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1. Introduction

One of the most important questions of modern science is that of emergent behaviours in
complex systems. This asks the following: if we know well the fundamental laws of physics,
can we still predict the relevant behaviours of physical systems of interest? These typically
contain a large amount of basic objects, such as particles or quantum spins.When those interact
with one another, new behaviours emerge at large scales, according to laws which may be
difficult to predict, but which are universal, independent from most microscopic details. This
occurs in a diversity of systems, from electrons in a metal and spins in quantum magnets,
to molecules in a gas and even flocks of birds. For instance, there is no point in attempting to
describe the trajectories of every molecule in the air that surrounds us, yet one must understand
the principles that explain why the motion of one person’s vocal cords affects that of another
person’s eardrum the way it does, and at the speed of sound. What are the emergent laws
of dynamics at macroscopic scales of space and time? How to pass from the microscopic
to the macroscopic? While the forms of evolution equations is well understood, to extract
information of physical relevance remains a lasting challenge.
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One successful approach consists in developing effective macroscopic equations. The
simple example of sound propagation in air illustrates one of the most successful such frame-
works: that of hydrodynamics. The science is old, starting in the 17th–19th centuries with Euler
and Navier–Stokes equations, applicable to everyday fluids and gases. But modern research
has shown that hydrodynamic ideas, beyond these ‘conventional’ equations, have much wider
applicability.

One of the setups where non-conventional hydrodynamic theories have been most success-
ful recently is that of low-dimensional quantum systems. The study of these systems from a
hydrodynamics viewpoint has inspired developments inmany directions. Indeed, the constraint
of low dimensionality not only may drastically affect the large-scale dynamics, but also, offers
new techniques—including those of integrability and of field theory—in order to get a much
deeper understanding than what has been possible until now in higher-dimensional systems.
The papers published in this special issue provide a broad overview of the current research on
hydrodynamics of low-dimensional quantum systems, showing how active this research area
is, and indication some of the most important directions of further research.

The papers study and bring new insight in this area. First, in quantum systems, an important
question is about the emergence of phenomena that are of a purely quantum nature. The power-
ful techniques and theories available in low dimensions, often related to or based on hydro-
dynamics, allow us to the study these phenomena much more deeply. In this special issue,
contributions investigated the dynamics of entanglement [3, 10, 24, 26], of operator spreading
[20, 21] and of quantum coherences [14], the dynamical effects of quantummeasurements [30]
as well as how hydrodynamics gives us information on quantum wave functions [29]. In these
fundamental endeavours, free fermions often, but not always, are a good initial setup. Second,
in quantum many-body interacting systems, integrability plays a crucial role, and it turns out
that the thermodynamics and hydrodynamics of integrability applies to a wide variety of sys-
tems. I fact, it is often useful to go back to the classical realm, in order to disentangle classical
form quantum effects. In this special issue, contributions developed the hydrodynamic theory
of integrable systems either quite generally [9, 13], or by focussing on gases of particles [6,
24], quantum spin systems [27], quantum and classical field theories [2, 16, 19], and even
cellular automata [15, 17, 18, 21, 23] and ensembles of classical solitons of integrable partial
differential equations [5, 28]. Third, of particular interest in one-dimensional quantum systems
is their often very peculiar or anomalous transport properties. In this special issues transport
effects and techniques are uncovered in free fermion models [8, 14], Tomanaga–Luttinger
liquids [11], and fluid dynamics within a chiral background [1]. Finally, studying fundamental
aspects of statistical mechanics, stochastic processes and hydrodynamics give much insight
into low-dimensional many-body systems, and contributions in this special issue study phase
transitions [22, 25], entropy dynamics [7], large-scale fluctuations [4, 17] and the emergence
of the hydrodynamic equations [12].
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