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Abstract. We consider optimal transport-based distributionally robust optimization
(DRO) problems with locally strongly convex transport cost functions and affine decision
rules. Under conventional convexity assumptions on the underlying loss function, we ob-
tain structural results about the value function, the optimal policy, and the worst-case opti-
mal transport adversarial model. These results expose a rich structure embedded in the
DRO problem (e.g., strong convexity even if the non-DRO problem is not strongly convex,
a suitable scaling of the Lagrangian for the DRO constraint, etc., which are crucial for the
design of efficient algorithms). As a consequence of these results, one can develop efficient
optimization procedures that have the same sample and iteration complexity as a natural
non-DRO benchmark algorithm, such as stochastic gradient descent.
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1. Introduction
In this paper, we study the distributionally robust optimization (DRO) version of stochastic optimization models
with linear decision rules of the form

inf
β∈B EP∗ [ℓ(βTX)], (1)

where EP∗ [·] represents the expectation operator associated to the probability model P∗, which describes the ran-
dom element X ∈ R

d. The decision (or optimization) variable β is assumed to take values on a convex set B ⊆ R
d,

and the loss function ℓ : R→ R is assumed to satisfy certain convexity and regularity assumptions discussed in
the sequel. The formulation also includes affine decision rules by simply redefining X by (X,1).
Stochastic optimization problems such as (1) include standard formulations in important operations research

and machine learning applications, including newsvendor models, portfolio optimization via utility maximiza-
tion, and a large portion of the most conventional generalized linear models in the setting of statistical learning
problems.

The corresponding DRO version of (1) takes the form

inf
β∈B sup

P∈Uδ P0( )
EP[ℓ(βTX)], (2)

where Uδ P0( ) is a so-called distributional uncertainty region “centered” around some benchmark model, P0,
which may be data-driven (for example, an empirical distribution), and δ > 0 parameterizes the size of the distri-
butional uncertainty. Precisely, we assume that P0 is an arbitrary distribution with suitably bounded moments.

The DRO counterpart of (1) is motivated by the fact that the underlying model P∗ generally is unknown al-
though the benchmark model, P0, is typically chosen to be a tractable model that, in principle, should retain as
much model fidelity as possible (i.e., P0 should at least capture the most relevant features present in P∗).
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However, simply replacing P∗ by P0 in Formulation (1) may result in the selection of a decision, β0, which signifi-
cantly underperforms in actual practice relative to the optimal decision for the actual problem (based on P∗).

The DRO formulation (2) introduces an adversary (represented by the inner sup) that explores the implications
of any decision β as the benchmark model P0 varies within Uδ P0( ). The adversary should be seen as a powerful
modeling tool whose goal is to explore the impact of potential decisions in the phase of distributional uncertain-
ty. The DRO formulation then prescribes a choice that minimizes the worst-case expected cost induced by the
models in the distributional uncertainty region.

An important ingredient in the DRO formulation is the description of the distributional uncertainty region
Uδ(P0). In recent years, there has been significant interest in distributional uncertainty regions satisfying

Uδ(P0) � {P :W(P0,P) ≤ δ},
whereW(P0,P) is a Wasserstein distance (see, for example, Blanchet andMurthy [4], Blanchet et al. [5], Chen et al.
[8], Gao and Kleywegt [12], Gao et al. [14], Mohajerin Esfahani and Kuhn [19], Shafieezadeh-Abadeh et al. [29],
Sinha et al. [32], Volpi et al. [33], Yang [36], Zhao and Guan [37], and references therein).

The Wasserstein distance is a particular case of optimal transport discrepancies, which we review momentari-
ly. A general optimal transport discrepancy computes the cheapest cost of transporting the mass of P0 to the
mass of P so that a unit of mass transported from position x to position y is measured according to a transporta-
tion cost function, c(·). The definition of W(P0,P) requires that c(·) be a norm or a distance, but this is not neces-
sary, and endowing modelers with increased flexibility in choosing c(·) is an important part of our motivation.
The use of the Wasserstein distance is closely related to norm-regularization, and DRO formulations have

been shown to recover approximately and exactly a wide range of machine learning estimators; see, for example,
Blanchet et al. [5], Gao et al. [13], and Shafieezadeh-Abadeh et al. [28, 29]. These and some other applications of
the DRO formulation (2) based on Wasserstein distance lead to a reduction from (2) back to a problem of the
form (1), in which the objective loss function is modified by adding a regularization penalty expressed in terms
of the norm of β and a regularization penalty parameter as an explicit function of δ.

We stress that, inmanyof these settings, particularly the cases inwhich ℓ(·) is Lipschitz and convex, theworst-case dis-
tribution is degenerate (i.e., it is realized bymoving infinitesimally smallmass toward infinity ormoving nomass at all).

We enable efficient algorithms that can be applied to more flexible cost functions c(·) and losses ℓ(·) in order to
induce adversarial distributions that can be both informed by side information and endowed with meaningful
interpretations.

For other special cases that are amenable to either analytical solutions or software implementations, P0 is
either assumed to have a special structure (e.g., Gaussian distribution as in Nguyen et al. [24]) or ultimately requires
robust optimization formulations that require P0 to have finite support; see Chen et al. [8, 9], Luo and Mehrotra [17],
Mohajerin Esfahani and Kuhn [19], Shafieezadeh-Abadeh et al. [28, 29], Xie [35], and Zhao and Guan [37].
As we shall see, our analysis enables the application of stochastic gradient descent (SGD) algorithms to ap-

proximate the solution to (2) and that are applicable to cases in which P0 has unbounded support (under suitable
moment constraints). Moreover, by enabling the use of stochastic gradient descent algorithms, we open the door
to further research on accelerated stochastic gradient methods. In this paper, we focus on providing stochastic
gradient descent implementation to demonstrate the direct application of our structural results.

We mention Sinha et al. [32], in which relaxed Wasserstein DRO formulations are explored in the context of
certifying robustness in deep neural networks. The stochastic gradient descent type employed in Sinha et al. [32]
is similar to the ones we discuss in Section 3. Nevertheless, these algorithms are designed for a fixed value of the
dual parameter (which we call λ), chosen to be large. Our analysis suggests that rescaling λ so that λ �O δ−1=2

( )( )
may enhance performance even in the case of the more general type of losses considered in Sinha et al. [32]. The
impact of this type of rescaling in terms of performance guarantees for computational algorithms has not been
studied in the literature, and we believe that our analysis could prove useful in future studies. Additional discus-
sion on the rescaling is given at the end of Section 3.2.2.

The challenge in our study lies in the inner maximization (2), which is not easy to perform, and its properties,
parametrically as a function of both β and δ, are nontrivial to analyze. So much of our effort goes into under-
standing these properties. But, before we describe our results, we first describe a flexible class of models for dis-
tributional uncertainty sets, Uδ P0( ).

1.1. A Description of the Distributional Uncertainty Region Ud(P0)
We focus on DRO formulations based on extensions of the Wasserstein distance, called optimal transport dis-
crepancies. Formally, an optimal transport discrepancy between distributions P and P0 with respect to the (lower
semicontinuous) cost function c : Rd × R

d → [0,∞] is defined as follows.
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First, let P(Rd × R
d) be the set of Borel probability measures on R

d × R
d. So, for any X ∈ R

d and X′ ∈ R
d random

elements living on the same probability space, there exists π ∈ P(Rd × R
d), which governs the joint distribution of

(X,X′).
If we use πX to denote the marginal distribution of X under π and πX′ to denote the marginal distribution of

X′ under π, then the optimal transport cost between P and P0 can be written as

Dc(P0,P) � inf{Eπ[c X,X′( )] : π ∈ P(Rd × R
d), πX � P0, πX′ � P}: (3)

The Wasserstein distance is recovered if c x,x′( ) � ‖x− x′‖ under any given norm. If c x,x′( ) is not a distance, then
Dc P0,P( ) is not necessarily a distance.

Ultimately, we are interested in the computational tractability of the DRO problem (2) assuming

Uδ(P0) � P : Dc(P0,P) ≤ δ
{ }

, (4)

for a flexible class of functions c. We concentrate on what we call local Mahalanobis or state-dependent Mahala-
nobis cost functions of the form

c(x, x′) � (x − x′)TA(x)(x − x′), (5)

where A(x) is a positive definite matrix for each x. For this choice of c(·), the distributions in Uδ(P0) are unre-
stricted in support. We explain in the Conclusions section how our results can be applied to other cost functions.

The family of cost functions that we consider is motivated by the perspective that the adversary introduced in
the DRO formulation (2) (represented by the inner sup) is a modeling tool that explores the impact of potential
decisions.

Let us consider, for example, a situation in which we are interested in choosing an optimal portfolio strategy.
In this setting, historical returns can naturally be used to fit a statistical model. However, there is also current
market information that is not of a statistical nature but of an economic nature in the form of, for instance, im-
plied volatilities (i.e., the volatility that is implied by the current supply and demand reflected by the prices of de-
rivative securities). The implied volatility differs from the historical volatility, and it is more sensible to capturing
current market perceptions. An enhanced DRO formulation that uses a cost function such as (5) could incorpo-
rate market information as follows. Returns with higher implied volatility, maybe even depending on the current
stock values, could be assigned a lower cost of transportation, and returns with lower implied volatility may be
given higher transportation costs. The intuition is that high implied volatilities correspond to potentially higher
future fluctuations (as perceived by the market), so the adversary should be given higher ability relative (and,
thus, lower costs) to explore the potential implications of such future out-of-sample fluctuations on portfolio
choices.

In general, just as we discuss in the previous paragraph, it is not difficult to imagine more situations in which
the optimizer may be more concerned about the impact of distributional uncertainty on certain regions of the
outcome space relative to other regions. Such situations may arise as a consequence of different amounts of infor-
mation available in different regions of the outcome space or perhaps due to data contamination or measurement
errors, which may be more prone to occur for certain values of x.

In this paper, we do not focus on the problem of fitting the cost function, but we do consider the portfolio opti-
mization discussed earlier and the use of implied volatilities in an empirical study in Section 4. We point out,
however, that related questions have been explored, at least empirically, in classification settings, using manifold
learning procedures (Blanchet et al. [7], Noh et al. [25], Wang et al. [34]). Our motivation is that flexible formula-
tions based on cost functions such as (5) are useful if one wishes to fully exploit the role of the artificial adversary
in (2) as a modeling tool.

Now, leaving aside the modeling advantages of choosing a cost function such as (5) and coming back to the
computational challenges, even if one selects A(x) to be the identity (thus, recovering a more traditional Wasser-
stein DRO formulation), solving (2) is not entirely easy because the inner optimization problem in (2) is nontri-
vial to study. An exact convex optimization reformulation has been demonstrated only for losses taking a specific
form. For example, Hanasusanto and Kuhn [15] provide a conic reformulation for the data-driven DRO problem
with piecewise linear convex losses. With the number of conic constraints being proportional to the data set size,
it is, however, computationally less suited for handling large data sets.

To exploit these DRO formulations, one must develop scalable algorithms with guaranteed good performance
for solving (2). By good performance, we mean that we can easily develop algorithms for solving (2) with com-
plexity that is comparable to that of natural benchmark algorithms for solving (1). Enabling these good-
performing algorithms is precisely one of the goals of this paper. To this end, several properties, such as duality
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representations, convexity, and the structure of worst-case adversaries, are studied. These results have far-
ranging implications as we discuss next.

1.2. A More In-Depth Discussion of Our Technical Contributions
First, using a standard duality result, we write the inner maximization in (2) as

sup
P:Dc(P0,P)≤δ

EP ℓ(βTX)[ ] � inf
λ≥0

EP0[ℓrob(β,λ;X)], (6)

for a dual objective function ℓrob(·) and a dual variable λ ≥ 0.
Then, we show that, after a rescaling in λ, that the objective function, EP0[ℓrob(β,λ;X)], is locally strongly con-

vex in β,λ
( )

uniformly over a compact set containing the optimizer, the strong convexity parameter of at
least κ1δ

1=2 (for some κ1 > 0 that we identify), under suitable convexity and growth assumptions on ℓ(·); see
Theorems 1–4.

It turns out that the function ℓrob(·) can be computed by solving a one-dimensional search problem on a com-
pact interval. This can be solved quite efficiently (exponentially fast rate of convergence) under the setting of
Theorems 1–4.

We then study a natural stochastic gradient descent algorithm for solving (2) that, because of the strong con-
vexity properties derived for ℓrob(·), achieves an iteration complexity of order Op(ε−1L) to reach O ε( ) error, where
L is the cost of solving the one-dimensional search problem. We also discuss in the online appendix how to exe-
cute this line search procedure efficiently, provided that suitable smoothness assumptions are imposed on ℓ(·)
(leading to an extra factor of order L �O log 1=ε

( )( )
in total cost. In this sense, we obtain a provably efficient itera-

tive procedure to solve (2).
It is important to note that the non-DRO version of the problem, namely (1), corresponding to the case δ � 0

may not be strongly convex even if ℓ(·) is strongly convex; see Remark 1 following Theorem 4. So, in principle,
(1) may require O 1=ε2

( )
stochastic gradient descent iterations to reach O ε( ) error of the optimal value. Indeed, if

ℓ(·) is convex, the problem is always convex in β (for δ ≥ 0) because the supremum of convex functions is convex.
Of course, δ > 0 may be seen as a form of “regularization” in some cases, as discussed earlier, and this is a

feature that could explain, at least intuitively, the convexity properties of the objective function. But the goal of
Formulation (2) is not to regularize for the sake of making the problem better posed from an optimization stand-
point. Rather, the point of Formulation (2) is enabling the flexibility in choosing effective DRO formulations (via
(5)) in order to improve out-of-sample properties. This flexibility could come at a price in terms of computational
tractability. The point of keeping the case δ � 0 in mind as a benchmark is that such a price is not incurred, and
therefore, our results enable modelers to use formulations such as (2) to improve out-of-sample performance
based on side information as in the portfolio-optimization example mentioned earlier.

Another useful consequence of our results involves the application of standard sample average approximation
statistical analysis results to optimal transport based DRO. This enables the direct application of results in con-
junction with, for example, Shapiro et al. [31], to produce confidence regions for the solution of the DRO
formulation.

Another interesting contribution of our analysis consists in studying the local structure of the worst-case opti-
mal transport plan, including uniqueness and comparative statics results; see Theorems 6 and 7.

The structure of the optimal transport plan, we believe, could prove helpful in the development of statistical
results to certify robustness and in providing insights for robustification in nonconvex objective functions. Some
of the statistical implications are studied in Blanchet et al. [6].

1.3. Organization of the Paper
We now describe how to navigate the results in the paper. Throughout the rest of the paper, we introduce as-
sumptions as we need them. Often these assumptions and the corresponding results that are obtained involved
constants, which are surveyed in a table presented in Online Appendix D.

Section 2 sets the stage for our analysis by first obtaining the duality result (6). The duality result in (6) is given
only under the assumption that ℓ(·) is upper semicontinuous and c(·) is as in (5), assuming A x( ) is uniformly well
conditioned in x.

In Section 2.2.1, under the assumption that ℓ(·) is convex with at most quadratic growth and fourth order mo-
ments of P0, we establish convexity and finiteness in the right-hand side of (6).

In Section 2.2.2, we add the assumptions that ℓ(·) is twice differentiable with a natural nondegeneracy condi-
tion on P0 and that the feasible set, B, is convex and compact. We characterize a useful region (compact and with

Blanchet, Murthy, and Zhang: Optimal Transport-Based DRO
Mathematics of Operations Research, 2022, vol. 47, no. 2, pp. 1500–1529, © 2021 INFORMS 1503

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.o

rg
 b

y 
[1

32
.1

74
.2

51
.2

] o
n 

30
 D

ec
em

be
r 2

02
3,

 a
t 1

2:
13

 . 
Fo

r p
er

so
na

l u
se

 o
nl

y,
 a

ll 
rig

ht
s r

es
er

ve
d.

 



convenient analytical properties), called V, which contains the dual optimizer λ∗ β
( )

parametrically as a function
of each decision β. Then, we show smoothness and strong convexity in β of the right-hand side of (6) on V.

Also in Section 2.2.2, now under a local strong convexity condition on ℓ(·) and a strengthening of the nondege-
neracy condition on P0 mentioned earlier, we extend the smoothness and strong convexity of the right-hand side
of (6) in both β and the dual variable λ > 0 provided that δ is chosen suitably small throughout V.
The assumption that B is compact is imposed to simplify the strong convexity analysis and comparative statics

(i.e., the structure of the worst-case distribution and comparative statics). We show in Section 2.2.3 that the com-
pactness of B can be relaxed at the expense of additional technical burden.

The structure of the worst case is studied in Section 2.3 in Theorem 6. The result includes the amount of dis-
placement (parametrically in δ) of the optimal transport plan and the existence of a Monge map (i.e., a direct
“matching” between outcomes of P0 and those of the worst-case distribution). We also discuss situations in
which the optimal transport plan may not exist (even if an optimal solution to (6) exists) among other results.

Comparative statics results, including the uniqueness of the worst-case distribution as a Monge map as well as
monotonicity in the amount of the displacement as a function of δ for every single outcome of P0 are also dis-
cussed in Section 2.3. Also, the geometry of the worst-case transportation parametrically in δ is shown to follow
straight lines.

In Section 3, we examine the wide range of algorithmic implications that follow from the results in earlier sec-
tions. Section 3.1 studies how to evaluate subgradients of the function ℓrob(·) inside the expectation in (6). This is
discussed under mild assumptions that do not require the loss ℓ(·) to be differentiable. So the result can be ap-
plied to developing stochastic subgradient descent algorithms for nondifferentiable losses if derivatives and ex-
pectations can be swapped.

This swapping is explored in Section 3.2. We evaluate gradients for the expectation in the right-hand side of
(6) under the assumptions imposed in Section 2.2.1, and a formal stochastic gradient descent scheme is given in
Section 3.2.1, together with the corresponding iteration complexity analysis discussed in Section 3.2.2.

In Section 3.3, we discuss potential enhancements of the basic stochastic gradient descent strategy introduced
in Section 3.2.1. These include a two-scale stochastic approximation scheme for dealing with the evaluation of
the gradients of ℓrob(·) and the case in which δmay not be small enough to apply the smoothness results from Sec-
tion 2.2.2, and we need to deal with nondifferentiable losses as well.

We provide several specific examples in Section 4. These are designed to derive the expressions of the structur-
al results that we present and explore the structure of the worst-case probability model and its behavior paramet-
rically in δ. The various constants summarized required in the assumptions for application of our structural
results are summarized in Online Appendix D. With the complexity of the SGD approach not scaling with the
data size, the numerical study in Section 4.1.5 demonstrates the distinct computational advantage enjoyed by
the proposed SGD scheme over second order cone formulations derived from piecewise linear approximation to
the loss ℓ(·).

In Section 4.2, we provide a discussion related to the portfolio optimization discussed earlier in the Introduc-
tion. The set of matrices, A x( ), is calibrated based on an implied volatility index, and P0 is constructed based on
several years of historical data for the S&P 500 index.

The proofs of our main structural results are given in Section 5. Additional discussion involving technical lem-
mas and propositions, which are auxiliary to our main structural results, are given in Online Appendix A. The
discussion on the complexity of the line search, which underlies the gradient evaluation of ℓrob(·), is given in On-
line Appendix B.

1.4. Notations
In the sequel, the symbol P(S) is used to denote the set of all probability measures defined on a complete separa-
ble metric space S. A collection of random variables {Xn : n ≥ 1} is said to satisfy the relationship Xn �Op(1) if it
is tight; in other words, for any ε > 0, there exists a constant Cε such that supn P(|Xn| > Cε) < ε: Following this no-
tation, we write Xn �Op(g(n)) to denote that the family {Xn=g(n) : n ≥ 1} is tight. The notation X ~ P is to write
that the law of X is P. For any measurable function f : S→ R, we denote the essential supremum of f under mea-
sure P ∈ P(S) as P–ess-supx f (x) :� inf{a ∈ R : P( f−1(a,∞)) � 0}. For any real-symmetric matrix A, we write A � 0
to denote that A is a positive semidefinite matrix. The set of d-dimensional positive definite matrices with real en-
tries is denoted by S

++
d . The d-dimensional identity matrix is denoted by Id: The norm ‖ · ‖ is written to denote the

ℓ2−Euclidean norm unless specified otherwise. For any real vector x and r > 0, N r(x) denotes the neighborhood
N r(x) :� {y : ‖y− x‖ < r}: We say that a collection of random variables {Xc : c ∈ C} is L2−bounded (or bounded in
the L2−norm) if supc∈C E‖Xc‖2 <∞. For any function f : Rd → R, the notation rf andr2f are written to denote, re-
spectively, the gradient and Hessian of f. In instances in which it is helpful to clarify the variable with which
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partial derivatives are taken, we resort to writing, for example, rxf (x,y), r2
x f (x,y), or equivalently,

∂f=∂x, ∂2f=∂x2 to denote that the partial derivative is taken with respect to the variable x. We write ∂+f , ∂−f to de-
note the right and left derivatives.

2. Dual Reformulation and Convexity Properties
In this section, we first reexpress the robust (worst-case) objective as in (6). Such reformulation, entirely in terms
of the baseline probability distribution P0, is useful in deriving the convexity and other structural properties to
be examined in Sections 2.2–2.4. In turn, the reformulation (6) is helpful in developing the stochastic
gradient–based iterative descent schemes described in Section 3.

2.1. Dual Reformulation
It follows from the definition of the optimal transport costs Dc(P0,P) (see (3)) that the worst-case objective in (6)
equals

sup
∫

ℓ(βTx′)dπ(x,x′) : π ∈ P(Rd × R
d), π( · × R

d) � P0(·),
∫

c(x,x′)dπ(x,x′) ≤ δ

{ }
,

which is an infinite-dimensional linear program that maximizes Eπ[ℓ(βTX′)] over all joint distributions π of pair
(X,X′) ∈ R

d × R
d satisfying the linear marginal constraints that the law of X is P0 and the cost constraint that

Eπ[c(X,X′)] ≤ δ (see Blanchet and Murthy [4, section 2.2] for details). A precise description of the state-dependent
Mahalanobis transport costs c(·, ·)we consider in this paper is given in Assumption 1.

Assumption 1. The transport cost function c : Rd × R
d → R+ is of the form

c(x,x′) � (x− x′)TA(x)(x− x′),
where A : Rd → S

++
d is such that (a) c(·) is lower-semicontinuous, and (b) there exist positive constants ρmin, ρmax satisfy-

ing sup‖v‖�1 v
TA(x)v ≤ ρmax and inf‖v‖�1 v

TA(x)v ≥ ρmin , for P0−almost every x ∈ R
d:

As mentioned in the Introduction, a transport cost function satisfying Assumption 1 is not necessarily symmet-
ric (and, hence, need not be a metric). The special case of A(x) being the identity matrix (for all x) corresponds to
D1=2

c (·) being the well-known Wasserstein distance (in this case, the constants ρmax � ρmin � 1). Theorem 1 builds
on a general strong duality result applicable for this linear program when the chosen transport cost function
c(x,x′) is not necessarily a metric.

Theorem 1. Suppose that ℓ : R→ R is upper semicontinuous. Then, under Assumption 1, the worst-case objective,

sup
P:Dc(P0,P)≤δ

EP ℓ(βTX)[ ] � inf
λ≥0 fδ(β,λ),

where fδ(β,λ) :� EP0[ℓrob(β,λ;X)], ℓrob(β,λ;x) :� supγ∈R F(γ,β,λ;x), and
F(γ,β,λ;x) :� ℓ βTx+ γ

��
δ

√
βTA(x)−1β

( )
−λ

��
δ

√ (γ2βTA(x)−1β− 1): (7)

For any β ∈ B, there exists a dual optimizer λ∗(β) ≥ 0 such that fδ(β,λ∗(β)) � infλ≥0 fδ(β,λ).
The proof of Theorem 1 is provided in Section 5.1.

2.2. Convexity and Smoothness Properties of the Dual DRO Objective
Here, we study the convexity and smoothness properties of the dual objective function fδ(β,λ):

2.2.1. Convexity. We first identify conditions under which the function fδ(·) is proper and convex.

Assumption 2. The loss function ℓ : R→ R is convex, and it satisfies the growth condition that κ :� inf{s ≥ 0 :
supu∈R(ℓ(u) − su2) <∞} is finite. In addition, the baseline distribution P0 is such that EP0‖X‖4 <∞:

Theorem 2. The function fδ : B × R+ → R ∪ {∞} is proper and convex when Assumptions 1 and 2 hold.

The proof of Theorem 2 can be found in Section 5.1.

2.2.2. Smoothness and Strong Convexity. Next, we establish smoothness, strong convexity of fδ(·,λ) for fixed λ,
and joint strong convexity of fδ(·), when restricted to the domain V, under increasingly stronger sets of
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assumptions. Although these assumptions are helpful in understanding smoothness and strong convexity prop-
erties, the development of iterative schemes in Online Appendix E does not require these stronger assumptions.

Assumption 3. The loss function ℓ : R→ R is twice differentiable with bounded second derivatives. Specifically, we have a
positive constant M such that ℓ′′(·) ≤M: Moreover, the baseline distribution P0 is such that ℓ′(βTX) is not identically 0 for
any β ∈ B:

Assumption 4. The set B ⊆ R
d is convex and compact. Specifically, supβ∈B ‖β‖ �: Rβ <∞:

Recall from Theorem 1 that argminλ≥0 fδ(β,λ) is not empty for every β ∈ B:

Proposition 1. Suppose that Assumptions 1–4 hold. Then, for any β ∈ B and dual optimizer λ∗(β) ∈ argminλ≥0 fδ(β,λ),
we have (β,λ∗(β)) ∈ V, where

V :� {(β,λ) ∈ B × R+ : K1‖β‖ ≤ λ ≤ K2‖β‖}, (8)

for some positive constants K1, K2 that can be explicitly determined in terms of parameters δ,M,Rβ,ρmax,ρmin:

To avoid clutter, we provide explicit characterizations for the constants K1, K2 in the proof of Proposition 1 (see
Section 5.2) and as well in Online Table 2 (see Online Appendix D).

Theorem 3. Suppose that Assumptions 1–4 are satisfied. Then, there exist positive constants δ0,κ0 such that the following
hold: whenever δ < δ0, the function fδ : B × R+ → R ∪ {∞} satisfies the following properties:

a. The function fδ(·) is twice differentiable throughout the domainV with a uniformly bounded Hessian.
b. The second derivative of fδ(·) satisfies

∂2fδ
∂β2

(β,λ)� ��
δ

√
κ0λ

−1
Id, for (β,λ) ∈ V:

Theorem 3 identifies conditions under which the dual DRO objective fδ(·) has Lipschitz continuous gradients
(smoothness) and also points toward strong convexity in terms of the parameter β (for any fixed λ). Similar to
Proposition 1, we provide explicit characterizations for the constants δ0,κ0 in the proof of Theorem 3 in Section
5.3 (see also Online Appendix D for tables summarizing useful constants). We next focus on characterizing
strong convexity jointly in the parameters (β,λ):
Assumption 5. The loss function ℓ : R→ R is locally strongly convex. In addition, for every β ∈ B, the baseline distribu-

tion P0 is such that there exist c1, c2 ∈ (0,∞), p ∈ (0, 1) satisfying P0 |ℓ′(βTX)| > c1, |βTX| > c2‖β‖
( )

≥ p:

Theorem 4. Suppose that Assumptions 1–5 hold. Then, there exist constants δ1 ∈ (0,δ0) and κ1 ∈ (0,∞) such that, when-
ever δ < δ1, the Hessian of the function fδ : B × R+ → R ∪ {∞} satisfies

r2fδ(θ)�
��
δ

√
κ1Id+1,

for θ ∈ V:

The proof of Theorem 4, along with an explicit characterization of the constant δ1, is presented in Section 5.3.
Theorem 4 identifies conditions under which fδ(·) is strongly convex (jointly over (β,λ)) when restricted to the set
V. Indeed, because of Proposition 1, it is sufficient to restrict attention to V to arrive at local strong convexity
around argminβ,λfδ(β,λ): To the best of our knowledge, Theorem 4 is the first result that presents strong convexi-
ty of the objective in Wasserstein distance–based DRO in a suitable sense. As is well known, strong convexity is a
property that determines the iteration complexity of gradient-based descent methods. We utilize this in Section 3
to derive convergence properties of the proposed iterative schemes.

Remark 1. It is instructive to recall that ℓ(·) being strongly convex does not mean EP0[ℓ(βTX)] is necessarily
strongly convex. For example, consider the underdetermined case of least-squares linear regression in which
ℓ(u) � (y− u)2 and the number of samples n < d: If we take P0 to be the empirical distribution corresponding to
the n data samples (Xi,Yi), the stochastic optimization objective to be minimized, EP0[(Y− βTX)2] �
n−1∑n

i�1(Yi − βTXi)2 is not strongly convex. Theorem 4 asserts that the respective dual DRO objective fδ(β,λ) is,
nevertheless, strongly convex in a region containing the minimizer (refer to an example in Section 4.1.3 for a dis-
cussion on how a DRO formulation of the least squares linear regression problem results in the dual objective of
the form fδ(β,λ)). Thus, because of Theorem 4, for a considerable class of useful loss functions ℓ(·), the DRO dual
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objective to be minimized, fδ(β,λ), is strongly convex in a suitable sense, even if the nonrobust counterpart
EP0[ℓ(βTX)] is not.

2.2.2.1. Comments on Assumptions 1–5. Assumptions 1 and 2 ensure that the DRO objective (6) is convex and
proper and that the strong duality utilized in Theorem 1 is indeed applicable. These nonrestrictive assumptions
serve the purpose of clearly stating the framework considered. Indeed, Assumptions 1 and 2 are satisfied by a
wide variety of loss functions ℓ(·) and a flexible class of state-dependent Mahalanobis cost functions c(·), which
include commonly used Euclidean metric, Mahalanobis distances as special cases. As we see in the proof of The-
orem 4, the twice differentiability imposed in Assumption 3 is necessary to characterize the local strong convexi-
ty of fδ by means of the positive definiteness of the Hessian of fδ. The assumption of boundedness of the set B,
though not necessary for strong convexity (see Section 2.2.3), is essential for guaranteeing the differentiability of
fδ(·): Moving to Assumption 5, the positive probability requirement in Assumption 5 rules out the degeneracy
that P0 is not concentrated entirely in the regions in which either |ℓ′(βTx)| or |βTx| is small. See Remark 4 (follow-
ing the proof of Theorem 4 in Section 5.3) for an explanation of why the positivity of c1, c2 is necessary to identify
the coefficient κ1, which is independent of the ambiguity radius δ: We reiterate that the development of iterative
schemes in Online Appendix E does not require Assumptions 3–5.

2.2.3. Strong Convexity Property for Noncompact B. As we see in Theorem 5, compactness of the set B (as in As-
sumption 4) is not crucial for strong convexity of the DRO objective around the minimizer. Assumption 4 is
merely a simplifying assumption that allows the study of additional structural properties, such as differentiabili-
ty, smoothness (see Theorem 3), and comparative statics (see Section 2.4). A proof of Theorem 5 is presented in
Online Appendix A.

Theorem 5. Suppose that Assumptions 1–3 and 5 are satisfied. In addition, suppose we have positive constants k1,
k2 such that |u|ℓ′′(u) ≤ k1 + k2|ℓ′(u)|, for u ∈ R: Then, there exists δ2 > 0 such that, for every δ < δ2, the following
property holds: for any β ∈ B, we have positive constants κ, r such that

fδ(αθ1 + (1− α)θ2) ≤ αfδ(θ1) + (1− α)fδ(θ2) − 1
2
κα(1− α)‖θ1 −θ2‖2,

for every θ1,θ2 ∈N r((β,λ∗(β))):

2.3. Structure of the Worst-Case Distribution
Fixing β ∈ B, we explain the structure of the worst-case distribution(s) that attains the supremum in (6) by utilizing
the solution of the respective dual problem infλ≥0 fδ(β,λ) (see Theorem 1). Recall the notation that λ∗(β) attains the
infimum in infλ≥0 fδ(β,λ) for fixed β ∈ B: For each β ∈ B,λ ≥ 0 and x ∈ R

d, define the set of optimal solutions to (7) as
Γ∗(β,λ;x) � γ : F(γ,β,λ;x) � sup

c∈R
F(c,β,λ;x){ }

: (9)

Finally, for a fixed β ∈ B, define

λthr(β) � κ
��
δ

√ (P0 − ess-supxβ
TA(x)−1β):

Similarly, when Assumption 3 holds, define

λ′
thr(β) �

1
2
M

��
δ

√ (P0 − ess-supxβ
TA(x)−1β):

Because κ ≤M=2, we have λ′
thr(β) ≥ λthr(β) for every β ∈ B:

Theorem 6. Suppose that Assumptions 1 and 2 hold and β≠ 0: Take any dual optimizer λ∗(β) ∈ argminλ≥0 fδ(β,λ):
Then,

a. The dual optimizer λ∗(β) is strictly positive unless ℓ(·) is a constant function. If ℓ(·) is indeed a constant function, then
any distribution in Uδ(P0) � {P : Dc(P0,P) ≤ δ} attains the supremum in (6).

b. The dual optimizer λ∗(β) ≥ λthr(β) whenever ℓ(·) is not a constant.
c. If λ∗(β) > λthr(β), the law of

X∗ :� X+ ��
δ

√
GA(X)−1β (10)

attains the supremum in (6) and satisfies E[c(X,X∗)] � δ; here, the random variable G can be written as G :� ZG− + (1−
Z)G+, with G− � infΓ(β,λ∗(β);X), G+ � supΓ(β,λ∗(β);X), P0−almost surely, and Z is an independent Bernoulli random
variable satisfying P(Z � 1) � (c̄ − 1)=(c̄ − c), where c̄ :� EP0[G2+β

TA(X)−1β] and c :� EP0[G2−β
TA(X)−1β];
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d. If λ∗(β) � λthr(β), then a worst-case distribution attaining the supremum in (6)may not exist.
e. Under additional Assumption 3, if λ∗(β) > λ′

thr(β), the set Γ∗(β,λ∗(β);x) is a singleton for every x ∈ R
d: Then, for the

random variable G being the unique element in Γ∗(β,λ∗(β);X), P0−almost surely, we have that the law of X∗ :� X+��
δ

√
GA(X)−1β is the only distribution that attains the supremum in (6). In addition, E[c(X,X∗)] � δ:

The proof of Theorem 6 is presented in Section 5.4.

Remark 2. Consider the case β � 0: Then, λ � 0 attains the minimum in minλ≥0fδ(0,λ), supDc(P0,P)≤δ EP0[ℓ(βTX)] �
ℓ(0), and any distribution in {P : Dc(P0,P) ≤ δ} attains the supremum.

2.4. Comparative Statics Analysis
In this section, we explain how the worst-case distribution structure explained in Section 2.3 changes for every
realization of X when the radius of ambiguity δ is changed. Such a sample-wise description is facilitated by ex-
amining the derivative of the random variable G described in part (e) of Theorem 6, P0− almost surely.

Theorem 7. Suppose that the assumptions in Theorem 3 are satisfied. For any δ ∈ (0,δ1) and fixed β ∈ B\{0}, there exists a
unique worst-case distribution P∗

δ that attains the supremum in supP:Dc(P0,P)≤δEP[ℓ(βTX)]: In particular, there exist ran-
dom variables {Gδ : δ ∈ (0,δ1)} such that

a. The law of X∗
δ :� X+ ��

δ
√

GδA(X)−1β is P∗
δ;

b. 0 <
��
δ

√
Gδ <

���
δ′

√
Gδ′ whenever 0 < δ < δ′ < δ1 and ℓ′(βTX) > 0;

c.
���
δ′

√
Gδ′ <

��
δ

√
Gδ < 0 whenever 0 < δ < δ′ < δ1 and ℓ′(βTX) < 0; and

d. Gδ � 0 whenever δ ∈ (0,δ1) and ℓ′(βTX) � 0:
Therefore, ‖X∗

δ −X‖ ≤ ‖X∗
δ′ −X‖, P0−almost surely whenever 0 < δ < δ′ < δ1:

The proof of Theorem 7 is presented in Section 5.4. Interestingly, Theorem 7 asserts that the trajectory {X∗
δ :

δ ∈ [0,δ1)} is a straight line P0− almost surely with probability mass being transported to farther distances as δ
increases in [0,δ1): A pictorial description of this phenomenon is provided in Section 4.1.2 for numerical
demonstration.

3. Algorithmic Implications of the Strong Convexity Properties
A key component of this section is a stochastic gradient–based iterative scheme that exhibits the following desir-
able convergence properties:

a. The proposed scheme enjoys optimal rates of convergence among the class of iterative algorithms that utilize
first-order oracle information and possesses per-iteration effort not dependent on the size of the support of P0:

b. Compared with the “nonrobust” counterpart infβ∈B EP0[ℓ(βTX)], the proposed first-order method yields simi-
lar (or) superior rates of convergence for the DRO formulation (2).

In the case of data-driven problems in which P0 is taken to be the empirical distribution, the size of the support of P0
is simply the size of the data set. In such cases, property (a) is a particularly pleasant property as it allows Wasserstein
distance–based DRO formulations to be amenable for big data problems that have become common in machine learn-
ing and operations research. Alternative approaches that directly solve the resulting convex program reformulations
without resorting to stochastic gradients suffer from a large problem size when employed for large data sets (see, for
example, Mohajerin Esfahani and Kuhn [19], Shafieezadeh-Abadeh et al. [29]). Further, the proposed stochastic
gradient–based approaches are also immediately applicable to problems in which P0 has uncountably infinite support.

Property (b) makes sure that computational intractability is not a reason that should deter the use of the DRO
approach toward optimization under uncertainty. In fact property (b) describes that it may be computationally
more advantageous, in addition to the desired robustness, to work with the DRO formulation (2) compared with
its stochastic optimization counterpart infβ∈B EP0[ℓ(βTX)]: As we see in Section 3.2, this computational benefit for
the proposed stochastic gradient descent scheme is endowed by the strong convexity properties of the dual ob-
jective fδ(β,λ) derived in Theorem 4. Guided by the strong convexity structure of fδ(β,λ), we also discuss en-
hancements to the vanilla SGD scheme in Sections 3.3.1 and 3.3.2.

3.1. Extracting First-Order Information
Recall the univariate maximization (7) that defines ℓrob(β,λ;x) for β ∈ B,λ ≥ 0,x ∈ R

d and the set of maximizers
Γ∗(β,λ;x) in (9). With the DRO objective (6) being related to the dual objective fδ(β,λ) :� EP0[ℓrob(β,λ;X)] as in
Theorem 1, the minimization can be restricted to the effective domain

U :� (β,λ) ∈ B × R+ : EP0 ℓrob(β,λ;X)[ ]
<∞{ }

: (11)
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Lemma 1, whose proof is presented in Online Appendix A, provides a characterization of the effective domain
U: Here, recall the earlier definition that λthr(β) is the P0–essential supremum of

��
δ

√
κβTA(x)−1β: Define

U1 :� (β,λ) ∈ B × R+ : λ > λthr(β){ }
and U2 : � (β,λ) ∈ B × R+ : λ ≥ λthr(β){ }

:

Lemma 1. Suppose that Assumptions 1 and 2 hold. Then, for any β ∈ B,λ ≥ 0 and x ∈ R
d,

a. Γ∗(β,λ;x) is nonempty and ℓrob(β,λ;x) is finite if λ > κ
��
δ

√
βA(x)−1β;

b. Γ∗(β,λ;x) is empty and ℓrob(β,λ;x) � ∞ if λ < κ
��
δ

√
βA(x)−1β:

Consequently, U1 ⊆ U ⊆ U2:

Lemma 2. Suppose that Assumptions 1(a) and 2 hold. Then, the function ℓrob(β,λ;x) is convex in (β,λ) ∈ B × R+ for any
x ∈ R

d:

Proposition 2 utilizes the envelope theorem (see Milgrom and Segal [18]) to characterize the gradients of ℓrob(·):
Recall that we use ∂−ℓ(u), ∂+ℓ(u) to denote the left and right derivatives of ℓ(·) when evaluated at u ∈ R:

Proposition 2. Suppose that ℓ : R→ R satisfies Assumption 2 and is of the form ℓ(u) �maxi�1,: : : ,Kℓi(u) for continuously
differentiable ℓi : R→ R and a positive integer K. The following statements hold for P0−almost every x:

a. The set of maximizers, Γ∗(β,λ;x)≠ ø, for any (β,λ) ∈ U1:
b. The maps λ �→ ℓrob(β,λ;x), βj �→ ℓrob(β,λ;x) are absolutely continuous for (β,λ) ∈ U1, and their directional derivatives

are given by

∂−ℓrob
∂βj

(β,λ;x) � min
γ∈Γ∗(β,λ; x)

∂−ℓ βT(x+ ��
δ

√
γA(x)−1β)

( )
(x+ ��

δ
√

γA(x)−1β)j, (12a)

∂+ℓrob
∂βj

(β,λ;x) � max
γ∈Γ∗(β,λ; x)

∂+ℓ βT(x+ ��
δ

√
γA(x)−1β)

( )
(x+ ��

δ
√

γA(x)−1β)j, (12b)

∂−ℓrob
∂λ

(β,λ;x) � min
γ∈Γ∗(β,λ; x)

− ��
δ

√
γ2βTA(x)−1β− 1
( )

, (12c)

∂+ℓrob
∂λ

(β,λ;x) � max
γ∈Γ∗(β,λ; x)

− ��
δ

√
γ2βTA(x)−1β− 1
( )

: (12d)

Furthermore, λ �→ ℓrob(β,λ;x) is differentiable if and only if ∂+F
∂λ (γ,β,λ;x), ∂−F∂λ (γ,β,λ;x) : γ ∈ Γ∗(β,λ;x)

{ }
is a singleton.

Likewise, for j in {1, : : : ,d} βj �→ ℓrob(β,λ;x) is differentiable if and only if the respective set ∂+F
∂βj

(γ,β,λ;x),
{

∂−F
∂βj

(γ,β,λ;x) :
γ ∈ Γ∗(β,λ;x)} is a singleton. When all these sets are singleton, if we let x̃ :� x+ ��

δ
√

gA(x)−1β for any g ∈ Γ∗(β,λ;x), and
then the derivative is given by

∂ℓrob
∂β

(β,λ;x) � ℓ′ βTx̃
( )

x̃ and
∂ℓrob
∂λ

(β,λ;x)� − ��
δ

√
g2βTA(x)−1β− 1
( )

: (13)

A proof of Proposition 2 can be found in Online Appendix A. Recall that a simple subgradient descent (or) sto-
chastic subgradient descent for solving the nonrobust problem infβ∈B EP0 ℓ(βTX)

[ ]
assumes access to first-order or-

acle evaluations ℓ(·) and ∂+ℓ(·), ∂−ℓ(·): Likewise, because of the characterization in Proposition 2, all the function
evaluation information required to implement a stochastic subgradient descent type iterative scheme for mini-
mizing its robust counterpart fδ(β,λ) are evaluations of ℓ(·) and ∂+ℓ(·), ∂−ℓ(·): Indeed, when it is feasible to ex-
change the gradient (or subgradient) and the expectation operators in r(β,λ)EP0[ℓrob(β,λ;X)] (as in Proposition 3
in Section 3.2), the subgradients of ℓrob(β,λ;X) yield noisy subgradients of fδ(β,λ): For a given (β,λ) ∈ U1, a uni-
variate optimization procedure, such as bisection (or) Newton–Raphson methods. is used to solve (7).

3.2. A Stochastic Gradient Descent Scheme for Differentiable fd(·)
For ease of notation, we write θ in place of (β,λ) ∈ B × R+: We describe the algorithm initially assuming that the
conditions in Theorem 3 are satisfied. Then, as a consequence of Theorem 3, we have that fδ(·) is differentiable
over the set V. Here, recall the characterization of the set V in Proposition 1 and the constants K1, K2 therein and
the constant Rβ in Assumption 4. Define the set

W :� {(β,λ) ∈ B × R : K1‖β‖ ≤ λ ≤ K2Rβ}: (14)
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See thatW is a closed convex set containing V: Therefore, when δ < δ0, as a consequence of Theorem 1 and Prop-
osition 1, we have that

inf
β∈B sup

P:Dc(P,P0)≤δ
EP ℓ(βTX)[ ] � inf

θ∈W fδ(θ):

Proposition 3. Suppose that Assumptions 1–4 hold and δ < δ0: Then, EP0[rθℓrob(θ;X)] is well defined and

rθfδ(θ) � EP0[rθℓrob(θ;X)],
for any θ ∈ {(β,λ) : β ∈ B,λ > λ′

thr(β)} ⊃W:

The proof of Proposition 3 is available in Online Appendix A.

3.2.1. The Iterative Scheme. Because of Proposition 3, samples of the random vector rθℓrob(θ;X), where X ~ P0,
are unbiased estimators of the desired gradient rθfδ(θ) and are called “stochastic gradients” of fδ(θ): Utilizing
these noisy gradients, we generate averaged iterates {θ̄k : k ≥ 1} according to the following scheme:

Fix ξ ≥ 0 and initialize θ̄0 � θ0 ∈W: For k > 0, given the iterate θk−1 from the (k− 1)th step,
a. Generate an independent sampleXk from the distribution P0,
b. Computerθℓrob(θk;Xk) characterized in (13) by solving supγ∈R F(γ,θ;Xk), and
c. Compute the kth iterate θk and its weighted running average θ̄k as follows:

θk :�ΠW(θk−1 −αkrθℓrob(θk−1;Xk)) and θ̄k � 1− ξ+ 1
k+ ξ

( )
θ̄k−1 + ξ+ 1

k+ ξ
θk, (15)

where ΠW(·) denotes the projection operation on to the closed convex set W and (αk)k≥1 is referred to as the step-
size sequence (or) learning rate of the iterative scheme. A closed-form expression for the projection ΠW is given
in Online Appendix C, and a detailed algorithmic description of these steps is described in Online Appendix E.

Assumption 6. The step-size sequence (αk)k≥1 is taken to satisfy αk � αk−τ, for some constants α > 0 and τ ∈ [1=2, 1]:
The iterates (θk)k≥1 are the classical Robbins–Monro iterates with slower step sizes (see Robbins and Monro

[27]). If ξ � 0 in the definition of θ̄k in (15), the iterate θ̄k is simply the running average of θ1, :::θk−1, and the aver-
aging scheme is the well-known Polyak–Ruppert averaging for stochastic gradient descent (see Polyak and Judit-
sky [26] and references therein). On the other hand, the averaging scheme with ξ > 0 is referred to as
polynomial-decay averaging (see Shamir and Zhang [30]).

3.2.2. Rates of Convergence. Our objective here is to characterize the convergence of ( fδ(θ̄k))k≥1 for the iteration
scheme (15). Let f∗ :� infθ∈B×R+ fδ(θ) be the optimal value. It is well known that stochastic gradient descent
schemes for smooth objective functions enjoy fδ(θ̄k) − f∗ �Op(k−1) rate of convergence if fδ is strongly convex and
fδ(θk) − f∗ �Op(k−1=2) if fδ is simply convex for suitable choices of step sizes (see, for example Shamir and Zhang
[30] and references therein). Although fδ(·) is convex for all δ ≥ 0, it follows from Theorem 4 that fδ(·) is locally
strongly convex in the region containing the optimizer when δ < δ1: As a result, we have the following better rate
of convergence for fδ(θ̄k) − f∗ when δ < δ1: The proof of Proposition 4 is presented in Section 5.5.

Proposition 4. Suppose that Assumptions 1–4 hold. Then, we have
a. fδ(θ̄k) − f∗ �Op(k−1=2) if δ < δ0, ξ ≥ 1 in (15) and τ � 1=2 in Assumption 6.
b. fδ(θ̄k) − f∗ �Op(k−1) if δ < δ1, ξ � 0, τ ∈ (1=2, 1) in Assumption 6, and Assumption 5 is satisfied.

For the strongly convex case, the averaged procedure endows the sequence ( fδ(θ̄k))k≥1 with the robustness
property that the precise choice of step size (αk)k≥1 does not affect the convergence behavior as long as the step
size choice satisfies Assumption 6. Contrast this with the vanilla stochastic approximation iterates (θk)k≥1 with
step size αk � αk−1, in which case the constant α has to be chosen larger than a threshold that depends on the
Hessian of fδ at θ minimizing fδ(θ), in order to have fδ(θk) − f∗ �Op(k−1) (see, for example, Moulines and Bach
[22], Nemirovski et al. [23] for discussions on the effect of step sizes on error fδ(θk) − f∗).

Recall that δ0,δ1 are positive constants that do not depend on the size of the support of P0: For data-driven op-
timization problems, the radius of ambiguity, δ, is typically chosen to decrease to zero with the number of data
samples n (see, for example, Blanchet et al. [5], Shafieezadeh-Abadeh et al. [29]). Therefore the requirement that
δ < δ1 is typically satisfied in practice in data-driven applications.

Indeed, if δ < δ1, because of Proposition 4(b)), it suffices to terminate after Op(ε−1) iterations in order to obtain
an iterate θ̄k that satisfies fδ(θ̄k) − f∗ ≤ ε: On the other hand, if δ > δ1, we require the usual Op(ε−2) iteration
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complexity to obtain fδ(θk) − f∗ ≤ ε, which is identical to the sample complexity of stochastic gradient descent for
the nonrobust problem infβEP0[ℓ(βTX)] in the presence of convexity (see, for example, Shamir and Zhang [30]).
Here, recall from the discussion following Theorem 4 that the nonrobust stochastic optimization objective
infβEP0[ℓ(βTX)] need not be strongly convex even if ℓ(·) is strongly convex, whereas the corresponding
worst-case objective fδ(β,λ) is jointly strongly convex in (β,λ) more generally under the conditions identified in
Theorem 4.

As a result, if we let L denote the complexity of the univariate line search that solves supγ∈R F(γ,θ;x) for any
(β,λ) ∈W, then the computational effort involved in solving (2) scales as Op(ε−1L) when δ < δ1 and Op(ε−2L) when
δ ∈ [δ1,δ0): As mentioned earlier, this complexity does not scale with the size of the support of P0 for a given δ: See
Online Appendix B for a brief discussion on L, the complexity introduced by line search schemes.

The analysis of stochastic gradient descent with small bias can be done without significant complications un-
der regularity conditions. The following result summarizes the overall rate of convergence analysis for the classi-
cal Robbins–Monro iterates (θk : k ≥ 1), including bias induced by the line search in the strongly convex case. The
proof of Proposition 5 is presented in Online Appendix A.

Proposition 5. Suppose that Assumptions 1–6 hold and δ < δ1. At the kth iteration, the bisection method is employed with
at least τlog2(k) − log2(α) + 2log2(1+ ‖Xk‖) cuts to computerθℓrob(θk−1;Xk). Then, we have

a. fδ(θk) − f∗ �Op(k−τ) if τ ∈ (1=2, 1) in Assumption 6.
b. fδ(θk) − f∗ �Op(k−1) if α is larger than the smallest eigenvalue ofr2

θ fδ(θ∗) and τ � 1 in Assumption 6.

Remark 3. Proposition 5 indicates that, if the bisection method is applied with O(log2(k)) cuts at the kth iterates,
then the classical Robbins–Monro algorithm still achieves the optimal Op(1=k) rate even if the bias of line search
is taken into consideration. The assumption in part (b) on requiring a lower bound on α is standard. Typically,
avoiding an estimate of such a lower bound can be done by Polyak–Ruppert–Juditsky averaging and choosing
τ ∈ (1=2, 1). This is most often studied in the case of unbiased gradients. An adaptation is required for the case of
biased gradients. Although we believe that such an adaptation should be quite doable, we do not pursue it in
this paper as it would be a significant distraction from our objective. Our goal here is to showcase the applicabili-
ty of the structural results in Section 2.2 toward designing efficient algorithms for DRO based on flexible cost
functions.

To complete this discussion, recall that the dual formulation,

inf
λ≥0EP0 sup

γ∈R
F(γ, β,λ;X)[ ]

,

that we are working with is a result of the change of variables c � ��
δ

√
γβTA(X)−1β and λ

��
δ

√
to λ in the proof of

Theorem 1. Evidently, this change of variables involves scaling by a factor
��
δ

√
: It is a consequence of this scaling

by
��
δ

√
that an optimal λ∗(β) is bounded, thus allowing the optimization to be restricted to values of λ over a com-

pact interval [0,K2Rβ] regardless of how small the radius of ambiguity δ is. Moreover, if we let gδ(x) denote a
maximizer for the inner maximization supγ≥0 F(γ,β,λ∗(β);x) for any δ,x and a fixed β ∈ B, we also witness in
Proposition 9(b) that gδ(X) �Op(1), as δ→ 0: These two properties ensure that the inner and outer optimization

problems infλ≥0 EP0 supγ∈R F(γ,β,λ;X)
[ ]

are well conditioned and their solutions remain scale-free (with respect

to δ).
For algorithms that directly proceed with the dual reformulation in Blanchet and Murthy [4, theorem 1] or

Gao and Kleywegt [12, theorem 1] without employing the described scaling of variables by factor
��
δ

√
, the result-

ing dual formulation has the property that the solutions to the inner and outer optimization problems are Op(
��
δ

√ )
and O(δ−1=2), respectively. Consequently, the local strong convexity coefficient of the dual reformulation
obtained without scaling can be shown to be O(δ), which is inferior when compared with the O( ��

δ
√ ) strong con-

vexity coefficient that we have identified in Theorem 1. Indeed, the focus on strong convexity and its effect of
computational performance in this paper has helped bring out this nuanced and important effect of the scaling
that appears to be absent in the existing algorithmic approaches for Wasserstein DRO.

3.3. Enhancements to the SGD Scheme in Section 3.2
Our focus in this section is to describe natural enhancements to the vanilla SGD scheme described in Section 3.2
by utilizing the convexity characterizations in Section 2.2.
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3.3.1. A Two Time Scale Stochastic Approximation Scheme. Because λ is an auxiliary variable introduced by the
duality formulation, it is rather natural to update the variables β and λ at different learning rates (step sizes) as
follows: given iterate (βk−1,λk−1), generate a sample Xk independently from P0 in order to update as follows:

β̃k � βk−1 − αk
∂fδ
∂β

(βk−1,λk−1;Xk), (16a)

λ̃k � λk−1 − γk
∂fδ
∂λ

(βk−1,λk−1;Xk), and (16b)

θk �ΠW (β̃k, λ̃k)
( )

: (16c)

Here, the step-sizes (αk)k≥1, (γk)k≥1 satisfy the step-size requirement in Assumption 6 with τ ∈ (1=2, 1) and
αk=γk → 0: Because αk is very small relative to γk, the iterates βk remain relatively static compared with λk, thus
having an effect of fixing βk and running (16b) for a long time. As a result, the iterates λk appear “most of the
time” as λ∗(βk) in the view of βk, thus resulting in effective updates of the form

βk � βk−1 −αk
∂fδ
∂β

(βk−1,λ∗(βk−1);Xk):

Once again, we consider the averaged iterates θ̄k, defined as in (15) with ξ � 0: Similar to Section 3.2, if we let f∗ :�
infθ∈B×R+ fδ(θ), it can be argued that fδ(θ̄k) − f∗ �Op(k−1) in the presence of strong convexity (see Mokkadem and
Pelletier [20, theorem 2]) that holds in the δ < δ1 case. As a result, if δ < δ1, it suffices to terminate afterOp(ε−1) iter-
ations in order to obtain an iterate θ̄k that satisfies fδ(θ̄k) − f∗ ≤ ε: We leave it as a question for future research to
develop a precise understanding of the effect of two time scales in affecting the convergence behavior.

3.3.2. Line Search–Based SGD Scheme. When δ < δ0, Theorem 3 asserts that fδ(β,λ) satisfies strong convexity in
the variable β for every fixed λ: This strong convexity in variable β holds even if fδ(β,λ)may not be jointly strong-
ly convex in (β,λ) (for example, when δ ∈ [δ1,δ0)): We make use of this observation in this section to describe an
SGD scheme that (a) quickly evaluates h(λ) :� infβ∈B fδ(β,λ) for any given λ and (b) utilizes univariate line search
for minimizing h(·) in a suitable interval.

Because fδ(·) is a convex function, the partial minimization h(λ) :� infβ∈B fδ(β,λ) defines a univariate convex
function in λ: For any fixed λ > 0, consider stochastic gradient descent iterates of the form

βk :� βk−1 − αk
∂fδ
∂β

(βk−1,λ;Xk), and β̄k :�
1
k

∑k
i�1

βi,

where (Xk)k≥1 are independent and identically distributed (i.i.d.) samples of P0, and the step sizes (αk)k≥1 satisfy
the requirement in Assumption 6 with τ ∈ (1=2, 1) and ξ � 0: Then, it follows from the strong convexity character-
ization in Theorem 3 that fδ(β̄k,λ) − h(λ) �Op(k−1) if δ < δ0: With the ability to evaluate the function h(λ) �
infβ∈B fδ(β,λ) within a desired precision, any standard line search method, such as the triangle section method
(see den Boef and den Hertog [11, algorithm 3]), that exploits the convexity of h(·) to achieve linear convergence
for line search can be employed to evaluate minλh(λ) to any desired precision.

With line searches requiring identification of an interval (in which the minimum is attained) to begin with, we
restrict the line search over λ to the interval [0,K2Rβ]. This is because, as a result of Proposition 1 and that
‖β‖ ≤ Rβ, we have that the interval [0,K2Rβ] contains optimal λ∗(β) for every β ∈ B: It can be argued that the de-
scribed approach results in iteration complexity of Op(ε−1poly(logε−1)) to solve min fδ(β,λ) within ε−precision
when δ < δ0:We do not pursue this derivation here as our objective is to simply demonstrate the versatility of ap-
plications of the structural insights given by the results in Section 2.2.

Likewise, one could consider a variety of algorithms that accelerate SGD at a greater computational cost per it-
eration; such algorithms utilize either variance reduction (see, for example, Defazio et al. [10], Johnson and
Zhang [16]) or momentum-based acceleration (see Allen-Zhu [1]). The strong convexity results in Section 2.2
could be used to establish improved rates of convergence for such extensions as well.

3.4. SGD for Nondifferentiable fd
The function fδ(·) need not be differentiable when the radius of ambiguity δ exceeds δ0 (or) when the set B is not
bounded. The iterative algorithms described in Sections 3.2 and 3.3 rely on restricting the iterates θk to the setW:
Such an approach is not feasible when δ > δ0: In that case, with the characterization of the effective domain of fδ
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as in Lemma 1, define the family of closed convex sets, (Uη : η ≥ 0) as
Uη :� (β,λ) ∈ B × R+ : λ ≥ λthr(β) + η

{ }
: (17)

Let ∂fδ(β,λ) and ∂ℓrob(β,λ;x), respectively, be the set of subgradients of fδ(·) and ℓrob(· ;x) at (β,λ): Likewise, let
∂ℓ(u) :� conv{∂−ℓ(u)=∂u, ∂+ℓ(u)=∂u} denote the subgradient set of the univariate function ℓ(·) evaluated at u.
Then, it follows from Proposition 2(b) that the set

D(β,λ;x) :� conv
∂ℓ(βTx̃)x̃��

δ
√

1− g2βTA(x)−1β
( )⎛⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎠ : x̃ � x+ ��
δ

√
gA(x)−1β,

g ∈ Γ∗(β,λ;x)
⎧⎪⎪⎪⎨⎪⎪⎪⎩ ⎫⎪⎪⎪⎬⎪⎪⎪⎭ (18)

comprises the subgradient set ∂ℓrob(β,λ;x): Similar to Proposition 3, Proposition 6 helps in characterizing noisy
subgradients of fδ(·):
Proposition 6. Suppose that Assumptions 1 and 2 are satisfied and the loss ℓ(·) is of the form ℓ(u) �maxi�1,: : : ,Kℓi(u) for
continuously differentiable ℓi : R→ R and a positive integer K. For any η > 0 and fixed (β,λ) ∈ Uη, let (X,h(β,λ;X)) be
such that X ~ P0 and h(β,λ,X) ∈D(β,λ;X), P0−almost surely. Then, E[h(β,λ;X)] is well defined, and
E[h(β,λ;X)] ∈ ∂fδ(β,λ):

The proof of Proposition 6 is available in Online Appendix A. Following Proposition 6, consider an iterative
scheme utilizing noisy subgradients as follows. Given fixed η > 0,ξ ≥ 1 and iterate θk−1 � (βk−1,λk−1) from the
(k− 1)st iteration, the kth iterate is computed as follows:

θk :�ΠUη
(θk−1 −αkHk) and θ̄k� 1−ξ+ 1

k+ ξ

( )
θ̄k−1+ξ+ 1

k+ ξ
θk, (19)

where the step-size sequence (αk)k≥1 satisfies Assumption 6 with τ � 1=2 and Hk is computed as follows:
a. Generate a sample Xk independently from the distribution P0;
b. Pick any g ∈ Γ∗(β,λ;Xk) by solving the univariate search supγ∈R F(γ,βk−1,λk−1;Xk);
c. Let X̃k :� Xk +

��
δ

√
gA(Xk)−1β, and takeHk ∈D(βk−1,λk−1;Xk) as

Hk :�
L′X̃k��

δ
√

1− g2βTk−1A(Xk)−1βk−1
( )( )

,

where L′ is selected uniformly at random from the interval [∂−ℓ(βTk−1X̃k)=∂u, ∂+ℓ(βTk−1X̃k)=∂u] �: ∂ℓ(βTk−1X̃k):
It is immediate from (18) that Hk ∈D(βk−1,λk−1;Xk): Then, because of Proposition 6, we have that EHk ∈

∂fδ(βk−1,λk−1): Because of the convexity of fδ(·) characterized in Theorem 4, we have the following rates of conver-
gence for fδ(θ̄k) − f∗, as k→∞: The proof of Proposition 7 is presented in Online Appendix A.

Proposition 7. Suppose that Assumptions 1 and 2 are satisfied and the loss ℓ(·) is of the form ℓ(u) �maxi�1,: : : ,Kℓi(u) for
continuously differentiable ℓi : R→ R and a positive integer K. In addition, suppose that the constants ξ in (19) and τ in
Assumption 6 are such that ξ ≥ 1 and τ � 1=2: Then, we have fδ(θ̄k) − f∗ ≤ η

��
δ

√ +Op(k−1=2):
Consequently, if we choose η small enough and use L to denote the computational effort needed to solve the

line search supγ F(γ,β,λ;X) for any (β,λ) ∈ Uη, then the total computational effort needed to obtain estimates of
f∗ within ε−precision is Op(Lε−2): A brief description of the complexity L introduced by the line search can be
found in Online Appendix B.

4. Numerical Experiments
In this section, we provide some illustrative examples in the contexts of supervised learning and portfolio opti-
mization. All the numerical examples were carried out on a laptop computer with a 2.2 GHz Intel Core i7 CPU
and 16 GB memory. We keep in mind that our goal in this section is to demonstrate empirically the structural
properties that we derived and their implications for algorithmic performance. We are not concerned with a spe-
cific choice of δ, which is typically done via cross-validation in a typical data-driven setting.

4.1. Illustrative Examples from Supervised Learning
The out-of-sample performance advantages of utilizing optimal transport costs with Mahalanobis distances have
been demonstrated comprehensively with real data classification examples in Blanchet et al. [7]. Therefore, in the
interest of space and to avoid repetition, we restrict the focus in this section to reporting the results of stylized
numerical experiments that accomplish the following enumerated goals: (1) compare the iteration complexity of
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the iterative scheme proposed in Section 3.2 for the DRO formulation (2) with that of the benchmark stochastic
gradient descent for its nonrobust counterpart (1), (2) provide a visualization of the worst case distribution, and
(3) study the iteration complexity when the twice differentiability assumption (made in order to prove Theorem
4) is relaxed.

4.1.1. Modifications of Notations for Supervised Learning. As supervised learning problems typically involve a
response variable in addition to the predictor variables X, we first discuss how the DRO formulation in (2) can
be utilized in the presence of the additional response variable. Let us use Y to denote the response variable in the
rest of this section. We begin by treating the response Y as a random parameter of the loss function ℓ(·), so the
assumptions applied to ℓ(·) should be replaced by that of ℓ(· ;Y) when considering problems with response vari-
able Y. In addition, the reference measure P0 ∈ P(Rd × R) is modified to characterize the joint distribution of
(X, Y). Further, as we assume the ambiguity only appears on the predictors X, we defined the optimal transport
between P ∈ P(Rd × R) and P0 ∈ P(Rd × R) can be modified as

Dc P0,P( ) � inf Eπ c X,X′( )[ ]
:
π ∈ P(Rd × R × R

d × R),π(Y � Y′) � 1,
π(X,Y) � P0,π(X′,Y′) � P:

{ }
,

where π is the joint distribution of (X,Y,X′,Y′):
Using the modified model, if ℓ(· ;y) satisfies the assumptions of ℓ(·) for P0−almost every y, then all the results

and algorithms developed in the previous sections are still valid. The proof of the generalized result is essentially
same as before as we just need to replace ℓ(·) by ℓ(· ;Y) in the proof as well.

4.1.2. Logistic Regression. We consider the case of binary classification, in which the data are given by
{(Xi,Yi)}ni�1 with predictor Xi ∈ R

d and label Yi ∈ {−1, 1}. In this case, the logistic loss function is

ℓ(u;y) � log 1+ exp(−yu)( )
:

We are interested in solving the distributionally robust logistic regression problem

inf
β∈B sup

P:Dc(Pn,P)≤δ
EP ℓ(βTX;Y)[ ]

where P0 � Pn(dx,dy) :� 1
n
∑n

i�1δ{(Xi ,Yi)}(dx,dy) is the empirical measure of data.
In Online Appendix D, we demonstrate that the assumptions in Section 2.2 are naturally satisfied by the logis-

tic loss ℓ(· ;y), and therein, we also include computation of related constants. Consequently, all of the algorithms
and theoretical results developed in this paper are applicable to the logistic regression example.

We design a numerical experiment to test the performance of our algorithm on a distributionally robust logis-
tic regression. The data are generated from normal distribution with a different mean for each class and the same
variance. The total number of data points ranges among n ∈ {64,256,1024}, and the dimension of data is d � 32.

We implement the iterative scheme provided in Section 3.2.1 to solve the ordinary logistic regression (with δ � 0)
and its distributionally robust counterpart (δ > 0). In the numerical experiment, we choose A(x) � Id. To
compare the rates of convergence of these two models, the same learning rate (or step size) on β is adapted. The pa-
rameter τ in Assumption 6 is chosen to be 0.55. We use the value of loss function at 105 iterations as the approximate
optimal loss, and then, we plot the optimality gap (error) versus number of iterations for the DROmodel and the or-
dinary logistic model in Figure 1.

Next, in the sequence of subplots in Figure 2, we attempt to visualize how the worst-case distributions {X∗
δ :

δ > 0} change as the radius δ is increased. In the first subplot corresponding to δ � 0, we have 64 independent
samples of X ∈ R

2 and the decision boundary obtained from the ordinary logistic regression. The different
markers denote the data in different classes: on the lower left side the data are classified to be circles, and on the
upper right side the data are classified to be triangles. Naturally, when δ � 0, most of the data points are correctly
classified. Then, fixing the decision boundary to be the same as that obtained from the ordinary logistic regres-
sion, we increase the transportation budget δ and display the respective worst-case distribution computed with β
fixed to that obtained from the ordinary logistic regression estimator. The worst-case distributions X∗

δ for differ-
ent δ are visualized in the subsequent plots. We can observe that more and more points are misclassified when δ
is increasing, and in the last plot, the misclassification rate is larger than 50%. In addition, the trajectory of X∗

δ

forms a straight line moving toward the wrong side of the decision boundary, which is aligned with our observa-
tions pertaining to comparative statics in Theorem 6 (see Section 2.4).
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4.1.3. Linear Regression. Now, we turn to consider the example of linear regression with a squared loss function.
In this, data are given by {(Xi,Yi)}ni�1 with predictor Xi ∈ R

d and label Yi ∈ R. We consider the squared loss func-
tion ℓ(u;y) � (y− u)2 in this example, and the reference measure is defined as the empirical measure
P0 � Pn(dx,dy) :� 1

n
∑n

i�1δ{(Xi,Yi)}(dx,dy). Then, the distributionally robust linear regression problem is defined as

inf
β∈B sup

P:Dc(Pn,P)≤δ
EP ℓ(βTX;Y)[ ]

:

Following a similar argument as in the example of logistic regression, it is not hard to verify that the squared loss
function satisfies all the assumptions regarding the loss function. We refer the interested readers to Online Ap-
pendix D for verification of assumptions and computation of related constants.

Actually, in this example, the dual objective function can be computed in closed form. The distributionally ro-
bust linear regression problem is equivalent to

inf
β∈B infλ≥0 λ

��
δ

√ + 1
n

∑n
i�1

λ(βTXi − Yi)2
λ − ��

δ
√

βTA(Xi)−1β

{ }
:

Now, we explain the setting of our numerical experiment in this example. The dimension of data is d � 16, and
we randomly generate three different training data sets of size n ∈ {64,256,1024}. The matrix that appears in the
cost function is chosen as A(x) � Id. We apply the iterative scheme in Section 3.2.1 to solve the ordinary linear re-
gression model (with δ � 0) and its distributionally robust counterpart (δ > 0). Again, we adapt the same learning
rate for both model and chosen parameter τ � 0:55 in Assumption 6. The plot of optimality gaps (error) versus
iterations for the DROmodel and the ordinary linear regression model is given in Figure 3.

4.1.4. Support Vector Machines. We consider the case of binary classification, in which the data are given by
{(Xi,Yi)}ni�1, the same as the data in the example of logistic regression. The hinge loss function is ℓ(u;y) �
max 0,1− yu

( )
:We are interested in solving the distributionally robust hinge loss minimization problem

inf
β∈B sup

P:Dc(Pn,P)≤δ
EP ℓ(βTX;Y)[ ]

,

where P0 � Pn(dx,dy) :� 1
n
∑n

i�1δ{(Xi ,Yi)}(dx,dy) is the empirical measure of data.
The algorithm to solve the DRO with the piecewise continuously differentiable function is discussed in Section

3.4. We present the procedure of verification of related assumptions and computation of constants in Online
Appendix D.

In the numerical experiment, we use the same data as in the example of logistic regression. Again, we set the
learning rate to be same for DRO and non-DRO algorithms. Figure 4 shows the path of optimality gaps of loss
functions during iterations. We use the value of loss function at 105 iterations as the approximate optimal loss
given the training samples and plot the optimality gap (error) versus the number of iterations in Figure 4.

Figure 1. (Color online) Convergence of loss function for logistic regression. (a) n � 64. (b) n � 256. (c) n � 1,024.

(a) (b) (c)
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4.1.5. Comparison Against Conic Programming Reformulation. Here, we provide a comparative numerical
example against a direct convex optimization approach (Hanasusanto and Kuhn [15, proposition 4]. For data-driven
DRO with a piecewise linear convex loss function of the form ℓ(u;y) �maxk�1,: : : ,K{ak · (u− y) + bk}, and a matrix ap-
pears in the cost function chosen as A(x) � Id, the second order cone program (SOCP) reformulation in Hanasusanto
and Kuhn [15, proposition 4] obtained by letting P0 � Pn(dx,dy) :� 1

n
∑n

i�1δ{(Xi,Yi)}(dx,dy) is given in (20).

Figure 2. (Color online) Decision boundary andworst-case distribution. To facilitate tracking the change ofX∗
δ when δ is increas-

ing, we select one point from each class and use a big + to mark its position. We also employ a small + to mark its previous posi-
tion when δ is smaller so that the trajectory of the point is visible. We can observe, as predicted by our theoretical results, that X∗

δ

moves parametrically in a linear direction as δ changes. Moreover, the speed of displacement is decreasing, which is consistent
with the

��
δ

√
scaling size discussed in Theorem 7. It is worth noting the dynamics of the worse-case distribution, which transports

the different classes in opposite directions in order to maximize the loss for misclassification.
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inf λδ+ 1
n

∑n
i�1

si

s:t: β ∈ B, λ ∈ R+, s ∈ R
n
+,

si + akYi − bk − akβTXi ≥ 0 ∀k � 1, : : : ,K, ∀i � 1, : : : ,n,∣∣∣∣∣
∣∣∣∣∣ 2ckβ
si + akYi − bk − akβTXi −λ

∣∣∣∣∣
∣∣∣∣∣
2

≤ si + akYi − bk − akβTXi +λ
∀k � 1, : : : ,K,
∀i � 1, : : : ,n:

(20)

If the loss function is not piecewise linear, such as square or logistic loss, one may solve the SOCP reformulation
corresponding to a piecewise linear approximation. We invoke the linear regression model in Section 4.1.3 as an
example for comparing the numerical performances of the direct convex optimization approach and the pro-
posed SGD approach. We approximate the square loss function ℓ(u;y) � (u− y)2 with piecewise linear functions
comprising K � 9 and K � 19 linear functions in separate instances. The linear functions are chosen to be the tan-
gent line of the loss function ℓ(u;y) � (u− y)2 with distinct integer supporting points u satisfying |u| ≤ (K− 1)=2.
We reformulated the resulting DRO with approximated loss as SOCP (20), which thereafter is solved using MO-
SEK ApS [21]. For the SGD approach, we terminate the algorithm if its optimality gap is smaller than the opti-
mality gap of the SOCP solution (the SOCP solution is suboptimal because of the linear approximation error).
The data-generating process of {(Xi,Yi)}ni�1 is same as Section 4.1.3 with varying sample size n to test the scalabili-
ty of the algorithms.

We compare the required time to solve SGD and SOCP in Figure 5. One can quickly remark that the SGD ap-
proach outperforms the SOCP approach for medium and large sample sizes. Though SOCP is a more efficient
method for minimal sample sizes, its computational complexity rapidly deteriorates when n is increasing be-
cause of the n × K of cone constraints involved in the problem. In contrast, the computational time required by
SGD is independent of the sample size.

Figure 3. (Color online) Convergence of loss function for linear regression. (a) n � 64. (b) n � 256. (c) n � 1,024.

(a) (b) (c)

Figure 4. (Color online) Convergence of loss function for support vector machines. (a) n � 64. (b) n � 256. (c) n � 1,024.

(a) (b) (c)
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4.2. Portfolio Optimization
In this section, we demonstrate an example application of the proposed DRO framework in the context of
mean-variance portfolio optimization. Suppose that X is an R

d−valued random vector representing the relative
monthly returns of d securities. Let us use P∗ to denote the probability distribution of X. The classical Markowitz
mean-variance model suggests that the portfolio choices lying on the efficient frontier can be determined by solv-
ing an optimization problem of the form

min
β:βT1�1

VarP∗ [βTX] − ζ ·EP∗ [βTX], (21)

where β is a d−dimensional weight vector and ζ ∈ [0,∞) is a suitable parameter choice determining the extent of
risk aversion. By adding an additional variable μ ∈ R representing the mean return of the portfolio, Formulation
(21) can be rewritten as the following stochastic optimization problem with affine decision rules:

inf
μ

inf
β:βT1�1

EP∗ [(βTX−μ)2 − ζ · βTX]: (22)

In practice, the probability distribution P∗ is not known, and it is common to work with historical returns data to
arrive at a suitable portfolio choice. Suppose that we use Pn :� 1

n

∑n
i�1δ{Xi} to denote the empirical distribution

corresponding to n historical return samples {X1, : : : ,Xn}: Because of the discrepancy between the ground-truth
measure P∗ and the reference measure P0 � Pn, we consider the following distributionally robust variant of (22):

inf
μ

inf
β:βT1�1

sup
P:Dc(P0,P)≤δ

EP0[(βTX−μ)2 − ζ · βTX]: (23)

As with most data-driven DRO formulations, the insertion of the inner supremum allows quantifying the impact
of the model mismatch between the empirical distribution and plausible model variations that are a result of fu-
ture market interactions. Additional information about such future variations can typically be inferred from cur-
rent market data in the form of, for example, the implied volatility that can be elicited from the derivative
prices. In such instances, a suitable choice of state-dependent Mahalanobis cost function c(·) in the proposed
framework allows us to include this additional market information in the ambiguity set {P :Dc(P0,P) ≤ δ}, which
corresponds to the set of plausible model variations. To demonstrate this idea in the portfolio example, suppose
that we observe the implied volatility time series {Vi : i � 1, : : : ,n} in addition to the returns data {Xi : i � 1, : : : ,n};
here, Vi is a positive scalar that represents the implied volatilities corresponding to the ith observation Xi: Let
V̄ � n−1

∑n
i�1Vi denote the average implied volatility. Corresponding to every point Xi in the support of Pn,

we take the state-dependent Mahalanobis cost to be c(Xi,x) � (Xi − x)TAi(Xi − x), where

Ai � V̄
Vi

Id, i � 1, : : : ,n: (24)

Figure 5. (Color online) Comparison of computational efforts for SGD and SOCP approaches for sample sizes n ∈ {16, 32, 64,
128, 256, 512, 1024}: The number of linear functions are (a) K � 9 and (b) K � 19.

(a) (b)
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The rationale behind this choice is the hypothesis that a large implied volatility is suggestive of the anticipa-
tion of larger price uncertainty in future returns by the collective market. As a result, the inverse proportion-
ality relationship Ai∝V−1

i Id in (24) is such that it is cheaper to perturb returns (or transport mass) for
observations with higher implied volatility. The normalization by V̄ is introduced to allow comparisons
with the choice of standard Euclidean squared norm (corresponding to the choice A(x) :� Id) as the transpor-
tation cost function.

To test the effectiveness of the DRO formulation (23) with real data, we randomly pick 20 stocks from the con-
stituents of the S&P 500 as the stock pool. The weights of the portfolio are adjusted on a monthly basis during
the test period constituting the years 2000–2017. For every month in this test period, the portfolio weights are ob-
tained by training Formulation (23) with the respective stock pool data from the previous 10 years. For example,
at the beginning of January 2000, the training data {X1, : : : ,Xn} for Model (23) is the monthly historical returns of
the selected 20 stocks observed during the period January 1990–January 2000 (thus, n � 119 and d � 20). The Chi-
cago Board Options Exchange’s volatility index, which is a popular gauge of the stock market’s forward looking
volatility implied by S&P 500 index options, is used to inform the market implied volatility. The parameter δ is
treated as a hyperparameter, and the out-of-sample efficient frontier is generated by considering different values
of the parameter ζ: In Figure 6(a), we report the mean and the standard deviation of the portfolio returns (during
the test period 2000–2017) obtained from 100 random stock pool choices.

The data used for computing an optimal portfolio is different from the data used for evaluating the portfolio,
which is the reason we address the efficient frontiers in Figure 6(a) as “out-of-sample.” These out-of-sample effi-
cient frontiers reveal that the DRO formulation (23) with state-dependent Mahalanobis cost choice (as in (24))
performs uniformly better than that obtained with the Euclidean distance choice (corresponding to constant
A(x) � Id, addressed as the constant model in Figure 6(a)). We also observe that a larger value of distributional
uncertainty δ results in a larger mean annualized return. Unlike the case of an efficient frontier generated and
tested with samples from the same probability distribution, the negative slopes in the out-of-sample efficient
frontiers in Figure 6(a) suggest that the out-of-sample effects (such as nonstationarity in data) are significant.

As a sanity check to verify our implementation, we also report the results of the same experiment with simu-
lated data constituting i.i.d. training and test samples (see Figure 6(b)) for the choice A(x) � Id: In this simulation
experiment, the DRO model is observed to produce less efficient portfolios relative to nonrobust formulations,
which is not surprising given that the experiment has been designed with simulated data and there is little model
error. The efficient frontiers of the DRO model, as expected for relatively small values of δ, have positive slopes
in out-of-sample simulated frontiers, and this is consistent with the observations of the classical Markowitz theo-
ry. These experiment results can be viewed as underscoring the need for DRO model formulations such as the
one we study in this paper. In addition to historical returns data, these model formulations incorporate the

Figure 6. Out-of-sample efficient frontier. The mean and the standard deviation are annualized. We use solid lines to represent
models with a constant optimal transport cost function and use dashed lines to represent the models with a state-dependent Ma-
halanobis optimal transport cost function. The different choices of δ are denoted by different grayscales. The values of ζ are rep-
resented by different shapes of the markers. (a) Real data experiment. (b) Simulated data experiment.

Real Data Experiment Simulated Data Experiment

(a) (b)
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flexibility to use additional information, such as implied volatilities, to elicit collective market expectations about
future uncertainty.

5. Proofs of Main Results
We provide proofs of all the main results in Sections 2 and 3 in this section. The proofs of auxiliary results, which
are technical in nature, are provided in the subsequent online technical appendix Section A for ease of reading.

5.1. Proofs of the Results on Dual Reformulation and Convexity
In this section, we see the proofs of Theorems 1 and 2 and Lemma 2.

Proof of Theorem 1. Because c(·) is lower semicontinuous and ℓ(·) is upper semicontinuous, it follows from the
strong duality result in Blanchet and Murthy [4, theorem 1] that

sup
P:Dc(P0,P)≤δ

EP[ℓ(βTX)] � inf
λ≥0EP0 sup

Δ∈Rd

ℓ(βT(X+Δ)) −λ ΔTA(X)Δ− δ
( ){ }[ ]

� inf
λ≥0EP0 sup

c∈R

{
ℓ(βTX+ c) −λ

(
inf

Δ:βTΔ�c
ΔTA(X)Δ− δ

)}[ ]
,

and that the infimum on the right-hand side is attained for every β ∈ B: Because

inf{ΔTA(X)Δ : βTΔ � c} � c2=(βTA(X)−1β)

for β≠ 0, changing variables as in c � ��
δ

√
γβTA(X)−1β and from λ

��
δ

√
to λ lets us conclude that

sup
Δ∈Rd

ℓ(βT(X+Δ)) −λ ΔTA(X)Δ− δ
( ){ }

� sup
γ∈R

F(γ,β,λ;X) �: ℓrob(β,λ;X), (25)

thus resulting in supP:Dc(P0,P)≤δEP[ℓ(βTX)] � infλ≥0 EP0[ℓrob(β,λ;X)]: This completes the proof of Theorem 1. w

The proof of Theorem 2 follows immediately as a consequence of Lemma 2 (stated in Section 3.1) and Lemma
3, whose proof is furnished in the technical Online Appendix A.

Lemma 3. Suppose that Assumptions 1 and 2 hold. Consider any ε > 0, x ∈ R
d, and β ∈ B: If λ ≥ (κ+ ε) ��

δ
√

βTA(x)−1β,
then there exist positive constants C1, C2 such that

a.Any g ∈ Γ∗(β,λ;x) satisfies ��
δ

√ |g|βTA(x)−1β ≤ 1+C1ε
−1(1+ |βTx|);

b. ℓrob(β,λ;x) ≤ λ
��
δ

√ +C2(1+ ε+ ε−1)(1+ |βTx|)2:
We first see the proof of Lemma 2 before proceeding to the proof of Theorem 2.

Proof of Lemma 2. Take any θ1 :� (β1,λ1) and θ2 :� (β2,λ2) in B × R+: Given α ∈ [0, 1], it follows from (25) that
ℓrob(αθ1 + (1− α)θ2;x) equals

sup
Δ∈Rd

{ℓ((αβ1 + (1− α)β2)T(x+Δ)) − (αλ1 + (1− α)λ2)(ΔTA(x)Δ− δ)}

� αλ1 + (1− α)λ2( )δ
+ sup

Δ∈Rd

ℓ αβT1 (x+Δ) + (1− α)(βT2 (x+Δ))
( )

− αλ1 + (1− α)λ2( )ΔTA(x)Δ
{ }

: (26)

Because ℓ(·) is convex, we have ℓ(αu1 + (1− α)u2) ≤ αℓ(u1) + (1−α)ℓ(u2) for u1,u2 ∈ R: Combining this with the
fact that supΔ(αf1(Δ) + (1−α)f2(Δ)) ≤ α supΔ f1(Δ) + (1−α) supΔ f2(Δ) for any two functions f1, f2, we have that the
term involving supremum in (26) is bounded from above by

α sup
Δ∈Rd

ℓ(βT1 (x+Δ)) −λ1Δ
TA(x)Δ

{ }
+ (1−α) sup

Δ∈Rd

ℓ(βT2 (x+Δ)) −λ2Δ
TA(x)Δ

{ }
:

This observation, in conjunction with (26), establishes that ℓrob(αθ1 + (1− α)θ2;x) ≤ αℓrob(θ1;x) + (1− α)ℓrob(θ2;x),
thus verifying the desired convexity of ℓrob(· ;x): w
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Proof of Theorem 2. Because fδ(β,λ) :� EP0[ℓrob(β,λ;X)], the convexity of fδ(·) follows as a consequence of Lemma
2 and the linearity of expectations. The fact that fδ(·) is proper follows from the observation that ℓrob(β,λ;X) is al-
most surely finite for all λ sufficiently large (see Lemma 3(b)) and the assumption that EP0‖X‖2 <∞ (see
Assumption 2). w

5.2. Bounds for Dual Optimizer l∗(b) and a Proof of Proposition 1
It follows from Theorem 1 that argminλ≥0 fδ(β,λ) is nonempty for any β ∈ B: Lemmas 4–6, whose proofs are
provided in Online Appendix A, are useful toward establishing bounds for any λ∗(β) in argminλ≥0 fδ(β,λ) (see
Lemma 7). In turn, these bounds are useful toward identifying the region V in the main results Proposition 1 and
Theorem 3.

Lemma 4. Suppose that Assumptions 1 and 2 are satisfied and β ∈ B: Then, for any λ∗(β) ∈ argminλ≥0 fδ(β,λ), we have
Γ∗(β,λ∗(β);x)≠ ø, for P0−almost every x ∈ R

d: Moreover,

∂+fδ
∂λ

(β,λ∗(β)) �
��
δ

√
1−EP0 βTA(X)−1β min

γ∈Γ∗(β,λ∗(β);X)
γ2

[ ]( )
:

Lemma 5. Suppose that Assumptions 1 and 2 are satisfied and Γ∗(β,λ,x) is not empty for a given β ∈ B, x ∈ R
d, and λ ≥ 0:

Then, for any γ ∈ Γ∗(β,λ;x), we have γ � ℓ′(βTx+ ��
δ

√
γβTA(x)−1β)=(2λ), and consequently,

|γ| ≥ |ℓ′(βTx)|
2λ

: (27)

Lemma 6. Suppose that Assumptions 2–4 are satisfied. Then, there exist positive constants L, L̄ such that L ≤
EP0[ℓ′(βTX)2] ≤ L̄ for every β ∈ B:

Lemma 7. Suppose that Assumptions 1–3 are satisfied. Then, any minimizer λ∗(β) ∈ argminλ≥0 fδ(β,λ) satisfies
λmin(β) ≤ λ∗(β) ≤ λmax(β), where

λmin(β) :� 1
2
ρ−1=2
max ‖β‖

������������������
EP0 ℓ′(βTX)2

[ ]√
and

λmax(β) :� ρ−1=2
max ‖β‖

������������������
EP0 ℓ′(βTX)2

[ ]√
+ 1
2

��
δ

√
Mρ−1

max‖β‖2:

Proof of Lemma 7. Lower bound: Combining the observations in Lemmas 4 and 5 and the first order optimality
condition that ∂+fδ(β,λ∗(β))=∂λ ≥ 0, we obtain

0 ≤ ∂+fδ
∂λ

(β,λ∗(β)) ≤
��
δ

√
1−EP0 βTA(X)−1β ℓ

′(βTX)2
4λ∗(β)2

[ ]( )
:

Because of Assumption 1(b), the preceding inequality results in

λ∗(β) ≥ 1
2
E1=2
P0

ℓ′(βTX)2βTA(X)−1β
[ ]

≥ 1
2
ρ−1=2
max ‖β‖

������������������
EP0 ℓ′(βTX)2

[ ]√
�: λmin(β):

Upper bound: As ℓ′′(·) ≤M because of Assumption 3, we have that ℓrob(β,λ;X) − ℓ(βTX) is bounded from above
by

sup
γ∈R

ℓ βTX+ γ
��
δ

√
βTA(X)−1β

( )
− ℓ βTX

( )
−λ

��
δ

√
βTA(X)−1βγ2

{ }

≤ sup
γ∈R

ℓ′ βTX
( ) ��

δ
√

βTA(X)−1βγ+ 1
2
M γ

��
δ

√
βTA(X)−1β

( )2
−λ

��
δ

√
βTA(X)−1βγ2

{ }

�
��
δ

√
βTA(X)−1β[ℓ′(βTX)]2

(4λ− 2M
��
δ

√
βTA(X)−1β)+ :
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Next, because λ∗(β)
��
δ

√ +EP0 ℓ(βTX)
[ ] ≤ fδ(β,λ∗(β)) � infλ≥0 EP0[ℓrob(β,λ;X)], we use the preceding result and the

bounds in Assumption 1(b) to write

λ∗(β) ≤ inf
λ≥0

λ+ δ−1=2EP0 ℓrob(β,λ;X) − ℓ(βTX)[ ]{ }
≤ inf

λ>1
2

��
δ

√
Mρ−1min‖β||22

λ+EP0

βTA(X)−1β[ℓ′(βTX)]2
4λ− 2M

��
δ

√
βTA(X)−1β

[ ]{ }

≤ inf
λ>1

2

��
δ

√
Mρ−1min‖β||22

λ+ ρ−1
min‖β‖2

4λ− 2M
��
δ

√
ρ−1
min‖β‖2

EP0 ℓ′(βTX)2
[ ]{ }

:

The expression in the right-hand side is a one-dimensional convex optimization problem that can be solved in
closed form to obtain

λ∗(β) ≤ 1
2

��
δ

√
Mρ−1

min‖β‖2 + ρ−1=2
max ‖β‖

������������������
EP0 ℓ′(βTX)2

[ ]√
�: λmax(β):

This completes the proof of Lemma 7. w

Proof of Proposition 1. For a given β ∈ B, it follows from Lemma 7 that any optimal λ∗(β) lies in the interval
[λmin(β),λmax(β)]: Recalling the definitions of Rβ from Assumption 4 and the characterization of L̄ and L in Lem-
ma 6, we have from Lemma 7 that λmin(β) ≥ K1‖β‖ and λmax(β) ≤ K2‖β‖, where

K1 :� 1
2

��������
Lρ−1

min

√
and K2 :� 1

2

��
δ

√
MRβρ

−1
min+

��������
ρ−1
minL̄

√
: (28)

Thus, we obtain that (β,λ∗(β)) ∈ V for all β ∈ B. w

5.3. Verifying Smoothness and Strong Convexity of the Dual DRO Objective
In this section, we provide proofs of Theorems 3 and 4. We accomplish this primarily by identifying the Hessian
matrix of the dual DRO objective fδ(β,λ) � EP0 ℓrob(β,λ;X)

[ ]
:

Recall the definition of the functions ℓrob(·) and F(·) in Theorem 1. Let SX be the support of the distribution P0:
For a given (β,λ) and x ∈ SX, we use the set Γ∗(β,λ;x) to denote the respective set of maximizers
argmaxγF(γ,β,λ;x) (see (9)). A characterization of the gradient of the function ℓrob(β,λ;x) is derived in Proposi-
tion 2 with the help of the envelope theorem. Likewise, if the loss ℓ(·) is twice differentiable, the implicit function
theorem allows us to characterize the Hessian of ℓrob(β,λ;x): To accomplish this, define

U :� (β,λ,x) ∈ B × R+ × SX : Γ∗(β,λ;x)≠ ø, φ(γ,β,λ;x) > 0 for some γ ∈ Γ∗(β,λ;x){ }
,

where

φ(γ,β,λ;x) :� 2λ− ��
δ

√
βTA(x)−1βℓ′′ βTx+ ��

δ
√

γβTA(x)−1β
( )

:

Further consider the set valued map x �→ U(x) to be the projection

U(x) :� (β,λ) : (β,λ,x) ∈ U
{ }

:

Then, as a consequence of the implicit function theorem, the function ℓrob(β,λ;x) is twice differentiable for every
(β,λ) in the interior of U(x): Indeed, this follows from the observation that ∂2F=∂γ2(·) � −2 ��

δ
√

βTA(x)−1βφ(·) is neg-
ative when (β,λ,x) ∈ U:Next, consider any measurable selection g : U → R such that

g(β,λ;x) ∈ Γ∗(β,λ;x) and φ(g(β,λ;x),β,λ,x) > 0, (29)

for P0−almost every x and almost every (β,λ) ∈ U(x): The existence of such a measurable selection follows from
the Jankov–Von Neumann theorem (see, for example, Bertsekas and Shreve [3, proposition 7.50]). To proceed
further, define

Tg(x) :� x+ ��
δ

√
g(β,λ;x)A(x)−1β, T̄g (x) :� x+ 2

��
δ

√
g(β,λ;x)A(x)−1β, and φg(β,λ;x) :� φ g(β,λ;x),β,λ;x( )

, (30)

for any (β,λ,x) ∈ U, where the dependence on (β,λ) is hidden in the notation of the transport maps Tg(x), T̄g(x)
and has to be understood implicitly. Likewise, once the choice of measurable selection g(·) is fixed, we often sup-
press the arguments (β,λ;x) when writing functions such as g(β,λ;x) and φg(β,λ;x) in order to reduce clutter in
the resulting expressions; for example, we simply write φg and g, respectively, for φg(β,λ;x) and g(β,λ;x):
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Proposition 8. Suppose that Assumptions 1–3 are satisfied, U is not empty, and g : U → R is a measurable selection satis-
fying (29). Then, for almost every x ∈ SX, (β,λ) ∈ int(U(x)), we have

∂2ℓrob
∂β2

(β,λ;x) � 2
��
δ

√
λg2A(x)−1 +

2λℓ′′ βTTg(x)
( )
φg

T̄g(x)T̄g(x)T, ∂2ℓrob
∂λ2 (β,λ;x) � 4

��
δ

√
g2βTA(x)−1β

φg
,

∂2ℓrob
∂λ∂β

(β,λ;x) � −2 ��
δ

√
g2 A(x)−1β+ βTA(x)−1βℓ′′(βTTg(x))

gφg
T̄g(x)

( )
,

where Tg(·), T̄g(·),φg are defined as in (30).Moreover, we have

r2
θℓrob(θ;x) −Λ(θ;x)B(x) � 0, (31)

where

Λ(β,λ;x) :�
4 βTTg(x)
( )2

ℓ′′(βTTg(x))
1+ T̄g(x)TA(x)T̄g(x)ℓ′′(βTTg(x))=(

��
δ

√
g2φ)

1

2λφg + 4βTA(x)−1β , (32)

and

B(x) � A(x)−1 + ℓ′′(βTTg(x))��
δ

√
g2φ

T̄g(x)T̄g(x)T 0

0T 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦:

The proofs of Proposition 8 and Lemma 8 are provided in the technical Online Appendix A. For every β ∈ B,
recall that we have defined λ′

thr(β) to be the P0−essential supremum of
��
δ

√
MβTA(x)−1β=2:

Lemma 8. Suppose Assumptions 1–3 are satisfied. Then, the map γ �→ F(γ,β,λ;x) is strongly concave for every β ∈
B,λ > λ′

thr (β) and P0−almost every x. Consequently, Γ∗(β,λ;x) is singleton for every β ∈ B, λ > λ′
thr(β), and

(β,λ) : β ∈ B,λ > λ′
thr(β)

{ } ⊆ U(x)
for P0−almost every x.

The proof of Lemma 8 is available in the technical Online Appendix A.
Proposition 9 allows us to characterize the Hessian matrix of the dual DRO objective fδ(·): To state Proposition

9, define

δ0 :� ρ2
minLR

−2
β M−2ρ−1

max, and φmin :�
��
L

√
ρ−1=2
max −

��
δ

√
RβMρ−1

min,

where the constants ρmin,ρmax are as in Assumption 1(b), L, L̄ in Lemma 6, Rβ in Assumption 4, and M in As-
sumption 3. Recall the definition of the constants K1, K2 in (28) and that of the previously defined sets

W :� (β,λ) ∈ B × R+ : K1‖β‖ ≤ λ ≤ K2Rβ

{ }
and V :� (β,λ) ∈ B × R+ : K1||β|| ≤ λ ≤ K2||β||{ }

,

which contain the partial minimizers {(β,λ∗(β)) : β ∈ B} when Assumptions 1–4 are satisfied (see Proposition 1).
The proof of Proposition 9 is provided in the technical Online Appendix A.

Proposition 9. Suppose Assumptions 1–4 are satisfied, and δ < δ0: Then,
a.V ⊆W ⊂ {(β,λ) : β ∈ B,λ > λ′

thr(β)} ⊆ U(x) for P0−almost every x;
b. Any map g : U → R satisfying (29) is uniquely specified for almost every (β,λ,x) in the subsetW × SX ⊆ U, and it satis-

fies the following relationships: for P0−almost every x, we have φg(β,λ;x) > φmin‖β‖ if (β,λ) ∈W, and

|g(β,λ;x)| ≥ |ℓ′(βTx)|
2K2‖β‖ if (β,λ) ∈ V, |g(β,λ;x)| ≤ |ℓ′(βTx)|

φmin||β||
if (β,λ) ∈W: (33)

c.With X ~ P0, the collection {g2(β,λ;X), (Tg(X))2, (T̄g(X))2,ℓ(βTTg(X)), ℓ′(βTTg(X))2 : (β,λ) ∈ V} is L2−bounded.
d. The Hessian matrix r2

θ fδ(θ) � EP0 r2
θℓrob(θ;X)

[ ]
for every θ ∈ V, where the Hessian r2

θℓrob(θ;x) can be taken to be
specified in terms of the second order partial derivative expressions in Proposition 8.

The proofs of Theorems 3 and 4 are reliant on the observations made in Proposition 9.
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Proof of Theorem 3.
a. It follows from part (c) of Proposition 9 and the expressions of partial derivatives in Proposition 8 that the

norms of the respective entries (Frobenius norm ‖ · ‖F in the case of a matrix or ℓ2−norm in the case of a vector),
‖∂2ℓrob=∂β2(β, λ;X)‖F, ‖∂2ℓrob=∂β∂λ(β,λ;X)‖, ∂2ℓrob=∂λ2(β,λ;X), are all bounded in L2−norm over the set (β,λ) ∈ V:

Consequently, we have from part (d) of Proposition 9 that ∂2fδ=∂β2, ∂
2fδ=∂β∂λ, and ∂2fδ=∂λ2 are all bounded over

(β,λ) ∈ V: As a result, the Frobenius norm of the Hessian matrixr2
θ fδ(θ) is bounded over θ � (β,λ) ∈ V, and hence,

the function fδ(·) is smooth over the interior ofV:
b. To argue that ∂2fδ=∂β2 is positive definite, we proceed as follows: First observe that A(x)−1 � ρ−1

maxId for
P0−almost every x (that is, A(x)−1ρ−1

maxId is positive semidefinite). Next, recall from (27) in Lemmas 5 and 6 that
|g(β,λ;x)| ≥ |ℓ′(βTx)|=(2λ) and L > 0: Then, it follows from part (d) of Proposition 9 and the expression of ∂2ℓrob=∂β2

from Proposition 8 that, for any (β,λ) ∈ V,

∂2fδ
∂β2

(β,λ) � EP0

∂2ℓrob
∂β2

(β,λ;X)
[ ]

� ��
δ

√ EP0[ℓ′(βTX)2]
2λ

ρ−1
maxId �

��
δ

√ κ0

λ
Id,

where κ0 :� 2−1Lρ−1
max > 0, thus proving Theorem 3. w

In order to proceed with the proof of Theorem 4, define

δ1 :� min{δ0=4, c21c22p2ρ2
maxρ

−1
maxLL̄

−2
=256}:

Proof of Theorem 4. Using the bounds of |g(·)| and φg(·) from Proposition 9(b) along with other immediate
bounds, such as φg ≤ 2λ,λ ∈ [K1‖β‖,K2‖β‖], and βTA(x)−1β ≤ ρ−1

max‖β‖2, the expression for Λ(β,λ;x) from (32) sim-
plifies to

Λ(β,λ;x) � 4
��
δ

√ (gβTTg(x))2
2λ

��
δ

√
g2=ℓ′′(βTTg(x)) + T̄g(x)TA(x)T̄g(x)

· 1

2λ+ 4βTA(x)−1β=φg

(34)

≥ 4
��
δ

√ (βTTg(x)ℓ′(βTx)=(2K2‖β‖))2
2K2

��
δ

√
ℓ′(βTx)2=(φ2

max‖β‖ℓ′′(βTTg(x))) + T̄g(x)TA(x)T̄g(x)
· 1
2K2‖β‖ + 4ρ−1

max‖β‖2=(φmin‖β‖)

≥ ��
δ

√
C0

‖β‖−2 βTTg(x)ℓ′(βTx)
( )2

2K2
��
δ

√
φ−2
maxℓ

′(βTx)2=ℓ′′(βTTg(x)) + T̄g(x)TA(x)T̄g(x)‖β‖
, (35)

where C0 :� (2K2 + 4φ−1
maxρ

−1
max)−1: Next, because βTTg(x) � βTx+ ��

δ
√

gβTA(x)−1β, we obtain from the bounds in (33)
that

|βTTg(x)ℓ′(βTx)| ≥ |βTxℓ′(βTx)| − ��
δ

√ |gℓ′(βTx)|βTA(x)−1β
≥ |βTxℓ′(βTx)| − ��

δ
√ ℓ′(βTx)2

φmin‖β‖
‖β‖2ρ−1

max ≥
c1c2 − 4

��
δ

√
L̄

pφminρmin

( )
‖β‖, (36)

whenever X ∈ A1 ∩ A2; here, the sets A1 and A2 are defined as follows:

A1 :� {x : |βTxℓ′(βTx)| > c1c2‖β‖} and A2 :� {x : ℓ′(βTx)2 ≤ 4L̄=p},
where the constants c1, c2,p are given by Assumption 5. Because EP0[ℓ′(βTX)2] ≤ L̄ for any β ∈ B, we have from
Markov’s inequality that infβ∈B P0(X ∈ A2) ≥ 1− p=4: Consequently, it follows from Assumption 5 and the union
bound that infβ∈B P0(X ∈ A1 ∩ A2) ≥ 3p=4:

Recall that δ0 :� ρ2
minLR

−2
β M−2ρ−1

max: In addition, note that, when δ ≤ δ0=4, we have φmin �
��
L

√
ρ−1=2
max −��

δ
√

RβMρ−1
max ≥ 1

2

��
L

√
ρ−1=2
max : Further, because δ < δ1 ≤ c21c

2
2p

2ρ2
minρ

−1
maxLL̄

−2
=256, we have

c1c2 − 4
��
δ

√
L̄p−1φ−1

maxρ
−1
max ≥ c1c2=2: (37)

Next, if we choose C1 > 0 large enough such that the set A3 :� {x : ‖x‖ ≤ C1} satisfies P0(X ∈ A3) ≥ 1− p=4,
then we have infβ∈ΞP0(X ∈ A1 ∩ A2 ∩ A3) ≥ p=2: The denominator in (35) is bounded from above as follows

whenever x ∈ A1 ∩ A2 ∩ A3 and λ ∈ [K1‖β‖,K2‖β‖] : recalling that Tg(x) :� x+ ��
δ

√
g(β,λ;x)A(x)−1β and
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T̄g(x) :� x+ 2
��
δ

√
g(β,λ;x)A(x)−1β, it follows from the bounds of |g| in (33) that

‖T̄g(x)‖ ≤ ‖x‖ + 2
��
δ

√ |g|ρ−1
max‖β‖ ≤ C1 + 4

��������
δL̄p−1

√ 1
2

��
L

√
ρ−1=2
max

( )−1
ρ−1
max �: C2,

and similarly, ‖Tg(x)‖ ≤ C2 for x ∈ A2 ∩ A3: Because ‖βTTg(x)‖ ≤ RβC2 <∞ when x ∈ A2 ∩ A3, if we let C3 :�
inf|u|≤RβC2 ℓ

′′(u) > 0, we obtain that the denominator in (35) is bounded from above by C4 :�
8K2δ

1=2L̄p−1C−1
3 (12

��
L

√
ρ−1=2
max )−2 + ρmaxC2Rβ whenever x ∈ A2 ∩ A3: Combining this observation with that of (35)–(37),

we obtain that Λ(x) ≥ ��
δ

√
C1{x∈A1∩A2∩A3} for C :� (1=2)C0c1c2C−1

4 :

Finally, because P0(A1 ∩ A2 ∩ A3) ≥ p=2, we have EP0[Λ(β,λ;X)B(X)] � ��
δ

√
κ1Id+1, where κ1 :� pCρ−1

max=2: As a
consequence, we have thatr2

θfδ(θ) �
��
δ

√
κ1Id+1 in Theorem 4. w

Remark 4. Suppose that c1c2 � 0 is the only nonnegative number for which the probability requirement in
Assumption 5 is satisfied. In this case, we have from the upper bound for g in Proposition 9(b) that gβTX � 0, P0-
almost surely. As a result, the numerator of Λ(x) in the right-hand side of (34) is bounded from above by
4

��
δ

√ (0+ ��
δ

√
g2βTA(x)−1β)2 ≤ 4δ3=2ℓ′(βTx)2φ−2

maxρ
−2
max, P0−almost surely. Because the denominator of Λ(x) is bound-

ed away from zero by a constant not dependent on δ, it follows that EP0[Λ(X)] � κ3δ
3=2, for some nonnegative

constant κ3: Because δ3=2 � o( ��
δ

√ ) as δ→ 0, it is not possible to derive a positive constant κ1 that is not dependent
on δ as in the statement of Theorem 4.

5.4. Proofs of the Results Pertaining to the Structure of the Worst-Case Distribution
In this section, we provide proofs of Theorems 6 and 7, which shed light on the structure of the adversarial distri-
bution(s) attaining the supremum in supP:Dc(P0,P)≤δ EP[ℓ(βTX)]:
Proof of Theorem 6. Recall from Assumption 2 that ℓ(u) is convex and grows quadratically or subquadratically
as |u| →∞: Therefore, there exists λ ≥ 0 such that fδ(β,λ) <∞, and subsequently, infλ fδ(β,λ) <∞: According to
Theorem 1, there exist a dual optimizer, λ∗(β) in argminλ≥0 fδ(β,λ) for any β ∈ B:

a. When λ∗(β) � 0 :we have infβ,λ fδ(β,λ) � fδ(β, 0) � supu∈R ℓ(u): Because of the convexity of ℓ(·), the finiteness of
the optimal value fδ(β, 0) � supu ℓ(u) implies that ℓ(·) is a constant function. In this case, any distribution P satisfying
Dc(P,P0) ≤ δ is a worst-case distribution attaining the supremum in supP:Dc(P,P0)≤δ EP0[ℓ(βTX)]:

b. It follows from the characterization of the effective domain of fδ(·) in Lemma 1 that fδ(β,λ) � ∞ when λ <
λthr(β): Therefore, λ∗(β) ≥ λthr(β):

c. When λ∗(β) > λthr(β) : recall from Proposition 2 the expressions for ∂+ℓrob=∂λ and ∂−ℓrob=∂λ: Further, we have
fδ(β,λ) <∞ for (β,λ) ∈ U1 :� {(β,λ) : β ∈ B, λ > λthr(β)}: Then, it follows from Bertsekas [2, proposition 2.1] that the
left and right derivatives ∂+fδ=∂λ and ∂−fδ=∂λ satisfy

∂+fδ
∂λ

(β,λ) � ��
δ

√
1−EP0 βTA(X)−1β inf

g∈Γ∗(β,λ;X)
g2

[ ]( )
and

∂−fδ
∂λ

(β,λ) � ��
δ

√
1−EP0 βTA(X)−1β sup

g∈Γ∗(β,λ;X)
g2

[ ]( )
,

for (β,λ) ∈ U1: Because λ∗(β) > λthr(β), we have from Lemma 3(a) and the continuous differentiability of ℓ(·) that
Γ∗(β,λ∗(β);x) is compact for P0−almost every x. Consequently, there exist measurable selections g+(β,λ∗(β);x) and
g−(β,λ∗(β);x) such that g2+(β,λ∗(β);x) � supg∈Γ∗(β,λ∗(β);X) g

2 and g−(β,λ∗(β);x) � infg∈Γ∗(β,λ∗(β);X) g2 (see Bertsekas and
Shreve [3, proposition 7.50b]). Letting g+(β,λ∗(β);X) � G+ and g−(β,λ∗(β);X) � G−, we obtain that

∂+fδ
∂λ

(β,λ∗(β)) �
��
δ

√
1−EP0 G2

−β
TA(X)−1β

[ ]( )
and

∂−fδ
∂λ

(β,λ∗(β)) �
��
δ

√
1−EP0 G2

+β
TA(X)−1β

[ ]( )
:

Because λ∗(β) ∈ argminλ≥0fδ(β,λ), we have from the first order optimality condition that ∂+fδ=∂λ(β,λ∗(β)) ≥ 0
and ∂−fδ=∂λ(β,λ∗(β)) ≤ 0: Thus, c � EP0[G2−β

TA(X)−1β] ≤ 1 and c̄ � EP0[G2+β
TA(X)−1β] ≥ 1: With G :� ZG− + (1−

Z)G+ and Z being an independent Bernoulli random variable with P(Z � 1) � (c̄ − 1)=(c̄ − c), we have that
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EP0[G2βTA(X)−1β] � 1: In addition, because G ∈ Γ∗(β,λ;X) P0−almost surely, we have that

X∗ ∈ arg max
x′∈Rd

ℓ(βTx′) −λ∗(β)c(X,x′)
{ }

and E c(X,X∗)[ ] � E[( ��
δ

√
G)2βTA(X)−1β] � δ:

As the complementary slackness conditions in Blanchet and Murthy [4, theorem 1] are satisfied, we have that
the distribution of X∗ attains the supremum in supP:Dc(P,P0)≤δEP[ℓ(βTX)]:

d. When λ∗(β) � λthr(β) : the worst-case distribution P∗(β) attaining the supremum in supP:Dc(P,P0)≤δ EP[ℓ(βTX)]
may not exist as demonstrated in the following example. Suppose that ℓ(u) :� u2 − |u|(1− e−|u|), ‖β‖ � 1, P0(dx) �
δ{0}(dx), δ > 0, and A(x) � Id: For this example, ℓ(·) satisfies Assumption 2 with κ � 1, and c(·) satisfies Assumption
1 with ρmax � ρmin � 1. For any λ ≥ λthr(β) �

��
δ

√
, we have Γ∗(β,λ;0) � {0}, and it follows that fδ(β,λ) � λ

��
δ

√
when

λ ≥ λthr(β): Therefore, λ∗(β) � λthr(β) �
��
δ

√
and the dual optimal value fδ(β,λ∗(β)) � δ: However, this value is not at-

tainable by EP[ℓ(βTX)] for any P satisfying Dc(P,P0) ≤ δ: This is because we have E‖X||2 ≤ δ for any P such that
Dc(P,P0) ≤ δ, and as a result, we have EP[ℓ(βTX)] < δ as in the following series of inequalities:

EP ℓ(βTX)[ ] � EP (βTX)2 − |βTX|(1− exp(−|βTX|))
[ ]

< EP(βTX)2 ≤ EP‖X||2 ≤ δ:

e. When λ∗(β) > λ′
thr(β) : in this case, it follows from Lemma 8 that the map γ �→ F(γ,β,λ∗(β);x) is strongly con-

cave for P0−almost every x. As a result, Γ∗(β,λ∗(β);X) is singleton, P0−almost surely. As a result, the random varia-
bles, G,G+,G−, identified in part (c) satisfy that P0(G � G+ � G−) � 1 and E[G2βTA(X)−1β] � 1: Therefore,
E[c(X,X∗)] � δ: Moreover, the described uniqueness in the optimizer means that X∗ � X+ ��

δ
√

GA(X)−1β is the
unique element in argmaxx′∈Rd{ℓ(βTx′) −λ∗(β)c(X,x′)}, P0−almost surely. Because any distribution P̄ attaining the
supremum in supP:Dc(P,P0)≤δEP[ℓ(βTX)] must satisfy that, if X̄ ~ P̄, then X̄ ∈ argmaxx′∈Rd{ℓ(βTx′) −λ∗(β)c(X,x′)}: As

a result, we must have that X̄ � X∗, P0−almost surely. This verifies that the distribution of X∗ is the unique choice
that attains the supremum in supP:Dc(P,P0)≤δ EP[ℓ(βTX)]: w

Proof of Theorem 7. Because β ∈ B is fixed throughout the proof, we hide the dependence on β from the parame-
ters λ∗(β) and g(β,λ;x) in the notation. Instead, to capture the dependence on δ, we let λ∗(δ) be the choice of λ
that solves minλ≥0 fδ(β,λ) for a given choice of δ ∈ (0,δ1); here, the minimizing λ∗(δ) is unique because of the
strong convexity characterization in Theorem 4. For every δ < δ1, we have from part (a) of Proposition 9 that
λ∗(δ) > λ′

thr(β): Then, we obtain the following reasoning from part (e) of Theorem 6:
i. For every δ < δ1, the distribution of X∗

δ � X+ ��
δ

√
GδA(x)−1β is the unique choice that attains the supremum in

supP:Dc(P,P0)≤δi EP[ℓ(βTX)], with Gδ :� g(δ,λ∗(δ);X), where g(δ,λ;x) is the unique real number that maximizes
F(γ,β,λ;x) for P0−almost every x and λ > λ′

thr(β);
ii. Moreover, we have that E[c(X,X∗

δ)] � δ, and consequently, g(δ,λ∗(δ);X) satisfies EP0[g2(δ,λ∗(δ);X)
βTA(X)−1β] � 1:

Following the implicit function theorem application in the proof of Proposition 8 (see Online Appendix A), we
obtain that

∂g
∂δ

(δ,λ∗(δ); x) � − ∂2F=∂δ

∂2F=∂γ
(g(δ,λ∗(δ); x), β,λ∗(δ); x) � ℓ′′(βTX∗

δ)gβTA(X)−1β
2

��
δ

√
φg

,

where g and φ in the right-hand side denote, respectively, g(δ,λ∗;x) and φg(β,λ∗;x) :� 2λ∗(δ) −��
δ

√
βTA(X)−1βℓ′′(βTX∗

δ) > φmin‖β‖ > 0 (see Proposition 9(b)).
Next, define H(δ,λ) :� EP0[g(δ,λ;X)2βTA(X)−1β] − 1: Because λ∗(δ) satisfies H(δ,λ∗(δ)) � 0, a similar application

of the implicit function theorem results in

∂λ∗(δ)
∂δ

� − ∂H=∂δ

∂H=∂λ
(δ,λ∗(δ)) � EP0[ℓ′′(βTX∗

δ)(gβTA(X)−1β)2=φ]
4

��
δ

√
EP0[g2βTA(X)−1β=φ]

:

If we let L(δ) :� ��
δ

√
g(δ,λ∗(δ);x), then with an application of chain rule and use of the preceding expressions for

∂g=∂δ,∂λ∗(δ)=∂δ and that of ∂g=∂λ in the proof of Proposition 8 (see (46)), we obtain that

∂L
∂δ

(δ) � g

2
��
δ

√ + gβTA(X)−1βℓ′′(βTX∗
δ)

2φ
− g
2φ

EP0[ℓ′′(βTX∗
δ)(gβTA(X)−1β)2=φ]

EP0[g2βTA(X)−1β=φ]
,
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if g≠ 0: When δ < δ1, we have φ > φmin‖β‖ > 0 (see Proposition 9(b)). Moreover, βTA(X)−1β ≤ Rβρ
−1
max‖β‖ and

ℓ′′(·) ∈ (0,M] (see Assumptions 1–3). As a result, we obtain that

2
g
∂L
∂δ

(δ) > 1��
δ

√ − ρ−1
maxMRβ‖β‖
φmin‖β‖

� 1��
δ

√ − 1���
δ0

√ − ��
δ

√ ,

where the last equality follows from the definitions of δ0 and φmin in Section 5.3. Because δ < δ1 ≤ δ0=4, we have
that 2g−1∂L(δ)=∂δ > 0 if g≠ 0 and ∂L(δ)=∂δ � 0 if g � 0: Further, observe that, as a consequence of the mean value
theorem, the first order optimality condition (44) means that g(δ,λ∗(δ);X) � ℓ′(βTX)=(2λ∗(δ) −

��
δ

√
βTA(X)−1βℓ′′(η)),

for some η between the real numbers βTX and βTX∗
δ: Because 2λ∗(δ) −

��
δ

√
βTA(X)−1βℓ′′(η) ≥ φmin‖β‖ > 0, we have

that the sign of Gδ :� g(δ,λ∗(δ);X) matches with that of ℓ′(βTX): As a result, with L(δ) :� ��
δ

√
g(δ,λ;X) � ��

δ
√

Gδ, the
claims made in Proposition 7, (b)–(d), are verified. This completes the proof of Theorem 7. w

5.5. Proofs of the Results on Rates of Convergence
Lemma 9, establishing finite second moments for the gradients (or) subgradients utilized in SGD schemes, is use-
ful toward proving Propositions 4 and 7. Recall the definitions of Uη in (17) and D(β,λ;X) in (18).

Lemma 9. Suppose that Assumptions 1 and 2 are satisfied, ℓ(·) is continuously differentiable, η > 0, and EP0‖X‖4 <∞: For
any θ ∈ Uη, let h(θ;X) be such that h(θ;X) ∈D(θ;X), P0−almost surely. Then, there exists a positive constant Gη such
that EP0‖h(θ;X)‖2 ≤ Gη for any θ ∈ Uη:

The proof of Lemma 9 is presented in Online Appendix A.

Proof of Proposition 4.
a. When δ < δ0, it follows from Propositions 2 and 3 that the subgradient set ∂ℓrob(β,λ;X) � {rθℓrob(β,λ;X)},

P0−almost surely. Because λ > λ′
thr(β) ≥ λthr(β) for every (β,λ) ∈W (see Proposition 9(a)), it follows from Lemma 9

that supθ∈WE‖rθℓrob(θ;X)||2 <∞, when δ < δ0: As a consequence, we have from Theorem 2 and the remark in Sha-
mir and Zhang [30, theorem 4] that E[ fδ(θk)] − f∗ �O(k−1=2logk) and E[ fδ(θ̄k)] − f∗ �O(k−1=2), as k→∞: Proposition
4(a) now follows as a consequence of Markov’s inequality.

b. When δ < δ1, it follows from the positive definiteness of the Hessian around the unique minimizer θ∗ :�
argminfδ(θ) (see Theorem 4) that there exists ε > 0 satisfying (θ−θ∗)Trθfδ(θ) ≥ κ1

��
δ

√ ‖θ−θ∗||2 for all θ ∈ V and
‖θ−θ∗‖ ≤ ε: Further, because of the uniqueness of the minimizer, we also have (θ−θ∗)Trθfδ(θ) > 0: Similar to part
(a), as λ > λ′

thr(β) ≥ λthr(β) for every (β,λ) ∈W, we have because of Lemma 9 that supθ∈W E‖rθℓrob(θ;X)||2 <∞: Tay-
lor’s expansion ofrθfδ(θ) results in

‖rθfδ(θ) −r2
θfδ(θ∗)T(θ−θ∗)‖ � o ‖θ−θ∗‖( ), (38)

for θ ∈W: With these conditions being satisfied, it follows from Polyak and Juditsky [26, theorem 2] that
��
k

√ (θ̄k −
θ∗)→D N (0,Σ), as k→∞, where Σ :� (r2

θ fδ(θ∗))−1Cov[rθℓrob(θ∗;X)]((r2
θ fδ(θ∗))−1)T: If we let Z ~N (0, Id+1), then

because of the continuous mapping theorem, we have that the distribution of k(θ̄k −θ∗)Tr2
θ fδ(θ∗)(θ̄k −θ∗) is con-

vergent to that of

ZTΣ1=2r2
θ fδ(θ∗)Σ1=2Z � ZTr2

θ fδ(θ∗)−1=2Cov[rθℓrob(θ∗;X)]r2
θ fδ(θ∗)−1=2Z:

The local strong convexity characterization in Theorem 4 yields that that the maximum eigenvalue of
r2

θ fδ(θ∗)−1=2 is bounded from above by a constant times δ−1=4: As a result of the described convergence in distri-
bution, we have that

(θ̄k −θ∗)Tr2
θ fδ(θ∗)(θ̄k −θ∗) �Op k−1( ):

Now, it follows from the local joint strong convexity of fδ(·) in Theorem 4 and (38) that

fδ(θ̄k) − f∗ ≤rθfδ(θ̄k)T(θ̄k −θ∗) − κ
��
δ

√
2

‖θk −θ∗‖2

� (θ̄k −θ∗)Tr2
θ fδ(θ∗)(θ̄k −θ∗) − κ

��
δ

√
2

+ o(1)
( )

‖θ̄k −θ∗‖2 �Op k−1( ):
This completes the proof of Proposition 4. w
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6. Conclusions
Our main objective in this paper has been to set the stage for algorithms and analysis of a flexible class of DRO
problems. Our motivation stems from the observations that (i) a flexible choice of the distributional uncertainty
region is useful toward fully exploiting the advantages of DRO in data-driven contexts and (ii) the existing com-
putational methods largely pertain to Lipschitz losses and do not scale well with data size. We show that, in the
case of affine decision rules and convex loss functions, robustification with a more flexible state-dependent Ma-
halanobis cost function does not introduce significantly additional computational complexity relative to the non-
DRO counterpart (in terms of standard benchmark iterative algorithms used to solve the non-DRO problem). In
some cases, interestingly, DRO introduces strong-convexity, which results in lower iteration complexity.

Naturally, the algorithmic approach and structural analysis presented in this paper can be considered in DRO
formulations with further general cost functions of the form c(x,x′) � u(x− x′) or c(x,x′) � u(x′) − u(x) −
ru(x)(x′ − x)T for a strongly convex function u(·) with Lipschitz-continuous gradients. Although such extensions
may render the inner maximization in (6) as a multidimensional optimization problem (as opposed to the line
search in the state-dependent Mahalanobis case), a number of observations and structural properties are
expected to continue to hold; for example, observations relating to convexity properties, magnitude of mass
transportation in the worst-case distribution being of size Op(

��
δ

√ ), computation of stochastic gradients by means
of envelope theorem, etc., are expected to generalize to the families of strongly convex, smooth transportation
cost functions. We leave this exploration as a question for future research.

Our philosophy is that, by providing a general analysis for a flexible class of cost functions, a modeler will be
able to choose a cost function that enhances out-of-sample performance in a way that is convenient and meaning-
ful for the needs of the modeling situation. Although examples of how one may choose the transportation cost
function in a data-driven way are available in existing literature (see, for example Blanchet et al. [7]), systemic
treatment of the contextual choice of transportation cost is an essential question for future research.
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