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Abstract. We consider a matching market where buyers and sellers arrive according to in-
dependent Poisson processes at the same rate and independently abandon the market if not
matched after an exponential amount of time with the same mean. In this centralized mar-
ket, the utility for the system manager from matching any buyer and any seller is a general
random variable. We consider a sequence of systems indexed by 1 where the arrivals in the
nth system are sped up by a factor of n. We analyze two families of one-parameter policies:
the population threshold policy immediately matches an arriving agent to its best available
mate only if the number of mates in the system is above a threshold, and the utility thresh-
old policy matches an arriving agent to its best available mate only if the corresponding util-
ity is above a threshold. Using an asymptotic fluid analysis of the two-dimensional Markov
process of buyers and sellers, we show that when the matching utility distribution is light-
tailed, the population threshold policy with threshold ;). is asymptotically optimal among
all policies that make matches only at agent arrival epochs. In the heavy-tailed case, we
characterize the optimal threshold level for both policies. We also study the utility threshold
policy in an unbalanced matching market with heavy-tailed matching utilities and find that
the buyers and sellers have the same asymptotically optimal utility threshold. To illustrate
our theoretical results, we use extreme value theory to derive optimal thresholds when the
matching utility distribution is exponential, uniform, Pareto, and correlated Pareto. In gen-
eral, we find that as the right tail of the matching utility distribution gets heavier, the thresh-
old level of each policy (and hence market thickness) increases, as does the magnitude by
which the utility threshold policy outperforms the population threshold policy.
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1. Introduction

centralized model, the agents make no explicit decisions,

We consider a symmetric centralized dynamic matching
market (the asymmetric case is also discussed for heavy-
tailed utilities). Two types of agents, which we call
buyers and sellers, arrive to the market according to in-
dependent Poisson processes with rate A, and each agent
abandons (i.e., exits) the market after an independent ex-
ponential amount of time with rate 1 if he has not yet
been matched. The utility of a match between any buyer
and any seller is a general random variable. In this
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and at the time of an agent arrival, the system manager
observes all matching utilities between the arrival and
all potential mates (e.g., sellers if the arrival is a buyer)
who are currently in the market. Using information
about the number of buyers and sellers and their match-
ing utilities, the system manager decides when to make
matches and which agents to match.

Centralized dynamic matching markets occur in
settings such as organ transplants, public housing,
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labor markets, and various online platforms. In prac-
tice, matching utilities include information about tis-
sue type matching and the geographical distance be-
tween the donor and the recipient for organ
transplants; the location and desirability of the resi-
dence and the distance between the residence and the
applicant’s current residence in public housing; and
the match between the needs of the employer and the
experience and skills of the job applicant in the labor
market. This information can lead to wide variations
in the matching utilities between different buyers and
sellers, and our goal is to understand how best to ex-
ploit this variation when managing the market. How-
ever, in our idealized model, the details about this in-
formation are suppressed (e.g., we do not use
covariates describing the agents to help make deci-
sions) and aggregated into the matching utility distri-
bution between buyers and sellers.

A key issue in centralized dynamic matching mar-
kets is to find the optimal market thickness; that is,
rather than match a new agent upon its arrival, it may
be preferable to place the arriving agent in the market
and allow more agents to arrive in the hope of making
a higher-utility match in the future. In our model, we
aim to maximize the long-run expected average utility
rate (i.e., utility of matches per unit time) of all
matches. Although we do not explicitly include agent
waiting costs, a strategy that forces agents to wait too
long for the market to thicken can backfire because
agents may abandon the market before they are
matched.

Due to the challenging nature of this problem, we
resort to asymptotic methods. We consider a sequence
of systems where the arrival rates in the nth system
are multiplied by n > 0. In the absence of any match-
ing, the number of agents of each type would be pre-
cisely the number of customers in an M/M/oo queue,
which would be O(n) (a generic function f(n) is O(n) if
lim supn_,oof(T" < ¢ for some finite constant ¢ > 0). We
use two types of asymptotic methods: one is a fluid
analysis of the two-dimensional Markov process for
the number of buyers and sellers in the market when
the arrival rates are large. The other is extreme value
theory (Gumbel 1958, Galambos 1978) and regularly
varying functions (Resnick 1987), which are used be-
cause the utility of a match under the policies we con-
sider is the maximum of a (typically) large number of
random variables. In our study, a fluid analysis of the
queueing process is sufficient to derive our results
and leads to a decoupling of the extremal behavior of
the utilities and the dynamics of the queueing system.
This decoupling in turn allows us to consider correlat-
ed utilities, which is a feature that is lacking in other
dynamic matching models.

In this asymptotic regime, we compute an upper
bound on the utility rate of any policy that makes

matches only at agent arrival epochs and compare it
to the utility rate of two families of threshold poli-
cies:the population threshold policy and the utility
threshold policy. Under the population threshold poli-
cy, the system manager immediately matches an ar-
riving agent to the available mate with the highest
matching utility (at which point, the arriving agent
and its matched mate exit the system and their match-
ing utility is collected by the system manager) only if
the number of available mates in the market exceeds a
specified threshold; otherwise, the arriving agent is
not immediately matched and is instead placed in the
market. Under the utility threshold policy, the arriv-
ing agent is immediately matched to its best available
mate only if the corresponding matching utility ex-
ceeds a specified threshold.

Although possibly not optimal among all policies,
these single-parameter policies are easy to implement
and describe and allow for quite explicit results. In
fact, the population threshold policy can be imple-
mented without ever calculating the utility of individ-
ual matches (although the probability distribution of
matches is required to compute the optimal thresh-
old): all that is required is a ranked ordering of the
possible matches. As we will discuss, the utility
threshold policy outperforms the population thresh-
old policy in our examples, but the latter policy is as-
ymptotically optimal in certain cases. Another natural
class of policies to consider is a batching policy, where
the system manager—after a certain amount of time
or after a certain number of buyers and/or sellers col-
lect in the market—matches a set of agents. This ap-
proach requires an optimization algorithm to perform
the matching and hence is more computationally de-
manding than our two threshold policies. Moreover,
if there are many agents who abandon quickly after
arrival, as in some call centers (e.g., figure 20 in Gans
et al. 2003), a batching policy may not be very robust
in practice. Nonetheless, in Section 7 we consider a
batch-and-match policy that periodically (with an as-
ymptotically optimal time window) optimally
matches all agents on the thinner side of the market
with an equal number of agents randomly selected
from the thicker side of the market.

1.1. Preview of Results

In extreme value theory, the limiting distribution of
the maximum of many random variables can be one
of three types, loosely based on whether the underly-
ing distribution of these random variables has an ex-
ponential right tail, has a heavier (e.g., power law)
right tail, or is bounded from above, and our results
are qualitatively different in each case. Although our
main results are couched in terms of regularly varying
functions, we preview our results with three canonical
examples (Table 1)—one from each of the three
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domains of attraction—in the symmetric case, which
are analyzed in Section 10 of the online appendix.
When matching utilities have an exponential distribu-
tion, the population threshold policy with a threshold
of i, is asymptotically optimal with a utility rate that
is O(nlnn) and twice as large as the utility rate of the
greedy policy—that is, the population threshold poli-
cy with a threshold of zero—in the limit. When the
matching utilities have a Pareto (c, §) distribution with
shape parameter f > 1 (and hence a finite mean), the
population threshold ﬁn is asymptotically optimal.
Although the utility rate of this threshold policy does
not converge to the loose upper bound in this case,
the utility rate and the upper bound are both
O(n'*1/F), whereas the utility rate under the greedy
policy is only O(n'*1/(?#)). When the matching utilities
have a uniform distribution, the greedy policy is as-
ymptotically optimal (i.e., 0 is an asymptotically opti-
mal population threshold) and the optimal utility rate
is O(n).

In the Pareto case, the utility threshold 0.763+/7tn is
asymptotically optimal when ¢ =1 and = 2, and the
corresponding utility rate is O(n*1/#). This asymptotic
utility rate is computed explicitly, and it is shown to
be larger than the utility rate of the asymptotically op-
timal population threshold policy. In the exponential
and uniform cases, where we have already identified
an asymptotically optimal policy, we use heuristics to
compute, in the prelimit, utility threshold policies that
are consistent with the asymptotically optimal de-
scriptions but outperform in simulation results the
population threshold policy. We also consider a posi-
tively correlated Pareto case in Section 10.4 of the on-
line appendix, and show that the asymptotically opti-
mal population threshold is independent of the
correlation, the asymptotically optimal utility thresh-
old decreases as the correlation increases, and the
utility rates of both threshold policies decrease as the
correlation increases. In Section 6, we consider an un-
balanced market, where buyers have a different

arrival rate and abandonment rate than sellers, and
we analyze the utility threshold policy in the heavy-
tailed case. Surprisingly, although we allow the
buyers and sellers to have a different utility threshold,
we find that they have the same asymptotically opti-
mal utility threshold. Finally, we show in Section 7
that in the Pareto case, the utility threshold policy out-
performs the batch-and-match policy.

Taken together, the optimal amount of patience—
and hence market thickness—increases with the right
tail of the matching utility distribution, as does the op-
timal utility rate and the performance gap between
the utility threshold policy and the population thresh-
old policy. Our limited analysis of an unbalanced
market suggests that the optimal market thickness
also increases with the amount of imbalance. In our
particular model of correlation, increased positive cor-
relation among matching utilities decreases the benefit
of increased patience (i.e., the system manager is less
likely to observe a future utility that is much better
than the best existing utility), whereas the cost of in-
creased patience (i.e., the number of abandonments) is
independent of the correlation. Among the three one-
parameter policies considered here, the utility thresh-
old policy displays the best performance.

1.2. Related Work

Matching markets is a large and active area of re-
search, and we restrict our review to centralized dy-
namic markets. Although our model lacks the contex-
tual richness of some of the models for specific types
of markets, the most distinctive feature of our model
is the generality of the matching utilities, which al-
lows us to understand how the right tail of the match-
ing utility distribution impacts the optimal thickness
of the market (Table 1). In contrast, much of the recent
work in dynamic (centralized or decentralized) match-
ing markets, either via two-type agents (e.g., easy-to-
match or hard-to-match agents, or matches that are
preferred or nonpreferred; Baccara et al. 2020, Ashlagi

Table 1. Summary of Results for the Three Canonical Cases in Section 10 of the Online Appendix

Matching utility distribution

Policy Exponential(v) Pareto(c, shape > 1) Uniform(a, b)
Upper bound U ~4ninn U = O(n'+1/f) Ut ~ Abn
Greedy policy U ~4nlnn U5 = O(n+1/CB)) Asymptotically optimal
Popt}lation threshold policy z;, = . is asymptotically optimal zy = ﬁn z;, =0 is asymptotically optimal

with threshold z, Uh(z:) = O(n'*'/f) but no

convergence to upper bound
unless p — oo

Utility threshold policy with Heuristic v}, =1.353/n heuristic v}, = a+

threshold v,, Inn—InInn—Inn (ZAl2) whenc=1,=2; 1E

* = Alnn1j _ 1 l A V2n
o=t (=)=

Uy (@;,) = O(n''/)

Note. Ut

n’s

U5, Uh(z,), and U (v,) are, respectively, the upper bound on the utility rate for any arrival-only policy, the utility rate for the greedy

policy, the utility rate for the population threshold policy with threshold z,, and the utility rate for the utility threshold policy with threshold v,

all for the nth system.
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et al. 2018a, 2019) or a compatibility network (Ashlagi
etal. 2013, Anderson et al. 2017, Varma et al. 2019, Ak-
barpour et al. 2020) essentially lead to dichotomous
outcomes for a match. Exceptions include Unver
(2010), who considers blood type compatibility for a
dynamic kidney exchange model, Emek et al. (2016)
and Ashlagi et al. (2017b), who consider minimizing
mismatch costs when agents arrive on a finite metric
space in a nonbipartite and bipartite setting, respec-
tively, and Ashlagi et al. (2018b), who allow general
matching utilities in a discrete time model with a
constant time until abandonment. They perform a
primal-dual analysis to derive competitive ratios for
algorithms when there is no prior information about
the match values or arrival times.

The analysis of multiclass matching queues is an ac-
tive area. Hu and Zhou (2021) consider a discrete-
time, multiclass, discounted variant of our problem
that includes waiting costs. They show that the opti-
mal policy is of threshold form under vertical and uni-
directionally horizontal differentiated types. Ding et al.
(2021) allow the matching utilities to depend on the
class of buyer and seller and perform a fluid analysis
of a greedy policy, and Busi¢ and Meyn (2015) mini-
mize linear holding costs in a system without class-
dependent matching utilities or abandonment but
also find that matches are not made until there is a
sufficient number of agents in the market (see Moyal
and Perry 2017, where these systems are referred to as
matching queues, for other references to these types of
models).

Gurvich and Ward (2014) and Nazari and Stolyar
(2019) study a control problem in a more general set-
ting than the aforementioned studies, where arriving
customers wait to be matched to agents of other clas-
ses. Gurvich and Ward (2014) minimize cumulative
holding costs over a finite horizon and show that a
myopic discrete-review matching algorithm is asymp-
totically optimal. Nazari and Stolyar (2019) maximize
the long-run average revenue rate subject to maintain-
ing stable queues and construct a greedy primal-dual
approach that is asymptotically optimal. It is difficult
to compare this powerful result to our results, given
that we assume abandonment rather than stability,
and we have a single-class model with general re-
wards rather than a multiclass model with class-
dependent rewards.

Two other studies consider fluid and diffusion lim-
its of simplified versions of our model where either a
match occurs with a certain probability for each
buyer-seller pair (Biike and Chen 2017) or everyone
matches when there is an available mate (Liu et al.
2015), which corresponds to our greedy policy but
with a deterministic utility (i.e., a matching utility dis-
tribution that is a point mass at one value). In both
cases, the system state reduces to a one-dimensional

quantity (the number of sellers minus the number of
buyers), whereas our model requires a two-
dimensional state space for a nongreedy policy.

Perhaps the most closely related paper is Mertiko-
poulos et al. (2020), which also considers a symmetric
centralized dynamic matching market. Compared
with our study, they assume independent exponential
mismatch costs rather than general matching utilities,
consider waiting times rather than abandonment, and
are interested in minimizing the sum of mismatch and
waiting costs over a finite horizon. They consider a
class of policies that make the kth match (which has
the lowest mismatch cost among possible matches)
when the short side of the market grows to a certain
one-parameter function of k. They analyze the perfor-
mance of the policy (using the celebrated 7%/6 result
for the expected minimum weight matching due to
Mezard and Parisi 1987 and rigorously proved by Al-
dous 2001) under various values of the parameter and
also identify a policy that balances the mismatch and
waiting costs. It is difficult to draw qualitative com-
parisons between our results for exponential utilities
(which incorporate abandonments) and their results
(which incorporate waiting costs); indeed, our ap-
proach depends on the right tail of the exponential
distribution via extreme value theory, whereas their
approach depends on the left tail of the exponential
distribution via minimum weighted matching.

We briefly mention other works that are only pe-
ripherally related. Originally motivated by public
housing (Kaplan 1988), Caldentey et al. (2009) and
Adan and Weiss (2012) consider infinite bipartite
matching of servers and customers under the first-
come first-served policy. There is also a stream of
work in online bipartite matching in an adversarial
setting (Karp et al. 1990), where agents do not wait in
the market if they are not matched immediately. Final-
ly, there is a body of literature (e.g., Dulffie et al. 2018
and references therein) that uses the law of large num-
bers to analyze the performance of static and dynamic
matching models used in economics, finance, and ge-
netics, but these models are descriptive rather than
prescriptive.

1.3. Organization

The paper is organized as follows. We formulate the
model in Section 2 and state our main theoretical re-
sults in Section 3, which are proved in Section 9 of the
online appendix. After analyzing a greedy policy in
Section 4, we apply our main results to specific match-
ing utility distributions in Section 10 of the online ap-
pendix and assess the accuracy of these results in a
simulation study in Section 5. The unbalanced case is
studied in Section 6, the batch-and-match policy is an-
alyzed in Section 7, and concluding remarks are of-
fered in Section 8.
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1.4. Notation

For the convenience of the reader, we collect together
the notational conventions used in this paper. Al-
though we have already introduced the notation O(n),

we repeat it here: a generic function f(n) is O(n) if

lim supnﬁoof (n) < ¢ for some finite constant ¢ > 0. In a

similar vein, we introduce o(n), Q(n), and ©(n). A ge-

neric function f(n) is o(n) if limy, oo 12 (”) =0, is Q(n) if
there exist ¢ > 0 and an integer 1, > 1 such that f(n) >
cn for all integers n > n,, and is ©(n) if f(n) is both O(n)
and Q(n). We use x, ~y, as shorthand for "” t—1 as
n— oo,

We let R denote the real line, and, for any finite in-
teger k > 1, we let R* denote the k-dimensional Euclid-
ean space. The Euclidean norm of x € R is denoted by
|x|]. We let R, denote the set of nonnegative reals, and
we let Z, denote the set of nonnegative integers. The
stochastic processes that we consider take values in Rf
and are assumed to be elements of D¥[0, ), the space
of right continuous functions mapping [0, ) into R
that have left limits, endowed with the Skorokhod
topology.

For xeR,,[x] is the smallest integer that is not
smaller than x. The standard stochastic order between
two distribution functions F; and F, is denoted by

d e g .
F1<s Fo. We use = to denote equality in distribution.

More specifically, we write x4 Poisson(x) to denote
that the random variable X has a Poisson distribution
with mean x.

2. The Model

2.1. Dynamics

Buyers and sellers arrive to the market according to in-
dependent Poisson processes with rate A. The agents
are impatient, in that each buyer and each seller inde-
pendently abandons the market after an independent
and identically distributed (i.i.d.) exponential amount
of time with rate 7 if they are not matched within this
time. If an agent is matched prior to his abandonment,
then the agent leaves at the time of matching.

Let B(t) and S(f) be the number of buyers and sellers
in the system at time ¢; these agents have arrived but
have not yet abandoned or been matched. The utility
of a match between any buyer and any seller is a ran-
dom variable V > 0 with cumulative distribution func-
tion (CDF) F(v). When a buyer (seller, respectively) ar-
rives to this centralized system to find it in state
(B(t),S(t)), then S(t) (B(t), respectively) instances of V
are observed by the system manager, which represent
the matching utilities of the arriving agent with all
currently available potential mates. Thus, at any point
in time, the system manager knows the utility that

would be generated by matching any buyer to any
seller.

2.2. Policies

Our goal is to maximize the long-run expected aver-
age rate of utility from matches, which we refer to as
the utility rate. Whereas the system manager could
conceivably make matches at any point in time, we re-
strict our attention to arrival-only policies, where a
match may occur only at the arrival epoch of one of
the agents being matched. In particular, we consider
the following two classes of arrival-only policies.

1. Population threshold policies: A buyer who ar-
rives at time f is matched immediately to a seller if the
number of sellers in the system satisfies S(f) > z; in this
case, the arriving buyer is matched to the seller who
has the highest matching utility with the buyer, with
ties broken arbitrarily. If S(f) < z, then the arriving buy-
er waits in the market and leaves upon being matched
to a later-arriving seller or upon abandonment. Similar-
ly, a seller who arrives at time t is immediately
matched to the highest-matching buyer if B(f) > z and
waits otherwise. We refer to the parameter z as the
population threshold.

2. Utility threshold policies: A buyer who arrives at
time f is matched immediately to the seller with match-
ing value maxjci<s Vi if maxici<sVi>v for some
fixed ©v>0, with ties broken arbitrarily. If
maxi<;<g) Vi £ 0, then the arriving buyer waits in the
market and leaves upon being matched to a later-
arriving seller or upon abandonment. Similarly, a seller
who arrives at time ¢ is immediately matched to the
buyer with matching value maxj<pyV; if
max;<;<p Vi > v and waits otherwise. We refer to the
parameter v as the utility threshold.

Given the symmetry of the underlying stochastic
model, it seems natural to restrict ourselves to single-
parameter policies, where buyers and sellers have the
same threshold (z or v). In the analysis of the unbal-
anced case in Section 7, we allow different utility
thresholds for buyers and sellers (v, and v;) and find
that the asymptotically optimal values satisty v, = v,
under Pareto matching utilities. This result suggests
that a single-parameter threshold policy is not only
easier to use in practice and easier to analyze than a
two-parameter threshold policy, but it also does not
sacrifice performance.

2.3. Utilities

In our model, the utilities of potential matches of a
new arrival with agents on the other side of the mar-
ket may be correlated. However, we make the follow-
ing assumption.
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Assumption 1. There exists a sequence of distributions
Fi,F,, ... such that Fy_1<4 Fy for each k and, for an arriv-
ing agent who finds k agents on the other side of the market,
max{Vy,..., Vi} is independent of the past and has distri-
bution Fy.

For example, if the utilities of different matches are
iid. with distribution F, then Fi(x) = (F(x))' in As-
sumption 1. But Assumption 1 allows us to deal with
correlated utilities, which is natural when there is con-
textual information (e.g., covariates) that can be used
to inform the utilities based on the types of buyers
and sellers to be matched. More specifically, Assump-
tion 1 holds if the utilities are conditionally indepen-
dent given a context observed at the time of arrival. In
this case, the equation Fy(x) = (F (x))* holds with an ad-
ditional expectation, and the stochastic ordering in k
still holds.

Let the random variable M(k)£max{Vi,...,Vi}
have distribution F,. We impose the following as-
sumption on M(k).

Assumption 2. For each x € R, define
m(x) = E[M([x])],

and suppose that m(-) is regularly varying with index
a €10,1). That is, for every x > 0,
m(tx)

t—oo m(t)

x*. (1)

A regularly varying function with index a = 0 is also
known as slowly varying.

For the case of ii.d. utilities, Assumption 2 covers
every utility distribution such that E(V*%)< oo for
some 6 > 0. All distributions that belong to the maxi-
mum domain of attraction of a generalized extreme
value distribution—which unifies the type I (Gumbel),
type II (Frechet), and type III (Weibull) laws within a
single parametric family—satisfy (1) (including, e.g.,
uniform, beta, gamma, lognormal, and Pareto). There
are also other distributions that do not belong to any
domain of attraction in extreme value theory for
which (1) holds; for example, the geometric, negative
binomial, and Poisson distributions satisfy (1) with a
= 0. For ease of reference, we collect some basic facts
about extreme value theory and regularly varying
functions in Section 11 of the online appendix.

The case a=0 corresponds to distributions for
which all moments exist (i.e., the tail of V decays fast-
er than any polynomial), whereas a >0 corresponds
to the case in which the tails of V decrease roughly
like a polynomial with degree 1/a. The condition that
a <1 is imposed to guarantee that E(V!™)<oo for
some 0 > 0. We will refer to a = 0 as the light-tailed case
and «a € (0,1) as the heavy-tailed case.

2.4. Scaling

To make further progress, we consider a sequence of
systems indexed by n=1,2,..., and some quantities
in the nth system include the subscript n. The arrival
rate in the nth system is nA, and the abandonment
rate in the nth system is 1. Alternatively and equiva-
lently, we could leave the arrival rate unscaled and
slow down the abandonment rate by a factor of n, as
in Liu et al. (2015). The matching utilities are unscaled.
In the nth system, we denote the system state by
(Byu(t),Su(t)), the population threshold by z,, the utility
threshold by v,, and the utility rate by U,,.

3. Main Results

Results for the population threshold policy and the
utility threshold policy are given in Theorem 1 in Sec-
tion 3.1 and in Theorem 2 in Section 3.2, respectively.
Theorem 1 shows that the optimal population thresh-
old policy is asymptotically optimal among the class
of arrival-only policies when @ = 0 and provides the
asymptotically optimal population threshold when
a €(0,1). Theorem 2 provides the asymptotically opti-
mal utility threshold when « € (0,1). The proofs of
Theorems 1 and 2 appear in Section 9 of the online
appendix.

3.1. Population Threshold Policy

We begin by providing a dynamic description of the
system using Poisson processes. Denote the indicator
function of event x by I, and let Nf(-),Ng(-),
N{(-),Ng(-) be independent Poisson processes with
unit rate, which are used to construct buyer arrivals,
buyer abandonments, seller arrivals, and seller aban-
donments, respectively. Under the population thresh-
old policy with threshold z,, the state (B,, S,) of the
nth system at time ¢ satisfies

t t
B, () =B,(0)+ / I{sn(r)<Zn}de§(Anr)—Ng(n / Bn(r)dr)
0 0

¢
_/ LB, (r)22,) AN (Anr),
0
2)
' ¢
Sn(t)zsn(0)+fl{3n(r)<zn}dN§(/\nr)—Ns—(n/ Sn(r)dr)
0 0

t
_/ I{Sn(r—)zzn}dNE (/\nr)'
0

®)

The process {B,(t),S,(t),t > 0} is a nonnegative (en-
try wise) irreducible two-dimensional birth-and-death
process on a subset of Z, X Z,, and each coordinate is
bounded by that of an infinite-server queue, for each
n > 0. Thus, the process {B,(-),S,(-)} is a positive-
recurrent continuous-time Markov chain and there-
fore it possesses a stationary distribution, which we
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denote by (Bj(c0),S,(c0)). By symmetry, the utility
rate Ul (z,) of the population threshold policy with
threshold z, can be expressed as

U (2,) = AE[m(By(c0))I (5, (co)s=,) ]
+AARE[m(S(00)) (s, (c0)>2} |-
= 2AnE[m(B,(0)) (5, (c)>2,} |- (4)

The next theorem shows that, for a = 0, the popula-
tion threshold policy is asymptotically optimal among
the family of arrival-only policies. Also, for each
a €[0,1), it characterizes the scaling of the optimal
population threshold, that is, the threshold z, that
maximizes the utility rate asymptotically as n — oo.

Theorem 1. Suppose that Assumption 2 holds.

(i) If @ = 0, then there exists an o(n) sequence of popula-
tion thresholds z;, such that lim,_,e m(z) = 1. For any such
sequence of thresholds, the population threshold policy is as-
ymptotically optimal in the following sense. Let Ut (z}) and

U,, be the utility rates under the aforementioned policy and
any other arrival-only policy, respectively. Then

P
liminfy, e %‘Z) > 1. The associated utility rate satisfies

P (o
fim ) @) _
n—co i (n)

®)

(i) If € (0,1), then the population threshold policy with

Z; = z.n, where z, = ,](1 5 Is asymptotically optimal among

the class of population threshold policies. The associated utili-
ty rate satisfies

. u}l;(z:z) _ a T]Z*
e = () ©

For a = 0, it remains to compute an o(n) sequence of
thresholds z;, such that lim,,—co m(z = 1. This is usually

not difficult to do. For example, when utilities are
i.i.d. with an exponential distribution, then z;, = ' sat-
isfies this property. More generally, as shown in theo-
rem 1 in Bojanic and Seneta (1971), for a large class of
distributions, setting z; = ( v for any positive real 6 is

sufficient. By setting z, in this way (i.e., o(n) but not
too small), we simultaneously ensure the following:
(1) the fraction of agents that abandon the system
tends to 0, and (2) the market thickness, that is, B,,(0),
is almost linear in n. In other words, almost all agents
experience maximal utility. This can be seen most
clearly in Equation (5), where the utility rate under
the optimal population threshold policy satisfies
Ul (z,) ~nAm(n), which is the arrival rate of buyers
times the expected value of the maximum of # match-
ing utilities.

However, for heavy-tailed distributions in part (ii)
of Theorem 1, m(z,) for any o(n) sequence z, is vanish-
ingly small compared with m(n). Thus, it is not

possible to ensure that most users see maximal utility,
implying that our simple upper bound is unachiev-
able. Moreover, to maximize the utility rate, it is not
obvious whether the system manager should set z, =
o(n) to guarantee that most agents are matched in-
stantly or should set z, = O(n) to ensure that market
thickness is maximal even if a nontrivial fraction of
users abandon the system. Part (ii) of Theorem 1 im-
plies that the latter option is the right choice under
heavy-tailed distributions.

We conclude this subsection with a brief sketch of
the proof of Theorem 1, which relies on a fluid analy-
sis of Equations (2)~(3). We define B, (t) = n™'B,(t) and
S,()=n71S,(t). Because the formal limit of
(B,(t),S,(t)) involves indicator functions that are not
continuous (see (35)—(36) in Section 9.2 of the online
appendix), we need to study the limiting dynamical
system as the solution to the following Skorokhod
problem:

B(t) = B(0) + At - / Bodr-1P)-150, O
0

5()=5(0)+At—n / t?(r)dr ~LEm-15(H),  (8)
0

where LE("), LS (-) are nondecreasing processes such
that L2(0) = L3 (0) = 0 and

[Eo-2ui0= [E0-asn=0  ©
0 0

and B(t),S(t) < z. To obtain explicit expressions for the
Skorokhod problem, we use the change of variables
B.(ty=z-B(t),S.() =z-S(t), and A,=A/n-2z>0.
This allows us to reduce (9) to the one-dimensional
condition

/ "min (B.(r), S.(ML() =0, L(0)=0,
0

which enables us to obtain an explicit solution to
(7)-(9). With this solution in hand, we show unique-
ness and then apply a standard Picard iteration to ar-
gue existence.

We use martingale arguments to show that
(54(-), Bu(-)) = (S(), B(-)) uniformly on compact sets
in probability. The dynamical system describing (B, S)
has the unique attractor (z, z) if A/n > z, given the ini-
tial condition B(0) < z, S(0) < z. We then show that the
limit interchange (f — oo and n — c0) holds, and we
prove that (B1(0),5,,(c0)) = (z,z) almost surely as
n— oo,

The next step in the proof is to compute the utility
rate. Taking expectations on both sides of Equation (2)
yields

NE[By(0)] = MP(Sy(e0) < z) = P(By(o0) > 2)},  (10)
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from which we can obtain, using symmetry argu-
ments, that

1 nz
lim P(B,(c0) > 2) = 2(1 A) (11)
The following key lemma, which is proved in Sec-
tion 9 of the online appendix, allows us to compute
the utility rate in (4). Recall that m(n) is defined in As-
sumption 2.

Lemma 1. Let {N,}, be a sequence of positive random
varzables taking values on the positive integers, and let
Ny =E(Ny) <oco. Assume that N, —oo and that
|N —Nyu|>¢eN,)—0. Then E[m(N,)]~m(N,) as

n— oo,

Using Lemma 1 and Equation (11) and setting z,, =
nz allows us to compute the utility rate
UP(z,) = Anm(zn)(l - %)(1 +0(1)) (12)

as n— oo, and combining (12) with Equation (1)
yields

ufl(zn) .
nm(n) Az (1

- ’772)(1 +o(1)). (13)

In the a€(0,1) case, we optimize the right-hand
side of (13) with respect to z to obtain the asymptoti-
cally opt1ma1 population threshold z;, =z.n, where
Z. = 4%
Inn(tlﬁre)a = 0 case, we similarly use the fluid limit
analysis to show that E[B,,(o0)] is o(n) for any sequence
of thresholds z, that is o(n). Furthermore, the argu-

ments used to obtain (11) also imply that
1
lim P(B,(c0) > z,) = lim P(S,(c0) > z,) = 7 (14)
n—oo n—oo
A PASTA (Poisson arrivals see time averages) argu-

ment implies that U} (z,) > Anm(z,)(1+0(1)). Conse-
quently, for any sequence z,, = o(n) such that

lim m(zn)

=1
n—oo m(n) /

we would have that U} (z,) > Anm(n)(1 +o(1)). Lemma
3 in Section 9.1 of the Appendix guarantees that such
a sequence exists.

Finally, asymptotic optimality in part (i) of Theorem
1 follows from the aforementioned results by con-
structing the following simple upper bound (see Sec-
tion 9 of the online appendix for a proof of Lemma 2)
on the performance of any arrival-only policy, which
uses Lemma 1 and assumes that all agents are
matched (and hence the arrival rate in Lemma 2 is An)
and that—when computing B,(c0) in Equation (4)—
agents | leave only upon abandonment (implying that
B,(c0)= P01ssor1(/\n /).

Lemma 2. Let U, be the utility rate for any arrival-only
policy. Then an upper bound U, is given by

U, <U = )\nm():]n)

3.2. Utility Threshold Policy

Because the population threshold policy is asymptoti-
cally optimal within the class of arrival-only policies
when a = 0, we focus on the case a € (0,1) in Theorem
2. In order to describe the dynamics of the utility
threshold policy, we introduce two independent ar-
rays of nonnegative i.i.d. random variables, {ij 1>

1,j=1} and {V};:i21,j 2 1}, having CDF F()). We let
{AJB :j > 1} be the sequence of arrival times associated
with the process N}, (nA-), and we let {A]-S :j =1} be the

sequence of arrival times associated with the process
N{(nA-). The dynamics can be described path-by-path
as follows:

Ni(nAt) Ni(nAt)
Bult) = Bu(0)+ Z Imaxisjl(AF_)ngSU}_ = I{maxf:](Afs*)vggy}
t
N[ [ Bt
N (nAt) N} (nAt)
Su(t) = Su(0) + ; I{maxf;q“‘f*’vg,sv}_ > I{maxfj’*i’vﬁ,w}
t
—N;(q / Sn(r)dr).
O (15)

By symmetry and ergodicity, we can express the
utility rate U(v,) for the utility threshold policy with
threshold v,, as

Uy, (v) = 2AnE[E[M(B;,(00))p1B, (c0))20,31Br () ]].  (16)

Because the analysis of the utility threshold policy
considers the entire distribution of the maximum rath-
er than only its expected value, we need to strengthen
Assumption 2 by imposing the following additional
assumption.

Assumption 3. In addition to Assumption 2, suppose that
a€(0,1)and

M(n)

m(n)
where P(X > 1) =1—e"" and « is a normalizing cons-
tant such that E(X) = 1.

That is, X = (x7!T)™* is an exponential random vari-
able with mean one. Assumption 3 is satisfied if the

= X asn— oo,
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utilities belong to the domain of attraction of the
Frechet law, which in turn is equivalent, in the i.i.d.
case, to requiring the distribution of utilities to be reg-
ularly varying with index 1/« (see section 1.2, propo-
sition 1.11 of Resnick 1987).

Theorem 2. Suppose that Assumption 3 holds. For
x €[0,A/n], define
[2%
KX

In (nii/\)
Then there exists a unique solution x. € (0,A/n) satisfy-
ing

o(x) =

1/a

- n KX, /0(X,) ot
x, “v(x. = %e™"dt.
- )ZAom“ ‘/0

Moreover, a threshold policy with utility threshold v}, =
v(x.)m(n) is asymptotically optimal among the class of util-
ity threshold policies and the associated utility rate satisfies

llm U}’l (vn)

=2AxYE
n—co nim(n) X

XI{

Xz%}

As in the population threshold policy, this result
shows that, for heavy-tailed distributions, it is benefi-
cial to ensure that market thickness is maximal at the
cost of abandonment of a nontrivial fraction of users
in the system. Although we do not prove any results
for the utility threshold policy in the a = 0 case (since
asymptotic optimality is already achieved for the pop-
ulation threshold policy), we show in Section 10 of the
online appendix how heuristics inspired by Theorems
1 and 2 can lead to effective utility thresholds in the
a =0 case.

The proof of Theorem 2 uses the same general ap-
proach as in the proof of part (ii) of Theorem 1, and
we briefly outline it here. We assume that the thresh-
olds satisfy

Un

m(n)

and we use Assumption 3 to show that the putative
fluid limit of B, (t) = n™'B,(t) and S,.(t) = n~1S,(t) is

t _ t_
B(f) = B(0) + A / SO / B(r)dr
0 0

— v for some v > 0,

t _
_/\/ (1 _eka(V)/vl/“‘)dr/ 17)
0
= = t R 1/a t—
5 =5(0)+ A / BO / S(r)dr
0 0
t _
Y / (1 _ e-Kso)/vl/a)dK (18)
0

A martingale decomposition similar to that given in
the proof of part (ii) of Theorem 1 shows that B,,(-) —
B(-) and S,(-) — S(-) uniformly on compact sets in
probability. Because (17)—(18) do not pose the degen-
eracies involving the Skorokhod map encountered in
the case of part (ii) of Theorem 1, we can use theorem
7.2 of chapter 3 in Ethier and Kurtz (2005) to show
that the family {((Bu(t):t>0), (Su(t):t>0))} _, is
tight in the Skorokhod topology.

The unique solution to the fluid limit satisfies

n>1

0= —n% — A +21e7/",

which can be expressed as

(19)

or

1/a
X(v) = - A + i W(z/};< exp ()\:c))’
noox e et
where W(x) is the Lambert W function.
We use Assumptions 2 and 3 to optimize the utility
rate with respect to x(v), yielding the optimization
problem

K% (%)
sup 2Ax*k“ / t%etdt. (20)
5(6(0, )\/1]) 0

The solution to (20) reduces to X* uniquely satisfying

1/a

o(X)n = aa’c“%/w_{/v(}) e tdt,
0

2Ak%

and substituting x* into (19) gives the optimal utility
threshold.

4. A Greedy Policy

In Section 10 in the online appendix, we apply the re-
sults in Theorems 1 and 2 to several different match-
ing utility distributions and then assess the accuracy
of these analyses via simulation in Section 5. To pro-
vide a natural benchmark for comparison, we first an-
alyze the greedy policy, which corresponds to the
population threshold policy with threshold z,=0.
That is, under the greedy policy, each arriving agent
is matched to the available mate with the highest
matching utility and waits in the market if there are
no available mates.

Under the greedy policy, the state of the nth system
can be described by B,(t)—S,(t) because there are
never both buyers and sellers in the system at the
same time. By theorem 4.5 in Liu et al. (2015), the
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steady-state distribution o
N(0,A/n) as n — co.

The probability that a buyer or seller abandons is
the long-run expected number of abandonments per
unit time divided by the total arrival rate of agents
(i.e., buyers plus sellers), which can be approximated
by

f W converges to

ARELN, A/ml] _ Viny2

2An 2An
1
= , 21
V21tn @
— 0. (22)

By (22), the matching rate (i.e., the average number of
matches per unit time) for the greedy policy con-
verges to nA asn — oo.

When a match occurs (i.e., when there is at least one
available mate upon an agent’s arrival), the expected
number of available mates when an agent arrives can
be approximated by

VRE[N(0, A/n)IN(0, A/n) > 0] = j;\/%? (23)

By (22)-(23) and Lemma 1, the utility rate of the
greedy policy, which is denoted by U, satisfies

A 2n
us ~ n)\m(ﬁ \/—;) (24)

5. Simulation Results
To assess the accuracy of our asymptotic results, we
consider special cases of the three canonical examples
in Section 10 of the online appendix: exp(1), Pareto(1,
2), and UJ0, 1]. For all cases, welet A=n=1and n =
1,000, so that the mean number of buyers and sellers
in a match-free system is 1,000. We initialize the sys-
tem with 1,000 buyers and 1,000 sellers, simulate the
system for 1,500 time units, discarding the first 150
time units, and then repeat this procedure 100 times.
To find the optimal population threshold levels, we
compute the utility rate for the population threshold
policy for each integer threshold value in the range

[0, 1,000], using the same set of random numbers for
each threshold level. We repeat the same procedure
for the utility threshold policy and discretize the utili-
ty threshold values by 0.1 for the exp(1) and Pareto(l,
2) cases and by 0.01 for the UJ[0, 1] case.

5.1. Exponential(1) Case

In the exponential case, we predict that the optimal
population threshold level is z, = 111’1?830 =144.8, and
the utility rate under this threshold policy approaches
the upper bound and is twice as large as the utility
rate of the greedy policy (see Section 10.1 of the online
appendix). The optimal threshold level found via sim-
ulation is 148, and the suboptimality of the utility rate
under the threshold 144.8 versus the threshold 148 is
0.004% (Table 2). Our heuristic utility threshold is v}, =
5.56 from (123) in the online appendix, which coin-
cides with the optimal threshold found via simulation
(with a discretization of 0.1) of 5.6.

However, the predicted utility rates are less accu-
rate than our determination of the best threshold lev-
els. By (119) in the online appendix, our best estimate
for the utility rate under the optimal population
threshold policy is 5,553, which is 14.9% higher than
the simulated value in Table 2. By (21) and (117) in the
online appendix, our best estimate of the utility rate
under the greedy policy is

= ol

= 3,757,

which is 8.5% higher than the simulated value in
Table 2. Our best estimate of the upper bound is given
in (115) in the online appendix, which yields 7,485.

The optimal-to-greedy ratio of the simulated utility
4,833 _
3,462

reveal that convergence is very slow: this simulated
ratio is 1.48 when 1 = 10* and 1.54 when 1 = 10°. Most
of the inaccuracy in estimating the optimal-to-greedy
ratio is due to the fact that the simulated utility rate of
the optimal threshold policy is not very close to the
upper bound.

rates is 1.40 rather than 2. Further simulations

Table 2. Theoretical and Simulation Results for the Population Threshold Policy

Optimal population threshold

Simulated utility rate [95% confidence interval]

Utility distribution Theoretical Simulation Theoretical threshold Simulation threshold Greedy policy

Exponential(1) 144.8 148 4,833 4,833 3,462
[4,824, 4,840] [4,827, 4,841] [3,425, 3,503]

Pareto(1, 2) 333.3 347 22,095 22,102 8,259
[21,997, 22,241] [21,972, 22,234] [8,107, 8,428]

Uniform(0, 1) 0 22 908.4 946.3 908.4
[906.0, 911.3] [945.1, 947.7] [906.0, 911.3]
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Table 3. Simulation Results for Both Threshold Policies

Population threshold policy

Utility threshold policy

Utility distribution Optimal threshold Utility rate

Fraction abandoned Optimal threshold

Utility rate Fraction abandoned

Exponential(1) 148 4,833 0.140
[4,827, 4,841]
Pareto(1, 2) 347 22,102 0.334
[21,972, 22,234]
Uniform(0, 1) 22 946.3 0.027
[945.1, 947.7]

5.6 5,732 0.150
[5,724, 5,740]
120 43,750 0.503
[43,541, 43,960]
0.96 963.0 0.021
[961.7, 964.2]

Note. Columns 2 and 3 are taken from Table 2.

Finally, the utility rate of the optimal utility thresh-
old policy is 5,732 (Table 3). Although still far from the
upper bound, it is 18.6% higher than the utility rate
achieved by the optimal population threshold policy.

5.2. Pareto(1, 2) Case

In the Pareto case, we Il)redlct that the optimal popula-
tion threshold level is 202 = 333.3. The optimal popu-
lation threshold found V1a simulation is 347, and the
utility suboptimality of the theoretical threshold is
0.03% (Table 2). The solution to (130) in the online ap-
pendix is z* = 0.512. Hence, the optimal utility thresh-
old level in (131) in the online appendix is v}, =42.8,
which is very close to the value of 42.0 found via
simulation.

Our estimate of the utility rate under the optimal
population threshold policy is 21,573 by (127) in the
online appendix, which is 2.4% less than the simulated
value of 22,102 in Table 2. The utility rate under the
optimal utility threshold policy in (132) in the online
appendix is 43,756, which is nearly identical to the op-
timal simulated value of 43,750. Our best estimate for
the utility rate of the greedy policy is (1 — \/—) times
the right-hand side of (125) in the online appendlx, or
8,791, which is 6.4% larger than the simulated value in
Table 2. Our estimate of the upper bound in (124) in
the online appendix is 56,050. By (129) in the online
appendix, the predicted performance ratio between
the optimal population threshold policy and the
greedy policy is 2(1 00m)1/4_ 5 42, comg)ared with the
optimal-to-greedy snnulated ratio of 282é82 =2.68 (Ta-
ble 2). By (124) in the online appendix, the ratio of the
upper bound to the utility rate of the optimal popula-

tion threshold policy is predicted to be ¥=2.60,

compared with the simulated value of gg: ?gg =2.54.

The simulated utility rate of the optimal utility
threshold policy is nearly twice as large as the simu-
lated utility rate of the optimal population threshold
policy (Table 3), although: it is still 21.9% smaller than
the predicted upper bound of 56,050.

5.3. Uniform(0, 1) Case
In the uniform case, we predict that the greedy policy
is asymptotically optimal. The optimal population

threshold level found via simulation is 22, and the re-
sulting utility suboptimality of the greedy policy is
4.0% (Table 2). Note that other population thresholds
aside from zero are also asymptotically optimal in this
case, including In(n) =1In(1,000) = 6.91, which has a
suboptimality of 2.0%. Our best estimate of the utility
rate under the greedy policy is (1 _T) times the
right-hand side of (135) in the online appendix, or
948.2, which is 4.4% larger than the simulated value in
Table 2. The upper bound in (133) in the online appen-
dix equals 987.4, which is 4.3% larger than the utility
rate corresponding to the optimal population thresh-
old level of 22. The predicted optimal utility threshold
from Equation (137) in the online appendix is
v;, = 0.974, compared with the value of 0.96 found via
simulation, for a utility suboptimality of 0.24%
(Table 3).

In summary, our analysis identifies the optimal
threshold level within about 2% (considering the pos-
sible range of [0, 1,000]) and its suboptimality is no
more than 2% for the population threshold policy in
the uniform case and is negligible in the other five
cases. We also note that the predicted fraction of
agents who abandon the market under the optimal

population threshold policy, which is 32 = ;1. =0.145

lnn

(i.e., the total abandonment rate d1v1ded by the total

arrival rate) in the exponential case, %” =1 in the Pareto
case by (126) in the online appendix, and 1 - \/% =

yregs
0.013 in the uniform case by (21), are reasonably close

to the simulated values in the fourth column of
Table 3. As predicted by our analysis, the utility rate
of the greedy policy—normalized by the mean of the
matching distribution—increases with the right tail of
the matching distribution (this quantity is 1,817 for
the uniform, 3,462 for the exponential, and 4,129 for
the Pareto), as does the ratio of the utility rates be-
tween the best threshold policy and the greedy policy
(1.04 for the uniform, 1.40 for the exponential, and
2.68 for the Pareto under the population threshold
policy, and 1.06, 1.66, and 5.30 under the utility
threshold policy). In addition, despite the asymptotic
optimality result, there is a large gap between the util-
ity rate of the best population threshold policy and
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the upper bound in the exponential case. The im-
provement of the utility threshold policy over the
population threshold policy also increases with the
right tail of the matching distribution, with the ratio
of the utility rates equaling 1.02, 1.19, and 1.98 for the
uniform, exponential, and Pareto cases, respectively.
This improvement is achieved by being more patient
and allowing more agents to abandon the market, par-
ticularly in the Pareto case (last column in Table 3).

6. Unbalanced Markets

In this section, we consider unbalanced markets,
where buyers and sellers arrive at rates nl;, and nA; in
the nth system, and abandon at rates 1, and 1, respec-
tively. We restrict ourselves to the analysis of the utili-
ty threshold policy in the case a € (0,1), which is very
similar to the corresponding analysis in the symmetric
case. We also note that an analysis of the population
threshold policy in the unbalanced case is complicated
by the extra degree of freedom that is introduced (and
needs to be determined) in Equations (45)-(47) in the
online appendix and is beyond the scope of this paper.
Under the utility threshold policy in the nth system,
an arriving buyer is matched to the seller that yields
the maximum utility if this utility exceeds the thresh-
old v,,; similarly, an arriving seller is matched to its
highest-matching buyer if the utility exceeds the
threshold v,,;. The dynamics are given by the equa-
tions

Ng(n)\bt)

B,(t)=B,(0)+ >} I
=1 {maxsn(A]B)VB <v }
1,505

i=1

Ni(nAsh)

- Z I Bu(AS )
&

1= ySs
max,_; Vw. >V

—Ng(nb/o Bn(r)dr),

N (nAst)

Sn(t) = S4(0) + Z I{ Bu(4S) }

(25)
!

- 1= y/S
j=1 max,_; Vi/isv”rb

Ng (nApt)

- Z I{ sn(A;{) 5
j=1

max,_; Vi,j>v,,,s }

t
—Ng(ns | sn(r>dr), (26)

where {AJB :j = 1} is the sequence of arrival times asso-
ciated with N}, (nA,-), and {Af' :j =1} is the sequence
of arrival times associated with N¢(nAs-). As in the

symmetric case, the V};’s and V};’s are independent

arrays of i.i.d. random variables with distribution F(:).
Following the development in the symmetric case
(e.g., (16)), the utility rate takes the form

uyl; (vn,b/ vn,s) =nApE [E [M(Sn (OO))I{M(S,,(OO))ZU,,,S} Sy (OO)]]

+ nAs E[E[M(B(20))[m(B, (c0))20,,,}|Br(0)]]-
(27)

Our main result is presented in Theorem 3. The
proof of Theorem 3 appears in Section 9.4 in the online
appendix and largely mimics the proof of Theorem 2.

Theorem 3. Suppose that Assumption 3 holds. Let v. be
the optimal solution for the optimization problem

n;lgg( /\sbaE[XI{b“XN)}] + /\hSaE[XI{s“XM/}] (28)

subject to 7n,b + As = Apexp (—xs/v"/®)

+ Asexp (—xb/v}®), (29)
b+ As =15+ Ayp. (30)

Then a threshold policy of the form vy, , = v} . =m(n)o, is
asymptotically optimal among the class of utility threshold
polices. The associated utility rate satisfies

o A,

= AD.YE[ X1 e
Y = ) Asb."E[ X paxs0,]

+ AbeE[XI{stN,*}],

where b., s. are solutions that satisfy constraints (29)—(30).

Although the results in Theorem 3 are beyond our
intuitive grasp, we attempt to provide some possible
intuition for why v} = v} in the unbalanced case. Let
us consider a fluid model in which the two utility
thresholds are both equal to v*. We can classify the
matched sellers into two categories: actively matched
(i.e., they arrive to the market and are immediately
matched with buyers) and passively matched (ie.,
they wait in the market and then are matched with ar-
riving buyers). Now suppose that we change the utili-
ty thresholds to v, and v,, where v, <v* < s, in such a
way that the number of additional actively-matched
sellers (call it ds) equals the reduction in the number
of passively-matched sellers. Because the total number
of matched sellers does not change, the number of
abandoned agents remains the same and we can focus
on the matching utilities of these marginal sellers. Let
u, be the utility per match for the ds additional
actively-matched sellers, and let u, be the utility rate
per match for the ds sellers that are no longer passive-
ly matched. The utility per match of these marginal
sellers is between the new threshold and the old
threshold, and therefore v, <u, <v* and v+ <u, <v;.
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Hence, the net change in utility is (u, — u,)ds, which is
negative.

We conclude this section with a numerical example
that is a variant of the one in Section 10.2 of the online
appendix: let A,=2,A,=1,1,=1,1n,=1, n=1,000,
and assume a Pareto(1, 2) distribution, so that a =
1/2, x =1/7 and m(n) = y1,0007t. Then b(s) =s+1 in
(96) in the online appendix, and (105) in the online ap-
pendix reduces to

20 4 DT =g 42

The solution to (98) in the online appendix is s. =
0365 and  7(0.365)=0.361, which yields

Uy = U = B’ggf =52.7. Interestingly, this threshold

level of 52.7 is higher than in the symmetric case,
where A, =1 and v}, = 42.8. Moreover, leaving all pa-
rameter values fixed except for A,, we numerically
compute v; , in (104) in the online appendix and find
that it is increasing and concave in A, > 1.

With A, =2, we simulate this system in the same
manner as in Section 5. At a discretization of 0.1, a
two-dimensional search of (v, 5, v, ) space via simula-
tion for the optimal thresholds yields (52.7, 52.3), with
a corresponding simulated utility rate of 71,046 and
with abandonment fractions of 0.681 for buyers and
0.363 for sellers. The simulated utility rate at
(v;/b,v;ﬁ) =(52.7,52.7) is 71,010, which is suboptimal
by 0.05%. The predicted utility rate, Uj(v},,, ;) in
(106) in the online appendix, is 70,992, which is 0.03%
less than the simulated value of 71,010.

Fixing one utility threshold level at 52.7 and varying
the other threshold level (figure 1 in the online appen-
dix) reveals that the simulated utility rate is slightly
more sensitive to v, than v, perhaps because arriving
buyers see fewer potential matches than arriving sell-
ers. This figure also shows that it is more suboptimal
to underestimate the threshold level than to overesti-
mate it.

7. Batch-and-Match Policy

In this section, we restrict ourselves to Pareto match-
ing utilities with finite mean, where F(v) =1 - (cv)?,
for >1,c>0,and cv > 1, so that « =1/ in Assump-
tion 2. We consider a one-parameter batch-and-match
policy: At times t={A2A,3A,...,}, we match
min {B(t), S(t)} buyers and sellers by randomly choos-
ing min {B(f), S(t)} agents from the thicker side of the
market (e.g., buyers if B(t) > S(t)) and then maximize
the total utility from these matches; this class of poli-
cies allows us to consider a balanced random assign-
ment problem, which is easier to analyze than an un-
balanced random assignment policy. The goal is to
choose the time window A that maximizes the long-
run average utility rate. The main qualitative

conclusion from this section is that—for the special
case of A=n=c=1 and = 2—the utility threshold
policy easily outperforms this batch-and-match poli-
cy, both in the asymptotic analysis and in the simula-
tion results.

To analyze the performance of this policy, we con-
sider a random assignment problem, where there are
k buyers and k sellers with i.i.d. Pareto matching utili-
ties V;; between buyer i and seller j. The matching
problem is

k
max > Vi),
=
where 7 is a permutation function. Let
M(k) = maXanzl Vi)

The main result of this section is given in Theorem
4, which is proved in Section 9.5 of the online appen-
dix. The corresponding results for the unbalanced
case are presented without proof at the end of Section
9.5 of the online appendix.

Theorem 4. Consider the symmetric model with arrival
rate A, abandonment rate n, and Pareto (c,B) matching
utilities with finite mean. Let UY(A) be the utility rate of
the batch-and-match policy with time window A. Then the
utility rate satisfies

1 o a+l
umA)<dx1—aﬁﬁu—e ﬂ
A* 7

where the asymptotically optimal time window A" is the
unique solution to

lim

n—oo na+1 -

(31)

"™ =(1+a)nA+1. (32)

Note that A" increases in « in (32), and so—as in the
population threshold policy—heavier tails lead to
thicker markets.

We conclude this section with the numerical Pare-
to(1, 2) example from Section 5, where A =n=1, n =
1,000, F(v)=1-v"2, and a=1/2. Equation (32) re-
duces to e* = %A + 1, which has solution A* =0.76, im-
plying from (112) in the online appendix that we
make approximately 1,000(1 — e~*7¢) = 532 matches in
each cycle. The upper bound for the utility rate in (31)

is w =28,644, which is much smaller
than the predicted utility rate of 43,750 for the utility
threshold policy from (132) in the online appendix. A
one-dimensional search using simulation generates an
optimal time window of 0.75, confirming the accuracy
of our asymptotic analysis. The simulated utility rate
under this time window is 25,168 and the lower
bound for the utility rate in Lemma 5 is 131, suggest-
ing that the upper bound is useful and the lower
bound is very loose.
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8. Concluding Remarks

A fundamental trade-off in centralized dynamic
matching markets relates to market thickness: wheth-
er matches should be delayed—at the risk of antago-
nizing waiting agents—in the hope of obtaining better
matches in the future. Very little is known about this
issue when matching utilities are general. By combin-
ing queueing asymptotics (as an aside, we note that
perhaps the most surprising part of our study is that
rather than requiring a diffusion analysis, a fluid anal-
ysis is sufficient to analyze this problem) with extreme
value theory, we obtain explicit results that shed light
on this issue. For symmetric markets, as the right tail
of the matching utility distribution gets heavier, it is
optimal to become more patient and let the
market thickness (and abandonment rate) increase.
Whereas empirical works on matching markets use
more complicated covariate models than what we con-
sider (e.g., Hitsch et al. 2010, Boyd et al. 2013, Agarwal
2015), it seems clear from these analyses that matching
utilities typically are not in the domain of attraction of
the Weibull law. Therefore, large centralized matching
markets—whether balanced or unbalanced—are likely
to benefit from allowing the market to thicken.

Enabled by the decoupling of the fluid queueing
dynamics and the extremal behavior of the matching
utilities, our study appears to be the first to allow for
correlated matching utilities, which is likely to be a
common phenomenon in practice: an agent who is
deemed objectively attractive in a labor, housing, or
school choice model is likely to have matching utilities
with potential mates that are positively correlated
rather than ii.d. In Section 10.4 of the online appen-
dix, we find that positive correlation reduces the mar-
ket thickness in the utility threshold policy but not the
population threshold policy, and it reduces the utility
rate under both policies.

We note four limitations in our study. First, most of
our analysis is restricted to arrival-only policies. In
particular, it might be possible to do better by batch-
ing sets of agents and then matching them, as in
Mertikopoulos et al. (2020). Moreover, generalizing
their results to our setting is likely to be quite chal-
lenging, in that the 712 /6 result requires an exponential
matching distribution and an objective of minimizing
the matching cost (they minimize mismatch plus wait-
ing costs rather than maximizing utility in the pres-
ence of abandonment). Whereas they generalize their
results in section 6 of their paper by positing a func-
tional form for how the expected minimum mismatch
costs decrease as a function of the number of agents in
the market, this functional form does not appear to
follow from any more primitive distributional as-
sumptions. In Section 7, we consider Pareto utilities
and analyze a simple batch-and-match policy, which

periodically (with an asymptotically optimal time
window) optimally matches all agents on the thinner
side of the market with an equal number of agents
randomly selected from the thicker side of the market.
Perhaps surprisingly, we show that, in the Pareto
case, the utility threshold policy easily outperforms
the batch-and-match policy. Nonetheless, this does
not preclude the possibility that more sophisticated
batching policies (e.g., optimally—rather than ran-
domly—select the agents to match from the thicker
side of the market or include a utility threshold for al-
lowable matches as a second parameter) might out-
perform the utility threshold policy.

Second, most of our analysis considers a symmetric
market, with buyers and sellers having the same arriv-
al and abandonment rates. Whereas some markets,
such as cadaveric organ transplants and public hous-
ing, tend to have chronic supply shortages, other mar-
kets have economic forces at play that tend to roughly
balance supply and demand. In a static matching mar-
ket, even a slight imbalance can give rise to a unique
stable matching (Ashlagi et al. 2017a). We also note
that a greedy policy is optimal in a somewhat differ-
ent unbalanced market setting, where easy-to-match
agents can match with all other agents in the market
with a specified probability, but hard-to-match agents
can match only with easy-to-match agents with a dif-
ferent specified probability (Ashlagi et al. 2018a). In
our analysis of the utility threshold policy in the
heavy-tailed case of an unbalanced market, we obtain
the somewhat surprising result that the solution is
symmetric; that is, the utility threshold is the same for
buyers and sellers. Moreover, we find (in our Pareto
example) that the amount of patience increases with
the amount of imbalance; that is, the larger the imbal-
ance, the more agents that are going to be turned
away, and the more selective the matching becomes.
However, we leave a complete analysis of the unbal-
anced problem for future work.

Although our model can be viewed as allowing a
continuum of classes via the distribution of the match-
ing utility, the third restriction is that our analysis
does not naturally lend itself to a setting where there
is a discrete number of classes with class-dependent
matching utilities. In particular, in some settings (e.g.,
organ donation), some classes of buyers/sellers are
compatible with only prespecified classes of sellers/
buyers. The decoupling of the queueing fluid dynam-
ics and the extremal behavior of the matching utilities
should carry over to the setting with a finite number
of classes with some incompatibility among classes.
However, it would make sense to consider multiple
thresholds in this setting, and a multidimensional
model with multiple thresholds would be a nontrivial
extension.
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The final restriction is exponential abandonment.
Relaxing this assumption would require a different
approach, such as hazard rate scaling (Reed and Tez-
can 2012) and would likely be much more difficult.

Finally, we note that there may be equity issues if a
significant number of agents are allowed to abandon
the market (Table 3). The consideration of a risk-
sensitive objective function would likely require a dif-
fusion approximation, which would be, for example, a
two-dimensional Ornstein-Uhlenbeck process with an
unusual Skorokhod condition under a population
threshold policy.
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