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A B S T R A C T

A presumed impact of global climate change is the increase in frequency and intensity of tropical cyclones. Due
to the possible destruction that occurs when tropical cyclones make landfall, understanding their formation
should be of mass interest. In 2017, Kerry Emanuel modeled tropical cyclone formation by developing a
low-dimensional dynamical system which couples tangential wind speed of the eye-wall with the inner-core
moisture. For physically relevant parameters, this dynamical system always contains three fixed points: a stable
fixed point at the origin corresponding to a non-storm state, an additional asymptotically stable fixed point
corresponding to a stable storm state, and a saddle corresponding to an unstable storm state. The goal of
this work is to provide insight into the underlying mechanisms that govern the formation and suppression
of tropical cyclones through both analytical arguments and numerical experiments. We present a case study
of both rate and noise-induced tipping between the stable states, relating to the destabilization or formation
of a tropical cyclone. While the stochastic system exhibits transitions both to and from the non-storm state,
noise-induced tipping is more likely to form a storm, whereas rate-induced tipping is more likely to cause
the storm to destabilize. In fact, rate-induced tipping can never lead to the formation of a storm when acting
alone. When rate-induced tipping causes the storm to destabilize, a striking result is that both wind shear
and maximal potential velocity have to increase at a substantial rate in order to affect tipping away from
the active hurricane state. For storm formation through noise-induced tipping, we identify a specific direction
along which the non-storm state is most likely to get activated.
1. Introduction

Tipping is the rapid, and often irreversible, change in the state
of a system [1] and it is well understood that many elements of
the climate system are particularly susceptible to tipping in some
fashion [2,3]. There are other reasons to be concerned about tipping
regarding climate change: it has played a role in the collapse of human
societies, it exacerbates infectious disease spread and spillover risk, and
it affects the severity of extreme weather events [4]. While much of
the recent mathematical research on tipping has focused on climate
applications, see for instance [5–11], it also has broad applications in
ecology [12,13], ecosystems [14,15], epidemiology [16–19], and social
systems [20,21]. Due to the diversity of important applications and
he magnitude of the impacts of these phenomena, understanding the
athematics of tipping promises to have significant impact on many
xisting and recurring problems in our current society.
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We present a study of the determination and classification of tipping
events for a low-dimensional model of tropical cyclones. In this system,
tipping events can be loosely defined as occurring when a sudden or
small changes to a variable or parameter induces a large change to
the state of the system in a short amount of time, e.g. the formation
or destabilization of a storm. More precisely, in [22] it was proposed
that tipping events could be predominately classified and studied from
a mathematical perspective, according to whether they are induced
by a classical bifurcation (B-tipping), a rate dependent parameter (R-
tipping), or by noise (N-tipping); see Fig. 1 for a simplified schematic
of these three classifications. These tipping mechanisms do not always
act independently; a combination of different mechanisms can also
lead to tipping. We specifically explore how parameter shifts and noise
affect tipping within tropical cyclones. While in this work we provide
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Fig. 1. Schematic diagram for noise, rate, and bifurcation-induced tipping in gradient systems when initializing with a particle at a minimum of the potential. For noise-induced
ipping, the random fluctuations are needed for the system to overcome the energy barrier to move to another local minimum. In rate-induced tipping, the potential is moved
orizontally at a quick enough rate so that the particle enters the basin of attraction of another local minimum. In bifurcation-induced tipping, the changing parameter eliminates
he energy barrier allowing the particle to fall to the other local minimum. This figure is inspired and then recreated from [36].
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a brief overview for these tipping mechanisms, we point the reader
to [1,22–30] for a more thorough discussion.

Tropical cyclones, or hurricanes as they are referred to in the
orthern Atlantic and Eastern Pacific basins, are complex storms char-
cterized by their rapid rotation and heavy rains, and are some of
he most costly of natural disasters both in terms of property damages
nd in lives lost [31]. Hurricane Dorian, one of the strongest tropical
yclones to make landfall in recent years, hit the Bahamas as a cat-
gory 5 hurricane, sustaining winds over 185 miles per hour. It was
esponsible for an estimated $7 billion in damages, over 400 dead or
issing persons, and immeasurable losses to reef and mangroves, which
n turn impacted tourism, the fishing industry, and protection from
uture storms [32]. In 2005, Hurricane Katrina struck the gulf coast of
ouisiana and was one of the costliest storms on record, causing over
125 billion, and over 1800 lives lost despite only sustaining winds of
27 mph upon landfall [33]. Across the globe, tropical cyclones can
ause even more damage. It is estimated that the Philippines spend 5%
f its GDP per year on damages from typhoons (tropical cyclones of the
acific basin) [34]. A presumed impact of global climate change is the
ncrease in frequency and intensity of tropical cyclones, e.g., if waters
arm north of the equator, it could impact the frequency of tropical
yclone development and, in turn, locations of landfall. As an example,
onsider Hurricane Lorenzo of 2019 which made landfall in Ireland and
as the easternmost Category 5 hurricane on record having impacts
cross the Atlantic [35]. Because of the destruction that can occur when
tropical cyclones make landfall, understanding what mechanisms lead
to their formation should be of interest to governments, risk analysts,
and climate scientists.

1.1. Description of model

Tropical cyclones can be modeled as an axisymmetric vortex in
hydrostatic equilibrium with a rotational velocity resulting from con-
servation of angular momentum [37,38]. Specifically, tropical cyclones
form over warm water, generally between the Tropics of Capricorn and
Cancer, in which there is a temperature gradient between the warm
ocean and cooler lower atmosphere. Essentially, as warm water evapo-
rates, the resulting warm air mass rises and cools rapidly releasing heat
through condensation back into the atmosphere. As the warm air rises,
an area of low pressure forms and air begins to move from all directions
to fill this void. The air in this region swirls from the Coriolis effect and,
due to conservation of angular momentum, eventually forms a rotating
air mass around the area of low pressure, i.e., the eye of the storm.

Formulating a model capturing this effect, [39] derived an equation
for the tangential wind speed 𝑉 ≥ 0 resulting from the competition
2

t

between the dissipation of kinetic energy and the power generated by
the storm:
𝑑𝑉
𝑑𝑡

= 1
2
𝐶𝑑
ℎ

(

𝑉 2
𝑝0 − 𝑉

2
)

, (1)

where 𝐶𝑑∕ℎ > 0 has units of inverse length and couples the effect
of surface drag and ocean boundary layer depth, i.e. the top depth of
ocean that interacts with the bottom layer of the atmosphere [38]. The
maximum potential velocity of the hurricane, 𝑉𝑝0 > 0, is a parameter
that is calculated by modeling the storm as a Carnot engine and
equating the kinetic energy with the theoretical maximum power that
could be sustained by the storm [38].

The model presented in Eq. (1) is limited in its applicability, as it
does not account for environmental wind shear, dissipative heating, and
surface-saturation specific humidity. A more realistic model accounting
for these effects was developed in the work of Emanuel and Zhang [40],
and Emanuel [41], and is given by

𝑑𝑉
𝑑𝑡

= 1
2
𝐶𝑑
ℎ

[(1 − 𝛾)𝑉 2
𝑝 𝑚

3 − (1 − 𝛾𝑚3)𝑉 2],

𝑑𝑚
𝑑𝑡

= 1
2
𝐶𝑑
ℎ

[(1 − 𝑚)𝑉 − 2.2𝑆𝑚],
(2)

where 𝛾 ∈ [0, 1] is a dimensionless parameter accounting for dissipative
eating and pressure dependence of the surface saturation humidity,
2
𝑝 = (1 − 𝛾)−1𝑉 2

𝑝0, and 𝑆 is the wind shear measured in units of
velocity. More specifically, 𝛾 = (𝑇𝐴 − 𝑇0)∕𝑇0 + 𝜅, where 𝑇𝐴, 𝑇0 are the
temperatures of the lower atmosphere and upper ocean respectively, 𝜅
s a constant and thus 𝛾−1 is a proxy for the temperature of the ocean.
ere, the dependent variable 𝑚 can be thought of as relative humidity,

thus dimensionless, and satisfies 𝑚 ∈ [0, 1]. In this model, 𝑚 serves as
a ‘‘fuel’’ for the tropical storm, and indeed if 𝑚 = 1, i.e. the core is
fully saturated, we recover Eq. (1). The negative in front of the wind
shear term reflects the role wind shear plays in pulling moisture out
of the storm, leading to its possible dissipation. In this form of the
model, the particular factor of 2.2 in front of the shear term and the
cubic nonlinearities on moisture are empirical results from numerical
experimentation [40]. Note, in [40,41] this model is presented with
n ocean feedback term accounting for the fact that high velocity
torms begin to pull up ocean water which cools the hurricane. This
dditional term does not significantly impact the qualitative behavior of
his model, and thus to simplify the analysis we have chosen to neglect
t. Note, for physically relevant parameters and nonzero wind shear,
his dynamical system always contains a stable fixed point at the origin
𝑉 = 0, 𝑚 = 0) corresponding to a non-storm state. For sufficiently low
ind shear, it contains an additional asymptotically stable fixed point
orresponding to a stable storm state as well as a saddle corresponding
o an unstable storm state.
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1.2. Summary of key results and organization of paper

In Section 2, we examine the dimensionless version of Eq. (2), lay
ut the parameter regimes of interest, perform a standard bifurcation
nalysis, and study the qualitative behavior of the model.
In Section 3, we present the basic theoretical framework for rate-

nduced tipping, study the possibility of rate-induced transitions be-
ween the non-storm and stable storm states, and conclude this section
ith a numerical example that illustrates rate-induced tipping. Creating
storm by tipping from the non-storm state to the stable storm state is
ever possible through rate-induced tipping alone due to the fact the
on-storm state is stationary with respect to changes in parameters.
We prove that the deterministic system undergoes rate-induced

ipping away from the stable storm state to the non-storm state. This
ill occur when the max potential velocity and the dimensionless wind
hear both increase at a sufficiently high rate. A surprising and very
nteresting aspect of this result is that both maximal velocity and wind
hear need to increase to cause tipping. It is not surprising that wind
hear needs to increase as it is well-known that a lack of wind shear is
ecessary to support a hurricane. The maximum potential velocity of
he storm is a proxy for the energy available to the storm. It is counter-
ntuitive that it should have to increase to force a storm to end, rather
han the other way around. While this may reveal a hidden flaw in
uch a low-dimensional model, it may also be a genuine effect in that
ncreasing the maximum potential velocity implicitly requires the storm
o be stronger to survive. If this requirement sets in too quickly then
he storm may be unable to adjust. Therefore, in this model at least, a
urricane can destabilize due to rapidly changing parameters but can
ever form.
In Section 4, we consider the addition of noise to the system and in-

estigate transitions between the non-storm and stable storm states. We
how the stochastic system exhibits tipping to and from the non-storm
tate, implying a hurricane can form or destabilize with the addition of
andom fluctuations acting on the system. The primary mathematical
ool we use is the Freidlin–Wentzell theory of large deviations to
etermine the most probable transition path between states. In this
ramework, the most probable transition path can be computed as the
inimum of an action functional which satisfies a Hamiltonian system
f differential equations. By exploiting the Hamiltonian structure of
hese equations we are able to compute an asymptotic formula for
he most probable transition path from the non-storm state to the
table storm state which further allowed us to estimate the expected
ipping time from the non-storm state. To validate this approximation
e compared our approximation with a direct gradient flow of the
ction functional. Monte Carlo simulations reveal the accuracy of the
ost probable path and also demonstrate the system’s susceptibility to
ipping.
However, while it is truly a rare event for noise to tip the system

rom the stable storm state to the non-storm state, we show that the
tochastic system is highly susceptible to tip from the non-storm state
o the stable storm state. Both analytical arguments and numerical
xperiments show that noise-induced tipping is needed (and likely) to
orm a storm whereas rate-induced tipping is a favored mechanism for
estabilizing a storm.
Lastly, in Section 5, we discuss the implications and key signif-

cance of this work and discuss the interplay between the rate and
oise-induced tipping mechanisms via numerical simulations. When
onsidering the stochastic system, and also allowing both the max po-
ential velocity and the dimensionless wind shear to be time-dependent
arameters, the system again exhibits tipping to and from the non-
torm state. When the system tips from the non-storm state to the stable
torm state, the two tipping mechanisms act independently: noise-
nduced tipping occurs before the ramp begins and then the system
nd-point tracks the stable storm state. However, when the system tips
rom the stable storm state to the non-storm state, there is an interplay
3

f the two tipping mechanisms.
2. Analysis of autonomous system and bifurcation-induced tip-
ping

To give context to the tipping results, we first perform a standard
bifurcation analysis of Eq. (1) as well as study the qualitative behavior
f the model. To do so, it is convenient to introduce the dimensionless
ariables 𝑣 = 𝑉 ∕𝑉𝑝 and 𝜏 = 𝐶𝑑∕(2ℎ)𝑉𝑝𝑡 which yield the dimensionless
ystem given by
𝑑𝑣
𝑑𝜏

= 𝑓 (𝑣, 𝑚) ∶= (1 − 𝛾)𝑚3 − (1 − 𝛾𝑚3)𝑣2,

𝑑𝑚
𝑑𝜏

= 𝑔(𝑣, 𝑚) ∶= (1 − 𝑚)𝑣 − 𝑐𝑚,
(3)

where 𝑐 = 2.2𝑆∕𝑉𝑝 is the dimensionless wind shear. Note, from the
iscussion of this model in the introduction, we expect that 0 ≤ 𝑉 ≤ 𝑉𝑝
nd 0 ≤ 𝑚 ≤ 1 and thus the relevant phase space on which the forward
flow of Eq. (3) should be defined is 𝛱 = [0, 1] × [0, 1]. Indeed, since
𝛾 ∈ (0, 1), it follows that 𝑓 (0, 𝑚) ≥ 0, 𝑓 (1, 𝑚) ≤ 0, 𝑔(𝑣, 0) ≥ 0, 𝑔(𝑣, 1) ≤ 0
and thus 𝛱 is forward invariant.

The fixed points of Eq. (3) satisfy the system of equations 𝑚 =
𝑣∕(𝑣 + 𝑐) and 𝑞(𝑣) = 𝑣2𝑝(𝑣) = 0, where 𝑝 is the cubic polynomial

𝑝(𝑣) = (1 − 𝛾)𝑣 + 𝛾𝑣3 − (𝑣 + 𝑐)3. (4)

Therefore, regardless of parameter values, the origin  = (0, 0) (non-
storm state) is a fixed point of Eq. (3). However, 𝑣 = 0 is a repeated root
of the quintic polynomial 𝑞 and thus  is not a hyperbolic fixed point.
Nevertheless, it can be shown through a center manifold reduction that
the origin is in fact a stable fixed point; see Appendix B.

Additional fixed points for Eq. (3) can exist depending on the
parameter values. Specifically, since lim𝑣→∞ 𝑝(𝑣) = −∞ and 𝑝(0) = −𝑐3,
it follows that, including repeated roots, 𝑝 can either have zero or two
positive roots. Consequently, this system can exhibit a saddle–node
bifurcation in which a stable node  (stable storm state) and a saddle 
(unstable storm state) emerge or disappear when varying a parameter;
see Fig. 2(a) for an example bifurcation diagram in the parameter 𝑐.
The saddle–node bifurcation occurs when the local maximum 𝑣∗ of 𝑝(𝑣)
intersects the 𝑣-axis, i.e., 𝑝(𝑣∗) = 0. Calculating 𝑣∗ we find

𝑣∗ =
−𝑐 +

√

1
3 (1 − 𝛾)

2 + 𝑐2𝛾

1 − 𝛾
, (5)

and thus as functions of 𝑐 and 𝛾 the curve along which the bifurcations
occur are given as the 0-level curve of 𝑝(𝑣∗). In Fig. 2(b) we plot a
‘‘phase diagram’’ in which the 0-level curve of 𝑝(𝑣∗) partitions the (𝑐, 𝛾)
plane into regions in which a stable storm state does (labeled Existence
of Storm State) or does not exist (labeled Existence of Non-Storm State).

Fig. 2(a) and (c) indicate that for 𝑐 ≪ 1,  remains close to the
rigin while the 𝑣-coordinate of  varies linearly in 𝑐. This result can
e verified by an asymptotic expansion of the zeros of 𝑝(𝑣). Specifically,
e assume an asymptotic expansion of a fixed point (𝑣∗, 𝑚∗) in the form

𝑣∗ = 𝑣0 + 𝑐𝛼1𝑣1 + 𝑐𝛼2𝑣2 +⋯ ,

∗ = 𝑣∗

𝑣∗ + 𝑐
,

(6)

where 0 < 𝛼1 < 𝛼2 < ⋯. At lowest order in 𝑐 we obtain the cubic
quation 𝑣0(1−𝛾)(1−𝑣0)2 = 0 and thus the non-negative roots are 𝑣0 = 0
nd 𝑣0 = 1 which correspond to the lowest order approximations of 
nd  respectively.

1. If we continue the expansion assuming 𝑣0 = 0, we find that
to balance terms we need 𝛼1 = 3, 𝛼2 = 5, 𝑣1 = (1 − 𝛾)−1,
𝑣2 = 3(1 − 𝛾)−2 and therefore

𝑚∗ =
𝑐3(1 − 𝛾)−1 + 3𝑐5(1 − 𝛾)−2 +⋯

𝑐 + 𝑐3(1 − 𝛾)−1 + 3𝑐5(1 − 𝛾)−2 +⋯
= 𝑐2

1 − 𝛾
+ 2𝑐4

(1 − 𝛾)2
+⋯ .

(7)
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Fig. 2. (a) Bifurcation diagram for Eq. (3) as a function of dimensionless wind shear 𝑐 with 𝛾 = 0.43. There are three possible fixed points: the asymptotically stable origin 
non-storm state), another asymptotically stable fixed point  (stable storm state), and a saddle  (unstable storm state). The blue and red curves are the approximations of Eq. (9)
or  and  , respectively. (b) Phase diagram for Eq. (3) in the (𝛾, 𝑐) plane in which the regions corresponding to the existence or non-existence of  and  are labeled as Existence
f Storm State and Non-Storm State respectively. (c-d) Phase portraits for Eq. (3) with (𝛾, 𝑐) = (0.43, 0.286) (blue star in (b)) and (𝛾, 𝑐) = (0.43, 0.22) (red star in (b)) respectively.
he blue circles correspond to the stable fixed points  and  and the red circle corresponds to the saddle node  . The dashed and solid black lines correspond to the nullclines
̇ = 0 and 𝑚̇ = 0 respectively. (e-f) Magnifications of the phase portraits in Fig. 2(c-d) near the origin. The red (blue) lines correspond to the unstable (stable) manifold of  and
he dashed line is the local approximation of the center manifold near the origin.
d

t
t
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2. Assuming 𝑣0 = 1 we obtain a regular perturbation, i.e., 𝛼1 =
1, 𝛼2 = 2,…, implying 𝑣1 = − 3

2 (1 − 𝛾)
−1, 𝑣2 = − 3

8 (1 − 4𝛾)(1 − 𝛾)−2
and thus

𝑚∗ =
1 − 3

2 (1 − 𝛾)
−1𝑐 +⋯

1 −
(

3
2 (1 − 𝛾)

−1𝑐 − 𝑐
) = 1 − 𝑐 +⋯ . (8)

herefore, the first two nonzero terms in the asymptotic expansions for
and  in 𝑐 are given by

=
(

𝑐3

1 − 𝛾
+ 3𝑐5

(1 − 𝛾)2
, 𝑐2

1 − 𝛾
+ 2𝑐4

(1 − 𝛾)2

)

+
(

𝑜(𝑐5), 𝑜(𝑐4)
)

,

 =
(

1 − 3
2
(1 − 𝛾)𝑐, 1 − 𝑐

)

+
(

𝑜(𝑐2), 𝑜(𝑐2)
)

.
(9)

The asymptotic expansion in Eq. (9) indicates that for weak wind
shear the separation in phase space between the non-storm state  and
the unstable storm state  is small in comparison with the separation
between  and the stable storm state . This separation is illustrated
by the generic phase portraits of Eq. (3) presented in Fig. 2(c-d) for
4

parameter values in which  exists. To indicate the basins of attraction
for  and , denoted B() and B() respectively, in Fig. 2(e-f) we plot
the unstable and stable manifolds of  near the origin. As it will be
important in Section 4 when we discuss noise-induced tipping, note that
the stable manifold of  forms a separatrix between B() and B().

A final feature of this dynamical system is the existence of a center
manifold near  which is approximated to cubic order by

𝑚(𝑣) = 1
𝑐
𝑣 −

1 − 𝛾
𝑐5

𝑣3; (10)

see Appendix A for the derivation. This approximation is overlaid as a
ashed curve in Fig. 2(e-f). This manifold acts as a slow manifold near
in the sense that, near , the component of the vector field transverse
o the manifold is much larger in magnitude than the component
angent to the manifold. Consequently, the center manifold provides
natural pathway for noise-induced transitions from  to  to occur;
a conjecture we will verify in Section 4.
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3. Rate-induced tipping in the tropical cyclone model

Of central interest is the possibility of transitions between the two
stable states as the max potential velocity, 𝑉𝑝, and the dimensionless
wind shear, 𝑐, vary in time. While the analysis used to study both
bifurcation and noise-induced tipping relies on small 𝑐, rate-induced
tipping does not need to assume anything particular about the size
of 𝑐. Rate-induced tipping is where a sufficiently quick change to a
parameter of a system may cause the system to move away from one
attractor to another, without undergoing a bifurcation [1]. Essentially,
the system is unable to track a continuously changing attractor if the
parameter changes fast enough.

3.1. A quick introduction to rate-induced tipping

Following the work of [1,22], we lay out the framework needed to
describe rate-induced tipping and introduce the necessary notation.

Consider the autonomous differential equation

̇ = 𝑓 (𝑥, 𝜆), (11)

where 𝑥 ∈ R𝑛, 𝜆 ∈ R𝑚, 𝑓 ∈ 𝐶2(R𝑚+𝑛,R𝑛), 𝑡 ∈ R, and 𝑥̇ = 𝑑𝑥
𝑑𝑡 . Now,

instead of a fixed 𝜆, suppose that 𝜆 changes in time. We replace 𝜆 with
an external input 𝛬𝑟(𝑡) = 𝛬(𝑟𝑡) ∈ 𝐶2(R,R𝑚), 𝑟 ≥ 0, and specifically
assume that 𝛬𝑟 is bi-asymptotically constant. In other words, 𝛬𝑟 is a
parameter shift that satisfies

lim
𝑡→−∞

𝛬𝑟(𝑡) = 𝜆− ∈ R𝑚 and lim
𝑡→∞

𝛬𝑟(𝑡) = 𝜆+ ∈ R𝑚, (12)

here 𝜆− is the past limit state and 𝜆+ is the future limit state. In
ddition to assuming that 𝛬𝑟 is bi-asymptotically constant, assume
hat 𝛬𝑟 is monotonically increasing, and that 𝜆− < 𝛬𝑟 < 𝜆+. These
ssumptions on 𝛬𝑟 allow a transition between 𝜆− and 𝜆+ in time, where
he size of 𝑟, the rate parameter, determines how quickly 𝛬𝑟 transitions
etween 𝜆− and 𝜆+. While there are different types of functions that
it these criteria, we use a transformed hyperbolic tangent function as
𝑟. Note that the external input 𝛬𝑟 is often called a ramp function or a
amp parameter.
With 𝜆 = 𝛬𝑟(𝑡) = 𝛬(𝑟𝑡), Eq. (11) becomes

̇ = 𝑓 (𝑥,𝛬𝑟(𝑡)), (13)

where 𝑟 is any non-negative real number. Since this is a non-autonomous
system, it is natural to introduce an auxiliary variable 𝑠 = 𝑟𝑡 and
𝛬(𝑠) = 𝛬(𝑟𝑡), and rewrite Eq. (11) as

̇ = 𝑓 (𝑥,𝛬(𝑠)),

𝑠̇ = 𝑟.
(14)

Alternatively, to convert the nonautonomous system into an au-
tonomous system, we could use compactification [42]. In this process,
the invertibility of the time-dependent parameter is used to make a
coordinate transform and then the system is augmented into an au-
tonomous 𝑛+1-dimensional extended system. The compactified system
will contain equilibria and compact invariant sets in the extended
phase space, such as unstable and stable manifolds, allowing us to
use tools and methods from dynamical systems to study the com-
pactified system. Solutions of Eq. (13) that remain bounded as 𝑡 →
±∞ become heteroclinic connections in the compactified system [42].
Therefore, compactification allows for the analysis of nonautonomous
rate-induced tipping in finite phase space. Using 𝑦 = 𝛬𝑟(𝑡) as an
additional dependent variable, and based on the assumptions of 𝛬𝑟(𝑡),
𝑦 is invertible. Due to this invertibility of 𝑦, the differentiation and
substitution results in the first order system given by

̇ = 𝑓 (𝑥,𝛬𝑟(𝛬−1
𝑟 (𝑦))) = 𝑓 (𝑥, 𝑦),

𝑦̇ = 𝛬̇𝑟(𝛬−1
𝑟 (𝑦)).

(15)

We will continue to use the setup as given in Eq. (14), but we illustrate
5

both systems’ behaviors in Fig. 3.
Definition 3.1. Suppose that 𝛬(𝑠) satisfies Eq. (12), and that for all
𝑠 ∈ R, 𝑋(𝑠) is a fixed point of Eq. (11) when 𝜆 = 𝛬(𝑠), where 𝑠 is viewed
as a parameter, or equivalently, (𝑋(𝑠), 𝑠) is a fixed point of Eq. (14) for
each 𝑠 with 𝑟 = 0. If (𝑋(𝑠), 𝑠) is a connected curve, then we call (𝑋(𝑠), 𝑠)
a stable (unstable) path if 𝑋(𝑠) is an attracting (repelling) fixed point
of Eq. (11), with 𝜆 = 𝛬(𝑠) for each fixed 𝑠.

Using this definition, we can say when rate-induced tipping occurs
away from a stable path. We consider (stable) paths that tend to fixed
stable states of the asymptotic systems at ±∞. Assume that 𝑋(𝑠) = 𝑋(𝑟𝑡)
is a stable path and that 𝑋(𝑠) → 𝑋± as 𝑠 → ±∞, where 𝑋± are attracting
states of the asymptotic systems found by replacing, respectively, 𝜆±
in Eq. (11).

From Theorem 2.2 of [22], there is a unique trajectory of Eq. (13),
𝑥𝑟(𝑡), for which 𝑥𝑟(𝑡) → 𝑋− as 𝑡 → −∞, which is the local pullback
attractor associated with 𝑋−. If 𝑥𝑟(𝑡) → 𝑋+, then we say that 𝑥𝑟(𝑡)
endpoint tracks the stable path 𝑋(𝑠). Note that this will happen if 𝑟 > 0
is sufficiently small, as shown in Lemma 2.3 of [22]. We can now define
when rate-induced tipping occurs.

Definition 3.2. Under the conditions just stated, we say that Eq. (13)
undergoes rate-induced tipping from 𝑋− if there is a rate 𝑟 > 0 such
that lim𝑡→∞ 𝑥𝑟(𝑡) ↛ 𝑋+. The smallest positive value of 𝑟 such that
lim𝑡→∞ 𝑥𝑟(𝑡) ↛ 𝑋+ is called the critical rate and is denoted by 𝑟𝑐 .

Definition 3.3. Suppose that, for fixed 𝜆, Eq. (11) has a hyperbolic
sink 𝑋. We define the basin of attraction for 𝑋 as

B(𝑋, 𝜆) =
{𝑦|𝑥(𝑡) is a trajectory of Eq. (11) with 𝑥(0) = 𝑦 and lim

𝑡→∞
𝑥(𝑡) = 𝑋}.

Essentially, if 𝑟 < 𝑟𝑐 , solutions will end-point track the path of fixed
points in the frozen time system they were initialized on. However,
when 𝑟 = 𝑟𝑐 , tipping to the basin boundary of 𝑋− has occurred, and
when 𝑟 > 𝑟𝑐 , it either tips to infinity or a different attractor. It is worth
mentioning that not all choices of 𝛬𝑟 result in rate-induced tipping.
There is theory to let us know if a system will or will not tip with
a chosen 𝛬𝑟, and the conditions change based on the dimension of
the system. Nevertheless, the conditions for a system to undergo rate-
induced tipping are the same for arbitrary dimension. In particular,
rate-induced tipping can occur in the system given by Eq. (13) if the
starting base state satisfies a sufficient condition called forward thresh-
old unstable when the parameter shift is applied to it [27]. Condensing
the results of the work by [1,43], the following theorem is relevant for
the analysis in this section.

Theorem 3.4. Suppose 𝛬(𝑠) gives rise to a stable path (𝑋(𝑠), 𝑠) for Eq. (14)
with 𝑥 ∈ R𝑛, for 𝑛 ≥ 1. As above, when 𝜆 = 𝜆±, in Eq. (14) the limits of the
stable path are stable equilibria in their respective systems and denoted 𝑋±.
If there is a 𝑌 + ≠ 𝑋+ such that 𝑌 + is an attracting equilibrium of Eq. (11)
for 𝜆 = 𝜆+, and 𝑋− ∈ B(𝑌 +, 𝜆+), then there is rate-induced tipping away
from 𝑋− to 𝑌 + for this 𝛬(𝑠), for sufficiently large 𝑟 > 0.

We demonstrate the notions of Definitions 3.1–3.3, and Theorem 3.4
in one-dimension in Fig. 3. Forward threshold stability is not a neces-
sary condition to prevent rate-induced tipping in systems of dimension
higher than one. However in [43], it was proposed that the condi-
tion of inflowing stability guarantees that rate-induced tipping cannot
happen away from a stable path. It is the approach we take to study
rate-induced tipping in the tropical cyclone model.

Definition 3.5. Suppose 𝛬(𝑠) gives rise to a stable path (𝑋(𝑠), 𝑠) with
limiting states 𝑋±. We say the stable path (𝑋(𝑠), 𝑠) is forward inflowing
stable if for each 𝑠 ∈ R there is a compact set 𝐾(𝑠) such that

1. For all 𝑠 ∈ R, 𝑋(𝑠) ∈ Int 𝐾(𝑠);
2. If 𝑠1 < 𝑠2, then 𝐾(𝑠1) ⊂ 𝐾(𝑠2);
3. If 𝑥 ∈ 𝜕𝐾(𝑠), then there is a 𝑡0 > 0 so that for all 𝑡 ∈ (0, 𝑡0), 𝑥𝑟(𝑡) ∈
Int 𝐾(𝑠)𝑤ℎ𝑒𝑟𝑒𝑠 = 𝑟𝑡;
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Fig. 3. Consider the system 𝑥̇ = −(𝑥−𝜆)(𝑥−𝜆−1)(𝑥−𝜆−2), where we replace 𝜆 with a time-changing parameter 𝛬𝑟(𝑡) = 1+ tanh (𝑟𝑡). Notice there are three fixed points: 𝑥 = 𝜆, 𝜆+1,
and 𝜆 + 2, where 𝑥 = 𝜆, 𝜆 + 2 are stable and 𝑥 = 𝜆 + 1 is unstable. Solutions (black) are shown for varying values of 𝑟. The top row of the figure shows the behavior of Eq. (14)
and the bottom row of the figure shows the behavior of Eq. (15). Blue dashed curves track the stable paths (stable fixed points) in the frozen time system, and the red dashed
urve tracks the unstable path (unstable fixed point) in the frozen time system. Notice that (𝑋− = 2, 𝜆− = 0) ∈ B(𝑌 + = 2, 𝜆+ = 2), satisfying Theorem 3.4, and implying there is
ate-induced tipping away from 𝑋−. Rate-induced tipping occurs for 𝑟 ≥ 𝑟𝑐 .
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4. 𝑋± ∈ Int (𝐾±) where 𝐾− =
⋂

𝑡∈R 𝐾(𝑠) and 𝐾+ =
⋃

𝑠∈R 𝐾(𝑠);
5. 𝐾+ ⊂ 𝐵(𝑋+, 𝜆+) is compact.

heorem 3.6. Suppose 𝛬(𝑠) gives rise to a stable path (𝑋(𝑠), 𝑠) with
symptotic states 𝑋±. If it is forward inflowing stable, then there is no
ate-induced tipping away from 𝑋− for this 𝛬(𝑠) for any 𝑟 > 0.

.2. Necessary conditions for rate-induced tipping in the tropical cyclone
odel

Using the above framework, we consider the possibility of rate-
nduced tipping to aid in the destabilization or the formation of a storm
y allowing 𝑐 and 𝑉𝑝 to vary with time, as physically, both wind shear
nd max potential velocity are components of the model that have the
bility to change quickly.
We redefine both 𝑐 and 𝑉𝑝 as functions of some parameter shift 𝛬𝑟 ∶

→ R that varies at a rate 𝑟 > 0, and satisfies the conditions described
n Section 3.1. Allowing 𝑉𝑝 and 𝑐 to be dependent on 𝛬𝑟(𝑠) implies
hey will ramp between 𝑉 −

𝑝 to 𝑉 +
𝑝 and 𝑐− to 𝑐+ in time, respectively.

Therefore, we adjust the nondimensionalization using 𝜏 = 𝐶𝑑∕(2ℎ)𝑉 −
𝑝 𝑡

and 𝑣 = 𝑉 ∕𝑉 −
𝑝 , instead of 𝑉𝑝, as this parameter is now time dependent.

We choose the minimum max storm potential, 𝑉 −
𝑝 , as the fixed value

of 𝑉𝑝(𝜏). This change results in Eq. (2) becoming

𝑑𝑣
𝑑𝜏

=
(1 − 𝛾)𝑉𝑝(𝜏)2

𝑉 −
𝑝

2
𝑚3 − (1 − 𝛾𝑚3)𝑣2,

𝑑𝑚
𝑑𝜏

= (1 − 𝑚)𝑣 − 𝑐(𝜏)𝑚.

(16)

Proposition 3.7. There is no rate-induced tipping away from  regardless
of the 𝛬𝑟 chosen.

Proof. For all values of 𝑐 and 𝑉𝑝,  is a stable fixed point and 𝑣̇ = 𝑚̇ = 0.
herefore, there can be no rate-induced tipping away from  for any
amp 𝛬𝑟. □

We will generally assume the values of 𝑐 and 𝑉𝑝 are such that there
re three fixed points of Eq. (16) for all values of 𝛬𝑟(𝜏), as this is the
most interesting case to study due to Proposition 3.7. However, we
describe the other cases and their outcomes below.

Case 1. Assume that the values of 𝑐 and 𝑉𝑝 are chosen so there is only
one fixed point of Eq. (16) when 𝛬 (𝜏) = 𝜆−, and one or three fixed
6

𝑟 t
points of Eq. (16) when 𝛬𝑟(𝜏) = 𝜆+. If there is only one fixed point when
𝛬𝑟(𝜏) = 𝜆−, it has to be the origin, , as shown in the deterministic
analysis conducted in Section 2. By Proposition 3.7, there can be no
ate-induced tipping away from .

ase 2. Assume that the values of 𝑐 and 𝑉𝑝 are chosen so there are three
ixed points of Eq. (16) when 𝛬𝑟(𝜏) = 𝜆−, , −,−, and one fixed point
f Eq. (16) when 𝛬𝑟(𝜏) = 𝜆+. The fixed point when 𝛬𝑟(𝜏) = 𝜆+ must
be the origin by the deterministic analysis conducted in Section 2. By
Proposition 3.7, there will be no rate-induced tipping away from . If
we look at tipping away from −, we have to tip to , independent of
𝑟, undergoing bifurcation tipping, as we have the annihilation of two
fixed points.

The case we will exemplify is when we assume that the values of
𝑐 and 𝑉𝑝 are chosen such that there are three fixed points of Eq. (16)
hen 𝛬𝑟(𝜏) = 𝜆− ∶ , −,− and three fixed points of Eq. (16) when
𝑟(𝜏) = 𝜆+ ∶ , +,+. We will make use of Proposition 3.8 within the
roof of Theorem 3.9. See Appendix C for the proof of this proposition.
e reintroduce the polynomial in Eq. (4) to include 𝑉𝑝. Let

𝑝𝑛𝑒𝑤(𝑣, 𝑉𝑝, 𝑐) = (1 − 𝛾)
𝑉𝑝
𝑉 −
𝑝
𝑣 + 𝛾𝑣3 − (𝑣 + 𝑐)3. (17)

roposition 3.8. Suppose 𝑉𝑝, 𝑐 > 0 such that 𝑝𝑛𝑒𝑤(𝑣, 𝑉𝑝, 𝑐) has two positive
eros, 0 < 𝑣1 < 𝑣2. If 𝑎 = (𝑎1, 𝑎2) and 𝑏 = (𝑏1, 𝑏2) satisfy

𝑣1 < 𝑎1 < 𝑣2

3

√

𝑎21
(1−𝛾)(

𝑉𝑝
𝑉 −
𝑝
)2+𝛾𝑎21

< 𝑎2 <
𝑎1
𝑎1+𝑐

𝑎𝑛𝑑

⎧

⎪

⎨

⎪

⎩

𝑣2 < 𝑏1
𝑏1
𝑏1+𝑐

< 𝑏2 < 3

√

𝑏21
(1−𝛾)(

𝑉𝑝
𝑉 −
𝑝
)2+𝛾𝑏21

then the box 𝐾𝑎,𝑏 = [𝑎1, 𝑏1] × [𝑎2, 𝑏2] is forward invariant with respect to
he flow.

heorem 3.9. Assume that 𝛬𝑟(𝜏), 𝑉𝑝(𝛬𝑟(𝜏)), and 𝑐(𝛬𝑟(𝜏)) are chosen such
that there are three fixed points at 𝛬𝑟(𝜏) = 𝜆− ∶ , −,− and three fixed
points at 𝛬𝑟(𝜏) = 𝜆+ ∶ , +,+. Assume that there exist paths (𝜏, 𝑝𝑢(𝜏))
and (𝜏, 𝑝𝑠(𝜏)) and they are distinct for all values of 𝜏. If either 𝑉𝑝(𝛬𝑟(𝜏)) or
𝑐(𝛬𝑟(𝜏)) is nonincreasing as a function of 𝜏, there can be no rate-induced
tipping away from the stable storm state − to the non-storm state .

roof. We will prove that if either 𝑉𝑝(𝛬𝑟(𝜏)) or 𝑐(𝛬𝑟(𝜏)) is nonincreasing
s a function of 𝜏, then (𝜏, 𝑝𝑠(𝜏)) is forward inflowing stable and hence

−
here can be no rate-induced tipping away from  .
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First suppose 𝑉𝑝(𝛬𝑟(𝜏)) is nonincreasing. Write 𝑝𝑠(𝜏) = (𝑣2(𝜏), 𝑚2(𝜏)).
For each value of 𝑉𝑝 there is a unique value of 𝑐, call it 𝑐∗(𝑉𝑝) for which
there is exactly one positive zero of polynomial 𝑝𝑛𝑒𝑤, in Eq. (17). Since
𝑛𝑒𝑤(𝑣, 𝑉𝑝, 𝑐∗(𝑉𝑝)) = 0 if and only if 𝑝𝑛𝑒𝑤(𝜖𝑣, 𝜖𝑉𝑝, 𝜖𝑐∗(𝑉𝑝)) = 0 for any
> 0, it follows that 𝑐∗(𝜖𝑉𝑝) = 𝜖𝑐∗(𝑉𝑝). If we let 𝑣∗(𝑉𝑝) denote the unique
ero of 𝑝𝑛𝑒𝑤(𝑣, 𝑉𝑝, 𝑐∗(𝑉𝑝)) then also 𝑣∗(𝜖𝑉𝑝) = 𝜖𝑣∗(𝑉𝑝). In particular, 𝑣∗

s strictly increasing as a function of 𝑉𝑝. If we let 𝑚∗(𝑉𝑝) =
𝑣∗(𝑉𝑝)

𝑣∗(𝑉𝑝)+𝑐∗(𝑉𝑝)
then 𝑚∗(𝜖𝑉𝑝) = 𝑚∗(𝑉𝑝) for all 𝜖 > 0, and we can call this common value
𝑚∗.

Now we would like to find functions 𝑎1, 𝑎2 ∶ R → R that satisfy
{

𝑣∗(𝑉𝑝(𝛬𝑟(𝜏))) < 𝑎1(𝜏) < 𝑣2(𝜏)
𝑚∗ < 𝑎2(𝜏) <

𝑎1(𝜏)
𝑎1(𝜏)+𝑐(𝛬𝑟(𝜏))

(18)

or all 𝜏 ∈ R. It is possible to find these functions 𝑎1, 𝑎2 by the following
rgument. For any value of 𝑠, we may assume 𝑐(𝛬𝑟) ∈ (0, 𝑐∗(𝑉𝑝(𝛬𝑟)))
ince we are assuming the paths (𝜏, 𝑝𝑢(𝜏)) and (𝜏, 𝑝𝑠(𝜏)) exist and are
distinct. This implies 𝑣∗(𝑉𝑝(𝛬𝑟(𝜏))) < 𝑣2(𝜏) and so we can choose 𝑎1(𝜏)
to satisfy the first inequality. Given this,

𝑚∗ =
𝑣∗(𝑉𝑝(𝛬𝑟(𝜏)))

𝑣∗(𝑉𝑝(𝛬𝑟(𝜏))) + 𝑐∗(𝑉𝑝(𝛬𝑟(𝜏)))
<

𝑣∗(𝑉𝑝(𝛬𝑟(𝜏)))
𝑣∗(𝑉𝑝(𝛬𝑟(𝜏))) + 𝑐(𝛬𝑟(𝜏))

<
𝑎1(𝜏)

𝑎1(𝜏) + 𝑐(𝛬𝑟(𝜏))
, (19)

nd so we can choose 𝑎2(𝜏) to satisfy the second inequality. Further-
ore, we would like to enforce 𝑎1, 𝑎2 be continuous and nonincreasing,
hich is possible since 𝑣∗(𝑉𝑝(𝛬𝑟(𝜏))) and 𝑚∗ are both nonincreasing.
Also pick constants 𝑏1, 𝑏2 such that

𝑣2(𝜏) < 𝑏1
𝑏1

𝑏1+𝑐(𝛬𝑟(𝜏))
< 𝑏2 < 3

√

𝑏21
(1−𝛾)(

𝑉𝑝 (𝛬𝑟 (𝜏))
𝑉 −
𝑝

)2+𝛾𝑏21

(20)

for all 𝜏. For each 𝜏 define 𝐾(𝜏) = [𝑎1(𝜏), 𝑏1] × [𝑎2(𝜏), 𝑏2]. By Proposi-
tion 3.8, each 𝐾(𝜏) is forward invariant with respect to the flow when
𝑉𝑝 = 𝑉𝑝(𝛬𝑟(𝜏)) and 𝑐 = 𝑐(𝛬𝑟(𝜏)). By how we defined {𝐾(𝜏)}, they satisfy
efinition 3.5 to show (𝜏, 𝑝𝑠(𝜏)) is forward inflowing stable path and so

there can be no rate-induced tipping away from −.
Next suppose 𝑐(𝛬𝑟(𝜏)) is nonincreasing. For each value of 𝑐 there is a

unique value of 𝑉𝑝, call it 𝑉 ∗
𝑝 (𝑐) for which there is exactly one positive

zero of the polynomial 𝑝𝑛𝑒𝑤, in Eq. (17). Since 𝑝𝑛𝑒𝑤(𝑣, 𝑉 ∗
𝑝 (𝑐), 𝑐) = 0 if

and only if 𝑝𝑛𝑒𝑤(𝜖𝑣, 𝜖𝑉 ∗
𝑝 (𝑐), 𝜖𝑐) = 0 for any 𝜖 > 0, it follows that 𝑉 ∗

𝑝 (𝜖𝑐) =
𝑉 ∗
𝑝 (𝑐). If we let 𝑣∗(𝑐) denote the unique zero of 𝑝𝑛𝑒𝑤(𝑣, 𝑉 ∗

𝑝 (𝑐), 𝑐), then
lso 𝑣∗(𝜖𝑐) = 𝜖𝑣∗(𝑐). In particular, 𝑣∗ is strictly increasing as a function
of 𝑐. If we let 𝑚∗(𝑐) = 𝑣∗(𝑐)

𝑣∗(𝑐)+𝑐 , then 𝑚
∗(𝜖𝑐) = 𝑚∗(𝑐) for all 𝜖 > 0, and we

an call this common value 𝑚∗.
Now we would like to find continuous nonincreasing functions

1, 𝑎2 ∶ R → R that satisfy

𝑣∗(𝑐(𝛬𝑟(𝜏))) < 𝑎1(𝜏) < 𝑣2(𝜏)
𝑚∗ < 𝑎2(𝜏) <

𝑎1(𝜏)
𝑎1(𝜏)+𝑐(𝛬𝑟(𝜏))

(21)

for all 𝜏 ∈ R. The reasons for why this is possible are the same as those
escribed earlier in this argument. Also, pick constants 𝑏1, 𝑏2 to satisfy
q. (20) for all 𝜏. Then define 𝐾(𝜏) = [𝑎1(𝜏), 𝑏1]×[𝑎2(𝜏), 𝑏2]. Once again,
hese sets can be used to show that (𝜏, 𝑝𝑠(𝜏)) is a forward inflowing
table path. Therefore there can be no R-tipping away from −. □

Interestingly, if both 𝑉𝑝(𝛬𝑟(𝜏)), and 𝑐(𝛬𝑟(𝜏)) are increasing, then
heorem 3.9 allows for the possibility of rate-induced tipping from −

o  for 𝑟 > 𝑟𝑐 , as the example in Section 3.3 will demonstrate. Fig. 4(b)
ighlights both solutions that do not tip (𝑟 < 𝑟𝑐 ) and solutions that do
ip (𝑟 > 𝑟𝑐). Using the results above, a mathematically general form of
ur ramped parameters 𝑉𝑝 and 𝑐 that will result in rate-induced tipping
or 𝑟 > 𝑟𝑐 is given by

𝑝(𝜏) = 𝑉 −
𝑝 (1 − 𝛬𝑟(𝜏)) + 𝑉 +

𝑝 𝛬𝑟(𝜏), (22)
7

𝑐(𝜏) = 𝑘𝑉𝑝(𝜏),
here 𝑘 is a correlation coefficient between 𝑉𝑝 and 𝑐, and the functions
𝑟, 𝑉𝑝, and 𝑐 are chosen such that three fixed points, two stable and one
addle, exist for all time.

.3. Example of rate-induced tipping in the tropical cyclone model

As the problem we investigate in this analysis is in R2, we must
nderstand the basin of attraction in two-dimensional space. For both
𝑟(𝜏) = 𝜆− and 𝛬𝑟(𝜏) = 𝜆+, we have two asymptotically stable fixed
oints that are separated by a saddle node, whose stable manifold forms
separatrix for the basins of attraction of  and − and  and +

espectively. If − ∈ B(, 𝜆+), we will have rate-induced tipping away
rom − by Theorem 3.4.
Using what we learned in Section 3.2, we choose a parameter shift

𝑟(𝜏), and increasing functions 𝑉𝑝 and 𝑐 that are dependent on 𝛬𝑟(𝜏)
uch that − ∈ B(, 𝜆+). One such choice is

𝑟(𝜏) =
1
2
(1 + tanh(𝑟𝜏)), (23)

𝑉𝑝(𝜏) = 90𝛬𝑟(𝜏) + 10, (24)

𝑐(𝜏) = 0.13𝑉𝑝(𝜏), (25)

where the ratio between 𝑉𝑝(𝜏) and 𝑐(𝜏) is fixed at 0.13 to guarantee
that there are always three equilibria. For this choice in functions,
− ∈ B(, 𝜆+), as seen in Fig. 4(a). This indicates by Theorem 3.4 that
there will be rate-induced tipping away from − to  for sufficiently
large 𝑟 > 0. We choose a 𝑐 value to satisfy this theorem as in dimensions
𝑛 > 1, 𝑋− ∉ B(𝑌 +, 𝜆+) does not necessarily prevent tipping from
occurring. The ratio is chosen to guarantee rate-induced tipping, but
we note that other 𝑐 values provide similar results.

Using our approach from Section 3.1 to convert Eq. (16) back to an
autonomous system, we have the system of first order equations given
by

𝑑𝑣
𝑑𝜏

=
(1 − 𝛾)𝑉𝑝(𝑠)2

𝑉 −
𝑝

2
𝑚3 − (1 − 𝛾𝑚3)𝑣2,

𝑑𝑚
𝑑𝜏

= (1 − 𝑚)𝑣 − 𝑐(𝑠)𝑚,

𝑑𝑠
𝑑𝜏

= 1.

(26)

Solving this system, we determine for 𝑟 < 𝑟𝑐 we endpoint track the
stable path from − to +. However, when 𝑟 > 𝑟𝑐 we tip from − to
. For 𝑟 = 𝑟𝑐 we have a heteroclinic connection between − and  +.
ia numerical simulations we find that 𝑟𝑐 ∈ (0.0506279, 0.050628). We
how numerical results of tipping in (𝑣, 𝑚) space in Fig. 4(b).
In conclusion, we see that due to the stability of the non-storm

tate, , we cannot form a tropical cyclone, but a storm can destabilize
ith rapidly increasing max potential velocity and dimensionless wind
hear.

. Noise-induced tipping in the tropical cyclone model

In this section we study noise-induced transitions between the stable
tates  and  for the stochastic differential equation

𝑑𝑣 = 𝑓 (𝑣, 𝑚)𝑑𝜏 + 𝜎1𝑑𝑊1,

𝑚 = 𝑔(𝑣, 𝑚)𝑑𝜏 + 𝜎2𝑑𝑊2,
(27)

here 𝜎1, 𝜎2 > 0, 𝑊1,𝑊2 are independent Brownian motions, 𝑓, 𝑔
re defined as in Eq. (3) and in this section we are returning to the
imensionless coordinates introduced in Section 2. In Section 2 we
howed that for small wind shear the separation between  and 
s relatively small in comparison with the separation between  and
. Consequently, we expect  is highly susceptible to noise-induced
tipping while  is more robust to random fluctuations. Moreover, the
existence of a one-dimensional center manifold near  indicates that
the deterministic flow is comparatively weak when restricted to this
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Fig. 4. In both plots the fixed points of the system given by Eq. (3) at the start and end of the ramp function, Eq. (23), are shown. 𝑉𝑝 and 𝑐, defined by Eqs. (24) and (25), are
ime dependent and 𝛾 = 0.43. The three fixed points at the start of the ramp, , − ,−, correspond to the non-storm state, the unstable storm state, and the stable storm state.
hese stable fixed points are denoted by blue circles and the saddle node is denoted by a red circle. The three fixed points at the end of the ramp, , + ,+, correspond to the
on-storm state, the unstable storm state, and the stable storm state. These stable fixed points are denoted by blue squares and the saddle is denoted by a red square. (a) Blue
urves correspond to the stable manifolds of  − and  +. (b) Plot of the solutions to the system given by Eq. (3) for different values or 𝑟. The black curve is the solution when
= 0 and end-point tracks the stable path from − to +. The blue (orange) dotted curve corresponds to the solution for 𝑟 = 0.03 (𝑟 = 0.04), which end-point tracks the stable
ath from − to +. The purple (pink) dashed curve corresponds to the solution for 𝑟 = 0.050628 (𝑟 = 0.08), which do not endpoint track the stable path, and tip from − to .
T
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[

N

anifold, providing a natural region in phase space that is susceptible
o noise-induced transitions.
Recall from Section 2 that for physical reasons 𝑣, 𝑚 ≥ 0 and addi-

ionally it can be shown that the autonomous system extended to R2 is
nstable for 𝑣 < 0 but the first quadrant is invariant. However, since
ealizations of Eq. (27) can enter these nonphysical regions of phase
pace, we interpret Eq. (27) to have reflecting boundary conditions
long the lines 𝑣 = 0 and 𝑚 = 0. That is, for (𝑣̂, 𝑚̂) ∈ R2 we consider the
system

𝑑𝑣̂ = 𝑓 (𝑣̂, 𝑚̂)𝑑𝜏 + 𝜎1𝑑𝑊1,

𝑚̂ = 𝑔̂(𝑣̂, 𝑚̂)𝑑𝜏 + 𝜎2𝑑𝑊2,
(28)

here the reflected components of the vector field are defined by

̂(𝑣̂, 𝑚̂) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑓 (𝑣̂, 𝑚̂) 𝑣̂ > 0, 𝑚̂ > 0
−𝑓 (−𝑣̂, 𝑚̂) 𝑣̂ < 0, 𝑚̂ > 0
−𝑓 (−𝑣̂,−𝑚̂) 𝑣̂ < 0, 𝑚̂ < 0
𝑓 (𝑣̂,−𝑚̂) 𝑣̂ > 0, 𝑚̂ < 0,

𝑔̂(𝑣̂, 𝑚̂) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

= 𝑔(𝑣̂, 𝑚̂) 𝑣̂ > 0, 𝑚̂ > 0
−𝑔(−𝑣̂, 𝑚̂) 𝑣̂ < 0, 𝑚̂ > 0
−𝑔(−𝑣̂,−𝑚̂) 𝑣̂ < 0, 𝑚̂ < 0
𝑔(𝑣̂,−𝑚̂) 𝑣 > 0, 𝑚 < 0.

(29)

Realizations to Eq. (28) are then mapped to realizations of Eq. (27) with
reflecting boundary conditions by setting (𝑣(𝜏), 𝑚(𝜏)) = (|𝑣̂(𝜏)|, |𝑚̂(𝜏)|);
see Fig. 5(a-b). Throughout the rest of this document we will suppress
this notation with the understanding that when referring to 𝑓, 𝑔 we
are in fact using the reflected components 𝑓, 𝑔̂ and when referring
to Eq. (27) we are in fact referring to Eq. (28).

To be precise when discussing noise-induced tipping, we provide the
ollowing definition.

efinition 4.1. A noise-induced transition from  to , or noise-
nduced tipping event from  to , is a realization of Eq. (27) satisfying
𝑣(0), 𝑚(0)) = (0, 0), and there exists 𝜏∗ ∈ R+ for which (𝑣(𝜏∗), 𝑚(𝜏∗)) ∈
B() and for 𝜏 < 𝜏∗, (𝑣(𝜏), 𝑚(𝜏)) ∈ B(). The variable 𝜏∗ is itself a
andom variable, specifically a stopping time for this process, and is
eferred to as the tipping time from  to .

We note that similar definition holds for noise-induced transitions
rom  to  and the corresponding tipping time 𝜏∗ from  to .
oreover, since the noise is additive, it follows that for our system
(𝜏∗ <∞) = 1.
In Fig. 5(c-d) and Fig. 5(e) we plot the time series of 𝑚(𝜏) for

realizations of Eq. (27) that start at  and  respectively. From these
8

p

numerical experiments we can obtain further evidence that  is far
more susceptible to noise-induced tipping than . That is, the expected
value of the tipping time from  to  is dramatically smaller than
from  to . Moreover, as seen in Fig. 5, the noise-induced tipping
events from  to  appear to be concentrated about a particular region
in phase space. To validate these numerical observations, we will use
the Freidlin–Wentzell theory of large deviations to quantify the most
probable noise-induced transitions as well as the expected tipping time.

4.1. A quick introduction to most probable transitions

In this subsection we present the Freidlin–Wentzell theory of large
deviations to provide a framework for computing most probable tran-
sition paths from  to  noting that the same theory can be applied to
compute most probable transition paths from  to . This framework
is presented in Freidlin and Wentzel’s book [30], the review article by
Forgoston and Moore [28], and the review article by Berglund [29] (for
gradient systems). In particular, Ref. [44] provides a nice introduction
to the Freidlin–Wentzell theory of large deviations within the context
of a climate application. To simplify the following exposition, we let
𝐹 = (𝑓, 𝑔) denote the vector field with components 𝑓 and 𝑔, introduce
the matrix

𝛴 =
[

𝜎−21 0
0 𝜎−22

]

, (30)

and define for 𝐯1, 𝐯2 ∈ R2 the weighted inner product ⟨𝐯1, 𝐯2⟩𝛴 = 𝐯𝑇1𝛴𝐯2
and the weighted norm ‖𝐯2 − 𝐯1‖2𝛴 = ⟨𝐯2 − 𝐯1⟩𝛴 . We begin with a
definition of a most probable path that summarizes and combines the
definitions appearing in [29,30,44,45].

Definition 4.2. A curve 𝛹 (𝑠) = (𝜓1(𝑠), 𝜓2(𝑠)) is a most probable
transition path between  and  on the domain [𝜏0, 𝜏𝑓 ] if it minimizes
the Freidlin–Wentzell rate functional

𝐼[𝛹 ] = 1
2 ∫

𝜏𝑓

𝜏0
‖𝛹̇ − 𝐹 (𝛹 )‖2𝛴𝑑𝑠, (31)

over the admissible set

(𝜏0 ,𝜏𝑓 )
 = {𝛹 ∈ 𝐻1([𝜏0, 𝜏𝑓 ];R2) ∶ 𝛹 (𝜏0) =  and 𝛹 (𝜏𝑓 ) = }. (32)

he most probable path 𝛹∗, if it exists, is the minimizer of the double
ptimization problem

inf
𝜏0 ,𝜏𝑓 ]

inf
𝛹∈

(𝜏0 ,𝜏𝑓 )
𝑂

𝐼[𝛹 ]. (33)

ote, in terms of notation we represent the most probable transition

ath as 𝛹 = (𝜓1(𝑠), 𝜓2(𝑠)) instead of (𝑣(𝑠), 𝑚(𝑠)) to distinguish it from
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Fig. 5. (a) Realizations of Eq. (28) with 𝜎1 = 𝜎2 = 0.005, 𝛾 = 0.43, 𝑉𝑝 = 10, and 𝑐 = 0.286. (b) Realizations of Eq. (27) with reflecting boundary conditions, computed by mapping
realizations of Eq. (28) to the first quadrant. In both (a-b), stable fixed points for the deterministic dynamics correspond to blue circles while red squares correspond to the saddles.
(c-e) Time series of three realizations of Eq. (27) with differing values of 𝑐, with 𝑑𝜏 = 0.1, and 𝜏𝑓 = 106. (c) 𝑐 = 0.286 with realizations initialized at the non-storm state . (d)
𝑐 = 0.286 with realizations initialized at the stable storm state . (e) 𝑐 = 0.22 with realizations initialized at the non-storm .
a generic realization of the deterministic dynamics. Additionally, note
the functional 𝐼 as defined above also depends on 𝜏0, 𝜏𝑓 but we suppress
his dependence to simplify notation. Moreover, we will later show that
he minimizer over this double optimization can only be obtained when
0 = −∞ and 𝜏𝑓 = ∞.

Summarizing the key concepts in [30], the Freidlin–Wentzell large
eviations principle for Eq. (27) states formally that as 𝜎1, 𝜎2 → 0 the
probability that a realization (𝑣(𝜏), 𝑚(𝜏)) of Eq. (27) remains within a
𝛿 > 0 neighborhood of 𝛹 ∈ (𝜏0 ,𝜏𝑓 )

 is given by

P

(

sup
𝜏∈[𝜏0 ,𝜏𝑓 ]

‖(𝑣(𝜏), 𝑚(𝜏)) − 𝛹 (𝜏)‖ < 𝛿

)

≍𝑒−𝐼[𝛹 ], (34)

where ≍ denotes logarithm equivalence.1 Consequently, in the limit
𝜎1, 𝜎2 → 0, the most probable path 𝛹∗ can be interpreted as the mode
of the probability distribution on (𝜏0 ,𝜏𝑓 )

 . Additionally, the expected
value of the tipping time can be computed from knowledge of the most

1 For real sequences 𝑥 , 𝑦 we say 𝑥 ≍ 𝑦 if lim ln(𝑥𝜀) = 1.
9

𝜀 𝜀 𝜀 𝜀 𝜀→0 ln(𝑦𝜀)
probable path by the formula

E[𝜏∗] ≍ 𝑒𝐼[𝛹
∗]. (35)

Heuristically, Eq. (35) can be justified by letting 𝑝 = exp(−𝐼[𝛹∗])
approximate the probability of a realization of Eq. (27) leaving B()
in an interval of time [𝜏0, 𝜏𝑓 ]. In the limit 𝜎1, 𝜎2 → 0 it can be shown
that 𝑝 has approximately a geometric distribution, i.e., the realization
either leaves B() or returns to  in the given interval of time, and thus
following this logic E[𝜏∗] ≈ 1∕𝑝 = exp(𝐼[𝛹∗]) [29].

Eq. (34) indicates that the most probable path 𝛹∗ defined above cor-
responds to the curve in phase space in which noise-induced transitions
from  to  concentrate about in the vanishing noise limit 𝜎1, 𝜎2 → 0.
Moreover, the infimum over [𝜏0, 𝜏𝑓 ] can be interpreted as resulting from
accounting for all possible parameterizations of the curve. However,
note that 𝐼 vanishes along curves in which 𝛹 tracks the deterministic
dynamics, i.e., 𝛹̇ = 𝐹 (𝛹 ). Consequently, once 𝛹∗ crosses the separatrix
𝜕B()∩𝜕B(), the most probable path 𝛹∗ will simply satisfy 𝛹̇∗ = 𝐹 (𝛹∗)
in this region of phase space. Therefore, we can consider the equivalent
optimization problem

inf
[𝜏0 ,𝜏𝑓 ]

inf
(𝜏0 ,𝜏𝑓 )

𝐼[𝛹 ], (36)

𝛹∈𝑂



Physica D: Nonlinear Phenomena 457 (2024) 133969K. Slyman et al.

W
t

𝐼

S
a
i
𝐹
t
c
t

l

I
v
s
a

t
m

T
s

where


(𝜏0 ,𝜏𝑓 )
𝑂 = {𝛹 ∈ 𝐻1([𝜏0, 𝜏𝑓 ];R2) ∶ 𝛹 (𝜏0) =  and 𝛹 (𝜏𝑓 ) ∈ 𝜕B()∩𝜕B()}.

(37)

We can reduce the complexity of this optimization problem by prov-
ing that we can take 𝜏𝑓 = ∞ in Eq. (36) by studying the corresponding
Euler–Lagrange equations and its natural boundary conditions. Taking
the first variation of 𝐼 over ∗

 and integrating by parts yields

𝛿𝐼 = ∫

𝜏𝑓

𝜏0

⟨

−𝛹̈ + ∇𝐹 (𝛹 )𝛹̇ − 𝛴−1∇𝐹 𝑇 (𝛹 )𝛴(𝛹̇ − 𝐹 (𝛹 )), 𝛿𝛹
⟩

𝛴 𝑑𝑠

+
⟨

𝛹̇ − 𝐹 (𝛹 ), 𝛿𝛹
⟩

𝛴
|

|

|𝜏𝑓
. (38)

Consequently, the Euler–Lagrange equations are given by

𝛹̈ = ∇𝐹 (𝛹 )𝛹̇ − 𝛴−1∇𝐹 𝑇 (𝛹 )𝛴(𝛹̇ − 𝐹 (𝛹 )), (39)

with the additional ‘‘natural boundary condition’’ that 𝛹̇ (𝜏𝑓 ) = 𝐹 (𝛹 (𝜏𝑓 ))
on the separatrix, i.e., 𝛹 tracks the flow on the separatrix. Therefore,
since the separatrix in this problem corresponds to the stable manifold
of  and 𝛹 can track the flow of 𝐹 at zero cost, it follows that the
infimum of (36) is obtained when 𝜏𝑓 = ∞, 𝛹∗ terminates at , and
lim𝑠→∞ 𝛹̇∗(𝑠) = 𝐹 () = 0.

We now show that we can further reduce the complexity of this
problem by assuming 𝜏0 = −∞. We do this by putting Eq. (39) into
Hamiltonian form through the Legendre transform 𝐩 = (𝑝1, 𝑝2) =
𝛴(𝛹̇−𝐹 (𝛹 )) [28]. Through this transformation, we obtain the following
Hamiltonian system

𝛹̇ = 𝐹 (𝛹 ) + 𝛴−1𝐩,
𝐩̇ = −∇𝐹 𝑇 𝐩,

(40)

with corresponding Hamiltonian

𝐻 = 1
2
‖𝐩‖2

𝛴−1 + ⟨𝐹 (𝛹 ),𝐩⟩. (41)

ith this change of variables, the Freidlin–Wentzell rate functional
ransforms into the following simple form:

[𝛹,𝐩] = 1
2 ∫

𝜏𝑓

𝜏0
‖𝐩‖2𝛴𝑑𝑠. (42)

ince the Hamiltonian is conserved along the flow generated by Eq. (40)
nd the most probable path satisfies lim𝑠→∞ 𝛹̇∗(𝑠) = 𝐹 () = 0, it follows
mmediately that 𝐻 = 0 on the most probable path 𝛹∗. Moreover, since
() = 0 it follows that for the conjugate momentum 𝐩∗ corresponding
o 𝛹∗, lim𝜏→𝜏0 𝐩

∗(𝜏) = 0. That is, (𝛹∗,𝐩∗), if it exists, is a heteroclinic
onnection between (, 0) and ( , 0) in this Hamiltonian system and
hus 𝜏0 = −∞.
There are some additional properties of Eq. (40) which will aid our

ater analysis.

1. Eq. (40) contains an invariant submanifold defined by 𝐩 = 0 on
which the system follows the deterministic dynamics 𝛹̇ = 𝐹 (𝛹 ).

2. The fixed points of Eq. (40) retains the deterministic fixed points
with zero conjugate momentum: (𝛹,𝐩) = (, 0), ( , 0), ( , 0).

3. The Jacobian of Eq. (40) at the above fixed points is of the form

𝐽 (⋅, 0) =
[

∇𝐹 (⋅) 𝛴−1

0 −∇𝐹 𝑇 (⋅)

]

. (43)

t follows from these properties that if we let 𝜆1, 𝜆2 denote the eigen-
alues of ∇𝐹 (⋅) then ±𝜆1,±𝜆2 are eigenvalues of 𝐽 (⋅, 0). Thus, for every
table (unstable) manifold at  of the deterministic dynamics there is
corresponding unstable (stable) manifold.
Finally, we conclude this brief overview of the Freidlin–Wentzell

heory with a discussion of the numerical technique we use to compute
ost probable transition paths. Since Eq. (27) is a low dimensional
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system with a simple set of fixed points, we will numerically solve
the boundary value problem given by Eq. (39) with the boundary
conditions 𝛹 (𝜏0) =  and 𝛹 (𝜏𝑓 ) =  by computing steady states of
the corresponding gradient flow. Specifically, we introduce an artificial
time 𝑠 and consider the evolution equation 𝜕𝑠𝛹 = − 𝛿𝐼

𝛿𝛹 with Dirichlet
boundary conditions:

𝜕𝛹
𝜕𝑠

= 𝜕2𝛹
𝜕𝜏2

− ∇𝐹 (𝛹 ) 𝜕𝛹
𝜕𝜏

+ 𝛴−1∇𝐹 𝑇 (𝛹 )𝛴
( 𝜕𝛹
𝜕𝜏

− 𝐹 (𝛹 )
)

,

𝛹 (𝑠, 𝜏0) =  and 𝛹 (𝑠, 𝜏𝑓 ) =  .
(44)

he rate functional 𝐼 acts as a Lyapunov functional in the sense that
olutions of Eq. (44) satisfy 𝑑

𝑑𝑠 𝐼[𝛹 (𝑠, 𝜏)] ≤ 0 and 𝑑
𝑑𝑠 𝐼[𝛹 (𝑠, 𝜏)] = 0 if and

only if 𝛹 (𝑠, 𝜏) solves the Euler–Lagrange equations given in Eq. (39).
Consequently, most probable transition paths 𝛹∗(𝜏) can be computed
as the stationary solutions of Eq. (44), i.e., lim𝑠→∞ 𝛹 (𝑠, 𝜏) = 𝛹∗(𝜏).

4.2. Most probable transition paths for the tropical cyclone model

We now apply the above framework to quantify the susceptibility of
 to noise-induced tipping. In Fig. 6 we plot numerical approximations
of the most probable transition paths computed as the stationary states
of Eq. (44). From this figure we do indeed see that the most probable
transition path from  to  remains close to the center manifold near
. In this subsection we will validate this claim by finding an explicit
formula for an approximation of the most probable path near the origin
and use Eq. (35) to compute a scaling law for the expected tipping time.
Specifically, we will use the Hamiltonian formulation to approximate
candidates for the heteroclinic orbit that exits  and terminates at .

First, we note that the Jacobian of Eq. (40) at  is given by

∇𝐹 () =
[

0 0
1 −𝑐

]

(45)

and therefore the eigenvalues of 𝐽 (, 0) are ±𝑐 and 0 with 0 hav-
ing algebraic multiplicity two and geometric multiplicity one. Conse-
quently, at (, 0) there is a one-dimensional unstable manifold 𝑈 , a
one-dimensional stable manifold 𝑆 which overlaps with the stable
manifold for the deterministic dynamics, and a two-dimensional center
manifold 𝐶 . Consequently, natural candidates for a heteroclinic orbit
lie in 𝑈 or 𝐶 . However, we numerically found that 𝑈 does not
intersect the stable manifold of  and thus we focus on trajectories in
𝐶 .

To begin computing the dynamics on 𝐶 we perform a standard
center manifold reduction. That is, we assume that (, 0) can be locally
parameterized as the graph of (𝜓1, 𝑝1), i.e., 𝐶 = (𝜓1, 𝜓2(𝜓1, 𝑝1), 𝑝1,
𝑝2(𝜓1, 𝑝1)) where 𝜓2(𝜓1, 𝑝1), 𝑝2(𝜓1, 𝑝1) are analytic functions with power
series of the form

𝜓2(𝜓1, 𝑝1) =
∞
∑

𝑖=1

𝑖
∑

𝑗=0
𝑎𝑖,𝑗𝜓

𝑖−𝑗
1 𝑝𝑗1,

𝑝2(𝜓1, 𝑝1) =
∞
∑

𝑖=1

𝑖
∑

𝑗=0
𝑏𝑖,𝑗𝜓

𝑖−𝑗
1 𝑝𝑗1.

(46)

To determine the coefficients of the linear terms, note that 𝐶 is
tangent to the plane 𝐸𝐶 = span{𝐯1, 𝐯2} where

𝐯1 =

⎡

⎢

⎢

⎢

⎢

⎣

𝑐
1
0
0

⎤

⎥

⎥

⎥

⎥

⎦

and 𝐯2 =

⎡

⎢

⎢

⎢

⎢

⎣

𝜎21∕𝑐
0
1
0

⎤

⎥

⎥

⎥

⎥

⎦

(47)

are, respectively, the eigenvector and generalized eigenvector of the
0 eigenvalue of 𝐽 (, 0). Computing the tangent vectors of 𝐶 in the
coordinate directions, we have that

⎡

⎢

⎢

⎢

⎢

⎣

1
𝑎1,0
0
𝑏1,0

⎤

⎥

⎥

⎥

⎥

⎦

,

⎡

⎢

⎢

⎢

⎢

⎣

0
𝑎1,1
1
𝑏1,1

⎤

⎥

⎥

⎥

⎥

⎦

∈ span

⎧

⎪

⎪

⎨

⎪

⎪

⎡

⎢

⎢

⎢

⎢

⎣

𝑐
1
0
0

⎤

⎥

⎥

⎥

⎥

⎦

,

⎡

⎢

⎢

⎢

⎢

⎣

𝜎21∕𝑐
0
1
0

⎤

⎥

⎥

⎥

⎥

⎦

⎫

⎪

⎪

⎬

⎪

⎪

(48)
⎩ ⎭
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Fig. 6. Plots of the most probable path using a combination of the gradient flow and the deterministic dynamics, overlaid on realizations of Eq. (27) generated with the
Euler–Maruyama method with 𝜏𝑓 = 106 and 𝑑𝜏 = 0.1. The blue circles correspond to the stable fixed points, , and the red circle corresponds to the saddle,  . The solid
black curve represents the piece of the most probable path from the gradient flow and the dashed black curve represents the piece of the most probable path coming from the
deterministic dynamics. Parameter values are set as 𝜎1 = 𝜎2 = .005, 𝛾 = 0.43, 𝑉𝑝 = 10, and 𝑐 varies per plot. (a) 𝑐 = 0.286. The most probable path from the non-storm state, , to
the stable storm state, , overlaid on the tipped realizations. (b) 𝑐 = 0.286. The most probable path from the stable storm state, , to the non-storm state, , overlaid on tipped
realizations. (c) 𝑐 = 0.22. The most probable path from the non-storm state, , to the stable storm state, , overlaid on the tipped realizations.
e

𝐻

C
w
t
p

(

(

d
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p
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and thus 𝑎1,0 = 1∕𝑐, 𝑎1,1 = −𝜎21∕𝑐
2, 𝑏1,0 = 0, and 𝑏1,1 = 0.

Since the linear terms in the expansion of 𝑝2 were 0, we need to
compute higher order terms to obtain a non-trivial expansion. By the
chain rule we have that
𝑑
𝑑𝜏
𝜓2 =

𝜕𝜓2
𝜕𝜓1

𝑑𝜓1
𝑑𝜏

+
𝜕𝜓2
𝜕𝑝1

𝑑𝑝1
𝑑𝜏

,

𝑑
𝑑𝜏
𝑝2 =

𝜕𝑝2
𝜕𝜓1

𝑑𝜓1
𝑑𝜏

+
𝜕𝑝2
𝜕𝑝1

𝑑𝑝1
𝑑𝜏

,
(49)

nd thus by Eq. (40) we obtain the following system of equations

𝑔 + 𝜎22𝑝2 =
𝜕𝜓2
𝜕𝜓1

(𝑓 + 𝜎21𝑝1) −
𝜕𝜓2
𝜕𝑝1

(

𝜕𝑓
𝜕𝜓1

𝑝1 +
𝜕𝑔
𝜕𝜓1

𝑝2

)

,

𝜕𝑓
𝜕𝜓2

𝑝1 −
𝜕𝑔
𝜕𝜓2

𝑝2 =
𝜕𝑝2
𝜕𝜓1

(𝑓 + 𝜎21𝑝1) −
𝜕𝑝2
𝜕𝑝1

(

𝜕𝑓
𝜕𝜓1

𝑝1 +
𝜕𝑔
𝜕𝜓1

𝑝2

)

,
(50)

where we have suppressed the independent variables to reduce the
complexity of the expressions. Therefore, substituting Eq. (46) into
Eq. (50) and equating powers, we can obtain linear equations for the
undetermined coefficients. Following this procedure, we obtain to cubic
order the following approximations

𝜓2(𝜓1, 𝑝1) ≈
1
𝑐
𝜓1 −

(1 − 𝛾)
𝑐5

𝜓3
1 −

𝜎21
𝑐2
𝑝1 −

3𝜎41
𝑐4

𝑝21 +
3𝜎21
𝑐3

𝑝1𝜓1,

𝑝2(𝜓1, 𝑝1) ≈
3(1 − 𝛾)𝜎41

𝑐5
𝑝31 +

3(1 − 𝛾)
𝑐3

𝑝1𝜓
2
1 .

(51)

ote, as expected, on the sub-manifold 𝐩 = 0 we recover the approxi-
ation to the center manifold for the deterministic dynamics presented
n Section 2.
To compute a local approximation of the most probable transition

ath, we now calculate the intersection of the manifold defined by
𝐶

11

= 0 with  . To do so, we substitute Eq. (51) into Eq. (41) and c
xpand:

(𝜓1, 𝜓2(𝜓1, 𝑝1), 𝑝1, 𝑝2(𝜓1, 𝑝1)) =
𝜎21
2
𝑝21 +

𝜎22
2
𝑝22(𝜓1, 𝑝1)

+ ⟨𝐹 (𝜓1, 𝜓2(𝜓1, 𝑝1)), (𝑝1, 𝑝2(𝜓1, 𝑝2))⟩

≈
𝜎21
2
𝑝21 − 𝜓

2
1 𝑝1.

(52)

onsequently, to lowest order, the intersection of the manifold 𝐻 = 0
ith 𝐶 corresponds to when 𝑝1 = 0 or 𝑝1 = 2𝜎−21 𝜓2

1 . Therefore,
he intersection forms two curves given (locally) by the following
arameterizations:

𝛹∗
1 (𝑠),𝐩

∗
1(𝑠)) =

(

𝑠, 1
𝑐
𝑠 −

(1 − 𝛾)
𝑐5

𝑠3, 0, 0
)

,

𝛹∗
2 (𝑠),𝐩

∗
2(𝑠)) =

(

𝑠, 1
𝑐
𝑠 − 2

𝑐2
𝑠2 −

(1 − 𝛾)
𝑐5

𝑠3 + 6
𝑐3
𝑠3, 2

𝑐
𝑠2,

6(1 − 𝛾)
𝑐3𝜎21

𝑠4
)

.

(53)

The curve (𝛹∗
1 (𝑠),𝐩

∗
1(𝑠)) is simply the local approximation of the center

manifold for the deterministic dynamics we found in Section 2. The
second curve (𝛹∗

2 (𝑠),𝐩
∗
2(𝑠)) is the trajectory exiting (, 0) that we are

looking for as it is a local approximation of the heteroclinic orbit. Note,
in the first two components (𝛹∗

1 , 𝑝
∗
1) and (𝛹∗

2 , 𝑝
∗
2) agree at the linear or-

er and thus, as we suspected, the most probable transition path locally
grees with the center manifold of the deterministic dynamics near
he origin. Indeed, in Fig. 7 we see that the numerical approximation
enerated by the gradient flow and (𝛹∗

2 (𝑠), 0), the projection of the most
robable path onto the 𝐩 = 0 plane, are in excellent agreement near .
urthermore, if we identify the projection (𝛹∗

2 (𝑠), 0) with its physical
oordinates, we obtain the following local approximation to the most
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Fig. 7. Plots of the most probable path generated from the gradient flow (solid black) overlaid with the unstable manifold of  (dashed red) and the approximation for the most
probable path near  (dashed blue), for two values of 𝑐. (a) 𝑐 = 0.286. (b) 𝑐 = 0.22.
𝑑𝑣

T
e

E

robable path

(𝑣) = 1
𝑐
𝑣 − 2

𝑐2
𝑣2 −

(1 − 𝛾)
𝑐5

𝑣3 + 6
𝑐3
𝑣3, (54)

hich, at this order, does not depend on the noise components 𝜎1, 𝜎2.
Finally, to obtain an estimate for the expected tipping time we will

se the above local approximation to (𝛹∗
2 (𝑠),𝐩

∗
2(𝑠)), given in physical

oordinates by Eq. (54), and Eq. (35) to estimate the expected time of
leaving a neighborhood near the origin. Specifically, it follows from the
asymptotic estimate given by Eq. (9), that the 𝑣-coordinate of  scales
like 𝑐3 and thus for 0 < 𝑟 < 1 we let 𝑑 = 𝑟𝑐3 serve as a proxy for a
typical neighborhood length scale when considering the validity of the
approximation given in Eq. (54). If we let (𝛹∗(𝑠),𝐩∗(𝑠)) denote the most
robable path satisfying Eq. (40), lim𝑠→−∞(𝛹∗(𝑠),𝐩∗(𝑠)) = (, 0), and its
irst component 𝜓∗

1 satisfies 𝜓∗
1 (0) = 𝑑, then it follows from Eq. (42)

hat

[𝛹∗,𝐩∗] = ∫

0

−∞

(

( 𝑝∗1(𝑠)
𝜎1

)2

+
( 𝑝∗2(𝑠)

𝜎2

)2)

𝑑𝑠. (55)

ince we are assuming that (𝛹∗(𝑠),𝐩∗(𝑠)) is a global minimizer of the
ate functional, we can use (𝛹∗

2 (𝑠),𝐩
∗
2(𝑠)) to obtain an upper bound on

the value of 𝐼[𝛹∗, 𝑝∗]. Specifically, it follows from Eq. (53) that upon
changing variables we have that

𝐼[𝛹∗,𝐩∗] ≤ 𝐼[𝛹∗
2 ,𝐩

∗
2] = ∫

𝑟𝑐3

0

(

4
𝑐2𝜎21

𝑣4 +
36(1 − 𝛾)2

𝑐6𝜎41𝜎
2
2

𝑣8
)

|

|

|

|

𝑑𝑠
𝑑𝑣

|

|

|

|

𝑑𝑣, (56)

here by Eq. (40) we have that
𝑑𝑠
𝑑𝑣

= 1

𝑓 (𝑣, 𝑚(𝑣)) +
2𝜎21
𝑐 𝑣

2
(57)

with 𝑚(𝑣) given by Eq. (54).
To obtain a scaling law for the right hand side of Eq. (56) we can

expand in 𝑣 and then integrate. Expanding in 𝑣 we have that

∫

𝑟𝑐3

0

4
𝑐2𝜎21

𝑣4
|

|

|

|

𝑑𝑠
𝑑𝑣

|

|

|

|

𝑑𝑣 =∫

𝑟𝑐3

0

4𝑣2

𝑐𝜎21 (𝑐 − 2𝜎21 )

(

1 + (1 − 𝛾) 𝑣
(𝑐 − 2𝜎21 )𝑐

2

+ (1 − 𝛾)
(

1 − 𝛾

− 6𝑐(𝑐 − 2𝜎21 )
)

(

𝑣
(𝑐 − 2𝜎21 )𝑐

2

)2

+⋯

)

𝑑𝑣

= 4𝑟3𝑐8

3𝜎21 (𝑐 − 2𝜎21 )
+ 𝑂(𝑟4)

nd
𝑟𝑐3

0

36(1 − 𝛾)2

𝑐6𝜎41𝜎
2
2

𝑣8
|

|

|

|

𝑑𝑠
𝑑𝑣

|

|

|

|

𝑑𝑣 =∫

𝑟𝑐3

0

36(1 − 𝛾)2𝑣6

𝑐5𝜎41𝜎
2
2 (𝑐 − 2𝜎21 )

(

1 + (1 − 𝛾) 𝑣
(𝑐 − 2𝜎21 )𝑐

2

+ (1 − 𝛾)
(

1 − 𝛾 − 6𝑐(𝑐 − 2𝜎21 )
)

(

𝑣
(𝑐 − 2𝜎21 )𝑐

2

)2

+⋯

)

= 36𝑟7𝑐15
4 2 2

+ 𝑂(𝑟8).
12

7𝜎1𝜎2 (𝑐 − 2𝜎1 )
Since we are assuming 𝜎1, 𝜎2 ≪ 1 we have that

𝐼[𝛹∗
2 ,𝐩

∗
2] ∼

4
3
𝑟3𝑐7

𝜎21
+ 36

7

(

𝑟3𝑐7

𝜎21

)2
𝑐
𝜎22
.

herefore, we obtain the following scaling law (up to logarithmic
quivalence) for the expected tipping time from this neighborhood

[𝜏∗𝑟 ] ≍ exp(𝐼[𝛹∗,𝐩∗]) ≲ exp
⎛

⎜

⎜

⎝

4
3
𝑟3𝑐7

𝜎21
+ 36

7
𝑐
𝜎22

(

𝑟3𝑐7

𝜎21

)2
⎞

⎟

⎟

⎠

, (58)

where 𝜏∗𝑟 is the stopping time to leave this neighborhood.
The scaling law given in Eq. (58) is interesting in that it illustrates

the interplay between the dimensionless sheer 𝑐 and 𝜎1, 𝜎2. Namely,
it identifies the two dimensionless measures of noise strength 𝜎̃21 =
𝜎21∕𝑐

7 and 𝜎̃22 = 𝜎22∕𝑐 which control the tipping time. In particular, it
provides further evidence for why tipping near the origin is far more
common than tipping away from the stable storm state . Indeed, for
the numerical experiments presented in Fig. 5, the ratio 𝑐7∕𝜎21 ranges
from (approximately) 1 to 6, i.e., is (1) despite 𝜎1 = 𝜎2 ∼ 10−3.

5. Discussion

An analysis of the various tipping mechanisms for a low-dimensional
model of a tropical cyclone show a range of different possibilities for
both the formation and destruction of a hurricane. The key results are
the following:

1. The non-storm state  is a base state that is asymptotically stable
for all parameter values. Consequently, there is no possibility of
bifurcation-induced tipping away from it to an activated storm
state. Furthermore, it does not move in phase space and thus
there is no rate-induced tipping that would form a stable storm
state from a non-storm state.

2. The dimensionless wind shear acts as a natural bifurcation pa-
rameter: with increasing values of 𝑐 there is a saddle–node
bifurcation in which the stable storm state is eliminated. That is
to say that excessive wind shear kills a storm in the sense that it
will no longer be able to maintain itself for a prolonged period
of time. Thus, in order for the formation of a tropical cyclone
to occur, we need sufficiently low wind shear, corroborating
physical observations [46].

3. A necessary condition for the destabilization of the stable storm
state, through rate-induced tipping, is that both the potential
velocity 𝑉𝑝 and dimensionless wind shear 𝑐 need to be increasing
in time. This is counter-intuitive as the energy source is encoded
in the maximum potential velocity in this model and thus it
would be expected that increasing this quantity might strengthen
the cyclone. But we show that, as long as it is accompanied by
a sufficient wind shear, it serves to kill the hurricane, and the

increase of wind shear cannot achieve that alone.
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4. We showed that the non-storm is state is highly susceptible to
noise-induced tipping while the stable storm state is robust to
random fluctuations. This susceptibility was quantified by the
ratio 𝑐7∕𝜎21 which is a dimensionless measure of the interplay
between wind shear and noise. Note, this result was depen-
dent on the assumption of additive noise, the use of reflecting
boundary conditions, and the specific nonlinearities in Eq. (2).
We were primarily interested in studying this problem from
a mathematical viewpoint and thus introduced additive noise
as a simplifying assumption. For a specific application, a more
careful introduction of noise would require one to revisit the
derivation presented in [39,40] and determine how uncertainty
could be more realistically introduced into the model. It is an
interesting question as to how the resulting form of the noise
would modify the expected tipping time and in particular the
susceptibility of the non-storm state to noise induced tipping.
The particular polynomial form of the nonlinearities also plays a
key role in this scaling law. It would be an interesting mathemat-
ical question to consider more generic systems with a non-trivial
center manifold in order to provide more intuition for the mech-
anisms that dictate the algebraic structure of the scaling law.
Indeed, providing some intuition for why we obtain such a large
power in 𝑐 would be useful in broader contexts.

5. We identified that the most probable transition path for noise-
induced tipping from  closely tracks the center manifold for
the deterministic dynamics. That is, the center manifold is a
region in phase space that is most vulnerable to random fluc-
tuations. Note, this result and the definition of most probable
transition path we have employed relied on the assumption that
𝜎 is asymptotically small. However, for nonzero noise the local
maximum of the stationary distribution for the system may be
shifted away from the equilibrium, thus influencing the most
probable transition paths and the expected tipping time. For
example, when converting the system 𝑑𝑥 = −𝑥𝑑𝑡 + 𝜎𝑑𝑊 , 𝑑𝑦 =
−𝑦𝑑𝑡 + 𝜎𝑑𝑊 to polar coordinates 𝑟2 = 𝑥2 + 𝑦2, tan(𝜃) = 𝑦∕𝑥,
one obtains 𝑑𝑟 = (−𝑟+ 𝜎2∕(2𝑟))𝑑𝑡+ 𝜎𝑑𝑊 and thus the stationary
density will be concentrated around a circle of radius 𝑟 = 𝜎∕

√

2;
see Example 4.5.5 in [47]. Given that  is highly susceptible to
noise induced tipping, perhaps more sophisticated analysis needs
to be done in order to determine more precise scaling laws for
the expected tipping time. Indeed, transition path theory allows
for the computation of reaction rates (inverse of expected tipping
times) [48,49]. Additionally, more refined asymptotic estimates
of the expected tipping time can be computed through more
careful analysis of the prefactor that is lost in the statement of
logarithmic equivalence in Eq. (35) [50].

As is standard in this type of analysis, we considered these various
ipping mechanisms independent of one another. A natural question is
ow do these various mechanisms couple to induce a storm-state or
estabilize a storm. A natural extension of the analysis presented in this
aper is to ask how the interplay of a parameter shift and additive noise
ill affect tipping within the system. Based on the work and analysis
n [26,51], we expect that in tipping away from the stable storm state,
here will be an interplay between the rate and noise-induced tipping
echanisms, and the additive noise will lower the critical rate needed
or tipping. Additionally, tipping should occur away from the non-storm
tate, but as there was no rate-induced tipping with this initialization,
e must explore if there is an interplay of the tipping mechanisms.
Using the same additive noise and ramp parameter as in prior

ections, the natural system to study this interaction is given by

𝑑𝑣 =

(

(1 − 𝛾)𝑉𝑝(𝛬(𝑠))2

𝑉 −
𝑝

2
𝑚3 − (1 − 𝛾𝑚3)𝑣2

)

𝑑𝜏 + 𝜎1𝑑𝑊1,

𝑑𝑚 = ((1 − 𝑚)𝑣 − 𝑐(𝛬(𝑠))) 𝑑𝜏 + 𝜎2𝑑𝑊2,
(59)
13

𝑑𝑠 = 𝑑𝜏.
While we would like to use the methods employed in [51] and [52],
the center manifold of the non-storm state, as described in Section 2,
demands a more careful approach, and is beyond the scope of the
current study. Nevertheless, when conducting Monte-Carlo simulations
of Eq. (59) we noticed some interesting phenomena that have led to
urther conjectures. First, initializing at the stable storm state corre-
ponding to the start of the ramp function, we see in Fig. 8(a) that
or 𝑟 < 𝑟𝑐 , with the addition of noise, there is tipping to the non-
torm state. Notice there is an interplay between these two mechanisms.
nitializing at the non-storm state corresponding to the start of the
amp, we see in Fig. 8(b) that there is tipping to the stable storm state.
ote, in Fig. 8(b), realizations that tip actually begin by tipping to the
table storm state corresponding to the start of the ramp function, and
hen end-point track to the stable storm state corresponding to the end
f the ramp function. This implies the two tipping mechanisms are
ot interacting to induce tipping: noise-induced tipping occurs first,
ollowed by tracking of the stable storm state from the parameter shift.
hile we illustrate this phenomenon for one set of noise strengths and
rate parameter, this behavior held true for multiple sets of parameter
alues.
To validate the above conjectures requires an adaptation of the stan-

ard Freidlin–Wentzell theory of large deviations to non-autonomous
ystems. One approach is to first follow the procedure in [42] and
‘compactify’’ the system in such a way that compact invariant sets
uch as equilibria now describe the long time behavior of the system.
oise-induced tipping can now be studied on the compactified system
sing the standard Freidlin–Wentzell theory of large deviations. When
onsidering the various tipping phenomenon, this system will now
ontain multiple scales, e.g. 𝑟, 𝑐7∕𝜎21 , and 𝑐∕𝑐

2
2 , and it would be inter-

sting to understand how these various parameters influence tipping
henomenon. From a variational perspective, 𝛤 -convergence provides
natural tool for studying the minimizers of the Freidlin–Wentzell

unctional in various asymptotic limits.
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ppendix A. Center manifold approximation of the origin

To determine an approximation of the center manifold at  for Eq.
3) we follow [53] and consider a solution of the form

= ℎ(𝑣) = 𝛴𝑛
𝑘=1𝑎𝑘𝑣

𝑘. (A.1)

ifferentiating Eq. (A.1) with respect to 𝑣, it follows from Eq. (3) that

(𝑣, ℎ(𝑣)) = 𝑑𝑚 = ℎ (𝑣)𝑑𝑣 = ℎ (𝑣)𝑓 (𝑣, ℎ(𝑣)). (A.2)

𝑑𝜏 𝑣 𝑑𝜏 𝑣
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Fig. 8. Realizations of the system given in Eq. (59), solved with the Euler–Maruyama method with 𝜏𝑓 = 2500, 𝑑𝜏 = 0.1. Parameter values are set as 𝜎1 = 𝜎2 = 0.005, 𝑟 = .03, 𝛾 = 0.43,
nd 𝑉𝑝 , 𝑐 are time-dependent and defined as in Eqs. (23), (24), and (25). The three fixed points at the start of the ramp, , 𝑈− , 𝑆−, correspond to the non-storm state, the unstable
storm state, and the stable storm state. These stable fixed points are denoted by blue circles and the saddle node is denoted by a red circle. The three fixed points at the end of the
ramp, , 𝑈+ , 𝑆+, correspond to the non-storm state, the unstable storm state, and the stable storm state. These stable fixed points are denoted by blue squares and the saddle node
is denoted by a red square. The solid black curves correspond to the 𝑚̇ nullcline at the start and the end of the ramp function. The dashed black curves correspond to the solution
in the deterministic system (𝜎1 = 𝜎2 = 0). (a) 1000 realizations initialized at the stable storm state, 𝑆−. The blue realizations tip from 𝑆− to . The red realizations end-point track
the stable path from 𝑆− to 𝑆+, and do not tip. (b) 1000 realizations initialized at the non-storm state, . The blue realizations tip from  to 𝑆+. The red realizations do not tip.
However from Eq. (3) we also know that 𝑚̇ = 𝑔(𝑣, ℎ(𝑣)). Therefore, as-
suming 𝑛 = 5 and equating powers of 𝑣 in the equation ℎ𝑣(𝑣)𝑓 (𝑣, ℎ(𝑣)) =
𝑔(𝑣, ℎ(𝑣)) we arrive at

𝑎1 =
1
𝑐
,

2 = 0,

3 =
𝛾 − 1
𝑐5

,

4 =
2(𝛾 − 1)
𝑐6

,

5 =
6 − 6𝑐2 − 12𝛾 + 6𝑐2𝛾 − 𝑐4𝛾 + 6𝛾2

𝑐9

(A.3)

and thus 𝑚(𝑣) = 𝑎1𝑣 + 𝑎2𝑣2 + 𝑎3𝑣3 + 𝑎4𝑣4 + 𝑎5𝑣5 is the desired
approximation of the center manifold for Eq. (3) near .

Appendix B. Stability of the origin

From Appendix A, we found a center manifold approximation near
 given by

𝑚(𝑣) = 1
𝑐
𝑣 +

𝛾 − 1
𝑐5

𝑣3 +
2(𝛾 − 1)
𝑐6

𝑣4 + 𝑂(𝑣5). (B.1)

f we consider Eq. (3), we can use 𝑑𝑣
𝑑𝜏 as a differential equation for the

dynamics of the center manifold by replacing 𝑚 with 𝑚(𝑣), resulting in

𝑑𝑣
𝑑𝜏

= (1 − 𝛾)(𝑚(𝑣))3 − (1 − 𝛾(𝑚(𝑣))3)𝑣2

= −𝑣2 + 𝑂(𝑣3).
(B.2)

Since the coefficient of 𝑣2 is negative, it follows that the origin is an
asymptotically stable fixed point for the center manifold and hence for
the original system in Eq. (3).

ppendix C. Proof of Proposition 3.8

roof. We want to show that the box 𝐾𝑎,𝑏 = [𝑎1, 𝑏1]×[𝑎2, 𝑏2] is forward
invariant with respect to the flow, and therefore we need to find the
14

direction of the flow on the four sides of the box.
• Side 1 (𝑣 = 𝑎1, 𝑚 ∈ [𝑎2, 𝑏2]):

𝑣̇ = (1 − 𝛾)

(

𝑉𝑝
𝑉 −
𝑝

)2

𝑚3 − (1 − 𝛾𝑚3)𝑎21

= 𝑚3
⎛

⎜

⎜

⎝

(1 − 𝛾)

(

𝑉𝑝
𝑉 −
𝑝

)2

+ 𝛾𝑎21
⎞

⎟

⎟

⎠

− 𝑎21

≥ 𝑎32
⎛

⎜

⎜

⎝

(1 − 𝛾)

(

𝑉𝑝
𝑉 −
𝑝

)2

+ 𝛾𝑎21
⎞

⎟

⎟

⎠

− 𝑎21

> 0,

(C.1)

since 3

√

√

√

√

𝑎21

(1−𝛾)
(

𝑉𝑝
𝑉 −
𝑝

)2
+𝛾𝑎21

< 𝑎2.

• Side 2 (𝑣 ∈ [𝑎1, 𝑏1], 𝑚 = 𝑎2):

𝑚̇ = (1 − 𝑎2)𝑣 − 𝑐𝑎2
≥ (1 − 𝑎2)𝑎1 − 𝑐𝑎2
= 𝑎1 − (𝑎1 + 𝑐)𝑎2
> 0,

(C.2)

since 𝑎2 <
𝑎1
𝑎1+𝑐

.

• Side 3 (𝑣 = 𝑏1, 𝑚 ∈ [𝑎2, 𝑏2]):

𝑣̇ = (1 − 𝛾)

(

𝑉𝑝
𝑉 −
𝑝

)2

𝑚3 − (1 − 𝛾𝑚3)𝑏21

= 𝑚3
⎛

⎜

⎜

⎝

(1 − 𝛾)

(

𝑉𝑝
𝑉 −
𝑝

)2

+ 𝛾𝑏21
⎞

⎟

⎟

⎠

− 𝑏21

≤ 𝑏32
⎛

⎜

⎜

⎝

(1 − 𝛾)

(

𝑉𝑝
𝑉 −
𝑝

)2

+ 𝛾𝑏21
⎞

⎟

⎟

⎠

− 𝑏21

< 0,

(C.3)

since 𝑏2 < 3

√

√

√

√

𝑏21

(1−𝛾)
(

𝑉𝑝
)2

+𝛾𝑏2
.

𝑉 −
𝑝 1
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• Side 4 (𝑣 ∈ [𝑎1, 𝑏1], 𝑚 = 𝑏2):

𝑚̇ = (1 − 𝑏2)𝑣 − 𝑐𝑏2
≤ (1 − 𝑏2)𝑏1 − 𝑐𝑏2
= 𝑏1 − (𝑏1 + 𝑐)𝑏2
< 0,

(C.4)

since 𝑏1
𝑏1+𝑐

< 𝑏2. □
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