saddle points s1 and s2 that goes through the plane y = −x at y = 3

2

for 0 < r ≤ rc.
Proof. We found that the intersection of Wu(s1) and the plane

y = −x was continuous for y ≤ 3
2

for 0 < r ≤ rc using Propositions
1 and 2. The symmetry of Wu(s1) and Ws(s2), proven in Proposi-
tion 3, implies the intersection of Ws(s2) intersected with the plane
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y = −x is continuous for y ≥ 3
2

for 0 < r ≤ rc. Therefore, Wu(s1)

and Ws(s2) will always intersect once in the plane y = −x at y = 3
2
,

implying a heteroclinic connection between s1 and s2 for 0 < r ≤ rc,
and concluding our proof of Theorem 1. �

We have, thus, proven the existence of a heteroclinic connec-
tion between s1 and s2 for all 0 < r ≤ rc and demonstrated how to
find this heteroclinic using the intersection of the invariant mani-
folds. In the deterministic system, for 0 < r < rc, we would not have
tipping or a heteroclinic connection between the saddles. The pres-
ence of noise, regardless of the size, allows direct tipping between
these saddles within the system.

V. COMPUTATIONAL METHODS AND NUMERICAL

RESULTS

A. Visualization of invariant manifolds and the

heteroclinic connection

We proved in Sec. IV the existence of the intersection of
Wu(s1) and Ws(s2) at y = 3/2, giving rise to a heteroclinic connec-
tion between the two saddle points through that specific point. We
numerically compute these manifolds, plot them in y = −x, and
observe their intersection at y = 3/2. This enables us to visualize
their intersection as well as compute the trajectory through the inter-
section point. The trajectory is then projected into the xy plane to
find the heteroclinic connection in the two-dimensional extended
phase space.

The local unstable subspace of s1 is spanned by the two vectors

(

σ 2
1

4
, 1, 0

)T

and

( −2

3r + 2
, 0, 1

)T

, (15)

which span the plane

4(x + 1) − (σ 2
1 + 4)p − 12r

3r + 2
y = 0. (16)

Intersecting this plane with the sphere

(x + 1)2 + p2 + y2 = (0.001)2 (17)

and taking points such that y, p > 0 result in a curve of points that
lie in the unstable subspace, as seen in Fig. 5. We discretize this curve
and use the tuples as a set of initial conditions. We numerically run
system (11) forward in time, for each initial condition, until the tra-
jectory first hits the plane y = −x. Similarly, you can perform this

FIG. 5. Parameters are set at r = 1 and σ1 = 0.15. The red curve is the
intersection of the sphere (17) and the plane (16) spanned by (15).

FIG. 6. W u(s1) (red) and W s(s2) (cyan) in the plane y = −x (purple) for
y ∈ (0, 3). The trajectory through their intersection point is the heteroclinic orbit
connecting s1 and s2 (yellow). (a) Parameters are set at r = 1 and σ1 = 0.25.
(b) Parameters are set at r = 0.5 and σ1 = 0.25.

process when looking at the stable subspace of s2 and running sys-
tem (11) backward in time. We find the intersection of these two
curves in the plane y = −x. Through these simulations, we find the
intersection point of these two curves in y = −x is unique. Running
the system both forward and backward in time from the intersec-
tion point supplies the full heteroclinic trajectory. Refer to Fig. 6 to
see a visualization of Wu(s1) and Ws(s2) intersecting in the plane
y = −x as well as the trajectory through the intersection point for
two different parameter pairs of r and σ1, corresponding to the het-
eroclinic orbit between s1 and s2. Projecting this heteroclinic orbit
into xy space is the connecting orbit between (−1, 0) and (−2, 3),
and we show in Sec. V B that this orbit is, in fact, the most probable
path between these points.

In the compactified system, the heteroclinic connections do not
look identical when varying r. However, for fixed r and varying σ1,
the heteroclinic connections will look identical when projected into
the xy plane as this variation of σ1 only scales the p variable. We
note that in Fig. 8(b) while the heteroclinic orbit connecting the
two saddle equilibria looks linear, we have verified that it is not a
line. As r approaches the critical rate of the deterministic system, the
heteroclinic orbit becomes deceptively linear.

In addition to the existence of the heteroclinic connection
between s1 and s2 proven in Sec. IV, this first set of numerical
simulations now verifies the uniqueness of the heteroclinic connec-
tion between s1 and s2. However, we still need to determine if this
heteroclinic connection is the most probable path between these two
points, implying that we need to show that it is the global mini-
mizer of the Freidlin–Wentzell action functional. We perform these
calculations in Sec. V B.

B. Monte Carlo simulations and the most probable

path

We corroborate that the heteroclinic connection constructed in
Sec. IV is in fact the most probable path using Monte Carlo sim-
ulations. Recall that our original problem was a one-dimensional
differential equation. Consider its stochastic version, given by
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FIG. 7. W u(−1, 0) (red) and W s(−2, 3) (blue) for r = 0.5 and r = 1. Tipping
occurs when a realization of (19) crossesW s(−2, 3) and limt→∞ 6= −4.

dx =
(

(x + y)2 − 1
)

dt + σ1dW,

y(t) = 3

2

(

1 + tanh

(

3rt

2

))

, r > 0.
(18)

As we said in Sec. IV, the order of the compactification process and
the Euler–Lagrange and Legendre procedures commute, and, there-
fore, we use (18) for running simulations as it is computationally less
expensive.

We numerically approximate the solutions of (18) by using the
Euler–Maruyama method to create a discretized Markov process16

over a time interval of length 30. To apply the Euler–Maruyama
method, we partition the time interval into sub-intervals of width
1t = 0.001 and initialize the solution at x = −1 and y = 2.807 29
× 10−13. This y initial condition is used to find the corresponding t0

by solving the rescaled time rt = −10. This explains why the exact
time intervals of length 30 vary for each case. We note that changing
the initial y value, corresponding to changing the starting time, only
shortens or extends the time for a realization to tip.6 To create the
discretized Markov process, recursively define x as

xn+1 = xn + ((xn + y(tn))
2 − 1)1t + σ11Wn. (19)

A standard Weiner process, W, satisfies the property that Brown-
ian increments are independent and normally distributed with mean
zero and variance 1t. Therefore, it follows that 1W = Wn − Wn−1

can be numerically simulated using
√

1t · N(0, 1). This can be
shown by manipulating the probability density function of N(0, 1t).

We simulate M realizations of (18) using the Euler–Maruyama
method given in (19). We map these realizations to two-dimensional
phase space by plotting (y(t), x). We define tipping to be when a
realization of (18) crosses Ws(−2, 3), and limt→∞ 6= −4. Ws((−2, 3)
can be seen in Fig. 7.

Of the M realizations, we define Mtip to be the number of real-
izations that tip on the finite time interval of our choosing. Thus,
M − Mtip does not tip, an example of which is shown in Fig. 8(a) for
r = 1, σ1 = 0.15. There are Mtip points within the Mtip realizations
that tipped for every discretized time. We use Python to get the ker-
nel smoothing density estimation of the Mtip points at each time.
This finds the “most probable point” at every time step, which is
determined by the peak of the kernel density estimation (KDE). This
peak corresponds to the mode of the Mtip points at that time. Plotting
the mode at each time step, we have an approximation for the most
probable path. Overlaying the numerically simulated most proba-
ble path, with what we found using the projection of the trajectory
through the intersection of Wu(s1) and Ws(s2) in y = −x in Sec. V A,
we see that the approximation matches the actual path extremely
well, an example of which is shown in Fig. 8(b) for r = 1, σ1 = 0.15.
Therefore, we can say the trajectories that tipped followed the het-
eroclinic connection and that the heteroclinic connection between
the two saddles is the most probable path.

As mentioned above, we see via the Monte Carlo simulations
that trajectories either tip to infinity or end-point track the stable
path to (−4, 3) on the given finite time horizon. The trajectories
that end-point track the stable path follow the pullback attractor5

of (−1, 0). Performing another kernel smoothing density estimation
on the realizations that did not tip, we see these trajectories actually
peak along this pullback attractor, an example of which is shown in
Fig. 8(c) for r = 1 and σ1 = 0.15.

The heteroclinic orbit and the pullback attractor are objects
that can be used to separate trajectories of the system. These com-
putations show that the addition of noise allows the system to tip
when its deterministic equivalent would not tip, as the trajectory
would be the pullback attractor. For the specific parameter regime

FIG. 8. (a) 3000 Monte Carlo simulations of (18) with r = 1 and σ1 = 0.15 on the interval [0, 30] with dt = 0.001. 2807 realizations do not tip (blue) and 193 tip (red).
(b) The realizations that tipped overlaid with the heteroclinic orbit found (solid black) and a kernel density estimate of the realizations that tipped (dashed black). (c) The
realizations that did not tip, overlaid with the pullback attractor of (−1, 0) (solid black) and the kernel density estimate (dashed black).
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r = 1, σ1 = 0.15 as depicted above, even with r being 3/4 of the
critical rate, we are able to get tipping within the system.

C. Time to tip

There is concern that the influence of noise on (3) is the sole
reason the system exhibits tipping. However, we verify in this section
that the tipping occurs due to the interplay of both the ramp parame-
ter and noise. Additionally, the frequency of tipping largely increases
with this addition of small noise strengths interacting with the ramp
parameter.

Recall that the original goal is to tip from (−1, 0) to (−2, 3),
which corresponds to s1 and s2 in the three-dimensional system in
(11). Using (11), based on the stable and unstable directions of these
saddles, and the direction of the vector field, we initially had two
possible ways to tip due to the Hamiltonian structure in the invari-
ant planes y = 0 and y = 3. We proved in Sec. IV that we had a
third way of tipping via a heteroclinic orbit between the two sad-
dles, which we now know is the most probable path from the Monte
Carlo simulations. Refer to Fig. 9 for a visual of these possible tipping
paths.

Notice that if tipping occurs in either y = 0 or y = 3, there is
no interplay with the ramp parameter, as it would be before or after
the ramping occurs. In planes y = 0, 3, we have a one-dimensional
stochastic differential equation. We can find the approximate the
expected time to tip as we have asymptotic formulas for gradient
systems,13 given by

E[τ ] ≈ e
21V

σ2
1 , (20)

where V is the associated potential function and 1V gives the height
of the potential barrier. We calculate the expected time to tip for
each tipping path. In our numerical analysis, 0.08 ≤ σ1 ≤ 0.3 for all
experiments, as we consider a small noise regime.

Case 1. Assume we tip from s1 to (1, 0, 0) in y = 0 and end-
point track from (1, 0, 0) to s2 along Ws(−2, 3). We can find the
expected time to tip between the fixed points in y = 0 as the sys-
tem is a gradient system in this plane. The associated form of the
gradient system and potential function, V, is

dx = (x2 − 1)dt + σ1dW

= −∇Vdt + σ1dW

= −∇(x − 1

3
x3)dt + σ1dW. (21)

The extrema of V correspond to the fixed points of the problem
when y = 0 : x = −1, 1. Solving for the expected time to tip, we find
that without the ramp parameter,

E[τ ] ≈ e
8

3σ2
1 > 1012. (22)

Therefore, the time to tip from s1 to s2 along this path will be some
time greater than 1012. See a depiction of Case 1 in Fig. 9(a).

Case 2. Similarly, assume we end-point track the path from s1

to (−4, 0, 3) along Wu(−1, 0) and then tip from (−4, 0, 3) to s2 in
y = 3. We first find the expected time to tip in y = 3. Again, we
have a gradient system and can rewrite the system in terms of the

FIG. 9. Schematic diagrams for the three possible ways to tip from (−1, 0) to
(−2, 3). (a) Case 1. (b) Case 2. (c) Case 3. In Cases 1 and 2, the end-point
tracking curves (dashed red) will be dependent on W u(−1, 0) and W s(−2, 3).
Here, they are sketched for r = 0.5. Additionally, in Cases 1 and 2, the solid red
curves are to represent tipping via the heteroclinic orbit in y = 0 and y = 3. These
are for presentation purposes as one would only see vertical lines instead of these
parabolic curves if projected into the xy plane.
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potential function V, written as

dx = ((x + 3)2 − 1)dt + σ1dW

= −∇
(

−8x − 3x2 − 1

3
x3

)

dt + σ1dW. (23)

Solving for the expected time to tip, we find that without the ramp
parameter,

E[τ ] ≈ e
8

3σ2
1 > 1012. (24)

The time to tip from s1 to s2 along this path will also be some time
greater than 1012. See a depiction of Case 2 in Fig. 9(b).

Case 3. To determine the expected time to tip of the most
probable path found in Sec. IV, we run a sufficient number of
Monte Carlo simulations so that the expected time to tip distribu-
tion converges. We use the Euler–Maruyama method to simulate
M realizations of (18) on a time interval of length 30, initialized at
x = −1, y = 2.807 29 × 10−13, with a step size of dt = 0.001. Recall
we use this initial condition for y to find the corresponding t0 for
each value of r. We want to find the realizations that have tipped
to infinity and capture when the mapped versions, (y(t), x), have
crossed Ws(−2, 3).

Let τi denote the first time a path, Xi of the form (y(t), x),
crosses Ws(−2, 3). We define escape events to be the paths Xi that
have τi ≤ 30 and component x → ∞. Assume for M realizations
there are K escape events. We construct the distribution for the K
crossing times of Ws(−2, 3). To verify we have a converged result
for the distribution of the time of escape events, we use the following
process.

1. Bin the crossing times of the K escape events by the Freedman
Diaconis17 rule. This separates the K escape events into B bins of
equal length.

2. Run another M realizations of (18) on the same time interval
and with the same step size. Assume there are J escape events.
We bin the J escape events by the same number of bins B found
in Step 1.

3. There are two vectors D1, D2 of the same length, where each
component of the vector represents the amount of paths that
tipped in that time interval. Calculate Err = ||D1−D2||2

||D1||2
, which is

the relative error between the two data sets.
4. If Err < 0.1, we say we have found the converged distribution.

However, if Err ≥ 0.1, we iterate this process with larger N until
the relative error of D1 and D2 is small enough. In addition,
we use the Kolmogorov–Smirnov two sample test18 as a final
verification that we have a converged distribution.

We conduct this experiment for different values of r, σ1 pairs.
In Table I, we see ranges of some of the expected times to tip. Notice
that unlike Cases 1 and 2, the expected time to tip is now finite. The
different times to tip between s1 and s2, depending on which path
taken, demonstrates that tipping without the ramp is extremely rare
to the point of almost never tipping. In addition, if we just had a
ramp parameter and no stochastic component, there is no tipping
for when 0 < r < 4/3. Thus, there is an interplay of additive noise
and a ramp parameter, and together they facilitate tipping on a finite
timescale.

TABLE I. Monte Carlo simulation results for the expected time to tip, τ , for r = 0.75,

0.85, 1, 1.1 for different values of σ 1. These times come from converged results of

the Monte Carlo simulations using the method described above.

r σ 1 range t0 τ range

0.75 0.15–0.30 −13.33 ∈(0.07, 0.67)
0.85 0.10–0.30 −11.76 ∈(0.04, 0.74)
1 0.08–0.25 −10.00 ∈(−0.20, 0.48)
1.1 0.08–0.25 −9.09 ∈(−0.29, 0.41)

Notice in Table I that the expected time to tip for the majority
r, σ1 pairs considered correspond approximately to t = 0, imply-
ing y ≈ 3/2. This might be seen as a validation that the symmetric
extremal calculated in Sec. IV is indeed close to where the first
passages are taking place.

D. Path actions

In addition to using Monte Carlo simulations to see how real-
izations behave and to calculate the expected time to tip, we can
compute the action along the different path options. The most prob-
able path should be the path of the least action. Due to the choice for
the p variable in the Legendre transform, for a fixed r, the variation
of σ1 results in a scaling in p. Scaling by some constant does not
change the actual minimizer of the functional given by (7). There-
fore, we want to consider the normalized action when calculating
the path actions to make the action more numerically tractable. The
normalized action is given by

IN[x] =
∫ tf

t0

(ẋ − f)2dt =
∫ tf

t0

σ 4
1 p2dt. (25)

Using (25), we find that the heteroclinic constructed in Sec. IV,
Case 3, has the least action compared to the other two paths of tip-
ping, Cases 1 and 2. We see that if we tip before the ramp starts or
after the ramp finishes, the action value is 5.333. However, tipping
along the most probable path gives the least action value, by multi-
ple orders of magnitude. Refer to Table II for the comparison of the
action size for each of Cases 1–3 for different r values.

In regard to the action values for Cases 1 and 2 being the
same, we first want to stress that both of these paths for tipping are
extremely unlikely on reasonable timescales. Practically speaking,
the action values are the same when looking along the heteroclinic

TABLE II. Action values for Cases 1–3. Cases 1 and 2 do not depend on r as they

tip either before or after the ramp. For Case 3, which is dependent on r, we see that

for different r values, the action is much less than the action of the other paths to tip.

Case No. r value Action

1 . . . 5.333
2 . . . 5.333
3 1.1 0.023
3 1 0.054
3 0.75 0.226
3 0.5 0.684
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orbits in the planes y = 0, 3 as the p values are exactly the same when
considering the curves where H = 0. The rest of each path lies in
p = 0 and so there is no other contribution to the action. While one
might expect that it would be easier to track a stable quasi-steady
state and then transition as opposed to transitioning and then track-
ing an unstable quasi-steady state, we believe it has to do with the
compactification, as this brought ±∞ to the finite world.

VI. DISCUSSION AND CONCLUSIONS

A. The heteroclinic orbit as the most probable path

A key observation is the proximity of the heteroclinic orbit to
the Monte Carlo KDE most probable path. The KDE most proba-
ble path estimate tracks the heteroclinic connection quite closely far
beyond the first half of the ramping phase. A consequence of this
fact is that we can conclude that the heteroclinic connection does
carry the realizations that tip through the ramping phase. The het-
eroclinic connection provides a surprising amount of guidance on
how the trajectories that tip do so, especially as we are dealing with
not vanishingly small noise; a regime we were forced into because
otherwise there would be no interaction of the ramp parameter and
additive noise.

Another interpretation for how realizations are tipping
would involve considering trajectories following the correspond-
ing deterministic pullback attractor, and tipping would occur when
Wu(−1, 0) and Ws(−2, 3) were closest. However, running simula-
tions of the noisy system for different values of r and overlaying
the tipped realizations with Wu(−1, 0) and Ws(−2, 3), we see these
realizations do not track Wu(−1, 0) (when you consider where the
tipped realizations are most densely concentrated). As we decrease
r, we see the significance of the heteroclinic orbit more clearly
as the heteroclinic orbit becomes more distinguishable from the
pullback attractor. The realizations that tip closely follow the hete-
roclinic orbit from the start. However, as r increases, Wu(−1, 0) and
Ws(−2, 3) grow closer together, which is why it looks as the tipped
realizations track the pullback attractor for some time.

B. A scaling law for the expected time to tip

For vanishingly small noise, the Freidlin–Wentzell theory of
large deviations, which gives the probability of a specific trajec-
tory in a stochastic dynamical system, aids in finding the most
probable path between two points. This is obtained by minimiz-
ing the Freidlin–Wentzell action functional. Additionally, the Frei-
dlin–Wentzell theory gives the expected time to tip.3 We saw in
this work that the Freidlin–Wentzell theory holds in regard to
the dynamical structure of the most probable path for small noise
strengths. It is still an open question if the expected time to tip aligns
between the vanishingly small noise case and the small noise case.

We discovered a power scaling law for the expected time to tip
via Monte Carlo simulations, τ , and 1/σ 2

1 , for set r > 0 and vary-
ing values of σ1. The log–log plot of these coordinate pairs results
in a linear relationship, examples of which are shown in Fig. 10.
This linear relationship in the log–log space corresponds to a power

law of the form a
(

1

σ 2
1

)b

between 1/σ 2
1 and the expected time to tip.

While the scaling laws in Fig. 10 are for r = 1 and r = 0.75, the linear

FIG. 10. (a) Log–log plot of τ vs 1

σ 2
1

for r = 1, σ1 = 0.25, 0.2, 0.15, 0.1, 0.08.

The linear relationship in the log–log space corresponds to a power law

of the form 9.14

(

1

σ 2
1

)0.027

. (b) Log–log plot of τ vs 1

σ 2
1

for r = 0.75,

σ1 = 0.3, 0.25, 0.2, 0.15. The linear relationship in the log–log space corre-

sponds to a power law of the form 12.42

(

1

σ 2
1

)0.021

.

relationship in the log–log space held true for multiple r values we
studied. An interesting observation is the slope of the line in log–log
space for r = 1 in Fig. 10(a) is the same as 1

2
(action value r = 1), the

value of which can be seen in Table II.
This scaling law is different from the asymptotic formula given

by the Freidlin–Wentzell theory. However, there are various expla-
nations for this mismatch. The most likely is that we are considering
a small noise regime and not σ1 → 0, and so it is not necessarily
surprising the known scaling law does not hold. Alternatively, we
have yet to find the leading coefficient, c, which could be depen-
dent on r. We hypothesize that you can find the leading coefficient,
by finding more expected times to tip and switching perspectives to
that of inverse problems.

Chaos 33, 013119 (2023); doi: 10.1063/5.0129341 33, 013119-10

Published under an exclusive license by AIP Publishing

 30 D
ecem

ber 2023 18:30:58

https://aip.scitation.org/journal/cha


Chaos ARTICLE scitation.org/journal/cha

We believe that this task needs to implement importance
sampling19 to aid in speeding up the time required to gather the con-
verged data sets. Importance sampling is commonly used to speed
up Monte Carlo simulations of rare events by biasing realizations to
those rare events.12

We would like to point out that Ritchie and Sieber6 found that
for rate values between r = 1.05 and r = 1.25 that as the noise is
decreased, the time to tip increases slowly. They find a similar rela-
tionship for the delay in the rate-induced tipping as that of Bakhtin20

for rare escapes of an autonomous system.

C. Final conclusions

Using compactification7 with a coordinate transformation of
the ramp parameter (4) allows us to frame the canonical problem
as a two-dimensional autonomous system with fixed points and
invariant objects as well as study the heteroclinic connection. We
have shown that the addition of additive noise causes the system to
tip well below the critical rate needed for rate-induced tipping to
occur. The system will always have a heteroclinic connection directly
between the two saddle equilibria for all 0 < r ≤ rc. Moreover, the
heteroclinic orbit found using the intersection of invariant mani-
folds matches the kernel density estimate of the noisy realizations
found by Monte Carlo simulations, corroborating it as the most
probable path of tipping between these two points. Calculating the
action over all the possible paths between the two saddles, we find
that the heteroclinic connection we constructed has the least action
by multiple orders of magnitude, verifying we have truly found
the most probable path between these two points. Additionally, we
find that rate and noise-induced tipping conspire to facilitate tip-
ping with increased probability, when neither tip on their own when
considering a finite time horizon and 0 < r < rc.

We have pushed on the levels of noise to a size where the Frei-
dlin–Wentzell theory may no longer hold as the noise strength was
not vanishingly small. However, we find that the Freidlin–Wentzell
theory actually is still relevant in the extent of the most probable
path.

This paper has considered a one-dimensional canonical prob-
lem, but we believe this work can extend to understanding the
tipping between a base state and a threshold state of similar forms.
Our method made use of the symmetry within the system. If that
symmetry does not exist, other implementations of the Wazewski
principle will need to be used to prove that an intersection of the
invariant manifolds exists. Thus, an extension to this case is still
required.
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