
Ellipsoid Fitting up to a Constant

Jun-Ting Hsieh # Ñ

Carnegie Mellon University, Pittsburgh, PA, USA

Pravesh K. Kothari # Ñ

Carnegie Mellon University, Pittsburgh, PA, USA

Aaron Potechin #Ñ

University of Chicago, IL, USA

Jeff Xu #Ñ

Carnegie Mellon University, Pittsburgh, PA, USA

Abstract

In [11, 13], Saunderson, Parrilo, and Willsky asked the following elegant geometric question: what is

the largest m = m(d) such that there is an ellipsoid in R
d that passes through v1, v2, . . . , vm with

high probability when the vis are chosen independently from the standard Gaussian distribution

N(0, Id)? The existence of such an ellipsoid is equivalent to the existence of a positive semideĄnite

matrix X such that v⊤

i Xvi = 1 for every 1 ⩽ i ⩽ m Ű a natural example of a random semideĄnite

program. SPW conjectured that m = (1 − o(1))d2/4 with high probability. Very recently, Potechin,

Turner, Venkat and Wein [10] and Kane and Diakonikolas [8] proved that m ≳ d2/ logO(1)(d) via a

certain natural, explicit construction.

In this work, we give a substantially tighter analysis of their construction to prove that m ≳ d2/C

for an absolute constant C > 0. This resolves one direction of the SPW conjecture up to a constant.

Our analysis proceeds via the method of Graphical Matrix Decomposition that has recently been

used to analyze correlated random matrices arising in various areas [3, 2]. Our key new technical

tool is a reĄned method to prove singular value upper bounds on certain correlated random matrices

that are tight up to absolute dimension-independent constants. In contrast, all previous methods

that analyze such matrices lose logarithmic factors in the dimension.

2012 ACM Subject ClassiĄcation Theory of computation → SemideĄnite programming

Keywords and phrases SemideĄnite programming, random matrices, average-case complexity

Digital Object IdentiĄer 10.4230/LIPIcs.ICALP.2023.78

Category Track A: Algorithms, Complexity and Games

Funding Jun-Ting Hsieh: Supported by NSF CAREER Award #2047933.

Pravesh K. Kothari: Supported by NSF CAREER Award #2047933, Alfred P. Sloan Fellowship and

a Google Research Scholar Award.

Aaron Potechin: Supported in part by NSF grant CCF-2008920.

Jeff Xu: Supported in part by NSF CAREER Award #2047933, and a Cylab Presidential Fellowship.

1 Introduction

Given vectors v1, . . . , vm ∈ R
d, we say that these vectors satisfy the ellipsoid Ątting property

if there exists an origin-centered ellipsoid that passes through all these points, i.e., if there

exists a matrix Λ such that

1. vT
i Λvi = 1 for all i ∈ [m],

2. Λ ⪰ 0.

In this work, we study vectors sampled i.i.d. from the standard Gaussian distribution. It is

known that when m ⩽ d + 1, the vectors satisfy the ellipsoid Ątting property with probability

1 [12]. On the other hand, when m >
(

d+1
2

)
, by a simple dimension argument, the vectors

E
A
T
C
S

© Jun-Ting Hsieh, Pravesh K. Kothari, Aaron Potechin, and Jeff Xu;
licensed under Creative Commons License CC-BY 4.0

50th International Colloquium on Automata, Languages, and Programming (ICALP 2023).
Editors: Kousha Etessami, Uriel Feige, and Gabriele Puppis; Article No. 78; pp. 78:1Ű78:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl Ű Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:juntingh@cs.cmu.edu
https://jthsieh.github.io/
mailto:praveshk@cs.cmu.edu
http://praveshkkothari.org/
mailto:aaronpotechin@gmail.com
http://www.potechin.org/aaronpotechin/
mailto:jeffxusichao@cmu.edu
https://www.andrew.cmu.edu/user/sichaoxu/
https://doi.org/10.4230/LIPIcs.ICALP.2023.78
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

78:2 Ellipsoid Fitting up to a Constant

donŠt satisfy the ellipsoid Ątting property with probability 1. This prompts the question:

what is the largest m = m(d) such that v1, . . . , vm ∼ N (0, Id) satisfy the ellipsoid Ątting

property with probability at least 1 − od(1) (taking d → ∞)?

In a series of work, Saunderson et. al. [11, 12, 13] studied this problem in the context

of diagonal and low-rank matrix decomposition. Motivated by numerical experiments, they

conjectured that the ellipsoid Ątting property for Gaussian random vis exhibits a phase

transition at m ∼ d2

4 (see also the experiments presented in [10]).

▶ Conjecture 1 (SCPW conjecture). Let ε > 0 be a constant and v1, . . . , vm ∼ N (0, Id) be

i.i.d. standard Gaussian vectors in R
d. Then,

1. If m ⩽ (1 − ε)d2

4 , then v1, . . . , vm have the ellipsoid Ątting property with probability

1 − od(1).

2. If m ⩾ (1 + ε) d2

4 , then v1, . . . , vm have the ellipsoid Ątting property with probability od(1).

Prior works have focused on establishing the positive result Ű that is, part (1) of the

above conjecture. Early works [11, 13] established that the ellipsoid Ątting property holds for

m ⩽ O(d6/5−ε) independent Gaussian vector whp. In the context of proving Sum-of-Squares

lower bounds for the Sherringtin-Kirkpatrick model, the work [4] obtains a result that, as

an immediate corollary, improves the above bound to O(d3/2−ε). In fact, their work gives

an implicit bound of m ⩽ O(d2/ polylog(d)) for ellipsoid Ątting when restricted to degree-2

Sum-of-Squares.

Very recently, two independent works of Potechin et. al. [10] and Kane and Diakonikolas [8]

proposed new constructions of Λ (that differ from the constructions obtained by the method

of pseudo-calibration in [4]) and recovered the bound of m ⩽ O(d2/ polylog(d)). In their

works [10, 8], the authors ask the question of analyzing their construction (or a different one)

to obtain an improved and almost optimal estimate of m = d2/C for some absolute constant

C > 0. The main result of this paper accomplishes this goal. SpeciĄcally, we prove:

▶ Theorem 2 (Main result). There is a universal constant c > 0 such that if m ⩽ cd2, then

v1, . . . , vm ∼ N (0, Id) have the ellipsoid Ątting property with probability 1 − od(1).

We establish Theorem 2 by analyzing the construction of Kane and Diakonikolas [8]

(which is a variant of the construction proposed in [10]). Our key idea is to depart from the

analysis conducted by [8] and instead rely on the graphical matrix decomposition method.

This method decomposes a random matrix with correlated entries into a sum of structured

random matrices called graph matrices. Graph matrices can be thought of as an analog of

the Fourier basis in the analysis of functions over product spaces. This method was Ąrst

employed in the works establishing tight sum-of-squares lower bound on the planted clique

problem [5, 1, 3, 7] and has since then been employed in several follow-up works on proving

sum-of-squares lower bounds and more recently in analyzing well-conditionedness of linear

algebraic algorithms for generalizations of tensor decomposition [2]).

The key technical work in the analysis then becomes understanding the smallest and

largest singular values of graph matrices. All prior works rely on arguments that establish

bounds on the largest singular values that are accurate up to polylogarithmic factors in the

underlying dimension of the matrices. The work of [2] recently showed how to use such

bounds to also obtain estimates of the smallest singular values of graph matrices (which,

otherwise are signiĄcantly more challenging to prove). Nevertheless, the slack in such bounds

does not allow us to obtain any improvement on the previous estimates [8] in our application.

J.-T. Hsieh, P. K. Kothari, A. Potechin, and J. Xu 78:3

Our main technical contribution is a new technique to establish bounds on the largest

singular values of graph matrices that are tight up to dimension-independent absolute

constants. This allows us to obtain substantially improved estimates for the SCPW conjecture.

Given the host of previous applications of such bounds, we expect that our results will have

many more applications down the line.

Table 1 Comparison of our result with prior work.

Construction Bound on m

Conjectured d2/4

[11, 13] O(d6/5−ε)

[4] O(d3/2−ε) ∗

[10] O(d2/ polylog(d))

[8] O(d2/ log4(d))

this paper O(d2)

∗The bound O(d2/ polylog(d)) is implicit in their work.

1.1 Technical overview

Following the convention of [8], for the rest of the paper we will assume that v1, . . . , vm ∼
N (0, 1

d Id) such that each vector has expected norm 1. Note that this does not change the

problem as we can simply scale Λ.

Our construction of Λ is the Şidentity perturbation constructionŤ, which is the same

one analyzed in [8] and was proposed in [10]. As an intuition, observe that Λ = Id almost

works: vT
i Idvi = ∥vi∥2

2 ≈ 1. Thus, the idea is to deĄne Λ as a perturbation of Id: Λ =

Id − ∑m
i=1 wiviv

T
i , where w = (w1, . . . , wm) ∈ R

m. To determine w, observe that the

constraints vT
i Λvi = 1 give m linear constraints on w, and this can be written as a linear

system represented by a matrix M ∈ R
m×m with entries M [i, j] = ⟨vi, vj⟩2. Thus, given

that M is full rank, w is uniquely determined by w = M−1η for some vector η (see Eq. (2)).

This construction satisĄes vT
i Λvi = 1 automatically, so the next thing is to prove that Λ ⪰ 0.

Therefore, we have two high-level goals:

1. Prove that M is full rank and analyze M−1.

2. Prove that R :=
∑n

i=1 wiviv
T
i has spectral norm bounded by 1.

Proving the second statement immediately implies that Λ is a valid construction.

To achieve the Ąrst goal, we decompose M into several components. Roughly, we write

M = A+B where A is a perturbed identity matrix A = Im −T and B is a rank-2 matrix (see

Section 2.2). We Ąrst show that ∥T∥op ⩽ O(
√

m
d) < 0.5 with m ⩽ O(d2) (Lemma 9), hence

A is well-conditioned. Then, using the fact that B has rank 2, we can apply the Woodbury

matrix identity (Fact 7 and Fact 8) Ű a statement on the inverse of low-rank corrections

of matrices Ű to conclude that M is invertible and obtain an expression for M−1. This is

carried out in Section 2.3.

Next, for the second goal, we need to further expand A−1. Since ∥T∥op < 1, we can apply

the Neumann series and write A−1 = (Im − T)−1 =
∑∞

k=0 T k. For the analysis, we select

certain thresholds to truncate this series such that the truncation error is small. Then, we

write M−1 in terms of the truncated series plus a small error, which will be useful later for

the analysis of R. This is carried out in the full version.

Finally, given the expression of M−1, R naturally decomposes into 4 matrices. Then, all

we need to do is to bound the spectral norm of each of these matrices (see the full version).

Bounding ∥R∥op ⩽ 1 implies that Λ ⪰ 0, completing the proof.

ICALP 2023

78:4 Ellipsoid Fitting up to a Constant

Requiring tight norm bounds. Our main technical lemmas are the spectral norm bounds

of T (Lemma 9) and the matrices in the decomposition of R. Clearly, we need our norm

bound ∥T∥op ⩽ O(
√

m
d) to be tight without polylog factors so that m ⩽ O(d2) suffices, and

similarly for matrices from R.

The standard starting point is the trace moment method: for any symmetric matrix

M ∈ R
n×n and q ∈ N (usually taking q = polylog(n) suffices),

∥M∥2q
op ⩽ tr(M2q) =

∑

i1,i2,...,i2q∈[n]

M [i1, i2]M [i2, i3] · · · M [i2q, i1] .

We view the summand as a closed walk i1 → i2 → · · · → i2q → i1 on n vertices. For a

random matrix, we study the expected trace E tr(M2q). In the simple case when M is a

Gaussian matrix (GOE), we see that after taking the expectation, the non-vanishing terms

are closed walks where each edge (u, v) is traversed even number of times. This is in fact

true for any symmetric M with independent random entries as long as the odd moments of

the entries are zero. Thus, a precise upper bound on E tr(M2q) can be obtained by carefully

counting such closed walks (see [14]).

Our matrices are more complicated; each entry is a mean-zero polynomial of Gaussian

random variables. To carry out the trace method, we represent the matrices as graphs, hence

the term graph matrices. The framework of graph matrices was Ąrst introduced by [3], and

over the years, off-the-shelf norm bounds (e.g. [1]) for graph matrices have been developed

and successfully used in several works [9, 4, 6, 7, 2]. However, the currently known norm

bounds are only tight up to polylog factors, hence not sufficient for us. Therefore, the bulk

of our paper is to prove norm bounds for these matrices that are tight up to constant factors.

In fact, some of our bounds on graph matrices are even tight in the constant factor. However,

we do not pursue the exact constants for two reasons. First, obtaining bounds which are

tight in the constant factor would require additional technical work. Second, numerical

experiments from [10] show that the identity perturbation construction we analyze has a

threshold of d2

CIP
where CIP ≈ 10, so it falls short of the d2

4 threshold and we would need a

different construction to reach this threshold.

Key idea towards tight norm bounds. Here, we brieĆy discuss the high-level ideas for

proving tight norm bounds. To illustrate our techniques, in Section 3 we will give a full proof

for a matrix that arises in our analysis as an example, and also discuss key ideas that allow

us to analyze more complicated matrices.

The key to counting walks is to specify an encoding, which we view as information

required for a walker to complete a walk. If we can show that such an encoding uniquely

identiĄes a walk, then we can bound the walks by bounding the number of possible encodings.

Thus, it suffices to come up with an (efficient) encoding scheme and prove that the walker

is able to complete a walk. Using standard encoding schemes, we quickly realize that the

walker may be confused during the walk, i.e., the walker does not have enough information

to perform the next step. Thus, we need to pay for additional information in the encoding

to resolve confusions. So far, this is the same high-level strategy that was used in prior

work [14, 1, 7], and this extra pay is often the source of extra log factors in the norm bounds.

Our key innovation is to pay for the extra information during steps that require much

less information than normal. Roughly speaking, we label each step of the walk as either

(1) visiting a new vertex, (2) visiting an old vertex via a new edge, (3) using an old edge

but not the last time, (4) using an old edge the last time (see DeĄnition 20). The high level

idea is that the dominating walks in the trace are the ones that use only the 1st and 4th

J.-T. Hsieh, P. K. Kothari, A. Potechin, and J. Xu 78:5

types, while the 2nd and 3rd types require less information (which we call gaps). The main

observation is that the walker will be confused only when there are steps of the 2nd and

3rd type involved, but we can pay extra information during these steps to resolve potential

(future) confusions. This is illustrated in Section 3.5.

1.2 Comparison to prior work

Comparison to Kane and Diakonikolas [8]. Our candidate matrix Λ is the same as theirs.

A slight difference is that they write Λ = Id +
∑m

i=1 δiviv
T
i where v1, . . . , vm are the vectors

normalized to the unit sphere. Then, same as our w vector, (δ1, . . . , δm) must satisfy a linear

system represented by a matrix M ∈ R
m×m where M [i, j] = ⟨vi, vj⟩2. This is closely related

to our M matrix, and to prove that M is invertible, they also decompose M into several

components and bound their spectral norms. However, they were only able to bound the

spectral norm by O(
√

m log2 d
d), which requires m ⩽ O(d2/ log4(d)). We also point out that

they explicitly emphasize the gap from spectral norm bound poses a signiĄcant hurdle in

their analysis, which is indeed a major contribution of our work.

Next, to bound the spectral norm of R :=
∑m

i=1 δiviv
T
i , they use an elegant cover (or

ε-net) argument which is signiĄcantly different than ours. They show that for any Ąxed

unit vector u ∈ Sd−1, ♣uT Ru♣ = ♣∑m
i=1 δi⟨vi, u⟩2♣ ⩽ 1/2 with exponentially small failure

probability. This allows then to take a union bound over all 2O(d) unit vectors in an ε-net.

To do this, they use the elegant trick that vi and ∥vi∥2 are independent random variables,

so uT Ru can be written as a sum of independent variables: uT Ru = ⟨ε, γ⟩, where εi only

depends on ∥vi∥2 and γ is a function of u and the viŠs. By HoeffdingŠs inequality, they get a

tail probability of exp
(

− Ω
(

d3

m log2(d)


. In order to union bound over 2O(d) vectors, this

also requires that m ⩽ O(d2/ log2(d)). Thus, while the main source of their polylog gap is

their matrix norm bound, another source is the epsilon-net argument. This is partially why

we adopt the proof strategy of using graph matrix decompositions which is seemingly more

complicated.

Comparison to Potechin, Turner, Venkat and Wein [10]. They study a construction of

Şleast-square minimizationŤ proposed by [11], which is equivalent to projecting out the identity

mass onto the subspace of matrices satisfying the constraints. In particular, their matrix

analysis proceeding via Woodbury expansion and Neumann series using graph matrices serves

as a road-map for our current work, and gives rise to a motivating question in the beginning

for our work: can a more careful analysis get us all the way to a constant factor gap, or is

the polylog gap inherent in the analysis? A priori, it is not clear whether this kind of matrix

analysis, forsaking the underlying geometric insight, might get us anywhere beyond a single

polylog factor, as it is conceivable that some polylog factor is inherent for matrices that may

arise in the analysis. In this work, we answer this question affirmatively and en-route we

develop a more reĄned understanding of the structured random matrices that we believe

would be useful in further and more Ąne-grained investigations of problems in average-case

complexity.

Comparison to Ghosh et. al. [4]. In the context of the Planted Affine Plane problem, and its

downstream application for the Sherrington-Kirkpatrick Hamiltonian, Ghosh et. al. reaches

the threshold of Õ(d3/2−ε) for nO(ε)-degree Sum-of-Squares. They adopt the framework of

pseudo-calibration [3] to obtain a candidate matrix, and follow a similar recipe as ours via

graph matrix decompositions and spectral analysis. Even though their stated result falls

ICALP 2023

78:6 Ellipsoid Fitting up to a Constant

short of the Õ(d2) threshold for Ątting ellipsoid, it is folklore among the SoS lower bounds

community that their proof implicitly extends to Õ(d2) when restricted to degree-2 SoS.

That said, it is an interesting question whether solutions coming from a pseudo-calibration

type of construction might give us some extra mileage in ultimately closing the constant gap.

A natural idea is to analyze the planted distribution pioneered in [9, 4]: unfortunately, it

can be easily veriĄed that the low-degree polynomial hardness for the particular planted

distribution actually falls apart even if we assume an arbitrary constant gap. Since the

low-degree hardness is usually deemed as a precursor for SoS lower bounds, an analysis based

on pseudo-calibration that gets us the right constant (or in fact, any constant) lands one on

a pursuit for a ŤquieterŤ planting.

2 Proof of main result

Given v1, v2, . . . , vm that are i.i.d. samples from N (0, 1
d Id), recall that we must construct a

matrix Λ such that (1) vT
i Λvi = 1 for any i ∈ [m], and (2) Λ ⪰ 0.

In this section, we describe our candidate matrix (DeĄnition 3). To prove that it satisĄes

the two conditions above, we need to analyze certain random matrices (and their inverses) that

arise in the construction, which involves decomposing the matrices into simpler components.

We will state our key spectral norm bounds (Lemma 9 and Lemma 13) whose proofs are

deferred to later sections, and complete the proof of Theorem 2 in Section 2.4.

2.1 Candidate construction

The following is our candidate matrix Λ, which is the same as the one used in [8].

▶ DeĄnition 3 (Candidate matrix). Given v1, . . . , vm ∼ N (0, 1
d Id), we deĄne the matrix

Λ ∈ R
d×d to be

Λ := Id −
m∑

i=1

wiviv
T
i (1)

where we take w = (w1, w2, . . . , wm) to be the solution to the linear system Mw = η for

η ∈ R
m given by

ηi := ∥vi∥2
2 − 1, ∀i ∈ [m] , (2)

and M ∈ R
m×m with entries given by

M [i, j] := ⟨vi, vj⟩2, ∀i, j ∈ [m] . (3)

We Ąrst make the following simple observation.

▶ Observation 4. For any i ∈ [m], the constraint vT
i Λvi = 1 is satisĄed.

Proof. For any i ∈ [m],

vT
i Λvi = vT

i Idvi −
∑

j∈[m]

wj⟨vi, vj⟩2 = ∥vi∥2
2 − ⟨M [i], w⟩ = ∥vi∥2

2 − ηi = 1 .

Here M [i] is the i-th row of M , and the equality above follows from Mw = η and ηi = ∥vi∥2
2−1

from Eq. (2). ◀

J.-T. Hsieh, P. K. Kothari, A. Potechin, and J. Xu 78:7

Structure of subsequent sections. For Λ to be well-deĄned, we require that M is full rank

(hence invertible). Note that it is easy to see that M is positive semideĄnite, since M is a

Gram matrix with M [i, j] = ⟨v⊗2
i , v⊗2

j ⟩. To analyze M , we will show a decomposition of M

in Section 2.2 that allows us to more easily analyze its inverse. In Section 2.3, we will prove

that M is in fact positive deĄnite (Lemma 12).

Next, to prove that Λ ⪰ 0, we will write Λ = Id − R where

R :=

m∑

i=1

wiviv
T
i =

m∑

i=1

(
M−1η

)
[i] · viv

T
i , (4)

and prove that ∥R∥op is bounded by 1. Finally, combining the analyses, we Ąnish the proof

of Theorem 2 in Section 2.4.

2.2 Decomposition of M

The proof of Theorem 2 requires careful analysis of the matrix M from Eq. (3) and its inverse.

To this end, we Ąrst decompose M as M = A + B such that intuitively, A is perturbation of

a (scaled) identity matrix and B has rank 2. We will later see how this decomposition allows

us to analyze M−1 more conveniently.

▶ Proposition 5 (Decomposition of M).

M = Mα + Mβ + MD +


1 +

1

d


Im

︸ ︷︷ ︸
:=A

+
1

d
Jm +

1

d

(
1m · ηT + η · 1T

m

)

︸ ︷︷ ︸
:=B

(5)

where Jm is the all-ones matrix, Mα, Mβ are matrices with zeros on the diagonal and MD is

a diagonal matrix, deĄned as follows:

Mα[i, j] :=
∑

a̸=b∈[d] vi[a] · vi[b] · vj [a] · vj [b] for i ̸= j ∈ [m],

Mβ [i, j] :=
∑

a∈[d]

(
vi[a]2 − 1

d

) (
vj [a]2 − 1

d

)
for i ̸= j ∈ [m],

MD[i, i] := ∥vi∥4
2 − 2

d ∥vi∥2
2 − 1 for i ∈ [m].

Proof. For any off-diagonal entry i ̸= j ∈ [m], on the right-hand side we have

M [i, j] = ⟨vi, vj⟩2 =



∑

a∈[d]

vi[a]vj [a]




2

=
∑

a̸=b∈[d]

vi[a] · vi[b] · vj [a] · vj [b] +
∑

a∈[d]

vi[a]2 · vj [a]2 .

The Ąrst term is exactly Mα[i, j]. For the second term,

∑

a∈[d]

vi[a]2 · vj [a]2 =
∑

a∈[d]


vi[a]2 − 1

d


vj [a]2 − 1

d


+

1

d

(
∥vi∥2

2 + ∥vj∥2
2

)
− 1

d

=
∑

a∈[d]


vi[a]2 − 1

d


vj [a]2 − 1

d



︸ ︷︷ ︸
Mβ [i,j]

+
∥vi∥2

2 − 1

d︸ ︷︷ ︸
1

d
ηi

+
∥vj∥2

2 − 1

d︸ ︷︷ ︸
1

d
ηj

+
1

d
.

Thus, M [i, j] = Mα[i, j] + Mβ [i, j] + 1
d + 1

d

(
1m · ηT + η · 1T

m

)
[i, j].

ICALP 2023

78:8 Ellipsoid Fitting up to a Constant

For the diagonal entries, the right-hand side of the (i, i) entry is

MD[i, i] +


1 +

1

d


+

1

d
+

2

d
ηi =


∥vi∥4

2 − 2

d
∥vi∥2

2 − 1


+ 1 +

2

d
+

2

d
(∥vi∥2

2 − 1)

= ∥vi∥4
2 = M [i, i] .

This completes the proof. ◀

▶ Remark 6. The intention behind this decomposition is that for vi ∼ N (0, 1
d Id), Mα,

Mβ , MD are all mean 0 (though their variances are not the same) since E∥vi∥2
2 = 1 and

E∥vi∥4
2 = 1 + 2

d . Therefore, we expect ∥Mα + Mβ + MD∥op to be small, which implies that

A is positive deĄnite and well-conditioned. Furthermore, observe that B has rank 2:

B =
1

d
Jm +

1

d

(
1m · ηT + η · 1T

m

)
=

1

d

[
1m η

]
·

1 1

1 0


·

1m

η


. (6)

2.3 Inverse of M

The decomposition of M into A and a rank-2 matrix B (Eq. (5)) allows us to apply the

Woodbury matrix identity about the inverse of low-rank corrections of invertible matrices.

▶ Fact 7 (Matrix Invertibility). Suppose A ∈ R
n1×n1 and C ∈ R

n2×n2 are both invertible

matrices, and U ∈ R
n1×n2 and V ∈ R

n2×n1 are arbitrary. Then, A + UCV is invertible if

and only if C−1 + V A−1U is invertible.

▶ Fact 8 (Woodbury matrix identity [15]). Suppose A ∈ R
n1×n1 and C ∈ R

n2×n2 are both

invertible matrices, and U ∈ R
n1×n2 and V ∈ R

n2×n1 are arbitrary. Then

(A + UCV)−1 = A−1 − A−1U
(
C−1 + V A−1U

)−1
V A−1 .

In light of Fact 8, we can write B in Eq. (6) as B = UCUT where U = V T = 1√
d

[
1m η

]
∈

R
m×2 and C =


1 1

1 0


, and M = A + UCUT . Note that C−1 =


0 1

1 −1


, and we have

C−1 + UT A−1U =


1T

mA−11m

d 1 + ηT A−11m

d

1 + ηT A−11m

d −1 + ηT A−1η
d

]
:=


r s

s u


. (7)

We Ąrst need to show that A is invertible. Recall from Eq. (5) that A = (1 + 1
d)Im + Mα +

Mβ + MD. We will prove the following lemma, whose proof is deferred to the full version.

▶ Lemma 9 (Mα, Mβ , MD are bounded). Suppose m ⩽ cd2 for a small enough constant c.

With probability 1 − od(1), we have

1. ∥Mα∥op ⩽ 0.1,

2. ∥Mβ∥op ⩽ 0.1,

3. ∥MD∥op ⩽ O
(√

log d
d

)
.

As an immediate consequence, we get the following:

▶ Lemma 10 (A is well-conditioned). With probability 1 − od(1), the matrix A from Eq. (5)

is positive deĄnite (hence full rank), and

0.5Im ⪯ A ⪯ 1.5Im .

J.-T. Hsieh, P. K. Kothari, A. Potechin, and J. Xu 78:9

Proof. Since A = (1 + 1
d)Im + Mα + Mβ + MD, by Lemma 9 the eigenvalues of A must lie

within 1 ± 0.2 ± Õ(1/
√

d) ∈ (0.5, 1.5) (we assume d is large). ◀

Next, from Fact 7, we can prove that M is invertible (Lemma 12) by showing that the

2 × 2 matrix C−1 + UT A−1U is invertible, which is in fact equivalent to ru − s2 ≠ 0. We

Ąrst need the following bound on the norm of η, whose proof is deferred to the full version.

▷ Claim 11. With probability at least 1 − od(1), ∥η∥2
2 ⩽ (1 + od(1)) 2m

d .

▶ Lemma 12 (Bounds on r, s, u; M is invertible). Suppose m ⩽ cd2 for a small enough

constant c. Let r, s, u ∈ R be deĄned as in Eq. (7). With probability at least 1 − od(1), we

have

1. r ∈ m
d · [2/3, 2],

2. ♣s♣ ⩽ O(
√

d),

3. u ∈ [−1, −1/2].

Thus, we have s2 − ru ⩾ Ω
(

m
d

)
. As a consequence, M is invertible.

Proof. By Lemma 10, we know that 2
3 Im ⪯ A−1 ⪯ 2Im. Thus, r = 1

d 1T
mA−11m ∈ 1

d ∥1m∥2
2 ·

[2/3, 2], hence r ∈ m
d · [2/3, 2].

For s, we know that ∥η∥2
2 ⩽ (1 + o(1)) 2m

d by Claim 11. Thus,

1

d

∣∣ηT A−11m

∣∣ ⩽ 1

d
∥A−1∥op · ∥η∥2 · ∥1m∥2 < (1 + od(1)) · 2

√
2m2

d3
⩽ O(

√
d) .

Thus, ♣s♣ =
∣∣∣1 + ηT A−11m

d

∣∣∣ ⩽ O(
√

d).

For u, we have

1

d

∣∣ηT A−1η
∣∣ ⩽ 1

d
∥A−1∥op · ∥η∥2

2 < (1 + od(1)) · 4m

d2
<

1

2
,

where the last inequality follows for some m < cd2 for small enough c. Thus, u = −1 +
ηT A−1η

d ∈ [−1, −1/2].

With the bounds on r, s and u, we immediately get s2 − ru ⩾ Ω(m
d).

To prove that M is invertible, let us Ąrst recall that we write M = A + UCUT where A

is deĄned in Eq. (5) and U = V T = 1√
d

[
1m η

]
∈ R

m×2 and C =


1 1

1 0


.

By Lemma 10, A is invertible. Then by Fact 7, we know that M is invertible if and only

if C−1 + UT A−1U :=


r s

s u


(see Eq. (7)) is invertible, which is equivalent to ru − s2 ̸= 0.

Thus, s2 − ru ⩾ Ω(m
d) suffices to conclude that M is invertible. ◀

2.4 Finishing the proof of Theorem 2

The Ąnal piece of proving Theorem 2 is to show that R =
∑m

i=1 wiviv
T
i has spectral norm

bounded by 1, which immediately implies that the candidate matrix Λ = Id − R ⪰ 0.

▶ Lemma 13 (R is bounded). There exists some absolute constant cR s.t.for m ⩽ d2

cR
, whp

∥R∥op ⩽
1

2
.

The proof is deferred to the full version. In particular, we will write an expanded

expression of M−1 and obtain a decomposition of R. Then, we prove tight spectral norm

bounds for matrices in the decomposition, which then completes the proof of Lemma 13.

Combining Lemma 12 and Lemma 13 we can Ąnish the proof of Theorem 2.

ICALP 2023

78:10 Ellipsoid Fitting up to a Constant

Proof of Theorem 2. The matrix M (recall Eq. (3)) is invertible due to Lemma 12, thus

our candidate matrix Λ = Id − R matrix deĄned in DeĄnition 3 is well-deĄned. Furthermore,

by the norm bound in Lemma 13, we have ∥R∥op < 1. This proves that Λ ≻ 0. ◀

3 Machinery for tight norm bounds of graph matrices

One of the main technical contributions of this paper is providing tight spectral norm bounds

(up to constants per vertex/edge) for structured random matrices with correlated entries

(a.k.a. graph matrices). We note that prior to this work, most known norm bounds for such

matrices are only tight up to some logarithmic factors [1], while not much is known in terms

of precise bounds without log factors except for several speciĄc cases (see e.g. [14]).

3.1 Preliminaries

We Ąrst give a lightweight introduction to the theory of graph matrices. For interested readers

who seek a thorough introduction or a more formal treatment, we refer them to its origin

in a sequence of works in Sum-of-Squares lower bounds [3, 1]. We will follow the notations

used in [1]. Throughout this section, we assume that there is an underlying (random) input

matrix G and a Fourier basis ¶χt♢t∈N.

We Ąrst deĄne shapes, which are representations of structured matrices whose entries

depend on G.

▶ DeĄnition 14 (Shape). A shape τ is a tuple (V (τ), Uτ , Vτ , E(τ)) associated with a (multi)

graph (V (τ), E(τ)). Each vertex in V (τ) is associated with a vertex-type that indicates the

range of the labels for the particular vertex. Each edge e ∈ E(τ) is also associated with a

Fourier index t(e) ∈ N. Moreover, we have Uτ , Vτ ⊆ V (τ) as the left and right boundary of

the shape.

We remind the reader that Vτ should be distinguished from V (τ), where Vτ is the right

boundary set, while V (τ) is the set of all vertices in the graph.

Figure 1 show the shapes for matrices Mα and Mβ deĄned in Proposition 5. For these

shapes, there are two vertex-types (square and circle). The two ovals in each shape indicate

the left and right boundaries Uτ and Vτ .

We next describe how to associate a shape to a matrix (given the underlying matrix G).

Uτ Vτ

(a) GOE, zero diagonal.

Uτ Vτ

(b) Mα.

2 2

Uτ Vτ

(c) Mβ .

Figure 1 Graph matrix representation of a d × d GOE matrix with zero diagonal, and the m × m

matrices Mα and Mβ as deĄned in Proposition 5. Square vertices take labels in [m] and circle

vertices take labels in [d]. The two ovals indicate the left and right boundaries of the shapes. If an

edge e is not labeled with an index, then t(e) = 1 by default.

▶ DeĄnition 15 (Mapping of a shape). Given a shape τ , we call a function σ : V (τ) → N a

mapping of the shape if

1. σ assigns a label for each vertex according to its speciĄed vertex-type;

2. σ is an injective mapping for vertices of the same type.

J.-T. Hsieh, P. K. Kothari, A. Potechin, and J. Xu 78:11

▶ DeĄnition 16 (Graph matrix for shape). Given a shape τ , we deĄne its graphical matrix

Mτ to be the matrix indexed by all possible boundary labelings of S, T , and for each of its

entry, we deĄne

Mτ [S, T] =
∑

σ:V (τ)→N

σ(Uτ)=S, σ(Vτ)=T

∏

e∈E(τ)

χt(e)(G[σ(e)]) .

Observe that for each entry Mτ [S, T], since σ must map Uτ and Vτ to S and T , Mτ [S, T]

is simply a sum over labelings of the ŞmiddleŤ vertices V (τ) \ (Uτ ∪ Vτ). Take Figure 1

for example. Suppose G ∈ R
m×d and square and circle vertices take labels in [m] and [d]

respectively, then we can write out the entries of the matrix: for i ̸= j ∈ [m],

Mα[i, j] =
∑

a̸=b∈[d]

χ1(G[i, a]) · χ1(G[i, b]) · χ1(G[j, a]) · χ1(G[j, b]) ,

Mβ [i, j] =
∑

a∈[d]

χ2(G[i, a]) · χ2(G[j, a]) .

Note also that since σ must be injective for vertices of the same type and Uτ ≠ Vτ in

both examples, there is no mapping such that σ(Uτ) = σ(Vτ). Thus, by DeĄnition 16, both

matrices have zeros on the diagonal.

Adaptation to our setting. The above is a general introduction for graph matrices. In this

work, we specialize to the following setting:

G ∈ R
m×d is a random Gaussian matrix whose rows are v1, . . . , vm ∼ N (0, 1

d Id).

The Fourier characters ¶χt♢t∈N are the (scaled) Hermite polynomials.

For all graph matrices that arise in our analysis,

♣S♣ = ♣T ♣ = 1,

There are two vertex-types: square vertices take labels in [m] and circle vertices take

labels in [d].

▶ Remark 17. For our technical analysis, we also employ our techniques on a generalization

of graph matrices where we relax the injectivity condition. That said, for the purpose of

illustrating our techniques, it suffices to consider ordinary graph matrices.

▶ DeĄnition 18 (DV size constraint). Let DV be a size constraint such that for each graph

matrix τ considered in this work, ♣V (τ)♣ ⩽ DV .

For concreteness, we will take DV = polylog(d) throughout this work.

Trace moment method. For all our norm bounds, we will use the trace moment method:

for any graph matrix Mτ with underlying random matrix G and any q ∈ N,

E∥Mτ ∥2q
op ⩽ E tr

(
(Mτ MT

τ)q
)

= E

∑

S1,T1,S2,T2,...Sq−1,Tq−1:

boundaries

Mτ [S1, T1]MT
τ [T1, S2] · · · MT

τ [Tq−1, S1] .

where the expectation is taken over G.

Notice that the summation is over closed walks across the boundaries: S1 → T1 → S2 →
T2 → · · · → S1, where S1, T1, . . . are boundary labelings of Mτ . In particular, the walk is

consist of 2q-steps of a Şblock walkŤ, with the (2t − 1)-th step across a block described by

Mτ and the (2t)-th step across a block described by MT
τ .

ICALP 2023

78:12 Ellipsoid Fitting up to a Constant

The crucial observation is that after taking expectation, all closed walks must walk on

each labeled edge (i.e., Fourier character) an even number of times, since all odd moments of

the Fourier characters are zero. Therefore, bounding the matrix norm is reduced to bounding

the contribution of all such walks.

E∥Mτ ∥2q
op ⩽

∑

P: closed walk

∏

e∈E(P)

E

[
χt(e)(G[e])mulP (e)

]
, (8)

where E(P) denotes the set of labeled edges used by the walk P, mulP(e) denotes the

number of times e appears in the walk, and t(e) denotes the Fourier index (with slight abuse

of notation).

▶ Remark 19. We remind the reader not to confuse vertices/edges in the walk with ver-

tices/edges in the shape. The vertices in a walk are ŞlabeledŤ by elements in [m] or [d]

(depending on the vertex-type). Similarly, each edge e ∈ E(P) in a walk is labeled by an

element in [m] × [d]. We will use the terms Şlabeled vertexŤ and Şlabeled edgeŤ unless it is

clear from context.

3.2 Global bounds via a local analysis

Observe that Eq. (8) is a weighted sum of closed walks of length 2q. To obtain an upper bound,

the standard approach is to specify an efficient encoding scheme that uniquely identiĄes each

closed walk, and then upper bound the total number of such encodings.

We begin by deĄning a step-labeling Ű a categorization of each step in the closed walk.

▶ DeĄnition 20 (Step-labeling). For each step throughout the walk, we assign it the following

label,

1. F (a fresh step): it uses a new labeled edge making the Ąrst appearance and leads to a

destination not seen before;

2. S (a surprise step): it uses a new labeled edge to arrive at a vertex previously visited in

the walk;

3. H (a high-mul step): it uses a labeled edge that appears before, and the edge is making a

middle appearance (i.e., it will appear again in the subsequent walk);

4. R (a return step): it uses a labeled edge that appears before, and the edge is making its

last appearance.

Analogously, for any shape τ , we call Lτ : E(τ) → ¶F, R, S, H♢ a step-labeling of the block.

The subscript τ is ignored when it is clear.

We note that the terms ŞfreshŤ, Şhigh-mulŤ and ŞreturnŤ are adopted from the GOE

matrix analysis in [14]. Next, to obtain a Ąnal bound for Eq. (8), we consider two factors for

each step (which depend on the step-label):

1. Vertex factor: a combinatorial factor that speciĄes the destination of the step;

2. Edge factor: an analytical factor from the edge which accounts for the E[χt(e)(G[e])mul(e)]

term in Eq. (8).

For example, a vertex factor for an F step to a circle vertex can be d, an upper bound

on the number of possible destinations. One can think of vertex factors as the information

needed for a decoder to complete a closed walk. Essentially, the step-labeling and appropriate

vertex factors should uniquely identify a closed walk, and combined with edge factors, we

can obtain an upper bound for Eq. (8).

J.-T. Hsieh, P. K. Kothari, A. Potechin, and J. Xu 78:13

We note that the approach stated above is a global encoding scheme. One may proceed

via a global analysis Ű carefully bounding the number of step-labelings allowed (e.g., using

the fact that the F and R steps must form a Dyck word [14]), and then combining all vertex

and edge factors to obtain a Ąnal bound. However, to get tight norm bounds for complicated

graph matrices (like Mα), the global analysis becomes unwieldy.

Local analysis. One of our main insights is to use a local analysis. We now give a high-

level overview of our strategy while deferring the speciĄc details of our vertex/edge factor

assignment scheme to subsequent sections. Recall that a closed walk consists of Şblock-stepsŤ

described by the shape τ . Thus, we treat each walk as a Şblock walkŤ and bound the

contributions of a walk block by block. This prompts us to bound the contribution of the

walk at a given block-step to the Ąnal trace in Eq. (8) by

vtxcost · edgeval ⩽ Bq(τ)

where Bq(τ) is some desired upper bound that depends on the vertex/edge factor assignment

scheme. We deĄne it formally in the following.

▶ DeĄnition 21 (Block value function). Fix q ∈ N and a shape τ . For any vertex/edge factor

assignment scheme, we call Bq(τ) a valid block-value function for τ of the given scheme if

E
[
tr
(
(Mτ MT

τ)q
)]

⩽ (matrix dimension) · Bq(τ)2q ,

and for each block-step BlockStepi throughout the walk,

vtxcost(BlockStepi) · edgeval(BlockStepi) ⩽ Bq(τ) .

We point out that the block-value function B should be considered as a function of both the

shape τ and the length of the walk q (we will drop the subscript when it is clear throughout

this work), and it also depends on the assignment scheme. Thus, our task is to Ąnd a

vertex/edge factor assignment scheme such that Bq(τ) is as small as possible. Moreover, the

matrix dimension, which is at most poly(d) in our case, is the factor that comes up in the

start of the walk to specify the original vertex, and can be ignored as it is ultimately an

1 + o(1) factor once we take a long enough walk.

Given DeĄnition 21, the norm bound follows immediately.

▶ Proposition 22. Let Mτ be a graph matrix with dimension poly(d), and let q = Ω(log2 d).

Suppose Bq(τ) is a valid block-value function. Then, with probability 1 − 1
poly(d) ,

∥Mτ ∥op ⩽ (1 + od(1)) · Bq(τ) .

Proof. We apply MarkovŠs inequality: for any ε > 0,

Pr [∥Mτ ∥op > (1 + ε)Bq(τ)] ⩽ Pr
[
tr
(
(Mτ MT

τ)q
)

> (1 + ε)2qBq(τ)2q
]

⩽ (1 + ε)−2q poly(d)

⩽
1

poly(d)

for q = Ω(1
ε log d). Setting ε = 1

log d , we can conclude that ∥Mτ ∥op ⩽ (1 + od(1)) · Bq(τ) with

high probability. ◀

The next proposition shows that we can easily obtain a valid Bq(τ) once we have an

appropriate factor assignment scheme.

ICALP 2023

78:14 Ellipsoid Fitting up to a Constant

▶ Proposition 23. For any graph matrix Mτ and any valid factor assignment scheme,

Bq(τ) =
∑

L:step-labelings for E(τ)

vtxcost(L) · edgeval(L)

is a valid block-value function for τ .

Proof. The second requirement in DeĄnition 21 is clear. For the Ąrst requirement, observe

that the trace can be bounded by the matrix dimension (specifying the start of the walk)

times

∑

L1,...,L2q :

step-labelings for E(τ)

2q∏

i=1

vtxcost(Li) ·edgeval(Li) ⩽

(
∑

L:step-labelings for E(τ)

vtxcost(L) · edgeval(L)

2q

. ◀

With this set-up, the main task is then to Ąnd an appropriate vertex/edge factor assign-

ment scheme and obtain a good upper bound on Bq(τ).

3.3 Vertex factor assignment scheme

We now proceed to bound the vertex factors for each step-label. We note that in this section,

ŞverticesŤ refer to Şlabeled verticesŤ in the walk (having labels in [m] or [d]; recall Remark 19).

First, we deĄne the weight of a square (resp. circle) vertex to be m (resp. d), since we need

an element in [m] (resp. [d]) to specify which vertex to go to in the walk.

We Ąrst show a ŞnaiveŤ vertex factor assignment scheme. In the following scheme, we use

a potential unforced return factor, denoted Pur, to specify the destination of any R step. We

will defer the speciĄc details of Pur to Section 3.5.

Vanilla vertex factor assignment scheme.

1. For each vertex i that Ąrst appears via an F step, a label in weight(i) is required;

2. For each vertex i that appears beyond the Ąrst time:

If it is arrived via an R step, the destination may need to be speciĄed, and this is

captured by the Pur factor.

If it is not arrived via an R step, then it must be an S or H step. A vertex cost

in 2q · DV is sufficient to identify the destination, where we recall 2q is the length

of our walk, and DV the size upper bound of each block.

The Ąrst thing to check is that this scheme combined with an step-labeling uniquely

identiĄes a closed walk (given the start of the walk). This is immediate for F and R steps by

deĄnition. For S and H steps, since the destination is visited before in the walk, 2q · DV is

sufficient as it is an upper bound on the number of vertices in the walk.

A potential complication with analyzing the above assignment scheme directly is that it

exhibits a signiĄcant difference in the vertex factors. For example, consider a vertex that

appears only twice in the walk on a tree. Its Ąrst appearance requires a label in [n], while its

subsequent appearance does not require any cost if it is reached using an R step because

backtracking from a tree is Ąxed (since there is only one parent). This disparity can result

in a very loose upper bound for the trace when applying Proposition 23; in fact, the norm

bound for Mτ obtained in this manner is equivalent to using the naive row-sum bound.

J.-T. Hsieh, P. K. Kothari, A. Potechin, and J. Xu 78:15

Redistribution. One of our main technical insights is to split the factors such that both Ąrst

and last appearance contributes a factor of comparable magnitude; we call this redistribution.

We Ąrst formally deĄne ŞappearanceŤ in a block-step to clarify our terminology,

▶ DeĄnition 24 (Vertex appearance in block-step). Each labeled vertex appearance can be

ŞĄrstŤ, ŞmiddleŤ and ŞlastŤ. Moreover, each vertex on the block-step boundary (Uτ or Vτ)

appears in both adjacent blocks.

For example, suppose a vertex Ąrst appears in the right-boundary of block i and last

appears in the left-boundary of block j, then it will make middle appearances in the left-

boundary of block i + 1 and right-boundary of block j − 1 as well.

We are now ready to introduce the following vertex-factor assignment scheme with

redistribution that assigns vertex-factor to each vertexŠs appearance to handle the disparity.

Vertex factor assignment scheme with redistribution.

1. For each vertex i that makes its Ąrst appearance, assign a cost of
√

weight(i);

2. For any vertexŠs middle appearance, if it is not arrived at via an R step, assign a cost

of 2q · DV (where we recall 2q is the length of our walk, and DV the size constraint

of each block);

3. For any vertexŠs middle appearance, if it is at arrived via an R step, its cost is

captured by Pur;

4. For each vertex i that makes its last appearance, assign a cost of
√

weight(i) that

serves as a backpay.

Deducing vertex factor from local step-labeling. As presented, the vertex factor assignment

scheme requires knowing which vertex is making Ąrst/middle/last appearance. We further

show that the vertex appearances, or more accurately, an upper bound of the vertex factors,

can be deduced by a given step-labeling of the block. Fix traversal direction from U to V ,

Localized vertex factor assignment from step-labeling.

1. For any vertex v that is on the left-boundary U , it cannot be making the Ąrst

appearance since it necessarily appears in the previous block;

2. For any vertex v that is on the right-boundary V , it cannot be making the last

appearance since it necessarily appears in the subsequent block;

3. For any vertex v reached via some S/R/H step, it cannot be making its Ąrst

appearance;

4. For any vertex v that incident to some F/S/H step, it cannot be making its last

appearance since the edge necessarily appears again.

The Ąrst two points are due to DeĄnition 24. The last point is because each labeled edge

(i.e., Fourier character) must be traversed by an R step to close it.

3.4 Bounding edge-factors

To bound the contribution of the walks, we need to consider factors coming from the edges

traversed by the walk. Recall from Eq. (8) that each edge e in a closed walk P gets a factor

E[χ
mulP (e)
t(e)], where t(e) is the Fourier index associated with the edge.

In our case, the Fourier characters are the scaled Hermite polynomials. Recall that we

assume that our vectors are sampled as vi ∼ N (0, 1
d Id). Thus, we deĄne the polynomials

¶Ht♢t∈N such that they are orthogonal and Ex∼N (0,1/d)[Ht(x)2] = t! · d−t. SpeciĄcally,

ICALP 2023

78:16 Ellipsoid Fitting up to a Constant

1. H1(x) = x,

2. H2(x) = x2 − 1
d .

We Ąrst state the following bound on the moments of Ht, which follows directly from standard

bounds on the moments of Hermite polynomials:

▶ Fact 25 (Moments of Hermite polynomials). Let d ∈ N. For any t ∈ N and even k ∈ N,

Ex∼N (0,1/d)

[
Ht(x)k

]
⩽

1

dkt/2
(k − 1)kt/2(t!)k/2 ⩽ (t!)k/2


k

d

kt/2

.

For matrices that arise in our analysis, we only have H1 and H2 edges. The following is

our edge-factor assignment scheme to account for contributions from the Fourier characters.

Edge-factor assignment scheme.

For an H1 edge,

1. F/S: assign a factor of 1√
d

for its Ąrst appearance;

2. H: assign a factor of 2q√
d

for its middle appearance;

3. R: assign a factor of 1√
d

for its last appearance.

For an H2 edge,

1. F/S: assign a factor of
√

2
d for its Ąrst appearance (equivalently, we can view a single

H2 edge as two edge-copies of H1 and assign each a factor of
√

2√
d

which is a valid

upper bound);

2. H: assign a factor of 8q2

d for its middle appearance;

3. R: assign a factor of
√

2
d for its last appearance (equivalently, we can view a single

H2 edge as two edge-copies of H1 and assign each a factor of
√

2√
d

which is a valid

upper bound).

▶ Proposition 26. The above scheme correctly accounts for the edge factors from H1 and

H2 edges.

Proof. If an edge has multiplicity 2, then it must be traversed by one F/S step and one R

step.

If it is an H1 edge, then the scheme assigns a factor 1
d , which equals Ex∼N (0,1/d)[H1(x)2].

If it is an H2 edge, then the scheme assigns a factor 2
d2 , which equals Ex∼N (0,1/d)[H2(x)2].

For an edge with multiplicity k > 2, it must be traversed by one F/S step, one R step and

k − 2 H steps. Moreover, since k is even and 2q is the length of the walk, we have 4 ⩽ k ⩽ 2q.

If it is an H1 edge, then the scheme assigns a factor 1
d · (2q√

d
)k−2 ⩾ d−k/2(2q)k/2 ⩾ (k

d)k/2.

By Fact 25, it is an upper bound on Ex∼N (0,1/d)[H1(x)k].

If it is an H2 edge, then the scheme assigns a factor 2
d2 · (8q2

d)k−2 ⩾ d−k2k/2(2q)k ⩾

2k/2(k
d)k. By Fact 25, it is an upper bound on Ex∼N (0,1/d)[H2(x)k].

This shows that the edge factor assignment scheme above is correct. ◀

3.5 Bounding return cost (Pur factors)

In our vertex factor assignment scheme described in Section 3.3, we use a potential unforced

return factor, denoted Pur, to specify the destination of any return (R) step. Note that the

term Şunforced returnŤ is adopted from [14] as well. In this section, we complete the bound

of vertex factors by bounding the Pur factor.

J.-T. Hsieh, P. K. Kothari, A. Potechin, and J. Xu 78:17

For starters, we will deĄne a potential function for each vertex at time t, which measures

the number of returns R pushed out from the particular vertex by time t that may require a

label in 2q · DV . Notice that a label in 2q · DV is sufficient for any destination vertex arrived

via an R step because the vertex appears before; however, this may be a loose bound.

We observe the following: a label in 2q · DV may be spared if the vertex is incident to

only one un-closed F/S edge; we call this a forced return. Formally, we deĄne a return step

as unforced if it does not fall into the above categories,

▶ DeĄnition 27 (Unforced return). We call a return (R) step an unforced return if the source

vertex is incident to more than 1 (or 2 in the case of a square vertex) unclosed edge.

We now proceed to formalize the above two observations by introducing a potential function

to help us bound the number of unforced returns from any given vertex throughout the walk.

The number of unforced returns throughout the walk would then be immediately given once

we sum over all vertices in the walk.

▶ DeĄnition 28 (Potential-unforced-return factor Pur). For any time t and vertex v, let

Purt(v) be deĄned as the number of potential unforced return from v throughout the walk

until time t.

3.5.1 Pur bound for circle vertices

In our setting, each circle vertex pushes out at most 1 edge during the walk, analogous to

the case of typical adjacency matrix. This serves as a starting point for our Pur bound for

circle vertices.

▶ Lemma 29 (Bounding Purt for circle vertices). For any time t, suppose the walker is

currently at a circle vertex v, then

Purt(v) ⩽ #(R steps closed from v) + #(unclosed edges incident to v at time t) − 1

⩽ 2 · st(v) + ht(v) ,

where we deĄne the following counter functions:

1. st(v) is the number of S steps arriving at v by time t;

2. ht(v) is the number of H steps arriving at v by time t.

Proof. We Ąrst prove the Ąrst inequality. The R steps closed from v may all be unforced

returns, and the unclosed edges incident to v may be closed by unforced returns in the future.

Note that we have a −1 in the above bound because for each vertex we may by default

assume the return is using a particular edge, hence at each time we know there is an edge

presumed-to-be forced.

We prove the second inequality by induction. DeĄne Pt(v) := #(R steps closed from v) +

#(unclosed edges incident to v at time t) − 1 for convenience. At the time when v is Ąrst

created by an F step, Pt(v) = 0 (1 open edge minus 1) and st(v) = ht(v) = 0.

At time t, suppose the last time v was visited was at time t′ < t, and suppose that the

inequality holds true for t′. Note that at time t′ + 1, Pt′+1(v) = Pt′(v) + 1 if a new edge was

created by an F or N step leaving v, otherwise Pt′+1(v) = Pt′(v) (for R step it adds 1 to the

number of closed edges closed from v, but decreases 1 open edge). On the other hand, st′(v)

and ht′(v) remain the same (we donŠt count out-going steps for st(v), ht(v)).

When we reach v at time t, we case on the type of steps:

ICALP 2023

78:18 Ellipsoid Fitting up to a Constant

Arriving by an R step: the edge is now closed, but the R step was not from v. So

Pt(v) = Pt′+1(v) − 1 ⩽ Pt′(v), while st(v) = st′(v) and ht(v) = ht′(v).

Arriving by an S step: the edge is new, so Pt(v) = Pt′+1(v) + 1 ⩽ Pt′(v) + 2, and we have

st(v) = st′(v) + 1.

Arriving by an H step: Pt(v) = Pt′+1(v) ⩽ Pt′(v) + 1, and ht(v) = ht′(v) + 1.

In all three cases, assuming Pt′(v) ⩽ 2 · st′(v) + ht′(v), we have Pt(v) ⩽ 2 · st(v) + ht(v),

completing the induction. ◀

3.5.2 Pur bound for square vertices

The argument of Lemma 29 does not apply well for vertices incident to multiple edges in a

single step. In particular, this may happen for square vertices in Mα as each is arrived via 2

edges and each pushes out 2 edges (recall Figure 1). This is not an issue for Mβ , but we

will treat square vertices in Mβ the same way to unify the analysis; in the context of Pur for

square vertices, one may think of Mβ as collapsing the two circle vertices in Mα.

To handle this issue, we observe that it suffices for us to pay an extra cost of [2] for

each square vertex, which would allow us to further presume 2 edges being forced. We then

generalize the prior argument to capture this change.

▶ Lemma 30 (Bounding Purt for square vertices). For any time t, suppose the walker is

currently at a square vertex v, then

Purt(v) ⩽ #(R steps closed from v) + #(unclosed edges incident to v at time t) − 2

⩽ 2(st(v) + ht(v)) .

where st(v) and ht(v) are the number of S and H steps arriving at v by time t, respectively.

Proof. We prove this by induction. Note that this is immediate for the base case

when v Ąrst appears since a square vertex is incident to 2 edges. DeĄne Pt(v) :=

#(R steps closed from v) + #(unclosed edges incident to v at time t) − 2 for convenience.

Suppose the inequality is true at time t′, and assume vertex v appears again at time t. The

departure at time t′ + 1 from v may open up at most 2 edges, hence Pt′+1(v) ⩽ Pt′(v) + 2.

When we reach v at time t (via 2 edges), we case on the type of steps:

Arriving by two R steps: the two edges closed by the R steps are not closed from v. So

Pt(v) = Pt′+1 − 2 ⩽ Pt′(v), while st(v) = st′(v) and ht(v) = ht′(v).

Arriving by one S/H and one R step: in this case, Pt(v) = Pt′+1(v) ⩽ Pt′(v) + 2 and

st(v) + ht(v) = st′(v) + ht′(v) + 1.

Arriving by two S/H steps: in this case, Pt(v) = Pt′+1(v) + 2 ⩽ Pt′(v) + 4, whereas

st(v) + ht(v) = st′(v) + ht′(v) + 2.

In all three cases, we have Pt(v) ⩽ 2(st(v) + ht(v)), completing the induction. ◀

▶ Corollary 31. For each surprise/high-mul visit, it suffices for us to assign a Pur factor of

2, which is a cost of (2q · DV)2 so that each Pur factor throughout the walk is assigned.

3.6 Wrapping up with a toy example

Recall Proposition 23 that for a graph matrix of shape τ ,

Bq(τ) =
∑

L: step-labelings for E(τ)

vtxcost(L) · edgeval(L) (9)

J.-T. Hsieh, P. K. Kothari, A. Potechin, and J. Xu 78:19

is a valid block-value function for τ (DeĄnition 21). Moreover, by Proposition 22, we can

take q = polylog(d) and conclude that with probability 1 − o(1),

∥Mτ ∥op ⩽ (1 + o(1)) · Bq(τ) .

For each given shape, it suffices for us to bound the block-value for each edge-labeling. We

demonstrate how this may be readily done given the above bounds using the GOE example,

and defer the analysis of the speciĄc matrices that show up in our setting to the full version

of the paper.

3.6.1 Tight bound for GOE

We now show how the above framework allows us to readily deduce a tight norm bound for

G ∼ GOE(0, 1
d), where G is a d × d symmetric matrix with each (off-diagonal) entry sampled

from N (0, 1
d). It is well-known that the correct norm of G is 2 + od(1) [14]. Figure 1a shows

the shape τ associated with G, which simply consists of one edge. We now proceed to bound

Eq. (9).

Edge factor. According to our edge factor scheme described in Section 3.4 (for H1 edges),

an F/R/S step-label gets a factor of 1√
d

while an H step-label gets 2q√
d
.

Pur factor. By Lemma 29, there is no Pur factor for F/R, while S and H get 2 and 1 Pur

factors respectively.

Vertex factor. The weight of a circle vertex is d, thus any vertex making a Ąrst or last

appearance gets a factor of
√

d. We now case on the step-label and apply the vertex

factor assignment scheme described in Section 3.3.

F : the vertex in Uτ must be making a middle appearance; it is not Ąrst due to DeĄnition 24,

and it is not last as otherwise the edge appears only once throughout the walk. The

vertex in Vτ is making a Ąrst appearance, so it gets a factor of
√

d;

R: the vertex in Vτ is making a middle appearance, since it is incident to an R edge

(hence not Ąrst appearance), and it is on the boundary hence bound to appear again the

next block. The vertex in Uτ may be making its last appearance, so it gets a factor of√
d;

S: the vertex in Uτ is making a middle appearance (same as F), and the vertex in Vτ is

making a middle appearance since it cannot be Ąrst and must appear again. In addition,

it gets 2 factors of Pur, which gives a bound of (2q · DV)2;

H: analogous to the above, both vertices are making middle appearance, and it gets 1

factor of Pur, giving a bound of 2q · DV .

Combining the vertex and edge factors, we can bound Eq. (9):

Bq(τ) =
√

d · 1√
d

+
√

d · 1√
d

+ (2q · DV)2 · 1√
d

+ (2q · DV) · 2q√
d
⩽ 2 + od(1) ,

since q and DV are both polylog(d). Therefore, by Proposition 22, we can conclude that

∥G∥op ⩽ 2 + od(1) with high probability, which is the correct bound.

References

1 Kwangjun Ahn, Dhruv Medarametla, and Aaron Potechin. Graph matrices: Norm bounds

and applications. arXiv preprint, 2016. arXiv:1604.03423.

2 Mitali Bafna, Jun-Ting Hsieh, Pravesh K Kothari, and Jeff Xu. Polynomial-Time Power-Sum

Decomposition of Polynomials. In 2022 IEEE 63rd Annual Symposium on Foundations of

Computer Science (FOCS), pages 956Ű967. IEEE, 2022.

ICALP 2023

https://arxiv.org/abs/1604.03423

78:20 Ellipsoid Fitting up to a Constant

3 Boaz Barak, Samuel Hopkins, Jonathan Kelner, Pravesh K Kothari, Ankur Moitra, and Aaron

Potechin. A Nearly Tight Sum-of-Squares Lower Bound for the Planted Clique Problem.

SIAM Journal on Computing, 48(2):687Ű735, 2019.

4 Mrinalkanti Ghosh, Fernando Granha Jeronimo, Chris Jones, Aaron Potechin, and Goutham

Rajendran. Sum-of-squares lower bounds for Sherrington-Kirkpatrick via planted affine planes.

In 2020 IEEE 61st Annual Symposium on Foundations of Computer Science (FOCS), pages

954Ű965. IEEE, 2020.

5 Christopher Hoffman, Matthew Kahle, and Elliot Paquette. Spectral gaps of random graphs

and applications. International Mathematics Research Notices, 2019.

6 Jun-Ting Hsieh and Pravesh K Kothari. Algorithmic Thresholds for Refuting Random

Polynomial Systems. In Proceedings of the 2022 Annual ACM-SIAM Symposium on Discrete

Algorithms (SODA), pages 1154Ű1203. SIAM, 2022.

7 Chris Jones, Aaron Potechin, Goutham Rajendran, Madhur Tulsiani, and Jeff Xu. Sum-of-

squares lower bounds for sparse independent set. In 2021 IEEE 62nd Annual Symposium on

Foundations of Computer Science (FOCS), pages 406Ű416. IEEE, 2022.

8 Daniel M Kane and Ilias Diakonikolas. A Nearly Tight Bound for Fitting an Ellipsoid to

Gaussian Random Points. arXiv preprint, 2022. arXiv:2212.11221.

9 Sidhanth Mohanty, Prasad Raghavendra, and Jeff Xu. Lifting sum-of-squares lower bounds:

degree-2 to degree-4. In Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory

of Computing, pages 840Ű853, 2020.

10 Aaron Potechin, Paxton Turner, Prayaag Venkat, and Alexander S Wein. Near-optimal Ątting

of ellipsoids to random points. arXiv preprint, 2022. arXiv:2208.09493.

11 James Saunderson. Subspace identiĄcation via convex optimization. PhD thesis, Massachusetts

Institute of Technology, 2011.

12 James Saunderson, Venkat Chandrasekaran, Pablo A Parrilo, and Alan S Willsky. Diagonal

and low-rank matrix decompositions, correlation matrices, and ellipsoid Ątting. SIAM Journal

on Matrix Analysis and Applications, 33(4):1395Ű1416, 2012.

13 James Saunderson, Pablo A Parrilo, and Alan S Willsky. Diagonal and low-rank decompositions

and Ątting ellipsoids to random points. In 52nd IEEE Conference on Decision and Control,

pages 6031Ű6036. IEEE, 2013.

14 Terence Tao. Topics in random matrix theory, volume 132. American Mathematical Soc.,

2012.

15 Max A Woodbury. Inverting modiĄed matrices. Memorandum Rept. 42, Statistical Research

Group, 1950.

https://arxiv.org/abs/2212.11221
https://arxiv.org/abs/2208.09493

	1 Introduction
	1.1 Technical overview
	1.2 Comparison to prior work

	2 Proof of main result
	2.1 Candidate construction
	2.2 Decomposition of M
	2.3 Inverse of M
	2.4 Finishing the proof of Theorem 2

	3 Machinery for tight norm bounds of graph matrices
	3.1 Preliminaries
	3.2 Global bounds via a local analysis
	3.3 Vertex factor assignment scheme
	3.4 Bounding edge-factors
	3.5 Bounding return cost (Pur factors)
	3.5.1 Pur bound for circle vertices
	3.5.2 Pur bound for square vertices

	3.6 Wrapping up with a toy example
	3.6.1 Tight bound for GOE

