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Pulsar timing arrays (PTAs) detect low-frequency gravitational waves (GWs) by looking for cor-
related deviations in pulse arrival times. Current Bayesian searches use Markov chain Monte Carlo
(MCMC) methods, which struggle to sample the large number of parameters needed to model the
PTA and GW signals. As the data span and number of pulsars increase, this problem will only
worsen. An alternative Monte Carlo sampling method, Hamiltonian Monte Carlo (HMC), utilizes
Hamiltonian dynamics to produce sample proposals informed by first-order gradients of the model
likelihood. This in turn allows it to converge faster to high dimensional distributions. We implement
HMC as an alternative sampling method in our search for an isotropic stochastic GW background,
and show that this method produces equivalent statistical results to similar analyses run with stan-
dard MCMC techniques, while requiring 100-200 times fewer samples. We show that the speed
of HMC sample generation scales as O(NS#) where Nps: is the number of pulsars, compared to

O(Ngsr) for MCMC methods. These factors offset the increased time required to generate a sample
using HMC, demonstrating the value of adopting HMC techniques for PTAs.

I. INTRODUCTION

Pulsar timing arrays (PTAs) [1-3] seek to detect low-
frequency gravitational waves (GWSs) by looking for spa-
tial correlations induced in the times of arrival (TOAs)
pulses from millisecond pulsars. PTAs are most sensi-
tive in the nanohertz frequency regime (~1-100 nHz),
where the dominant source of GWs is expected to
be a stochastic gravitational wave background (GWB)
originating from a cosmic population of supermassive
black hole binaries (SMBHBs) [4-7]. The North Amer-
ican Nanohertz Observatory for Gravitational Waves
(NANOGrav) [8] has been collecting pulsar TOA data
since 2004. NANOGrav, along with the European Pul-
sar Timing Array [9], Parkes Pulsar Timing Array [10],
and the Indian Pulsar Timing Array Project [11] form
the International Pulsar Timing Array (IPTA) [12].

Detection of low-frequency GWs provides a valuable
tool for studying parts of the dynamical universe not
accessible through electromagnetic observations. Con-
straining the GWB shape and strength can provide use-
ful constraints on properties of the SMBHB population
including the black hole-host galaxy scaling relations
[13, 14] and the astrophysical environments of SMBHBs
emitting GWs [15-19]. The GWB could also contain con-
tributions from more speculative sources such as primor-
dial GWs from inflation [20, 21] and networks of cosmic
strings [22, 23].

GW signals can be extracted as a correlated signal
from pulsar timing data only after subtracting the pul-
sar’s timing model and accounting for underlying sources
of noise in both the pulsar and observing instruments.
These analyses are frequently done using Bayesian tech-
niques [24-27], which we outline in Sec. II. In order

to perform the Bayesian searches, NANOGrav makes
use of the parallel-tempering Markov chain Monte Carlo
(MCMC) code PTMCMCSampler [28], which includes a va-
riety of jump proposal schemes such as differential evo-
lution, prior draws, and adaptive Metropolis.

MCMC methods work adequately for a large portion of
statistical models, but simple MCMC algorithms such as
random-walk Metropolis [29] or Gibbs sampling [30] be-
come slow as the size and complexity of the model grow
and take considerably longer to converge. Both of the
aforementioned methods use random-walk proposals to
generate samples and explore the parameter space, which
tend to be increasingly inefficient when the target distri-
bution includes correlations among the parameters [31].
Hamiltonian Monte Carlo (HMC) [31, 32] removes the
requirement to sample the model randomly, and replaces
it with a simulation of Hamiltonian dynamics on the dis-
tribution itself. This scheme allows samples to be drawn
at much further distances from one another, and explores
the full parameter space in a more efficient way. For a
target distribution of dimension d, the cost of drawing an
independent sample with HMC goes roughly as O(d°/*),
compared to O(d?) for random-walk Metropolis [33]. The
no-u-turn sampler (NUTS) [34] algorithm provides a ba-
sis for performing analysis with HMC without pretuning
the sampling.

The HMC algorithm was initially developed for the
problem of performing lattice field theory simulations of
quantum chromodynamics [32]. The earliest approach
applying HMC to PTA science was in the development
of a model-independent method for performing Bayesian
analyses on pulsar timing data [35]. The technique
worked extremely well when applied to the IPTA Mock



Data Challenge.! When applied to real data, however,
the sampling could not fully explore the hierarchical
model and became stuck in “Neal’s funnel” [36]. Ap-
plying data-aware coordinate transformations using the
Cholesky decomposition helped deal with hierarchical
funneling, and consequently there was a successful appli-
cation of HMC to the targeted problem of outlier excision
from PTA datasets [37]. The trade-off was that the ad-
ditional transformations made sampling the hierarchical
likelihood slower than the typical marginalized likelihood
that was already used. As a result, HMC was not further
explored in this context and has since remained largely
underutilized towards the broad array of PTA science.

In this paper, we present a method for performing PTA
GW searches using HMC as the underlying sampling
algorithm. This represents the first attempt at apply-
ing HMC to the marginalized PTA likelihood, where we
can avoid the funneling that plagues hierarchical models
while still leveraging the benefits of HMC in exploring
high-dimensional distributions. We test this method on
the NANOGrav 11-year dataset [38], as well as realistic
simulated data with similar red and white noise to the
NANOGrav 11-year dataset. We demonstrate that per-
forming a Bayesian GWB search with HMC results in
a significant reduction in required sample generation to
give equivalent results to current methods.

We also show that the additional gradient calculations
necessary for HMC to operate scale roughly the same
as the current likelihood evaluation with respect to the
number of pulsars in a given dataset. Additionally we
demonstrate that when comparing the time to gener-
ate independent samples, HMC outperforms traditional
MCMC methods for PTA models of varying size in ac-
cordance with the expected scaling. This is a necessary
consideration as the sizes of PTAs will continue to grow
and with that the number of parameters needed to sam-
ple over.

This paper is organized as follows. In Sec. II, we de-
scribe the methods, signal models, and software used. In
Sec. IIT we present the results of a GWB search using
HMC, and compare the accuracy and efficiency of this
method for both real and simulated PTA data. We con-
clude in Sec. IV and discuss how this method could be
utilized for future PTA work.

II. METHODOLOGY AND SOFTWARE

In this section, we provide a brief outline of a typical
PTA Bayesian GW search. We then give an overview
of the HMC and NUTS algorithms, and discuss how to
apply these methods to existing PTA work.

1 The first IPTA Mock Data Challenge was developed by Fredrick
Jenet, Kejia Lee, and Michael Keith and administered in 2012.

A. PTA signal model

We now discuss the PTA likelihood function. Following
the outline provided in [27], we start by considering a
single pulsar and its timing residual vector dt with length
equal to the number of TOAs in our dataset, Ntoa. This
timing residual data can be decomposed into individual
components:

0t =Me+ Fa+Uj+n. (1)

Each term describes a different inaccuracy or source of
noise that contributes to the residual data. The term Me
represents inaccuracies stemming from the subtraction of
the pulsar’s timing model, with M the timing model de-
sign matrix, and € the vector of timing model parameter
offsets. The effects due to low-frequency (“red”) noise
are encoded in the term Fa. We choose to define this in
a rank-reduced basis where F represents our matrix of
basis functions, in this case alternating sine and cosine
functions, and a represents a set of Fourier coefficients.
The term Uj describes noise that is completely uncor-
related in time but completely correlated across obser-
vations of a similar epoch. The matrix U maps between
Nroa residual data and Nepoch Observation sessions, and
j accounts for the correlated noise in each epoch. The fi-
nal term, n, includes any other high-frequency (“white”)
noise that cannot be accounted for in the previous terms,
such as radiometer noise.

Previous Bayesian analysis schemes [39-43] have de-
scribed the white noise with EFAC (constant multiplier
to TOA uncertainties) and EQUAD (white noise added in
quadrature to EFAC) parameters and employed a power-
law model to describe the red noise. The sum of these
white noise covariances we describe via a matrix N. The
parameters describing €, a, and j we group as follows:

T=[M F U], b= (2)

e O ™

We place a Gaussian prior on these parameters with co-
variance:

o 0 0
B=10 ¢ 0], (3)

0 0J
where oo represents a diagonal matrix of infinities cor-
responding to unconstrained uniform priors on all tim-
ing model parameters. The parameters that describe J
we refer to as ECORR and correspond to the epoch-
correlated white noise signals per receiving back end.
The matrix ¢ defines the parameters involving red noise
signals, which includes low-frequency noise intrinsic to
each pulsar, as well as the stochastic GWB. For this pa-
per, we performed our analysis by modeling the GWB
using a fiducial power-law spectrum of the characteristic



GW strain h. and cross-power spectral density Sgp:

nih = Ao (L) ()

Aow (£ s
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where v = 3 — 2a. For a background generated by the
GW emission from the evolution of a population of in-
spiraling SMBHBs in circular orbits, we have o = —2/3,
which implies v = 13/3 [44]. The function Iy is called
the overlap reduction function (ORF) and describes the
average correlations between any two pulsars a and b as
a function of their angular separation. For an isotropic,
stochastic GWB, this ORF is given by the Hellings-
Downs correlation: [45]
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where x4, = (1 — cos&,p) /2 for two pulsars with angular
separation &up.

We analytically marginalize over the timing model pa-
rameters to reduce the overall dimensionality of our pos-
terior [35, 46] and are left with the form of the likelihood
that is used for the analysis in this paper:

exp (—%6tTC_16t)
vdet 2wC '

where C = N+TBT7T. We define ¢ as the set of all vary-
ing parameters in our model. We compute the likelihood
and perform Bayesian searches using the NANOGrav
package enterprise [47].

P(dtl¢) = (7)

B. Hamiltonian Monte Carlo

We now provide a description of the HMC algorithm.
In HMC [31, 32], we start by introducing an auxiliary
momentum variable p; alongside each target parameter
¢;- In most implementations, the momenta are chosen to
be independent of the ¢; and follow a zero-mean Gaussian
distribution, with a covariance matrix M that is typically
taken to be the identity. The log of the joint density of
p and q defines our Hamiltonian:

H (p,a) =U(a) + K (p) = —L() + 1p" M 'p, (8)
where £(q) = logP(dt|¢) is the log of the likelihood
function for the distribution of our target parameters q.
Analogous to Hamiltonian dynamics, we have a poten-
tial energy term U(q) and a kinetic energy term K(p).
We then simulate the evolution of this system over time
according to Hamilton’s equations:

dt N 8pi7 dt N 8(]1‘.

This can be solved numerically using a symplectic in-
tegrator such as a “leapfrop” method, which for an inte-
gration step size € uses an update scheme:

£
pt+s/2 — pt =+ (§> Vqﬁ(qt), (103)
q* =4 +ep't, (10b)
9
P =Pt (D) VoL@ t),  (100)

where superscripts denote the time at which the par-
ticular quantity is evaluated. The standard method for
producing a chain of samples using HMC then proceeds
as follows: We first resample our momenta distribution.
Then for a set number of leapfrog steps L, we use Eq.
(10) to evolve our system through time and propose some
final position and momentum vectors q and p. This pro-
posal is accepted or rejected according to the Metropolis
algorithm [29].

Mapping the path of the leapfrog integrator leads to
a useful sanity check of HMC: trajectory divergences.
These divergences occur when the trajectory taken via
Hamiltonian simulation departs from the true trajectory,
and risk biasing estimates or reducing HMC to random-
walk behavior [48]. By tracking the trajectories and
alerting the user of large divergences, HMC offers an-
other diagnostic to detect unsuitably parametrized mod-
els that is not possible with Metropolis-Hastings (MH)
MCMC methods.

There are limitations to HMC and the models under
which it can be used properly. Due to its origins in
Hamiltonian dynamics, HMC can only operate in con-
tinuous state spaces and contains no internal recourse
to deal with discrete variables. In such cases, the dis-
crete variables can be handled with separate algorithms
such as Gibbs sampling [30]. HMC also requires that the
log density of the target distribution is differentiable al-
most everywhere with respect to the model parameters,
with the exception coming at points of probability 0 [31].
Additionally, HMC struggles when there is strong mul-
timodality in the target distribution due to the modes
being separated by regions of very low probability [49].
The PTA models used in this paper satisfy the above con-
ditions, and HMC remains a valid choice of underlying
sampling algorithm.

C. No-u-turn sampler

The performance of the HMC algorithm is particularly
sensitive to two user-defined parameters: the number of
leapfrog steps L and integration step size €, defined in
the above section. If these parameters are not properly
tuned, the algorithm may waste computation time or be-
gin to exhibit unwanted random walk behavior and in
some cases may not even be ergodic [31]. In general, tun-
ing these parameters appropriately would require multi-
ple preliminary runs.



The no-u-turn samlper [NUTS; 34] offers an extension
to the HMC algorithm that dynamically tunes the num-
ber of leapfrog steps L. NUTS uses a recursive doubling
algorithm, similar to the one outlined in [36], to deter-
mine when the generated proposal trajectory begins to
double back on itself, or make a “U turn”. The algo-
rithm builds a binary tree, simulating Hamiltonian dy-
namics forwards and backwards randomly in time for 27
steps, with j the height of the full tree. If we define
q, pt and q—, p~ as the position-momenta pairs of the
left- and rightmost nodes of the bottom subtree, then the
stopping condition for NUTS can be written as:

(" —q7) pr<o0. (11)

The above procedure adaptively tunes the parameter L
for each iteration in the chain. The step size parameter
in NUTS is set using the method of stochastic optimiza-
tion with varying adaptation [50]. In particular, Hoffman
and Gelman utilize the primal-dual averaging algorithm
proposed by [51]. With L and ¢ automatically tuned,
NUTS can be run without any human intervention.

(@"—q ) p <0 or

D. Coordinate transformations and software

Previous approaches to pulsar timing analyses with
HMC utilized a hierarchical PTA likelihood. Initially
these methods did not include coordinate transforma-
tions on the data, and as a result became stuck with hi-
erarchical funneling. This funneling originates from the
fact that within hierarchical models, random variables
are very highly correlated when the data are sparse [52].
One can reduce the correlations between the random vari-
ables, and hence the funneling, by adopting a noncen-
tered reparametrization of the data [53]. In regards to the
hierarchical PTA likelihood, such a reparametrization us-
ing the Cholesky decomposition allowed HMC sampling
to proceed but at the cost of slowing down the likelihood.

In this paper we are focused entirely on the marginal-
ized PTA likelihood and can therefore leave behind
the coordinate transformations designed for hierarchi-
cal models. We do employ a set of transformations de-
signed to improve the performance of the NUTS algo-
rithm. First we perform an interval transform, moving
all parameters with bounded priors from their interval
[a, b] to the whole real line. We then whiten the data us-
ing Cholesky whitening to move to a set of transformed
variables whose covariance matrix is the identity. This is
accomplished through the Hessian calculated around the
maximum a posteriori parameter vector. Neither trans-
formation considerably alters the likelihood computation
speed.

When determining the speed and efficiency of the HMC
and NUTS pipeline, one must depend almost entirely on
the ability to calculate gradients of the likelihood and do
so as quickly as possible. Numerical derivatives are com-
parably easier to write but slow in practice and prone

to errors from approximations. By-hand analytic deriva-
tives are fast but difficult to write into concise code for
all but the simplest of models. An excellent solution for
arbitrary likelihood functions and their gradients is the
package JAX [54], which leverages both automatic differ-
entiation and just-in-time compilation to efficiently dif-
ferentiate native Python code and turn an otherwise slow
gradient function into incredibly fast machine executa-
bles. The use of this technique is rather new, with JAX
only recently becoming a mature code base, and con-
sequently this marks the first time JAX and automatic
differentiation have been utilized for HMC sampling of
PTA data.

Summarizing the software used for the analyses to fol-
low in this paper, the signal models and likelihood used
in our analyses come from NANOGrav’s flagship PTA
analysis suite enterprise [47]. We utilize the automatic
differentiation capabilities in JAX [54] to calculate the
likelihood derivatives required for HMC to operate. We
perform two coordinate transformations on our data to
better interface with the NUTS algorithm. Lastly, for
the sampling we use a custom-built NUTS code that is
freely and openly available in piccard.? The combina-
tion of these three codes leads to an end-to-end pipeline
for performing PTA analyses with HMC sampling.

III. RESULTS

In this section, we study the HMC sampling method
both in its ability to accurately perform Bayesian
searches for a stochastic GWB using PTA data, as well
the efficiency of such a method when compared against
the existing techniques employed by NANOGrav.

The GWB model that is analyzed in this paper arises
from a PTA consisting of data from 45 pulsars. The
parameters encompassing the signal model closely mimic
those outlined in Sec. IT A. We fix white noise parameters
to their maximum likelihood values as obtained from in-
dividual pulsar noise runs. We model pulsar-intrinsic red
noise with a power-law power spectral density (PSD) con-
taining two search parameters log,y Area € U[—18, —11]
and yeq € U[0,7]. We model the GWB as a power-law
PSD process that is common amongst all the pulsars.
The corresponding parameters are an amplitude with log-
uniform prior Acp € U[—18,—12] and a spectral index
~vcp that we fix to 13/3. We do not include spatial cor-
relations in our GWB model. This results in a total of
2Npg + 1 varying parameters in the model.

We also generate a set of simulated PTA datasets using
libstempo [55]. We inject both per-pulsar white and
red noise parameters at their maximum likelihood values.
The injected values again originate from individual pulsar
noise runs, where all parameters for a given pulsar are

2 https://github.com/vhaasteren/piccard



allowed to vary. Again we include a common process
signal representing the GWB with both a fixed amplitude
and spectral index at log;y Acp = —14.7 and ycp =
13/3, and do not include interpulsar spatial correlations.
We repeat the above procedure for 100 realizations of
the GWB which results in a collection of 100 realistic
simulated PTA datasets. When analyzing the simulated
data, we use a similar signal model to the one described
above but this time allow the common-process spectral
index to vary as ycp € U[0, 7].

Runs conducted with the MH MCMC algorithm use
the PTMCMCSampler [28] code. The sampler is set up in
similar fashion to the NANOGrav 11-year GWB search
[56]. We include adaptive Metropolis and differential
evolution jump proposals. For all varying parameters
present in the model, we also add prior draw jump pro-
posals. We do not utilize parallel-tempering in this work.

A. NANOGrav 11-year data comparison

We perform a stochastic GWB search with both the
HMC and MH MCMC algorithms on the NANOGrav 11-
year dataset [38]. This dataset encompasses the timing
data for 45 millisecond pulsars. Figure 1 shows the poste-
rior distributions for the background amplitude Acp cal-
culated using both Monte Carlo methods. We calculate
95% upper limits on Acp and estimate uncertainties with
bootstrap methods [57]. The HMC algorithm produces
results that are consistent with the base MH MCMC
search, with corresponding 95% upper limits Acp, nvc <
1.72(4) x 107 and Acp, M Mmomc < 1.74(3) x 10715,

The MH MCMC sampling routine was run for a total
number of samples My moemc = 1,000,000, whereas
the HMC routine was run for Mgyc = 8,000. The wall
time for the MH run was approximately 4 hours, com-
pared to just under 4 hours for the HMC run. Both sets
of chains are checked for convergence using the Gelman-
Rubin R-hat convergence test [34]. It is worth reinforc-
ing that the benefit of generating fewer samples is par-
tially outweighed by the increased computational cost of
proposing a new HMC sample. We explore the scaling of
sample generation time in Sec. ITI C.

We also perform a direct comparison to the upper
limit calculated in the NANOGrav 11-year GWB search
[56]. In order to do such a comparison, we alter our
signal model slightly to match that of the 11-year anal-
ysis and adjust the common-process amplitude from a
log uniform to a uniform prior Acp € [107!%,10712].
Performing this analysis with the HMC pipeline, again
with M = 8,000 samples, recovers a 95% upper limit of
Acp, nmc < 1.64(3) x 107'°. This is in relative agree-
ment with the result in [56] of Acp < 1.61(2) x 10715 for
a similar model with identical Jet Propulsion Laboratory
(JPL) ephemeride DE436.

We further compare the efficiency of HMC sampling
by looking at the autocorrelation lengths of the two sets
of chains, measuring how far one must jump through the
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FIG. 1. Posterior probability distributions for the ampli-

tude log,, Acp of a common-process signal run using either
MH MCMC or HMC as the primary sampling method, com-
puted using the NANOGrav 11-year dataset. The common-
process amplitude parameter is set with a log-uniform prior,
the common-process spectral index is fixed at 13/3, and no
spatial correlations are included. Vertical lines represent 95%
upper limits calculated for posteriors generated using HMC
[blue; Acp, nmc < 1.72(4) x 107**] and MH MCMC [red;
Acp, umc < 1.74(3) x 10715]7 though the two lines will be
difficult to individually resolve due to the similarity in upper
limits. We conclude that the two procedures produce consis-
tent posteriors when applied to identical models.

chain to find the next statistically significant sample. The
autocorrelation lengths are calculated per parameter in
the model. This was calculated for each set of chains
generated with the two Monte Carlo sampling methods,
and the results are shown in Fig. 2. We find that the
HMC chains have autocorrelation lengths between 1 and
2 orders of magnitude smaller than those of identical pa-
rameters in the MH MCMC chains. This behavior is ex-
pected, as the HMC algorithm is designed to take larger,
more-informed steps to avoid random walklike behavior
and produce a higher ratio of independent samples.

B. Simulated data and parameter recovery

We also aim to test that the HMC algorithm behaves
similarly to the standard MH MCMC technique when
considering statistical coverage of a standard PTA model.
To determine the capability of the sampling methods to
accurately recover injected parameters, we consider 100
simulated PTA datasets and seek to verify if in p% of
the realizations the injected parameter values fall within
the p% credible region of the posteriors. We run standard
Bayesian searches on all realizations using both sampling
methods.

The results of the parameter recovery test described
above are summarized in Fig. 3, with a particular fo-
cus on the two parameters describing the GWB. The
HMC sampler recovers the injected GWB parameter val-
ues with the same consistency as the traditional analysis.
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FIG. 2. Autocorrelation lengths for 91 parameters (2Nps, in-
dividual pulsar red-noise parameters and a common process
signal parametrized with an amplitude Acp and spectral in-
dex ycp = 13/3) present in a standard GWB model. The
autocorrelation lengths are calculated from two sets of chains
generated from sampling this model: one sampled with HMC
(blue) and one with MH MCMC (red). Each mark represents
the approximate number of steps one must jump through that
particular parameter’s chain to reach an independent sample.

1.00 F : E

0.75 } { log, Acp (HMC)
E J — 10210 Ace (MH MCMO)
F 1 Yer (HMC)

2 0.50 |- ] Yep (MH MCMC)

025 : 1
i ' ]

0.00 [ - P Ll I

—0.1 0.0 0.1
Pla, <0 <bp)—p

FIG. 3. p — p comparison of GWB parameter recovery for
both the HMC and MH MCMC sampling methods operat-
ing on simulated PTA data. The x axis shows the difference
between the fraction of realizations with which the injected
values fall within the p% credible region of the posteriors and
the p% credible region on the y axis. The vertical dark gray
line at x = 0 represents a perfect recovery of the injected pa-
rameter values. The light gray lines represent 1o, 20, and 3¢
deviations.

Neither method recovers the injected parameters exactly,
and therefore no line in Fig. 3 falls directly on the vertical
line at x = 0. This is due to an inherent model mismatch
present when simulating data with libstempo and re-
covering the posteriors separately with enterprise. The
simulated GWB is generated with more frequencies than
is searched over during the analysis, leading to a natural
bias in recovery.3

3 For further details, see documentation for GWB simulation in
the toasim module of libstempo.

g I T T T 3
/{210712_ ’—’_————-————-_E
bt F v ol ]
T s :
£ 1072 Er E
o E/ 3
= - E
B _3 [ - 1
10 E — i1 grad JAX) 3
E | | | I11.grad X Legs E

0 10 20 30 40

Number of Pulsars

FIG. 4. Wall time for calculating implementations of both the
log of the PTA likelihood as well as its gradient, scaled by the
number of pulsars present in a given model. The red dashed
line represents the log-likelihood evaluation as present in the
standard PTA analysis suite enterprise. The solid blue line
shows the evaluation of the log likelihood and gradient func-
tion after being precompiled with JAX. The cyan triangles de-
note the evaluation times present in the blue line multiplied
by a value Leg representing the effective number of gradient
evaluations required to generate a new HMC sample.

C. Scaling of gradient computation speed

The time per HMC sample generation is dominated by
the time to calculate the gradient of the log likelihood
necessary for leapfrog integration. The evaluation time
for the base likelihood calculation present in enterprise
is calculated by averaging the evaluation time for 50 calls
of the log likelihood function. We first use a PTA with
only a single pulsar, and repeat the above step adding
one additional pulsar at a time up to Nps, = 45. This
produces an idea of how the base likelihood evaluation
time, and by extension the MCMC sample generation
time, scales with the number of pulsars present in a PTA
(Fig. 4: dashed red line).

In order to accurately scale the computation time nec-
essary to draw a sample with NUTS, we must account for
the dynamic tuning of the HMC hyperparameter L and
note that we likely require multiple evaluations of the
log likelihood and gradient to generate a sample. First
we consider the evaluation time of the log likelihood and
gradient function compiled with JAX, and scale per pulsar
following the same procedure defined above (Fig. 4: solid
blue line). We then take the 45 separate PTA objects
and run standard GWB analyses, with models defined in
Sec. I1I, through the HMC pipeline for M = 10, 000 sam-
ples. The height j of the NUTS binary tree defines a total
of L = 27 + 1 gradient evaluations per new sample. By
averaging this over the full run, we can approximate an
Leg and more accurately scale the time per HMC sample
generation (Fig. 4: cyan triangles).

Finally, we look at the time to generate independent
samples in our chain and how it scales with increasing
PTA size. This is ultimately the most important metric
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FIG. 5. Wall time to produce an independent sample in

Markov chains generated using HMC and MH MCMC meth-
ods, scaled by the number of pulsars Nps present in the
model. The total number of parameters in a given model
is d = 2Npsr + 1. The solid black represents the expected
scaling for HMC of O(d®/*). The dashed gray line denotes
the expected scaling for MH MCMC of O(d?).

for testing the efficiency of HMC as independent sam-
ples and thinned Markov chains are what inevitably drive
the statistical inferences made on the data. Independent
samples in this context are defined here as samples that
are separated by one autocorrelation length.

We take the 45 PTA objects of increasing Vs and
generate Markov chains with HMC and MH MCMC of
size M = 8,000 and M = 1,000, 000, respectively. Tak-
ing the median autocorrelation length of each chain and
the base sampling speed calculated previously, we create
a scaling of the wall time for both sampling methods in
making independent samples for PTA models of increas-
ing size. The results are summarized in Fig. 5. It shows
that in the long run HMC will outperform MH MCMC
techniques in making statistically relevant samples, de-
spite the likely increase in upfront computational cost.

IV. CONCLUSIONS

In this paper, we have implemented an efficient method
for sampling the high dimensional distributions present
in PTA GW Bayesian searches using the HMC algo-
rithm. This method leverages a hybrid technique com-
prised of parts from both traditional stochastic Monte
Carlo schemes as well as deterministic sampling meth-
ods derived from Hamiltonian dynamics. We show that
utilizing HMC results in a reduction of approximately
2 orders of magnitude in the number of samples drawn
to produce equivalent results to the existing Bayesian
searches performed on PTA datasets.

The efficiency of this technique is largely defined by
the speed at which derivatives of the log likelihood can
be computed for the purpose of simulating Hamiltonian
dynamics. We have shown that the current implementa-

tion of this calculation scales similarly to the present log-
likelihood calculation with respect to the number of pul-
sars in a dataset, and improves upon traditional MCMC
methods when comparing the production of independent
samples of the distribution. This improvement in perfor-
mance scaling is paramount because PTAs will continu-
ously grow and add more pulsars to their data collection.
The 11-year dataset featured in this paper contains 45
pulsars. Future NANOGrav datasets will have >60 pul-
sars and future IPTA datasets may contain close to ~100
pulsars. Increasing the data volume will further strain
our computational capabilities to perform large parame-
ter GW searches. HMC provides a way of resolving these
limitations in a way that is more favorable to future PTA
analyses.

It is worth emphasizing that the O(d®/*) scaling of
HMC is not just with respect to the number of pulsars,
but with respect to the total number of parameters. We
analyzed a model with 2Ny, + 1 parameters (with the
GWB spectral index held fixed), but this represents only
one of many different approaches for GW searches in
PTAs. For example, one can parametrize the GWB with
a free spectrum model, increasing its number of param-
eters from 2 to 30. Likewise, one can parametrize the
individual pulsar red noise in a similar fashion, increas-
ing the parameter count from 2 to 30 per pulsar. The
favorable scaling of HMC opens the door for more flex-
ible models that are currently prohibitive with current
MH MCMC runs.

Currently we have only applied the HMC algorithm
to the problem of sampling a stochastic GWB model.
PTAs are also sensitive to certain deterministic GW sig-
nals, and work towards tailoring this method to such
searches is under development. This technique is par-
ticularly promising for searches for GWs from individual
SMBHBSs because of the large number of parameters nec-
essary to describe the GW signal (2N, + 8 for a circu-
lar binary, more if the source is eccentric). In general,
this technique can be adapted to the full suite of PTA
searches, provided the underlying models adhere to the
limitations outlined in Sec. IIB. The ultimate goal is a
general purpose pipeline for performing any such PTA
analysis that leverages the benefits of the HMC algo-
rithm towards exploring complicated, high-dimensional
models.
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