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Animals frequently make adaptive decisions about what to prioritize when
faced with multiple, competing demands simultaneously. However, the
proximate mechanisms of decision-making in the face of competing demands
are not well understood. We explored this question using brain transcrip-
tomics in a classic model system: threespined sticklebacks, where males face
conflict between courtship and territorial defence.We characterized the behav-
iour and brain gene expression profiles of males confronted by a trade-off
between courtship and territorial defence by comparing them to males not
confronted by this trade-off. When faced with the trade-off, males behaviour-
ally prioritized defence over courtship, and this decision was reflected in their
brain gene expression profiles. A distinct set of genes and biological processes
was recruited in the brain when males faced a trade-off and these responses
were largely non-overlapping across two brain regions. Combined, these
results raise new questions about the interplay between the neural and
molecular mechanisms involved in decision-making.
1. Introduction
Animals are frequently faced with competing demands on their time and
energy. Decisions made by breeding individuals over whether to court mates
or defend their territory against intruders reflect a fundamental and wide-
spread trade-off between opportunities (e.g. mate choice, courtship, parental
care) and challenges (e.g. mate competition, territorial defence) [1]. For
example, in several fishes, males either prioritize one stimulus or divide their
time between them when faced with a courtship opportunity and a territorial
intruder simultaneously (e.g. [2–5]). While the outcome of decisions over court-
ship and territorial defence have been well-studied, how the brain responds to
multiple, competing demands simultaneously remains an open question [1].

One-way mutually incompatible behaviours are managed is through differ-
ential activation of shared molecular mechanisms. For example, differential
activation of populations of neurons can act as a ‘switch’ between courtship
and aggression in mice (e.g. [6]) and fruit flies (e.g. [7,8]), and in sticklebacks,
a set of shared genes was expressed in opposite directions in the brain in
response to a territorial challenge versus a courtship opportunity [9]. Another
possibility is that a distinct set of genes is recruited when an animal faces com-
peting demands, reflecting the unique challenges associated with responding to
competing stimuli [10]. Only by examining the behavioural and genomic
responses of individuals faced with multiple demands simultaneously can we
disentangle these hypotheses [11].

We used threespined sticklebacks (Gasterosteus aculeatus) to investigatewhether
distinct mechanisms are involved in managing competing demands. The conflict
faced by breeding male sticklebacks between aggression and courtship is a now-
classic example of the interaction between sex and aggression ‘drives’
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[4,9,10,12,13]. Adultmale sticklebacks defend territories against
intruders, and at the same time attempt to secure mates by
courting females using conspicuous ‘zigzag’ displays [13].
Here, we compared behavioural responses of male sticklebacks
presented with a courtship opportunity and a territorial chal-
lenge simultaneously to when they were presented with a
courtship opportunity or territorial challenge on its own. We
predicted that males would compromise courtship and/or ter-
ritorial defence behaviour when faced with this trade-off. Next,
we compared gene expression profiles in two gross brain
regions to identify shared and distinct mechanisms involved
in managing trade-offs between courtship and territorial
defence, and gain insight into whether the response differs
across brain regions. Characterizing transcriptomic mechan-
isms recruited in the brain can identify candidate genes
involved in decision-making and is a key first step to identifying
their specific role in decision-making, how they interact with
mechanisms at different spatial and temporal scales, and how
they vary among individuals, populations, and species.
0253
2. Methods
(a) Behavioural trials
Experiments were conducted during the breeding season from
June to August, 2020 using lab-reared individuals from a popu-
lation of wild-caught threespined sticklebacks (Gasterosteus
aculeatus) ([14,15]; see electronic supplementary material, Sup-
plement 1A for details). Visual marks divided tanks (53 L ×
33 W× 24 H cm) into three sections. Males built nests using
sand and algae provided in the middle of the tank, while the
outer two sections were used for stimuli. Behavioural trials con-
sisted of four treatments: a courtship opportunity, a territorial
challenge, simultaneous courtship opportunity and territorial
challenge (hereafter: the ‘trade-off’ treatment), and a control.
The focal male was acclimated to the presence of the observer
for 5 min, then two flasks were introduced to either side of the
tank for a 5-min trial. In the courtship opportunity treatment, a
gravid female was confined to one of the flasks, in the territorial
challenge treatment, a rival male displaying breeding coloration
was confined to one of the flasks, and in the trade-off treatment, a
gravid female to one and a rival male to the other flask. The con-
trol consisted of two empty flasks. This allowed us to control for
the behavioural and transcriptomic responses to disturbance in
response to presentation of the flasks; future studies should
examine the extent to which the patterns observed here reflect
the divided attention between two social stimuli versus the
trade-off between courtship and aggression in particular. Rival
and focal males were size-matched as much as possible, with
an average ratio of intruder to focal standard length of
0.97 mm (+/− 0.02 s.d.). Gravid females were assigned randomly
to focal males. The flasks allowed visual, but not olfactory, cues
of the stimulus fish. Each male (n = 17) was exposed to all four
treatments in random order, followed by all four treatments in
random order a second time, for a total of eight trials per male.
Each male was exposed to one treatment per day between the
hours of 09.55 and 14.25. For each trial, the side of the tank
with the flask containing a stimulus was randomized (excepting
the control, which consisted of empty flasks). During each trial,
the number of zigzags and number of bites performed by the
male were scored using JWatcher [16].
(b) RNA extraction and sequencing
Sixty minutes after their final trial (n = 4 males after a courtship
opportunity, n = 5 males after a territorial intrusion, n = 4 males
after the trade-off treatment, and n = 4 males after the control
treatment), the diencephalon and telencephalon (plus olfactory
bulbs) were separated with a micro razor at the dorsal post-
optic commissure by cutting vertically, following previous studies
[9,17], preserved in RNAlater, and deep frozen at −80°C until
extraction. RNA was extracted using Invitrogen PureLink RNA
extraction kits (Invitrogen Corporation, Carlsbad, CA) and quality
checked using Agilent Bioanalyzer chips. Sequencing was per-
formed by the Functional Genomics Unit of the W.M. Keck
Center (University of Illinois Urbana Champaign). Libraries
were prepped using TruSeq Stranded mRNA sample prep kits
and samples were sequenced to a depth of >30 M reads on a
Novaseq 6000 S4 flow cell (Illumina). Reads were aligned to the
stickleback reference genome (Ensembl release 95; [18–20]) using
STAR [21] and read counts generated using HTSeq [22].

(c) Statistical analyses
Analyses were conducted using R version 4.2.2 [23]. To investi-
gate behavioural responses to the trade-off between courtship
and territorial defence, two generalized linear models were
fit using the ‘lme4’ package: (1) number of zigzag displays
when a female was present and (2) number of bites when a ter-
ritorial intruder was present, with treatment as a fixed effect.
In the model for zigzags, the treatment consisted of the courtship
opportunity and trade-off treatments since the territorial
challenge and control treatments did not contain a female
stimulus. Similarly, in the model for bites, the treatment consisted
of the territorial challenge and trade-off treatments. Individual
ID was included as a random effect. Models were fit with
Poisson error distributions with an observation level random
effect to control for overdispersion [24]. P-values were calcula-
ted with the ‘lmerTest’ package. Order effects and repeatability
were also investigated (electronic supplementary material,
Supplement 1B).

Gene expression data were analysed separately for the dien-
cephalon and telencephalon using edgeR v.30.40.2. Genes were
filtered to include those with >0.5 count per million in four or
more samples, resulting in 17 884 genes (80.2% of total) in the
telencephalon and 18 278 (81.9% of total) in the diencephalon.
Counts were TMM (trimmed mean of M-values) normalized
using a tagwise dispersion estimate after computing common
and trended dispersions. We identified differentially expressed
genes (DEGs) in the three experimental treatments relative to
the control using a ‘glm’ approach, with an empirical FDR
p-value correction [25]. PCA was used on this set of DEGs in
each of the two brain regions to identify principal components
that best-separated treatments (electronic supplementary material,
Supplement 1C). Genes were annotated using ‘biomaRt’ and
GO analysis was performed using ‘TopGo’ to identify genes
and biological processes recruited in response to each treatment
relative to the control (electronic supplementary material,
Supplement 1D).
3. Results
(a) Behavioural responses
Males zigzagged 99% more on average when presented
with a courtship opportunity, compared to the trade-off
(Poisson glmm effect of treatment: coefficient =−0.69,
z-value =−6.041, p-value = 1.54 × 10−9, figure 1a). By con-
trast, on average males bit a similar number of times when
a territorial challenge was presented alone compared to the
trade-off (Poisson glmm: coefficient = 0.21, z-value = 1.304,
p-value = 0.192, figure 1b). Bites, but not zigzags, were
significantly repeatable across treatments, and order effects



(a)

200

150

no
. z

ig
za

gs
100

50

0

200

150

no
. b

ite
s

100

50

0

courtship
opportunity

territorial
challenge

trade-off trade-off

treatment treatment

(b)*

Figure 1. Male sticklebacks (n = 17) compromised courtship but not territorial defence when faced with a trade-off between them. (a) Males performed signifi-
cantly fewer zigzag courtship displays per 5 min in the trade-off treatment compared to the courtship opportunity treatment. (b) Males performed a similar number
of bites per 5 min in the trade-off and territorial challenge treatments. Points represent individual observations across trials and box plots show median, interquartile
range, and 1.5*IQR. Asterisk indicates statistical significance.
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were negligible relative to treatment effects (electronic
supplementary material, Supplement 1B).

Differential gene expression analysis revealed the set
of genes differentially expressed relative to the control in the
two brain regions (electronic supplementary material,
Supplement 2). Principal component analyses showed
separationof the courtship opportunity from the territorial chal-
lenge and trade-off treatments along PC3 in the diencephalon
and PC2 in the telencephalon (figure 2a; electronic supplemen-
tary material, Supplement 1C). While in both regions there was
significant overlap of DEGs between treatments (hypergeo-
metric overlap tests: all p-values < 0.0001), a unique set of
geneswas differentially expressedwhenmaleswere confronted
by a trade-off, and a majority of these genes were differentially
expressed only in one brain region (figure 2b).
4. Discussion
Animals must often make decisions that are vital to their repro-
ductive success, yet competing demands are rarely presented in
isolation. Our study investigated how breeding male stickle-
backs respond to the simultaneous demands of courtship and
territorial defence. Behaviourally, males prioritized territorial
defence over courtship when faced with a trade-off between
them: they reduced courtship behaviour but maintained similar
levels of territorial defence behaviour in the trade-off treatment.
In nature, females may be drawn to territorial disputes and dis-
play a preference for aggressive males [26–28], thus prioritizing
territory defence behaviours over courtship behaviours may
mitigate the conflict between them. Furthermore, aggression
(bites) was repeatable but not courtship behaviour (zigzags),
perhaps because courtship behaviour is more malleable and
responsive to the immediate environment (e.g. female interest,
male quality) than territorial aggression. Previous studies also
found evidence for a trade-off between courtship and territorial
defence, however there was variation in how males responded.
Candolin [3] found that male sticklebacks decreased some
courtship behaviours, but increased zigzags toward dummy
females in the presence of a competitor, and Dzieweczynski
et al. [4] found that males presented with a dummy male and
female simultaneously either exclusively interacted with one
stimulus or divided their time between them. Population and
methodological differences, including our use of live, rather
than dummy, stimulus fish may help account for this variation,
because how males assign value to courtship and territorial
defence may depend on many factors, including female interest
and intruder behaviour.

Brain gene expression profiles reflected the behavioural
overlap between the territorial challenge and trade-off treat-
ments. Additionally, there was a large set of differentially
expressed genes and gene functions that were unique to
the trade-off treatment, suggesting that the need to manage
courtship and territorial defence elicits a distinctive response
in the brain that is more than an additive response to a court-
ship opportunity and a territorial challenge alone. The list
of differentially expressed genes unique to the trade-off treat-
ment included some interesting candidates such as dopamine
receptor D2 like (drd2l) and vasoactive intestinal peptide
receptor 1a (vipr1a) in the telencephalon. The dopamine path-
way is predicted to modulate reward and motivation [29], and
thus may be important in assigning value when faced with
competing stimuli. VIP signalling has been implicated in the
trade-off between affiliative and aggressive behaviour in
birds [30], and in sticklebacks [9]. Several additional genes of
interest are discussed in electronic supplementary material,
Supplement 1D. Characterizing this set of genes opens the
way for studies into their involvement in gene regulatory
networks, how their patterns of expression vary, and how
mechanisms interact across spatial and temporal scales.

The set of differentially expressed genes and enriched bio-
logical processes were largely non-overlapping between
telencephalon and diencephalon, suggesting that managing
competing demands could be a brain-wide phenomenon
rather than being restricted to a few key nuclei. Investigating
finer spatial and temporal scales would provide insight into
what specific regions and cell types are involved, and how
they are interrelated. Combined, these results raise novel
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Figure 2. Differentially expressed genes (DEGs) in the telencephalon (left) and diencephalon (right) of males confronted with a courtship opportunity, a ter-
ritorial challenge, and the trade-off between them, relative to a control (eFDR < 0.01). (a) Principal component analysis (PCA) revealed that the gene expression
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questions about the interplay between the neural andmolecular
mechanisms involved in managing competing demands.

Ethics. All experiments were conducted with the approval of the Insti-
tutional Animal Care and Use Committee at the University of Illinois
Urbana Champaign (protocol no. 21031).
Data accessibility. Raw sequence and processed count data are available
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data and code for all statistical methods and figures are available
from the Dryad Digital Repository: https://doi.org/10.5061/dryad.
g79cnp5w0 [32].

Lists of differentially expressed genes and significantly
enriched GO terms are provided in the electronic supplementary
material (Supplement 2, 3) [33].
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