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Extracting generalizable skills from a single plan execution
using abstraction-critical state detection

Khen Elimelech, Lydia E. Kavraki and Moshe Y. Vardi

Abstract— Robotic task planning is computationally challeng-
ing. To reduce planning cost and support life-long operation,
we must leverage prior planning experience. To this end, we
address the problem of extracting reusable and generalizable
abstract skills from successful plan executions. In previous
work, we introduced a supporting framework, allowing us,
theoretically, to extract an abstract skill from a single execution
and later automatically adapt it and reuse it in new domains.
We also proved that, given a library of such skills, we can
significantly reduce the planning effort for new problems.
Nevertheless, until now, abstract-skill extraction could only be
performed manually. In this paper, we finally close the automa-
tion loop and explain how abstract skills can be practically
and automatically extracted. We start by analyzing the desired
qualities of an abstract skill and formulate skill extraction
as an optimization problem. We then develop two extraction
algorithms, based on the novel concept of abstraction-critical
state detection. As we show experimentally, the approach is
independent of any planning domain.

I. INTRODUCTION

To perform autonomously tasks such as rearrangement,
manipulation, and navigation, robots must be able to plan
their actions. Such planning is usually done in two levels:
planning of discrete, high-level actions (“task planning” [1]),
and of continuous robot motions (“motion planning” [2]);
this work is concerned with the first level. Realistic robotic
task planning is usually computationally challenging, espe-
cially considering complex robots, large planning domains,
or complex task specifications. Hence, to support life-long
operation and reduce future planning cost, it is important to
be able to improve from successful planning experience. Yet,
past problem solutions are typically not immediately reusable
and should be adapted before becoming applicable.

To this end, in our preliminary work [3], we introduced a
novel computational framework for automatic skill transfer,
allowing to accumulate generalizable planning experience,
which can later be reused in new contexts. With this ap-
proach, transfer is done in two stages: the “learning phase,”
in which we process successfully executed plans to build a
library of cached abstract skills; and the “planning phase,”
in which we try to match abstract skills from the library to
new planning problems, in order to accelerate their solution.
This transfer approach is visually demonstrated in Fig. 1.

We investigated the “planning phase” in prior work [4],
where we provided useful algorithms for planning with skills.
Yet, there, we considered the library of skills to be given.
Now, we wish to close the automation loop by addressing
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the “learning phase.” Specifically, we want to explain how,
given just a single successful plan execution, to extract
generalizable abstract skills, to be added to the library.

Contribution: To allow automated skill extraction, we
formulate the extraction problem as an optimization of an
abstract-skill score. This concept, which we introduce and
justify here, is used to balance the trade-off between the
generalizability and instructiveness of the extracted abstract
skill. We first formulate the problem of extracting a single
abstract skill from each execution, and then extend it, to
consider segmentation-based extraction of multiple skills. We
also present and demonstrate practical solution algorithms for
both problems, based on the novel concept of Abstraction-
Critical State Detection (ACSD). These contribution are a
crucial step for bringing the transfer framework from theory
into practice and are independent of any planning domain.

Related work: We strongly emphasize that the contribu-
tion of this work is qualitative—explaining how to automate
a previously-manual process. Our algorithms yield skills that
can only be used in the context of our transfer framework. By
such, this contribution cannot be directly compared to other
techniques without comparing the entire framework, which
is beyond the scope of this paper. For quantitative benefits
and motivation, see [3], [4]. Further, as implied, abstract-skill
extraction can be considered a form of “learning.” However,
our approach is categorically different than standard works
on “skill learning” or “learning from demonstration” (e.g.,
[5], [6], [7], [8]): these techniques learn a policy, while we
focus on plans; they require multiple expert demonstrations,
and we—a single successful execution; they produce skills
using neural networks, and we—using “abstraction keys”
(as we shall explain); they achieve generalization thanks to
multiple examples, and we—thanks to the abstract represen-
tation. Also, various “task planning” and “task and motion
planning” [9] works suggest to reduce planning cost by plan-
ning in hierarchical abstract domains (e.g., [10], [11], [12]).
We do not, however, consider planning in the abstract do-
main, nor address a planning problem. We only use abstrac-
tion as a tool to represent a skill (plan) in a generalizable
manner. Finally, some works from computer vision (e.g. [13],
[14]) also address the problem of “critical point detection” or
“trajectory segmentation.” They, however, view the problem
from a purely geometric perspective and not in the context of
planning. We detect critical states based on their effect on the
abstraction, and aim to segment optimal abstract skills. Our
approach also focuses on discrete traces (whether in geomet-
ric or symbolic domains) and not continuous trajectories.
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Fig. 1: Example of skill transfer using a “geometric abstraction key,” which allow us to perform spatial transformations (translation, rotation,
scaling) on state traces by specifying projection and reconstruction functions. (a) Successfully-executed plans in a grid-world domain, e.g.,
for robotic navigation tasks. (b) Segmentation of the state trace from each execution, to identify a “skeleton” of abstraction-critical states,
as explained in Sec. IV-E; the segments and skeleton can each be abstracted (projected), to yield an abstract skill. (c) Abstract Road Maps
(ARMs) representing a library of extracted abstract skills; this key’s Information Function (IF), which expresses the “level of abstraction,”
is defined by the volume of each mini-grid. (d) Matching and reconstructing an ARM to guide the solution of a new planning problem.

II. PRELIMINARIES

A. Abstraction keys for skill transfer
In this work, we refer to a successfully-executable task

plan as a “skill.” In previous work [3], [4], we presented and
motivated a computational framework that allows to perform
automated transfer of such skills between tasks and domains.

This transfer approach is based on two key ideas. First,
instead of an action trace, a skill can be represented using a
state trace, extracted from its execution; we refer to this state
trace as the skill’s “road map” RM . Second, road maps of
such skills can be adjusted and transferred to new scenarios
using “computational devices” called abstraction keys.

Definition 1: An abstraction key AK is a tuple(
projectp, reconstp,P

)
comprising a parametric state

projection function projectp : S → Ξ; its inverse—a
parametric state reconstruction function reconstp : Ξ → S;
and the parameter space P , such that p ∈ P .

The space Ξ is a key-induced abstraction of the state
space S . The set of valid parameters for projection of a
state S is marked PS , and the set of valid parameters for
reconstruction of an abstract state ξ is marked Pξ .

Using a chosen AK, transfer of a state trace (i.e., a skill’s
road map) is performed in two stages: by first projecting
it into the (AK-induced) abstract domain Ξ, and then re-
constructing it into the destination domain, in an attempt
to match a new planning problem. A road map can thus
be transformed and adjusted to a new problem by choosing
different parameters during projection and reconstruction.
Since the two stages are independent, the projected road map
represents an abstract skill, which can be cached for recon-
struction on-demand. Of course, to project and reconstruct
road maps, we must provide valid parameter values.

Definition 2: Considering an abstraction key AK and a
state trace T , a parameter p is valid for projection if

p ∈ AK.PT , where AK.PT
.
= ∩S∈TAK.PS . (1)

Every abstraction key allows us to perform a certain
type of transformation on states. In our previous works, we
formulated and demonstrated the usage of several such keys.
Among them are “symbol stripping” and “attention” [3], for
transforming symbolic states; and “geometric keys” [4], used
for spatial transformation of geometric states (as in Fig. 1).

B. Learning and planning from abstract skills
To reflect the two-phased skill transfer technique, abstract

skills can be processed in two distinct phases. First, the
“learning phase,” in which we try to build a library of
abstract skills from known and successful plan executions.
Each such execution defines a state trace T = (S0, . . . , Sn).
To extract an abstract skill from an execution, we should
choose an abstraction key AK, a projection parameter p,
and a road map RM ⊆ T to be projected. Then, an
abstract skill K = (ARM,AK) with the Abstract Road
Map ARM

.
= projectp (RM) can be cached.

After accumulating a library of abstract skills from past
experience, we can exploit it during the “planning phase,”
to solve efficiently new planning problems. To do so,
during planning, we should search for an abstract skill
(ARM,AK), for which exists a reconstruction parameter
p that allows to appropriately reconstruct ARM into the
new context; i.e., p for which the Reconstructed Road Map
RRM

.
= AK.reconstp (ARM) matches the task goals,

domain, and current state. If a match is found, we can use
this RRM to guide the action search and efficiently solve
the planning problem. In our prior work [4], we showed that
such matching can be formulated as a constraint satisfaction
problem and automatically solved. A visual example of such
reconstruction is given in Fig. 1d.

C. Problem definition
The solution and benefits of “planning from abstract skills”

were thoroughly formulated, discussed, and demonstrated
in our prior work [4]. However, the extraction formulation
provided before left us with practical questions, for which
the library of abstract skills in that work had to be manually
crafted. For example, we did not specify how to choose the
abstraction key nor the parameter for projection. Considering
different abstraction keys can result in abstract skills with
widely different qualities; e.g., choosing a key that yields
poor abstraction would limit the skill usefulness later on. We
want to be able to make an informed choice for the keys,
especially when multiple valid options are available.

Further, we also did not specify how to choose the road
map RM to be projected. We would typically not want to
use the entire state trace T from the original execution, as
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this might unnecessarily restrict the quality of the extracted
abstract skill, or prevent us from extracting skills altogether
(when there is no valid parameter p for projecting the entire
trace). Automatically choosing a road map that yields a useful
and generealizable abstract skill is not trivial.

Thus, the overarching goal of this work is to explain
how to practically learn abstract skills, and specifically:
(i) understand skill qualities and what makes an abstract skill
useful; (ii) provide a well-defined formulation of the problem
of optimal-skill extraction; and (iii) provide practical extrac-
tion algorithms, to solve the formulated problem.

III. INSTRUCTIVENESS VS. APPLICABILITY TRADE-OFF

Before we can explain how to extract abstract skills, we
should describe the qualities of abstract skills that we would
like to maintain. Thus, let us at this point consider a given
abstract skill K .

= (ARM,AK). Two qualities can be used
to describe K: instructiveness and applicability.

Instructiveness depends on the number of states the ARM
contains and their “level of abstraction,” from the perspective
of AK. For intuition, using a highly-instructive abstract
skill to solve a new planning problem is expected to be
easier, by requiring a “smaller” transformation to reconstruct
the ARM into the RRM , and/or less effort to follow the
RRM and complete the solution. To put simply, this abstract
skill’s ARM is expected to highly overlap with the state
trace of the final execution. Applicability describes in how
many planning scenarios the abstract skill can potentially
be applied, i.e., for how many scenarios we can match and
reconstruct ARM , by finding a reconstruction parameter.

These qualities, however, are not practically measurable.
As a proxy to understand their relationship and trends, we
introduce the notion of information—an auxiliary function
we can define to extend an abstraction key. Such a function
shall consider the type of information the key abstracts during
projection, and express the amount of it in the trace.

Definition 3: For an abstraction key AK, an Information
Function IF is a function traces(S) ∪ traces(Ξ) → R≥0,
where traces(space)

.
= ∪∞

n=0space
n, with the properties:

(i) Monotonically increasing, i.e.,
∀T1 ⊆ T2 =⇒ IF (T1) ≤ IF (T2).

(ii) Triangle inequality, i.e.,
∀T1,T2, IF ([T1,T2]) ≤ IF (T1) + IF (T2).

(iii) Information consistency, i.e., ∀T1,T2, p ∈ AK.P ,
IF (T1) ≤ IF (T2) ⇐⇒

IF
(
projectp (T1)

)
≤ IF

(
projectp (T2)

)
,

IF (T1) ≤ IF (T2) ⇐⇒
IF (reconstp (T1)) ≤ IF (reconstp (T2)).

An IF can often be intuitively defined for an abstraction
key, to express an ARM “compactness;” e.g., as indicated in
Fig. 1, for “geometric keys” the IF may measure the volume
of the trace’s bounding box; for “symbol stripping” [3]—the
number of symbols in the trace’s states; for “attention”—
the number of different propositions. According to this
definition, more information or longer length of the ARM

should express higher instructiveness of the abstract skill:

↑ len (ARM) =⇒ ↑ Instructiveness (ARM) , (2)
↑ IF (ARM) =⇒ ↑ Instructiveness (ARM) . (3)

Applicability can also be viewed as a function of the
information and length of the ARM . For the abstract skill
to be applicable to a planning problem, its ARM must
be reconstructable into the relevant domain. Each state in
the ARM adds a constraint to the reconstitution process—
for the reconstructed state to not conflict with the task and
domain. Further, more information in the ARM makes such
constraints more restrictive, as it limits us only to scenarios in
which it is relevant. Thus, abstract skills with longer ARMs
and higher IDF typically suffer from lesser applicability:

↑ len (ARM) =⇒ ↓ Applicability (ARM) , (4)
↑ IF (ARM) =⇒ ↓ Applicability (ARM) . (5)

From this discussion we may conclude the instructiveness
and applicability are “opposite” qualities, i.e.,

↑ Instructiveness ⇐⇒ ↓ Applicability. (6)

Thus, for a skill to be practically useful, it must express
balance between the two qualities. Finding a very instructive
skill that is hardly applicable, or a widely applicable skill that
is hardly instructive, would not be useful. The relationship
among the aforementioned measures is visualized in Fig. 2a.

IV. OPTIMAL-SKILL EXTRACTION

Abstract-skill extraction requires choosing three elements:
an abstraction key, a projection parameter, and a road map.
While in Sec. III we described the qualities a given abstract
skill, we now explain how to choose these elements, to
control the qualities of the extracted skills.

A. Choosing the projection parameter

Consider first an abstraction key AK and a road map RM
taken from a certain execution. To extract an abstract skill
using this road map, we must choose a parameter p ∈ PRM

for projection. Next, we will build on the previous discussion
to explain the basis for choosing this parameter. Since the
road map is given, the extracted skill qualities are only
determined by the information of the projected road map.
Yet, we cannot control the information directly, but only via
the choice of p. To assess how p affects the information of
the projected road map, and thus guide us into making the
optimal choice, we define the abstraction score.

Definition 4: For an abstraction key AK with an infor-
mation function IF, the induced abstraction score function
AbstScore : traces(S)× P → [0, 1] is defined as

AbstScore (RM, p)
.
=

IF (RM)− IF
(
projectp (RM)

)
IF (RM)

.

(7)
For a road map RM , the maximal abstraction score value is
referred to as its potential score and marked as

AbstScore∗ (RM)
.
= max

p
AbstScore (RM, p) . (8)

The maximizing p is marked as p∗.
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It is easy to see that a higher abstraction score corresponds
to lower information of the projected (abstract) road map:

↑ AbstScore (RM, p) ⇐⇒ ↓ IF
(
projectp (RM)

)
. (9)

Hence, according to the relationship in (5), choosing p with
a higher abstraction score leads to wider applicability:

↑ AbstScore (RM, p) =⇒
↑ Applicability

(
projectp (RM)

)
. (10)

Yet, from the relationship (3), we know it also means
reducing the abstract skill instructiveness:

↑ AbstScore (RM, p) =⇒
↓ Instructiveness

(
projectp (RM)

)
. (11)

B. Choosing the road map

Now, let us assume the road map RM to be projected
is not explicitly given. Instead, we have access to an entire
state trace T , taken from a successful execution. To extract
an abstract skill, we do not necessarily have to use the entire
trace, as this, as we shall see, might limit the qualities of
the extracted skill. Hence, we want to explain the basis for
choosing a subset of states from T , to serve as the RM .

Extending a road map with additional states can only
reduce the number of parameters that are valid for projection.
We thus can intuitively conclude that the potential abstraction
score is monotonically decreasing, i.e.,

T1 ⊆ T2 ⇒ AbstScore∗ (T1) ≥ AbstScore∗ (T2) (12)

This property means that we cannot possibly achieve a
“better” abstraction of a road map (in terms of abstraction
score) by extending it. Hence,

↑ len (RM) =⇒ ↓ AbstScore∗ (RM) (13)

Clearly, len (RM) = len (ARM). Hence, from combin-
ing (13) with the two relationships in (11) and (2), we learn
that choosing a road map RM with a higher length leads
to a significantly higher potential instructiveness of the skill:

↑ len (RM) =⇒ ↑↑ Instructiveness (ARM∗) , (14)

where ARM∗ .
= projectp∗ (RM). Yet, from combining

(13) with (10) and (4), we can also learn that this leads to a
significantly lower potential applicability of the skill:

↑ len (RM) =⇒ ↓↓ Applicability (ARM∗) . (15)

These relationships are visualized in Fig. 2b.

C. The abstract-skill score and problem formulation

As we see, “improving” each of our two decision variables
(RM , as measured by its length, and p, as measured by
the abstraction score) has non-trivial, conflicting effects on
the instructiveness and applicability of the resulting abstract
skill. We want to controllably choose RM and p to balance
both qualities and produce the “optimal skill.”

To do so, we wish to find an appropriate measure to
quantify the overall quality of our choice. We want this
measure to express the relationships we developed earlier.
We also want to include a weight parameter w ∈ [−1, 1], to
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Fig. 2: (a) Measurable vs. immeasurable qualities of an abstract
skill, and the instructiveness-applicability trade-off. (b) Controllable
(bold) vs. uncontrollable qualities of an extracted abstract skill, and
the road map length-potential abstraction score trade-off.

help express preference for one of the qualities over the other.
The function should hold the following properties: choosing
a higher w increases the impact of the RM length and
decreases the impact of the abstraction score, to encourage
selection of instructive skills; choosing a lower w decreases
the impact of the RM length and increases the impact of the
abstraction score, to encourage selection of applicable skills.
Altogether, these conditions yield the abstract-skill score:

SkillScorew (RM, p)
.
=

(len (RM)− 1)
1+w

2 · (AbstScore (RM, p) + 1)1−w − 1.
(16)

Finally, using the abstract-skill score we can formulate the
skill extraction problem as an optimization problem:

given : state trace T
.
= (S0, . . . , Sn),

a quality preference weight w ∈ [−1, 1],

find : an abstraction key AK,

a parameter p,
i0, i1 ∈ {0, . . . , n}, s.t. RM

.
= (Si0 , . . . ,Si1),

s.t. : p is a valid parameter choice for projecting RM,

to max : SkillScorew (RM, p) .
(17)

After solving this problem, the returned skill would be
(AK.projectp (RM) , AK), which we can cache in our
abstract skill library. Note that to keep the formulation
straightforward, we consider RM to be a segment of T .

It is clear that for a given RM , choosing p with a higher
abstraction score would always increase the abstract-skill
score. We can hence measure the potential abstract-skill score

SkillScore∗ (RM)
.
= SkillScore (RM, p∗) , (18)

and assume that for every RM , we would always prefer its
abstraction-score-maximizing parameter p∗ (from (8)). Yet,
we recall that extending RM also constrains p∗, and lowers
the potential abstraction score. Thus, the potential abstract-
skill score (as a function of the RM length) has a parabolic
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Fig. 3: The potential abstract-skill score as a function of len (RM).

nature, as visualized in Fig. 3. As also shown, increasing w
“pushes” this parabola to the right, and decreasing w—to
the left. We also conclude that the choices of RM and p are
interconnected, and we must consider the abstraction when
choosing the road map. Attempting to pre-determine the road
map without considering the abstraction score can lead to a
sub-optimal skill, e.g., a skill with low abstraction score and
low applicability (right side of the parabola), or make us
unnecessarily conservative (left side of the parabola).

D. Extraction algorithm

To choose the optimal RM , we shall incrementally an-
alyze segments of T , and measure changes in the poten-
tial abstraction score. This would allow us to Detect the
Abstraction-Critical States (ACSD)—states whose inclusion
in RM would have an undesirable effect on the abstract-skill
score. Practically, we suggest a “greedy” (steepest-ascent)
hill climbing algorithm, to maximize the abstract-skill score.
We start from the collection of all basic segments by coupling
together each pair of consecutive states in the trace. We then
try to extend incrementally and dynamically each such basic
segment by merging into it additional states (from its right or
left), as long as doing so increases its potential abstract-skill
score. Once no more extensions are possible, we terminate
and return the ARM of the segment with the maximal score.
Such analysis can be done for every relevant abstraction key,
to return the overall best skill. We can also return the “top-k”
skills, if desired. These steps are summarized in Alg. 1a.

E. Segmentation-based multi-skill extraction

Until now, we considered extraction of a single skill from
the trace by detecting the optimal segment. Though, with
only a slight adjustment of the previous formulation, we can,
in fact, perform a full segmentation of the trace, allowing us
to learn multiple skills at once, with a single algorithm run.

1) Abstraction-critical skeleton: The approach is based on
detecting a skeleton RMskeleton of abstraction-critical states
(instead of just two). A skeleton is any sub-trace of states
from T , not necessarily consecutive, that contains both ends
of the trace T , i.e., S0,Sn. A skeleton of length m+1 breaks
T into m segments, which can be used to create individual
skills. Nevertheless, the skeleton, as it is a road map of
states, can also be used to define a skill. Intuitively, “skeleton
skills” and “segment skills” are complementary to each other.
Segments represent sequences of local transitions, while the
skeleton consolidates each such sequence, to capture only
major transitions. Thus, a segment skill can usually be used
later as a building block for planning, providing a short-
horizon, detailed guidance, while a skeleton can typically
provide a long horizon, general guideline for the plan.

Algorithm 1: Abstract-skill extraction via ACSD.
1 Algorithm a Single Skill Extract(state trace T of

length n, preference weight w, abstraction key AK)

2 ARMs ← [ ]
3 for i from 0 to n− 1 do /* every base segment */
4 l, r ← i, i+ 1
5 score, p∗ ← AK.SkillScore∗w (T [l : r])
6 while l > 0 or r < n do /* try to extend */
7 l score, l p∗ ← AK.SkillScore∗w (T [l − 1 : r])
8 r score, r p∗ ←

AK.SkillScore∗w (T [l : r + 1])
9 if score > l score and score > r score then

10 break // extended to max
11 else if l score > r score then
12 l −− // extend left preferred
13 score, p∗ ← l score, l p
14 else
15 r ++ // extend right preferred
16 score, p∗ ← r score, r p
17 end
18 segment ARM ← AK.projectp∗ (T [l : r])
19 ARMs.append((segment ARM, score))
20 end
21 return argmaxARMs // best-scoring skill ARM

1 Algorithm b Segmentation Based Extract(state trace T ,
preference weight w, abstraction key AK)

2 SI ← (0, . . . , len (T )− 1) // Skeleton Indices
3 curr score ← seg score(T , SI, w) // as in (19)

// perform mergers while score increases
4 rewards ←merger rewards(T , SI , curr score)
5 while max(rewards) ≥ 0 do
6 index state to pop ← index of max(rewards) + 1
7 SI.pop(index state to pop)
8 curr score ← seg score(T , SI, w)
9 rewards ←merger rewards(T , SI , curr score)

10 end
// return ARMs of all extracted skills

11 ARMs ← [ ]
12 for i from 0 to len (SI)− 2 do
13 segment ← T [SI[i], . . . , SI[i+ 1]]
14 abs score, p∗ ← AK.AbstScore∗ (segment)
15 ARMs.append(AK.projectp∗ (segment))
16 end
17 abs score, p∗ ← AK.AbstScore∗ (skeleton)
18 ARMs.append(AK.projectp∗ (skeleton))
19 return ARMs

1 Procedure merger rewards(state trace T ,
skeleton indices SI , current segmentation score curr score)

2 rewards ← [ ]
3 for i from 1 to len (SI)− 2 do

// to merge, remove state from skeleton
4 SI− ← SI[0, . . . , i− 1, i+ i, . . . , end]

// calc change in score after merger
5 rewards.append(seg score(T , SI−, w)− curr score)
6 end
7 return rewards

2) Problem formulation: The segmentation problem for-
mulation is similar to the previous one. Here, we should
find a skeleton (instead of just two indices) and projection
parameters for each of the segments and the skeleton itself
(instead of just one). The segmentation score (objective) is
the norm of the vector of segment scores; e.g., the L2 norm:

∥(ss1, . . . , ssm)∥2, where ssj
.
= SkillScorew (RMj , pj)

(19)
The length of the skeleton does not need to user-specified,
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as it would be determined by solving the optimization
problem. Similarly to before, increasing w encourages longer
segments with lower potential abstraction score over shorter
segments with higher potential abstraction score. Hence,
w can implicitly be used to determine the granularity of the
extracted skeleton, as indicated in Fig. 4.

3) Segmentation algorithm: To find a solution, we formu-
late another hill climbing algorithm, which operates similarly
to the previous algorithm. Here, we start from maximal
segmentation of the trace into pairs of states, i.e., a skeleton
containing all the states. However, here, instead of trying
to iteratively extend a selected segment with a single state
from either end, we check which, if any, pairs of consecutive
segments can be merged, in order to best increase the overall
score. Such merger is performed by removing the critical
state between the segments from the skeleton. The algorithm
terminates when no merger can further improve the score.
The algorithm steps are summarized in Alg. 1b.

V. EXPERIMENTAL RESULTS

Earlier in this paper, in Fig. 1, we visualized the process of
segmentation-based skill extraction in a geometric domain. In
our prior work [4], we used a skill library similar to the one
shown in Fig. 1 to demonstrate “planning from skills.” Yet,
in that work, the extraction of skills had to be manually done.
Now, using the algorithms provided here, extraction of such
skills becomes automatable (given appropriate executions).

As we mentioned, the approach is also relevant to
non-geometric domains, as we show next. Thus, let us
consider a general, symbolic domain with state space:
S .
= {1, 2, 3} × {x, y, z} × {⋆,♠,♣}× {■,■,■}. A state

space of this sort is especially relevant to manipulation
planning domains, as it can express, e.g., types, locations,
and amounts of objects. In this domain, we can use the
“attention” abstraction key, previously formulated in [3]. This
key allows us to achieve a compact skill ARM , by exporting
to the parameter the “non-changing” state variables during
projection. Thus, intuitively, the IDF for this key is simply
the number of “changing” state variables. A demonstration of
the segmentation results in this domain is provided in Fig. 4.
Specifically, we can see that a “naive” extraction attempt on
that trace, i.e., considering the entire trace as the road map,
would fail (as there is no valid parameter for projection).

For a robust verification of the extraction technique, and to
compare its algorithmic variations, we ran the the algorithms
on numerous randomly-generated executions from the afore-
mentioned domain. The results are summarized in Table I.
These results corroborate our previous analysis. As we can
see, for both single-skill and segmentation-based extractions,
increasing the value of w leads to skills of higher length,
and lower abstraction score. We also learn that the quality
of skills returned from segmentation seem to be lower than
the quality of a single extraction, since the first optimizes the
total skill-quality. This could be mitigated by replacing the
norm type in the segmentation score definition. In any case,
segmentation holds the benefit of returning multiple skills at
once, including the useful “skeleton skill.”

(1, x,⋆,■) ▷ (2, x,⋆,■) ▷ (1, x,⋆,■) ▷ (2, y,⋆,■)▷
(1, z,⋆,■) ▷ (1, y,♠,■) ▷ (1, y,♠,■) ▷ (1, y,♠,■)

(a) Original execution.

ARM of “skeleton” skill:
(x,⋆,■) ▷ (z,⋆,■) ▷ (y,♠,■) ▷ (y,♠,■),

p∗ = (1, ?, ?, ?), AbstScore∗ = 1

ARMs of “segment” skills:
(1, x,■) ▷ (2, x,■) ▷ (1, x,■) ▷ (2, y,■) ▷ (1, z,■),

p∗ = (?, ?,⋆, ?), AbstScore∗ = 1

(z,⋆,■) ▷ (y,♠,■), p∗ = (1, ?, ?, ?), AbstScore∗ = 1

(■) ▷ (■) ▷ (■), p∗ = (1, y,♠, ?), AbstScore∗ = 3

(b) Segmentation-based abstract-skill extraction (w = 0.8).

ARMs of “skeleton” skill:
(x,⋆,■) ▷ (x,⋆,■) ▷ (z,⋆,■) ▷ (y,♠,■) ▷ (y,♠,■),

p∗ = (1, ?, ?, ?), AbstScore∗ = 1

ARMs of “segment” skills:
(1,■) ▷ (2,■) ▷ (1,■), p∗ = (?, x,⋆, ?), AbstScore∗ = 2

(1, x) ▷ (2, y) ▷ (1, z), p∗ = (?, ?,⋆,■), AbstScore∗ = 2

(z,⋆,■) ▷ (y,♠,■), p∗ = (1, ?, ?, ?), AbstScore∗ = 1

(■) ▷ (■) ▷ (■), p∗ = (1, y,♠, ?), AbstScore∗ = 3

(c) Segmentation-based abstract-skill extraction (w = 0.2).

Fig. 4: Extraction of multiple abstract-skills from a single execution
in a symbolic domain, using the “attention” abstraction key.

VI. CONCLUSION

This paper addressed the problem of extracting general-
izable, abstract skills from successful task plan executions.
This has been, up until this point, a practical gap in end-
to-end automation of the skill transfer framework we estab-
lished in previous work. We started by analyzing the desired
qualities of an extracted skill. With the conclusions from this
analysis, we were able to define the “abstract skill score”
and formulate skill extraction as an optimization problem.
We then provided an automatable algorithm for solving this
problem, via detection of abstraction-critical states—states
which bound segments of an execution from which we can
extract skills with maximal score. We provided two variations
of the formulation and algorithm, considering a single-skill
extraction and full-segmentation-based multi-skill extraction,
and demonstrated their differences experimentally. We also
examined the effect of the quality preference weight, which
allowed us to yield “more instructive” or “more applicable”
skills. Evidently, the approach is useful in various planning
domains, including symbolic domains (as used in our ex-
periments) and geometric domains (as shown in Fig. 1).
Finally, although the algorithms are clearly effective, we
recognize that they might not achieve the globally-optimal
skills. We plan to mitigate this aspect in future work by, e.g.,
considering non-myopic or stochastic hill-climbing.

TABLE I: Comparison of abstract-skill extraction techniques.
Average results for 100 random symbolic traces of length 30.

w Algorithm len (ARM) AbstScore∗ # of skills

+.5
Single skill 4.7 0.2 1 segment
Segmentat. 2.6 (per seg.) 0.31 (per seg.) 21.6, skeleton

−.5 Single skill 2.2 0.8 1 segment
Segmentat. 2.0 (per seg.) 0.4 (per seg.) 14.2, skeleton
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