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Abstract: Finding the equilibrium strategy of agents is one of the central problems in game
theory. Perhaps equally intriguing is the inverse of the above problem: from the available finite
set of actions at equilibrium, how can we learn the utilities of players competing against each
other and eventually use the learned models to predict their future actions? Instead of following
an estimate-then-predict approach, this work proposes a decision-focused learning (DFL) method
that directly learns the utility function to improve prediction accuracy. The game’s equilibrium
is represented as a layer and integrated into an end-to-end optimization framework. We discuss
the statistical bounds of covering numbers for the set of solution functions corresponding to the
solution of a generic parametric variational inequality. Also, we establish the generalization bound
for the set of solution functions with respect to the smooth loss function with an improved rate.
Moreover, we proposed an algorithm based on the iterative differentiation strategy to forward
and backpropagate through the equilibrium layer. The convergence analysis of the proposed
algorithm is established. Finally, We numerically validate the proposed framework in the utility
learning problem among the agents whose utility functions are approximated by partially input
convex neural networks (PICNN).
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1. INTRODUCTION Equally interesting and practical is the inverse game
problem, that is, investigating the utility functions of
individuals that lead to the observed equilibrium (see, for
example, Ratliff et al. (2014); Kuleshov and Schrijvers
(2015); Bertsimas et al. (2015); Jia et al. (2018); Molloy
et al. (2022); Ding et al. (2022); Adams et al. (2022)).
Since previous equilibrium actions are often observable
experimentally, it is possible to construct the agents’ utility
functions from the observed equilibrium.

The concept of equilibrium is fundamental in several
disciplines, including economics, management science, oper-
ations research, and engineering Heidarkhani et al. (2019).
The use of variation inequality (VI) provides a powerful
unifying approach for the study of equilibrium problems
Kostreva (1990). VI typically arises in network systems
where problems are modeled using cooperative and nonco-

operative game approaches Scutari et al. (2010). Prior studies follow a two-stage approach (i.e., estimate-

then-predict), where the utility function parameters are
first learned based on specific optimality criteria. Then,
a plug-in estimator is used to predict future equilibrium
actions Ratliff et al. (2014); Bertsimas et al. (2015). The
main issue lies in the propagation of estimation error
to the downstream prediction, which is unaccounted for
during the learning stage. In contrast, we propose a DFL
approach where the downstream optimization problem
is plugged into the prediction model. In order to make

Traditionally, game theory focuses on depicting competing
players’ behaviors and their interactions using complicated
mathematical models Roughgarden (2010). For a set of
players in a game, the aim is to optimize their utility
functions. These utility functions depend on the players
and other players’ strategies. Each individual tries to attain
an outcome that is best for him/herself (Nash equilibrium)
Facchinei and Pang (2003); Roughgarden (2010). However,
the utility function used to calculate the equilibrium is not

directly observable. While it can be estimated or modeled,
a small error can potentially affect the resulting equilibrium
Jia et al. (2018).

* Sponsor and financial support acknowledgment goes here. Paper
titles should be written in uppercase and lowercase letters, not all
uppercase.

evidence-based decisions, In this paper, we design a decision-
focused learning approach as a mathematical program
with equilibrium constraints (MPEC) problem using finite
instances of available actions.

The prime advantage of DFL is that the prediction error
is directly minimized during the learning process. Such
approach has been studied for convex Elmachtoub and
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Grigas (2020), combinatorial Mandi et al. (2020); Feber
et al. (2020), and stochastic Donti et al. (2017) optimization
problems. Statistical bounds in these settings have been
studied in Balghiti et al. (2021); Wang et al. (2020);
Bertsimas and Kallus (2019); Hu et al. (2021). Closely
related to our setting is the work on zero-sum, extensive-
form games Ling et al. (2018). However, the analysis of
statistical complexity and the statistical bounds for these
settings has not yet been thoroughly established.

In this work, game equilibrium is represented as a layer
and integrated into an end-to-end optimization framework.
The key contributions can be summarized as the following:

e We discuss the statistical bounds of covering numbers
for the set of solution functions corresponding to the
solution of affine parametric variational inequalities.

e We establish a generalization bound for the set
of solution functions of affine variational inequali-
ties for smooth loss function with an improved ex-

cess risk bound from O<\/§log1‘5 (n) + mf#) in Sre-

bro et al. (2010) to O(\/élog (n)+1082%), where

R is the empirical risk of the hypothesis class.
For the solution functions of generic variational
inequalities, we provide an excess risk bound of

- 2k (3+2) .
o<\/510g1-5(n)c§ ) 4l 2 where O is the

upper bound value of the solution function and k is
the number of times the solution function is piecewise
continuously differentiable within each piece.

e We propose an algorithm based on the iterative dif-
ferentiation (ITD) strategy to calculate the gradient
of the decision-focused objective with respect to the
learning parameters (i.e., implicit gradient). Specifi-
cally, the implicit gradient is obtained by using the
notion of merit function (D-gap function) and fixed-
point equations in Section 3.

e We extend the convergence analysis of the current
literature of bilevel optimization problems Al-Shedivat
et al. (2017); Huisman et al. (2021); Finn et al.
(2019); Raghu et al. (2019); Franceschi et al. (2018),
network games Parise and Ozdaglar (2019), and
iterative method of variational inequalities Shehu et al.
(2019) to the proposed algorithm with a nonconvex
optimization problem as the decision-focused objective.
We show that the update of the proposed algorithm
for K iterations converges to a stationary point with
arate O(1/K).

Notation. for convenience, we use || - || for the standard
Euclidean norm. We use Py (w) for the projection of w
onto set Y. In the generalization error bound analysis, we
represent the function class as 7. A function in a class PC*
is piecewise smooth, and k times continuously differentiable
within each piece.

2. PROBLEM FORMULATION

Consider a non-cooperative game among d players, each
player j has a strategy vector y¥) selected from a set
Yuw € RPI, where u € R? is the context and w €
R™ is the learning parameter. The utility of agent j
depends on y), and the strategy vector of other agents
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y9 | where y(-9) = {y® . yG=D yG+D gy
denotes the set of strategies of all agents except agent
j. Participants aim to maximize their utility functions and
attain an individually optimal strategy Facchinei and Pang
(2003); Roughgarden (2010). We provide a framework that
supports the parametric estimation of the utility functions.

In parametric estimation, the utility function belongs to a
known parametric family. We denote the utility function
for parametric estimation with known parametric family
as g;(,u,w) : Y, > R, where YV, o, = Y1 40 X Y240 X
-+ X Yquw € RP.In a more realistic setting where the true
parametric family is unknown, we propose to estimate the
unknown utility by a partially input convex neural network
(PICNN) Amos et al. (2017) with the learning parameter w,
expressed as §; (-, u,w) : Y, o, — R. Also, §;(-, u,w) depends
on unknown parameter w and must be inferred form data.

The parameters of the utility functions are learned through
observations. In particular, we would like to learn the
parameter w from a dataset {(u1,y1),..., (tn,yn)} that
consists of n pairs of context u and agent actions y at
the equilibrium by minimizing some loss represented by
f(m(u,w),y). The loss function f(m(u,w),y) represents a
measure of the quality of prediction by comparing the ob-
jective value of the solution generated using the prediction
model and the observed actions at the equilibrium.

mir(tiénﬂize D(w) := f(m(u,w),y) (1)

where m(u,w) € Y,, C RP is the predictor function
of users’ action used for estimating y with a learning
parameter w. The goal of decision-focused utility learning
is to find w that parameterizes the utility function such
that the prediction error is minimized.

One question is how to choose the prediction model m(u, w).
Variation inequality is a modeling tool that captures the
decision-making in game theory. Because we know the
structure of our problem is a game, we make a structural
assumption that the prediction model is a solution function
of some governing variational inequality, where the param-
eters of the solution functions are trained in an end-to-end
fashion. We start by defining the parametric variational
inequality as the following

VI(Yews Fuw)s (2)
where Fy, ., : Yy — RP is an equilibrium map formed
by the gradients of individual agent utility functions. For
clarification, the set Y,, ,, and mapping F,, ,, are represented
as follows

A
Yu,w =

J

Yy, and F,, 2
! Vy@ Galy, u,wa)
Solving a parametric VI(Y, ., Fy) is to find y* €

SOL (Yy,u, Fuw); ie., y* € SOL (Y, w, Fuw) if and only
if y* € Y, ,, and satisfies the following inequality
Fuw)' (2 —y*) >0, forall z €Y,,,, (4)
where y*(u,w) is the true Nash function. In our case,
the goal is to find a solution function m(u,w) that
approximates the true Nash function y*(u,w) well. The
solution function plays a significant role in modeling
such complex phenomena and decision-making processes.
Moreover, the solution function is differentiable so that

(3)

d V,m g1y, u,wr)
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the parameters of the solution function can be trained in
an end-to-end framework through the implicit gradient
as developed in section 3. From the above discussion, the
general framework is illustrated in Fig. 1.

3. METHODOLOGY

The decision focus utility learning problem in our setting
is to learn the utility functions parameters w such that
the prediction error in the final stage is minimized; such
a model should be trained robustly and in an end-to-end
fashion.

A gradient-based method is used to solve (1). In forward
propagation, we evaluate the prediction loss function, which
in turn depends on the solution function of VI in (2). In
order to solve the VI problem. We begin with necessary
assumptions on the problem (2) structure.

Assumption 1. The following hold for problem (2):

(a) For any u € U and w € Q, the map F, () is con-
tinuous differentiable, L— Lipschitz, and pu— strongly
monotone with respect to y € Yy, .

(b) Sets Q and U are closed, convex, and bounded such
that for finite scalars U and Q, we have U £ {u €
Ul llull <}, Q2 {we | flwl <Q}.

(c) For any i € [Nineql, Jj € [Neq], we have linear functions
;" : RP x R™ — R and 07" : RP x R™ — R such
that that the set-valued map Y, ., is bounded polyhedral
given as

Yow={yeRP: Ofneq(y, u,w) <0, for all i € [Nipeq) 5)
05" (y,u,w) =0, forall j € [negl}

Under Assumption 1 on F,,,, and Y, ., we establish the
required conditions for the existence and uniqueness of

the solution of VI(Y,, o, F, ) using the proposed approach.

In this paper, the regularized D-gap function, which is a
metric to characterize the optimality of the solution of
the VI problem in (2), is considered and defined as the
following.
Definition 1. For any scalars b > a > 0, y € R?, the gap
function of ¢ap(y,w) is defined as Gpap(y,w) = ¢o(y,w) —
ob(y,w), where for some ¢ > 0 and any positive definite
matriz G, ¢.(y,w) is given by

Pe(y.w) 2 sup {(Fuw(y),y—2) —5(y—2)7"Gly—2)}. (6)

u,w

The advantages of using the regularized gap functions
appear in analyzing the convergence rate of various iterative
techniques. Also, considering the regularized gap functions
is useful to derive the implicit gradient, as we will show
later in Lemma 1.

Considering Definition 1, for some y(u,w), if the value
function ¢ap(y(u,w),w) = 0, then y solves VI(Yy, w, Fu.w(:))
Facchinei and Pang (2003). Using the definition of the
D-gap function, in the following result, we show that
the solution of VI can be neatly obtained by solving a
fixed-point equation via a projector operator, which paved
the way to accomplish forward propagation. Note that,
implicit differentiation can be used to derive V,y to support
backpropagation. That is, to update the value of wy, we
obtain the gradient of the objective function with respect to
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the parameter w. As the solution function is also a function
of w, the key is to obtain V,y.

Lemma 1. Let Assumption 1 hold and y € Y, be a
solution of the VI, i.e., y € SOL(Yy o, Fuw(-)). Then for
scalars b > 0, we have the following

(a) For scalar b > 0, we have

y=2z(y,w), (7)
where z; (y,w) = Py, (¥ —  Fuw(y)) is the unique
solution of ¢p(y,w).

(b) The implicit gradient V,y can be obtained by solving
the following linear equation:

Voy = (Vyzi (y,w), Voy) + Vi (y,w), (8)
term 1 term 2

where terms 1, and 2 can be obtained from differenti-
ating through the solution of the projection problem in
(a).

Due to space limitations, we provide all the proofs in this
online document Al-Tawaha et al. (2022). Lemma 1 implies
that finding a solution to VI(Y, ., Fy..) is equivalent to
finding a fixed point of z; (y,w), that accomplishes the task
of forward propagation through the variation inequality.
The existence and uniqueness of the solution function,
which can be established under Assumption 1, enables us to
implicitly differentiate through z; (y,w) to derive V,y that
fulfills the backward propagation through the variational
inequality. Note that we avoid the backpropagation by
unrolling the forward computations within an automatic
differentiation in evaluating the implicit gradient. We
obtain the implicit gradient by using the ideas of the D-gap
function and fixed-point equations. Therefore, the proposed
approach does not require the storage of intermediate terms
of the iterative method to compute the fixed point, making
it computationally efficient.

4. PROPERTIES OF THE SOLUTION FUNCTION OF
VI

This section provides a mathematical characterization of
the properties of the solution functions of parametric
variation inequalities. Specifically, we answer the question:
What is the class of the solution functions of variation
inequalities? We start by discussing a simple case where
F, ., is affine mapping and Assumption 1 (b and c¢) hold
on set Y, . As we will show later, solving these variation
inequalities using the proposed approach is equivalent to
solving multi-parametric quadratic programming.
Lemma 2 (Theorem 3.1 Pistikopoulos et al. (2020)).
Considering a multi-parametric quadratic programming
problem (mp-QP), and let Assumption 1 (c) hold on
set Yy, then the optimizer z}(y,w) is continuous and
piecewise affine.

Note that, from Lemma 1, the solution of the parametric
variation inequality is given by the projection of y —

%Fuw (y) on Y, then this projection problem is an mp-

Next, we discuss the class of solution functions for generic
variational inequalities. For the general case analysis, we
extend assumption 1(c). We assume that the set valued-
map Y, ,, satisfies constraint qualifications (CQs), including
Mangasarian-Fromovitz constraint qualification (MFCQ),
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Utility functions
gl(y7u7w)7 oee 7§n(y7uﬂw)

U 1

Equilibrium Model X
VI(Fyw, Yuw)

V091 (Y, u,w) of

V@ Ja(y, u,w)
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Learning Objective

min f(y" (v, ), y)

Fig. 1. In the general framework, players’ utility functions are approximated using (PICNN). A VI is an embedding
layer in the learning, which can capture proper inductive bias, such as the equilibrium of a game. This framework
connects a learning model and a VI in an end-to-end differentiable learning framework.

Constant Rank Constraint Qualification (CRCQ), and
Strong Coherent Orientation Condition (SCOC). Under
these assumptions, we can show that the solution function
is piecewise continuous PC.

Lemma 3 (Theorem 4.2.16 Luo et al. (1996)). Let the
set valued-map Y, 5 such that constraint qualifications
(MFCQ, CRCQ, SCOC) are satisfied. Now let y*(u,)
be the solution of SOL(Y, &, Fac(-)). Then, there exists
a neighborhood Q x Y of (@,7), such that y : Q — Yis
piecewise smooth PC' and y is a unique solution map of
VI(Yu,w, Fuw())-

5. BOUNDS ON GENERALIZATION ERROR

One fundamental theoretical question is about the learn-
ability of the solution functions. In this section, we start
by discussing the covering number of the set of solution
functions, which are the cornerstones to establish the
generalization error boundsMohri et al. (2018).

5.1 Cowvering number bound

We obtain the Ly covering number bounds for the affine
parametric variational inequality solution function. The
Lo covering number N5 (e,H,D,,) of the set of solution
function H define as H = {m(.,w) : w € Q}. at € accuracy
with respect to Lo metric defined over n data points as
follows

Definition 2 (Definition 1 Zhang (2002)). Given ob-
servations D, = {u1,...,u,} and vectors m(D,,w) =
[m(u1,w),...,m(uy,w)] € R™ parameterized by w for any
m € H , the Ly covering number, denoted as Na(e, H,Dy,),
is the minimum number | of a collection of wvectors
V1,...,0 € H such that Vw € Q,v € H there exists an
v; such that

n

=3 (i) — v (i) <

n
=1

We define Np(e,H,n) = supp, N, (6,H,Dn) .

Note that based on Lemma 3, the solution functions are
piecewise affine functions with parameter w € . We
provide an important result for Ly covering number bounds
for the set of solution functions H.
Lemma 4. Consider problem (2). Provided Assumption
1 holds, we bound the Lo covering number for the set of
solution function H as

P

log(Na(e, Hom) < Y

i=Negq

nmeq) 2M2Q202

i €2 ’

where M > 0 is the universal constant, Q, and U are the
nonnegative scalars, introduced in Assumption 1(b).

The above bound implies that the number of inequality
constraints increases the complexity of the class of solution
functions. The proof of the proposed bound consists of
two stages: we start by bounding the number of critical
regions, then we combine it with the covering number
within each region. Also note that for each critical region,
the covering number is bounded by a constant depending
on the parameter and the input spaces’ bounds.

To sum up this section, the critical implications of Lemma 4
is that the solution function of affine parametric variational
inequalities is statistically learnable.

5.2 Generalization Bound

In this section, we start by deriving the generalization
bound with an improved rate for the function class corre-
sponding to the solution function of the affine variational
inequality. Then, we derive the generalization bound for
the solution function of the generic variational inequalities.
We consider the input space as context U C RY and
the output space is the equilibrium actions of players
Yuw € RP. The available finite set of samples is D,, =
{(u1,91),-- -, (Un,yn)} (sampled in i.i.d. fashion). We also
specify the loss function ¢ : H x Y, ., — R, to be L, Lips-
chitz smooth, bounded, and nonnegative. Let the empirical
risk be denoted by R(m) = LS l(m(u;,w), y;), and the
true risk as R(m) = E[¢(m(u,w),y)]. We start by defining
an empirically restricted class.

Definition 3. For the set of solution function H, loss
function ¢, dataset {(u;,y;)}"_,, and a nonnegative scalar
r, we define the following empirically restricted class

L(r) 2 {E C(u,w,y) = lm(u,w),y) :m € H,]%(m) < r} )

Restricted function class is machinery considered in Bartlett
et al. (2005); Srebro et al. (2010) for proving possible
fast rates based on local Rademacher complexity. We also
use empirically restricted class and provide a generaliza-
tion bound with further improvement over the existing
generalization bound in Srebro et al. (2010) for smooth,
nonnegative, bounded loss function.

Theorem 1. For an Ly-smooth, nonnegative, and bounded
loss function such that || < lpmas, for any § € (0,1), we
have that with probability at least 1 — & over a random
sample size n, for any m € H corrosponding to the solution
function of affine variational inequality

R(m)gf%(m)_;.o( R(Tlmlog(n)_g.w) )

n

To prove the rate of generalization bound in the Theorem
1, we start by bounding the Rademacher complexity of
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the empirically restricted class in terms of Lo covering
number. Then, instead of bounding L covering number of
the empirically restricted class in terms of fat-shattering
dimension, we bound Lo covering number of the empirically
restricted class directly in terms of Lo covering number of
the hypothesis class. Specifically, by using the fat-shattering
dimension, the rate of generalization error is given by

Rm) |1 108 <n>> |

——lo
n n

R(m)§R(m)+O<

Note that the previous generalization bound is obtained

by bounding fat-shattering dimension Alon et al. (1997),
which leads to bounds worse than the ones that can
be obtained in terms of Lo covering number. Next, we
extend the generalization bound for the solution function of
generic parametric variation inequalities, where the solution
function is a piecewise smooth function.
Theorem 2. For a function class with Ly-smooth, non-
negative, and bounded loss function such that for all u,w,
we have |[m(u,w)| < ag, than with 1 — & confidence, for
any m € H, the empirical loss is bounded as

The proof of Theorem 2 is based on the result provided in
Srebro et al. (2010); we start by bounding the Rademacher
complexity by the covering number of the solution functions
of generic variational inequalities.

R(m) < R(m)+ O ( @ logl.s(n)ag%ﬂ)

6. ERROR BOUNDS AND CONVERGENCE
ANALYSIS

In this section, we discuss the error bounds on the
gradients of the decision focus objective in (1), obtained
from Algorithm 1 and provide the convergence results in
Theorem 3. Note that for notational simplicity, in this
section, we assume that y € Y, , € RP" and F,,(y) :
RP™ — RP™ by considering a batch learning set up.

Algorithm 1 Decision-focused iterative implicit gradient

Input: ws, scalar b > 0, and stepsize S.

1: for k=1,..., K do
22 for t=1,...,T do
3:
(yt,wk)—dregmdx{ Fuwy(ye)sye — 2) — Hyr—ZH } (9)
ZC€Yu,w
Yer1(u,wi) := 2 (Y, wi)- (10)

4: end for

5. Obtain V,2y(yg, wr) and V2, (yx, wk) through the
differentiation of the optimization problem (9).
Evaluate V,y; from (8).

7. Evaluate the gradient for problem (1) objective as
Vo ®(wr) = Vo f(ye(wr),y) + (Vo f (r(wr), ¥), Voyr(wi))

8:  Update wy using the following gradient update

Wit1 = Pa{wr — BV P(wr)},
9: end for

We start here by providing a set of standard assumptions
on function, f, and on the fixed-point in problem (1) and
(7), respectively.

Assumption 2. Consider problem (1). The gradient of
the objective function f(y,w) has the following properties:
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(a) We assume the Lipschitz smoothness property for
fly,@) with respect to y, i.e. for any @ € Q, and
Y1,Y2 € Yy 0, we have

Ve f(y1,@) = Vo f(y2, @)l < Ly, lyr — 2l
and [|Vy f(y1,®) = Vy f(y2, @)l < Ly, lly1 — y2ll-

(b) We assume the Lipschitz smoothness for f(w,q) with
respect to w for any y € Yy, ,, i.e. for any wy,ws € ,
and y € Yy o, we have

Hva(val) - wa(ﬂ,wg)” < Efw ||w1__ UJQH
and ||[Vyf(§,w1) — Vyf(G,w2)|l < Ly, lwr — w]|.

(¢) Function f is M— Lipschitz with respect to both pa-
rameter w €  and y € Yy .-

(d) Jacobians V. z;(y,w) and Vyz;(y,w) are Lipschitz
continuous with constants L, and Ly, , respectively.

Lipschitzness in Assumption 2(c) of the function f is to
ensure the gradient is bounded; also, the other assumptions
characterized the smoothness of the objective function.
Moreover, we provide an assumption on the fixed-point
problem such that the jacobian of the projection operator
is smooth with respect to y and w. We also assume there
exists a bound on the update from equation (10), such that
llyl| is bound by C,,, then form Grazzi et al. (2020) for all
y the value of ||V, 2} (y,w)| is bounded by C;, . We start
by obtaining the contraction constant of the ﬁxed -point
equation. Under Assumption (1) on the mapping F, ., (-),

if we let b = L—z,
o
from 10 is contraction with constant ¢, = 4/1 — %2 <1.

In the following result, we comment on the Lipschitz
continuity of the solution function.

Lemma 5. Consider problem (?7?). The solution function
of the VI denoted by m(u,w) is Lipschitz continuous with

’

. c,,.
respect to w with parameter Lg, where Lg = =

then the fixed-point equation obtained

In Algorithm 1, the solution of the VI is characterized by
fixed-point iterations. In the following result, we character-
ize the tracking error defined by |ly: — y*|| after ¢ number
of steps, and we show that y; converges to y* at least
R-linearly.

Lemma 6 (Theorem 12.6.1 Facchinei and Pang (2003)).
Forw € Q, the iterative update of y;, obtained from equation
(9) in Algorithm 1 converges to the limit point y* with an R-
linear rate, after iteration t of the inner loop in Algorithm
1

t
”yt _ y*” < ¢)ab(y07w) 1 ( 72 )
— _ 7 b
n 1 V 7’1'ﬁ"72 m + 2
where 11,12, and & are the nonnegative scalars such that
for any w € R™, and y € RP"™ we have

Pab (e, @) — Gab (23 (91, w),w) = M1 llye — 2" (ye, )| *and

min(éap (Yo, w), Gab (25 (Y2, w), ) < m2llye — 23 (ye, w)|?
for all x with ||y: — zj (y, w)|| < 6.

With the contraction property of the fixed-point equation,
we can obtain the error bound between the implicit gradient
from iterative update (9) in Algorithm 1 and the actual
implicit gradient, which is an essential step to establish the
final bound.

Proposition 1 (Proposition 2.1 Grazzi et al. (2020)).
Let Assumptions 1, and 2 hold. Then, we have that the
error bound of the implicit gradient at the iterative update
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obtained from equation (9) after T iterations, and the true
gradient of the fized-point of the VI in problem (2) as
follows

IVoyr — Vou* || < (Luwg, + Ly, Ls) Cyal, T + Lsql,.

Next, we will discuss one of the main results of this work.
We show that the update from Algorithm 1 converges to
local optimum with O(1/K). Because the loss function is
generally nonconvex, we use the gradient norm as the
convergence criterion, which is standard in nonconvex
optimization.

Theorem 3. Let Assumption 1 and 2 hold. Consider the
update from step 6 of Algorithm 1. We show that sequence
{wr} converges to a stationary point with a rate O(1/K)
for K iterations

min || Ve®(we)||?
0, K}

o 8 g2
< S M ( 7 Lé) ((Lewosy + Lyy, L) CyqB (T +1) + Logh ™)

= B(z-PL)K 5 _B2Lg
T+1
zp(Yo, wi) 72
Ui N +n2

Ly, +Ly,Ls (§+,82Lq>)
where Lo = Ly, Ls+ Ly, + LfyL?S' + EfyLS'

+
_ /= \ B _p2
1 n1+m2 5 —PLe

Note that the last two terms above go to zero with an
increasing number of inner iterations 7. We hereby focus
on establishing the nonasymptotic convergence analysis of
the outer-level update {wy} from Algorithm 1. Therefore,
assuming the inner-level converges R-linearly, we bound
the last two terms with €, and we secure the rate of O (%)

7. NUMERICAL EXPERIMENTS: ESTIMATING
UTILITY FUNCTION OF 2 PLAYERS

Consider a Cournot competition of d number of players.
In this experiment, we let the number of players d = 2
with their combined strategy vector y = [y?); y(=9] € R*.
Then, a data set is generated {(u;,v;)}1Y;, where the y;
is at Nash equilibrium. After we get hold of the data set,
in the actual implementation of Algorithm 1, we assume
that utility functions are not known to us. We use and
modify the ideas of the PICNN to approximate the utility

of agents and estimate utility functions using Algorithm 1.

PICNNs, proposed in Amos et al. (2017), are convex
neural networks in some of their inputs, provided that
the activation functions are convex and non-decreasing.
Also, all the weights in the convex path are non-negative.
From the inherent convexity assumption of PICNN in y,
the map F), ., formed by the gradient of utility functions,
is a monotone map. We leverage automatic differentiation,
a utility already implemented in Tensorflow and PyTorch,
to compute the gradients of §; with respect to y; for
all agents. To be in line with Assumption 1, we add a
regularization term to §;(-,u,w) to be strongly convex,
which in turn yields a strongly monotone map F3, ,. In the
construction of PICNN, each agent’s utility function has 4
layers. Each layer consists of 32 neurons for both convex and
nonconvex paths. We use the soft plus activation function,
a continuous, differentiable, and convex function.

After constructing the parametric equilibrium map F, .,
we solve the variation inequality using the fixed point
method. The optimization problem in (9) is solved using
CvxpyLayer Agrawal et al. (2019), iteratively, with e
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Fig. 2. Mean squared error for training and testing loss on
a logarithmic scale.

accuracy such that the stop criteria is ||yrr1 — we| < e
Then, we obtain Vyzy(yg,wr) and Vi, z,(yk, wr) and by
solving the linear system in (8), we compute V.

The utility functions of the agents, represented by PICNNs,
are updated using gradient descent with adaptive learning
rate § using ADAM optimizer such that the parameters in
the convex direction are non-negative.

A test data set of {(u;,y;)}1%° samples is generated
to validate the estimated parameters’ quality. At each
iteration, the mean square error of training and testing
error for learning PICNN parameters are reported on a
log scale as shown in Fig. 2. We can see that the PICNN
with VI has the expression capability to fit the data and
predict the equilibrium actions completely. Moreover, the
learning with the VI models is explainable and robust. A
relatively small number of training samples was enough to
capture the utility function and accurately predict players’
equilibrium actions.

8. CONCLUSION AND FUTURE DIRECTIONS

In this paper, a decision-focused learning approach was
investigated. In order to make evidence-based predictions,
An algorithm based on the iterative differentiation strategy
to calculate the implicit gradient was proposed. A numerical
example was carried out to show the advantages of
the proposed approach. In our settings, PICNNs were
designed and modified for estimating the utility functions
of individual agents, then auto-differentiation was used to
construct F, .. The following conclusions can be drawn

e The covering number for the set of solution functions
of an affine parametric variational inequality can be
bounded.

e We derived the implicit gradient using the parametric
D-gap function and claimed the existence and unique-
ness of the gradient.

e The generalization bound for the set of solution
functions with respect to smooth loss function with
an improved rate can be established.

e The error bounds on the gradients and the convergence
results based on the proposed algorithm was provided.



