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Abstract—We prove that unary Sherali-Adams requires proofs
of size n*(¥) to rule out the existence of an n@(l)-clique in Erdds-
Rényi random graphs whose maximum clique is of size d < 2log n.
This lower bound is tight up to the multiplicative constant in
the exponent. We obtain this result by introducing a technique
inspired by pseudo-calibration which may be of independent
interest. The technique involves defining a measure on monomials
that precisely captures the contribution of a monomial to a
refutation. This measure intuitively captures progress and should
have further applications in proof complexity.

Index Terms—Proof Complexity, Clique, Unary Sherali Adams

I. INTRODUCTION

The problem of identifying a maximum clique in a given
graph, that is, finding a fully connected subgraph of maximum
size, is one of the fundamental problems of theoretical com-
puter science. It is one of the first combinatorial problems
proven NP-hard by Karp in the 1970s [1] and was even
mentioned in Cook’s paper [2] introducing the theory of NP-
complete problems. This problem is also notoriously hard to
approximate: unless P = NP, the size of the maximum clique
cannot be approximated within a factor of n'—¢ [3], [4].

The k-clique problem, determining whether there is a clique
of size k in a given n-vertex graph, can be solved by iterating
over all subsets of vertices of size k£ and checking whether one
of them is a clique. Somewhat surprisingly, this naive algorithm,
which runs in time O(n*), is believed to be essentially tight:
the constant in the exponent can be slightly improved by a
clever use of matrix multiplication [5] but unless the class of
fixed parameter tractable problems collapses to W[1], there
must be some dependence on k in the exponent [6], and under
the exponential time hypothesis [7] this dependency must be
linear [8].

While the clique problem is quite well understood in the
worst case and under standard hardness assumptions, much
less is known in the average-case setting. For example, it is
not known whether there are algorithms running in time n°(F)
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that, given an Erd6s-Rényi graph with edge probability just
below the threshold of containing a k-clique, can determine
that the graph does not contain a k-clique. Even if we only
require the algorithm to refute the existence of a clique of size
n® > k, this problem is still conjectured to be hard.

Such average-case questions seem difficult to relate to worst-
case hardness assumptions such as P # NP. Therefore, instead
of studying this average-case question in the Turing model
under standard hardness assumptions, we study these questions
for limited models of computation but prove unconditional
lower bounds. This approach has turned out to be quite fruitful
and several results of this form have emerged over the past
few decades. For Boolean circuits, Rossman [9], [10] proved
two remarkable results: he showed that monotone circuits, i.e.,
circuits consisting of V and A gates only, as well as circuits
of constant depth require size (n*/*) to refute the existence
of a k-clique in the average-case setting.

Instead of studying circuits, we approach this problem from
the lens of proof complexity. Very broadly, proof complexity
studies certificates of unsatisfiability of propositional formulas.
As we cannot argue about certificates of unsatisfiability in
general we consider certificates of a certain form, or in terms
of proof complexity, refutations in a given proof system. For
instance, if we prove that any certificate in a proof system P
that witnesses that a given n-vertex graph contains no k-
clique requires length n*(*) on average, then we immediately
obtain average-case n‘*(*) running time lower bounds for any
algorithm whose trace can be interpreted as a proof in the
system P. It is often the case that state-of-the-art algorithms
can be captured by seemingly simple proof systems, as was
shown to be the case for clique algorithms [11].

It is often the case that weak proof systems are sensitive
to the precise encoding of principles. The k-clique formula is
no exception: it is somewhat straightforward to prove almost
optimal n*(¥) resolution size lower bounds for the less usual
binary encoding of the k-clique formula [12] and these lower
bounds can even be extended to an n*(¥) lower bound for the
Res(s) proof system for constant s [13]. For the more natural
unary encoding, not much is known. There are essentially
optimal n‘*(*) average-case size lower bounds for regular
resolution [11], [14] and tree-like resolution [15], [16]. For
resolution, there are two average-case lower bounds that hold
in different regimes: for n®/% < k < n/3, Beame et al. [17]
proved an average-case exp(n®*(!)) size lower bound and for
k < n'/3, Pang [14] proved a 26" Jower bound. It is a
long standing open problem, mentioned, e.g., in [15], to prove
an unconditional n**(*) resolution size lower bound for the



unary encoding—even in the worst case. If we wish to extend
these results to stronger proof systems that can reason about
different formulations of the same problem, our lower bound
techniques should also be oblivious to the precise encoding of
problems. As we explain later on, this is one of the strengths
of our proof strategy.

Little is known about the average-case hardness of the k-
clique formula in the semi-algebraic setting. There are optimal
degree lower bounds for k& < n'/2=¢ for the Sum-of-Squares
proof system [18]-[20], but there are no non-trivial lower
bounds on size. For Nullstellensatz, however, if restricted to
not use dual variables, then size lower bounds follow by a
simple syntactic argument [21]. Prior to our work no other
size lower bounds were known for algebraic or semi-algebraic
proof systems.

A. Our Result

In this work, we obtain the first size-lower bound on the
clique formula for a semi-algebraic proof system. We show that
the unary Sherali-Adams proof system, which is incomparable
to resolution [22], requires size n*(P) to refute the k-clique
formula on random graphs whose maximum clique is of size
D < 2logn. Our result even applies in the approximate setting,
where the formula states that the graph contains a clique of
size n'/1%° but with high probability there is no clique of size
D.

Theorem 1.1 (Informal). For all integers n € NT and D <
2logn, if G ~ G(n,n=2/P) is an Erdés-Rényi random graph,
then it holds asymptotically almost surely that unary Sherali-
Adams requires size at least n*P) to refute the claim that G
contains a clique of size k, for any k < n'/67.

We note that our result also holds for the SubCubeSum proof
system [23]. In fact our proof strategy gives a lower bound on
the sum of coefficients of a Sherali-Adams refutation, ignoring
Boolean axioms.

Let us stress that the size lower bound holds regardless of
the degree of the refutation. This is a somewhat unique feature
of our technique—all other lower bound strategies for Sherali-
Adams and Sum-of-Squares are tailored to proving degree
lower bounds, which, if strong enough, imply size lower bounds
by the size-degree relation [24]. Since the clique formula has
refutations of degree D we cannot expect to obtain size lower
bounds through this connection for D < /n. We therefore
introduce a new technique, inspired by pseudo-calibration [19],
that is more refined—for any monomial m, of arbitrary degree,
we determine a lower bound on the size of the smallest unary
Sherali-Adams proof of m.

B. Organization

The rest of this paper is organized as follows. In Section II
we introduce some basic terminology to then outline our proof
strategy in Section III where we also attempt to convey some
intuition. With the motivation at hand from Section III we then
go on to define the central combinatorial concept of a core of
a graph in Section IV and a notion of pseudorandomness in

Section V. We proceed in Section VI to prove the main theorem
for any graph satisfying our notion of pseudorandomness,
albeit omitting the proof of one of the main lemmas. Finally,
in Section VII we conclude with some open problems. We
refer to the full-length version of this paper for the missing
proofs, including that Erd6s-Rényi random graphs satisfy the
pseudorandom properties we define.

II. PRELIMINARIES

Natural logarithms (base e) are denoted by In, whereas
base 2 logarithms are denoted by log. For integers n > 1
we introduce the shorthand [n] = {1,2,...,n} and sometimes
identify singletons {u} with the element u. Let (“j) denote
the set of subsets of S of size ¢ and, for a given a random
variable X and an event P, we denote by 1p(X) the indicator
random variable that is 1 if P holds and O otherwise.

Instead of working with an Erd8s-Rényi random graph,
we work in the block model [11], [17] as defined below.
From [11], [17] we know that a lower bound on the block
model implies a lower bound for Erdés-Rényi random graphs.
Before introducing the block model, we need to set up some
terminology and notation.

For the remainder of this paper G always denotes a k-
partite graph with partitions V,..., V) of size n each. We
call a partition V; a block and, for S C [k], denote by

Vs the vertices in blocks in S, that is, Vg = UieS V;. For
disjoint sets Wy,..., W, we let a tuple t = (w1, ..., ws) be

a sequence of vertices satisfying w; € W; for all i € [s]. All
tuples we consider are defined with respect to the partition
Vi,..., Vg, though, at times, may only be defined over a subset
of the blocks, that is, not all tuples are of size k. For a tuple
t = (v1,...,v;) and a set S C [k] we denote the projection of
tonto Sbyts=(v; | i€S). An s-tuple is a tuple of size s
and sometimes it is convenient for us to think of a tuple as a
set of vertices. We take the liberty to interchangeably identify
a tuple as a sequence as well as a set and hope that this causes
no confusion.

A set Q of tuples is a rectangle if it can be written as the
Cartesian product of sets U; C V; (possibly empty) for i € [k].
In other words, @ = XZ, Clk] U; or, equivalently, there is a
set S C [k] such that Q contains all tuples ¢ = (uy,...,us)
satisfying u; € U, for ¢ € S. Rectangles, unless explicitly
stated, consist of k-tuples only, that is, if @ = )(i clk] U;,
then we usually assume that all U; are non-empty. Given a
rectangle ) and a set S C [k] we let Qg be the projection of @
onto the blocks in S: if Q = Xie[k] U;, then Qg = Xies U;
and, in particular, we have Q; = U; for ¢ € [k].

While G always denotes a large graph, the graphs H and
F' denote small graphs: throughout the paper H and F' are
graphs on k labeled vertices. Usually these graphs have a
small vertex cover and graphs denoted by F' furthermore have
many isolated vertices. For a graph H we denote the minimum
vertex cover by vc(H) and sometimes refer to H as a pattern
graph, whereas F' is usually a core graph (see Section IV). We
denote by H the set of graphs on k labeled vertices and for
a parameter i € NT let H; C H be the family of graphs with



a minimum vertex cover of size at most i, that is, all graphs
H € H,; satisfy ve(H) < i.

Given k blocks Vi,..., Vi of size n and a real number
0 < p <1 we denote by G(n,k,p) the distribution over
graphs on the vertex set V) defined by sampling each edge
e = {u, v} independently with probability p if v and v are in
distinct blocks. Edges within the same block are never included
and hence G(n, k,p) is a distribution over k-partite graphs.

A. Clique Formula

Below we present a polynomial encoding of the k-clique
formula. As our lower bound strategy is quite agnostic to the
precise encoding we could equally well define the formula as
a translation of a CNF. For the sake of exposition we choose
to work with the following encoding.

Given a k-partite graph G with blocks V7, ...,V of size n
we define the k-clique formula over G as follows. The formula
is defined over 2kn variables: each vertex v € V] is associated
with two variables z, and Z,. All variables are Boolean and
thus for each variable y (where y is either x, or Z, for some
v € Vji)) we introduce the Boolean axiom y(1 — y). Through
the negation axioms 1 — z,, — z,, we ensure that the variables

associated with a single vertex v are the negation of each other.

For each block V; we introduce the block axiom Zv ev; Tv — 1
stating that precisely one vertex from each block is chosen
and for each pair of vertices {u,v} € G in distinct blocks we
introduce the edge axiom x,x, that ensures that non-neighbors
are not simultaneously selected. Let us remark that we could
add edge axioms for pairs of vertices in the same block but
for ease of exposition we choose not to include them.

It should be evident that this formula is satisfiable if and only
if there is a k-tuple ¢ such that the vertex induced subgraph
G[t] is a clique.

B. Unary Sherali-Adams

Let P = {p1 =0,...,p,m = 0} be a polynomial system
of equations over Boolean variables x1, ..., x, and their twin
variables Z1,...,Z,. If we assume that PP contains all the
necessary Boolean axioms as well as the negation axioms, then
a Sherali-Adams refutation of P is a sequence of polynomials

(91,---,9m, fo) such that fy is of the form
fo= > aas][a ][] (1
A,BC[n) i€A  i€B
aa,p>0
and it holds that
> gipi+fo=-1. (2)
j€lm]

The size of a refutation is the number of monomials on the left
hand side of Equation (2) when all polynomials are expanded
out (without any cancellations) as a sum of monomials. The
coefficient size of a Sherali-Adams refutation is the sum of the
magnitudes of the coefficients of all monomials occurring in
the proof (again, without any cancellations).

Unary Sherali-Adams is a subsystem of Sherali-Adams
where all coefficients of monomials are either +1 or —1 and
the right-hand-side of Equation (2) is any negative integer

Z gipj + fo=—M, 3)
j€lm]
where fj is again a non-negative sum of monomials (sometimes
also called a conical junta).

Proposition I1.1. If Sherali-Adams requires coefficient size s
to refute P, then unary Sherali-Adams requires size at least s
to refute P.

Proof. We can transform any unary Sherali-Adams refutation
of size s, summing to an integer —M, to a Sherali-Adams
refutation of coefficient size at most s by dividing the left
hand side by M > 1. O

We may define the clique formula, as introduced in Sec-
tion II-A, over any graph G = (V,E) on kn vertices by
partitioning the vertices into k sets V = ViU --- UV} of
equal size and defining the clique formula with respect to that
partition. It may be more natural to define the k-clique formula
for such G with V; = --. = Vj. The following proposition,
essentially due to Beame et al. [17], states that the Sherali-
Adams coefficient size required to refute the latter is lower
bounded by the coefficient size required to refute the clique
formula defined with respect to a k-partition.

Proposition IL2 ( [17]). For k,n € N* and any graph G
on kn vertices, the minimum Sherali-Adams coefficient size
to refute the k-clique formula over G is bounded from below
by the coefficient size required to refute the k-clique formula
defined with respect to any equal sized k-partition of G.

This proposition was proven in [17] for resolution size via
a restriction argument, and it is straightforward to see that the
same proof holds for Sherali-Adams coefficient size.

C. Some Auxiliary Lemmas

Lemma IL3. There are at most 2¢108k+ble—(0+1)/2) <
2c(btlogk) orgnhs H over k vertices with a vertex cover of
size b and |V (E(H))| < c.

Proof. We first choose the b vertices from the k vertices that
form the vertex cover. Then, from the remaining k£ — b vertices,
we choose ¢ — b vertices that may be incident to an edge. We
can add edges that are incident to the vertex cover and the
other ¢ — b vertices and thus get that there are at most

(’;) (’Z‘ : ;j) 2(;)2b(c—b) < gelogh+bc—(b+1)/2) (4)

many such graphs. O

Recall that a maximal matching of H is a matching that
cannot be extended in H.

Proposition I1.4. Any maximal matching in a graph H is of
size at least [vc(H)/2].

Proof. Since M is maximal, all edges of H are incident to
V(M). Thus the set V(M) is a vertex cover of H. O



III. MAIN THEOREM AND PROOF OVERVIEW

The main result in this paper is a tight, up to constants in
the exponent, size lower bound for unary Sherali-Adams for
k-clique formulas over Erd6s-Rényi random graphs, which we
state formally next.

Theorem IIL1. For all integers n € N*, D < 2logn and
k< nl/%, if G ~ G(n, k,n=2/P), then it holds asymptotically
almost surely that unary Sherali-Adams requires size at least
n* D) 1o refute the k-clique formula over G.

Note that Theorem I.1 follows directly from Theorem III.1
along with Proposition 11.2.

In the rest of this section we outline our proof strategy. We
intend to come up with a so-called pseudo-measure which

lower bounds the size of a unary Sherali-Adams refutation.

In fact it proves something slightly stronger: the existence of
a pseudo-measure implies a lower bound on the sum of the
magnitude of the coefficients of a (general) Sherali-Adams
refutation. Before we get ahead of ourselves let us define what
a pseudo-measure is. A similar notion has previously appeared
in [25] for the Nullstellensatz proof system over the reals.

Definition IIL2 (pseudo-measure). Let 6 > 0 and
P be a set of polynomials over the polynomial
ring  Rlzy,...,2n,Z%1,...,Z,]. A  linear  function
w: Rlzy,...,2n,T1,...,Ty] — R, mapping polynomials to

reals, is a d-pseudo-measure for P if for all monomials m
and all polynomials p € P it holds that

D) |p(m-p)| <6, and

2) u(m) > —4.

We have the following simple proposition.

Proposition IIL.3. If u is a d-pseudo-measure for P, then any
Sherali-Adams refutation of ‘P requires coefficient size at least
w(1)/8. In particular, this implies that unary Sherali-Adams
requires size at least p(1)/9 to refute P.

Proof. Suppose we have a §-pseudo measure p for P and a
Sherali-Adams refutation

> g ptfo=-1 )

pEP
of P. Apply u to the refutation. Observe that the left-hand side
has to sum to —u(1). For any p € P and any monomial m
occurring in g, with coefficient c,,, it holds that |pu(m - p)| <
Cm - 6 and similarly for a monomial m € fy occurring with
a positive coefficient c,, it holds that p(m) > —c¢,, - . Thus
Sherali-Adams requires coefficient size at least p(1)/6, as
claimed. The size lower bound for unary Sherali-Adams follows
by virtue of Proposition II.1. O

A. Our Pseudo-Measure

In what follows we define our pseudo-measure p for the
k-clique formula. We may think of ;1 as a progress measure:
it assigns to each monomial a real value which can be thought
of as the contribution of this monomial towards the refutation
of the k-clique formula. Thus, intuitively, we would like

to associate each monomial with the fraction of potentially
satisfying assignments that it rules out. In order to define this
a bit more formally, let us introduce the set of potentially
satisfying assignments.

We say that an assignment « is potentially satisfying for
the k-clique formula if there is a graph G such that the k-
clique formula defined over G is satisfied by «. This set of
assignments can be easily characterized: if we associate each
k-tuple ¢ with the assignment p; that sets all variables x,,
to 1 if u € ¢ and to 0 otherwise, then the set of potentially
satisfying assignments of the k-clique formula is

{pe|teVI x Vo x - xVi} . (6)

We say that a monomial m rules out an assignment p if
p(m) = 1. As there is a one-to-one correspondence between
potentially satisfying assignments and tuples, it is convenient to
think of the tuples that a monomial rules out. We thus associate
each monomial m with the set

Q(m) = {t | pr(m) =1} ()

of ruled out k-tuples. Note that Q(1) is the set of all tuples, that
is, Q(1) =V x Vo x - -+ X V}, and the set Q(x,x,) associated
with an edge axiom z,x, consists of all k-tuples that contain
the vertices u and v.

More generally, it is not too hard to see that the set of
ruled out tuples of a monomial is a rectangle and that for
each rectangle () there is at least one monomial 7 such that
@ is the set of tuples ruled out by m. We thus often discuss
rectangles and it is implicitly understood that if a statement
holds for all rectangles, then it also holds for all monomials.
Finally, observe that if a monomial m satisfies m = my - mao,
then Q(m) € Q(my).

For intuition we will now discuss two naive, and fatally
flawed, attempts to define a pseudo-measure. For our first
attempt, we simply associate each monomial with the fraction
of ruled out tuples, that is we map a monomial m to

[Q(m)|
Q)]

This measure is clearly non-negative and hence satisfies
Property 2 of Definition III.2 for any > 0. Furthermore, again
for any 0 > 0, it satisfies Property 1 of Definition III.2 for
the Boolean axioms, the negation axioms as well as the block
axioms. Only the edge axioms cause trouble: the rectangle
Q(w,x,) associated with the edge axiom wx,z, is a n=2
fraction of all tuples. As such, this pseudo-measure may only
gives us an n? lower bound—not quite what we are after.

We may remedy this by not associating a monomial m with
all tuples in QQ(m) but rather only with a subset of Q(m) that
depends on the graph G. One very naive attempt would be
to associate m with the number of k-cliques that it rules out,
that is, we may associate a monomial m with the normalized
measure

=n""|Q(m)| . @®)

k
n_k Z 2(2)]1{15 isaclique}(G) : 9
teQ(m)
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Figure 1. A pattern graph H mapped onto a tuple ¢t = (v1,...,vg)

This definition, at least in expectation over G ~ G(n,k,1/2),
satisfies all properties of a pseudo-measure: the monomial 1 is
mapped to 1, the axioms are all mapped to 0 and the measure
is non-negative.

The obvious problem is that all graphs we consider do
not contain a k-clique and hence everything (including the
monomial 1) is mapped to 0. Following the lead of Barak
et al. [19] we expand Equation (9) in the Fourier basis and
truncate the resulting expression. By a careful choice of our
truncation we can with some significant effort prove that this
measure satisfies all required properties of Definition III.2. In
order to state the precise definition of u we need some notation.

For each potential edge e we have a character . (G) defined

by
1-p
Xe(G) = {pl

if e € E(G)

10
otherwise; (10)

and for a set of potential edges E we let xg(G) =
[I.cs Xe(G). Note that for p = 1/2 this is the usual +1
Fourier basis. First time readers are advised to keep this case
in mind for the remainder of the article.

To concisely state our pseudo-measure we need some further
notation. We consider sums of tuples and want to treat edge
sets that are equal up to the mapping onto a k-tuple as the same.
More precisely, if we have two k-tuples ¢t = (vq,...,v),t' =
(vi,...,v}) and edge sets E C (}) and E' C (g) such that
{vi,v;} € E if and only if {v},v} € E’, then we want
to identify F and E’ as the same edge set. To this end we
consider pattern graphs H (similar to the shape graphs in
the terminology of [19]) over the vertex set [k]. For a tuple
t = (v1,...,v;) and a graph H over [k] we let H(t) be the
edge set that contains the edge {v;,v;} if and only if the edge
{4,j} is present in H. See Figure 1 for an illustration. With

this notation at hand we define our pseudo-measure as

pm) = pa(Qm)) =n™ 3" 3" xup(G) , A1)

teQ(m) vc(g)gd

where the second sum is over all graphs H over [k] vertices
with vertex cover at most d, and d = nD is a small constant
1 > 0 times the maximum clique size of G. It is convenient
for us to work with the above (non-standard) basis as it allows
us to easily cancel characters in case an edge is missing.

Observe that Boolean axioms, the negation axioms and the
block axioms multiplied by an arbitrary monomial are all
mapped to 0 by p. Hence it remains to prove that the measure
1 maps the constant 1 monomial to a large value, that p is
small on subrectangles of edge axioms, i.e., any edge axiom
multiplied by a monomial is mapped to a small value, and that
all monomials are mapped to an approximately non-negative
value.

By inspecting the second moment of p(1) it is not too hard
to see that there is quite a bit of freedom on how to choose
the truncation in the definition of 1 while maintaining the
property that (1) = 1 +n~") asymptotically almost surely.
However, ensuring that the edge axioms are associated with
small measure is more delicate. Here we heavily rely on our
choice to truncate according to the minimum vertex cover.
More specifically we rely on two crucial properties of graphs
H satisfying vc(H) = d: firstly, we use the fact that such
graphs contain a matching of size [d/2] (see Proposition I1.4)
and, secondly, that the family of these graphs satisfies a
monotonicity property which leads to a useful partition of
this family. For more details about this partition we refer to
Section IV. Let us mention that it is conceivable that one
could increase the bound on & for which our results hold by
truncating according to the size of the maximum matching. As
we do not know how to define the above mentioned partition
with respect to maximum matching we truncate according to
the minimum vertex cover.

In the following sections we try to present some intuition
as to why pug4 is a pseudo-measure, that is, why it satisfies
Definition II.2. In Section III-B we verify that G sampled
from G(n, k, 1/2) asymptotically almost surely satisfies p(1) =
Md(xie[k V;) = 1+ n (M, As mentioned, this follows by
a straightforward second moment argument. In Section III-C
we outline why any subrectangle () of an edge axiom satisfies
l1a(Q)] < n~%4)_ This proof motivates the definitions in
Sections IV and V. Finally, in Section III-D, we provide some
high-level overview of how to prove that any rectangle @ is
mapped to an approximately non-negative value, that is, it
holds that 11q(Q) > —n =9 This is the most technically
challenging part of the paper.

B. Expected Behavior of Our Pseudo-Measure
The measure 14(Q) of any rectangle @ satisfies

Eclua(@)]=n"">" Y Eolxuw(@)]  (12)
teQ HEHy
=n""Y "Ealxow) (G)] (13)
teqQ
=n"*Q| . (14)

In particular, as Q(1) = Xeqy Vir it holds that Eq[pu(1)] = 1.
In what follows we show that, for p = 1/2, the measure
is somewhat concentrated around the expected value. The
concentration, though, is far from enough to perform a union
bound over all rectangles to argue that the measure behaves
as expected on all rectangles simultaneously.



We show that the measure concentrates by an application
of Chebyshev’s inequality. To this end we analyze the second
moment: for p = 1/2 we have

:n—%z Z Ec[Xw @ (G)xmw)(G)] (15)

HeHat,t'eQ

=n"*> " N Ealxne (G)xuw)(G)] (16)
HeHaq t,t' €qQ:
ty () =t (B(r))

=n" N () tviem) =t} (7D

HeHgy
=n" % Z Qv )| - 1Qunvewy > (18)
HeHa
<o HQ(1+ Y nrvEEN) (19)
HeHy
HA

A careful application of Lemma II.3 allows us to bound the
number of pattern graphs H we sum over in (19) to conclude
that E[u2(Q)] = |Q|n =% (1 £n~%M), as long as k and d are
small. By virtue of Chebyshev’s inequality we then conclude
that (1) = 1 4 n~*(1) asymptotically almost surely.

A natural attempt to prove that the measure is mostly non-
negative is to analyze higher moments in the hope that these
are closely concentrated around the (positive) expected value.
The fundamental difficulty in analyzing the pseudo-measure
1q 1s that we have to analyze exponentially many rectangles
simultaneously. Since there is such a large number of rectangles,
for each input graph G, there will be some rectangles where
the value of p4 differs considerably from the expected value.

For example, the measure on a rectangle () with only a few
vertices (J; in some block V; heavily depends on the behavior
of the edges incident to the vertices in @;. Hence, if @Q; is
small enough, we expect large deviations from the expected
value. A slightly simplified, though more concrete, example
of this phenomenon goes as follows: let vy € V; and vy € V5,
let @) be the rectangle that consists of all tuples that contain
vy as well as vy, and let H be the graph with the single edge
{1,2}. In this setting the sum } _, - 5 X (1) (G) heavily depends
on whether the edge {vy,vo} is present in G: if the edge is
present, then the sum is equal to nk_Q% and, if the edge is
not present, then it is equal to —n*~2. This indicates that on
some rectangles the measure heavily depends on a few edges
and we can thus not hope to naively prove concentration of
the measure over all rectangles.

This slightly simplified example can be generalized to show
that for a fixed H there is always a small number of rectangles
where the value contributed by H is much larger than expected.
Part of the technical challenge of the proof is to identify these
bad rectangles and to handle them separately.

C. Edge Axioms Should Have Small Measure

We now explain the main ideas for bounding the magnitude
of the measure of edge axioms. Recall that all other axioms
are mapped to 0 by p and we are thus just left to show that
the value of the edge axioms is closely concentrated around 0.

For every pair of vertices {u,v} ¢ F(G) in distinct blocks
we have an edge axiom p,, = x, T, stating that at least one of
2, and x,, are set to 0. Let () be a subrectangle of Q(p,,,,). Note
that for every such rectangle () there is a monomial m such
that Q = Q(m - py.) and hence these are the correct rectangles
to consider if we want to prove Property 1 of Definition IIL.2.
In other words, if we manage to show for all such @ that
l1a(Q)] < n=¥D then it follows that for all monomials 7 it
holds that [11g(m - puy)| < n~HD, as wanted.

We first show that for a fixed pair of vertices {u,v} & E(G),
with good probability, all such subrectangles () have small
absolute measure. By a union bound over all missing edges
we then conclude that all subrectangles ) of an edge axiom
satisfy [uq(Q)] < n~?4, Let us fix an edge {u,v} ¢ E(G).

If @ is empty, then there is nothing to prove as p4(Q) is
trivially 0. Hence we may assume that ) is non-empty, that
is, () has at least one vertex per block and hence each tuple
in @ contains both v and v. Let i # j € [k] such that u € V;
and v € V}. For e = {4, j} we may write

pa(@) =n"">" 3" xuw(G) (20)
teQ HEHy
- nikZ( Y xuw@+ Y XH(t)(G)) 2D
te@Q HeHq HeHq
e¢H eeH
=ty Y xuw(@) 22)

te@Q H:vc(H)=d,
ve(HU{e})=d+1

where the last equality follows from the fact that every tuple
t € Q contains v and v and thus, if e ¢ H, then x ) (G) =
—XH®)(G) X{uw} (G) = =x(HU{}) ) (G) as {u,v} & E(G).

The naive approach to bounding |pq(Q)]| is to try to bound
the magnitude of >, Xm(+)(G) for each H separately and
to then multiply this bound by the number of graphs H we
sum over. Recall from Lemma II.3 that there are about 2%
graphs with a minimum vertex cover of size d.

Unfortunately the magnitude of » ;. X (1) (G) may simply
be too large: it can be of magnitude 7~ °(4|Q|. In particular
for large () this bound is insufficient

(@l <n™ 30 QY @)
H:vc(H)=d,
ve(HU{e})=d+1
< QdknfO(d) _ nQ(dk/lognfd) , (24)

as k is much larger than both d and log n. Instead of bounding
each H separately, we bundle some graphs H together and
then proceed to bound the magnitude of the sum over each such
bundle. More precisely, we have families of graphs, indexed
by graphs F' with at most 3d non-isolated vertices, of the form

H(F,E5)={H|E(H)=E(F)UE,where E C EL}, (25)

that partition the set of graphs H satisfying vc(H) = d and
ve(H U{e}) = d + 1. Using these families we can bound the



magnitude of 14(Q) by

l1a(Q)] =n" ‘Z > XH(t)(G)‘ (26)
teQ H:vc(H)=d,
ve(HUfe})=d 1
*’“Z!Z > xuw(@)] @)
t€Q HEH(F,E})
= n_kz ’ ZXF(t)( Z XE(t)(G)‘ . (28)

F teQ ECE}

Observe that the innermost sum is, up to normalization, the
indicator function of whether the edge set ET.(¢) is present in
G. In fact the innermost sum, with the appropriate definition
of K7, is simply a statement about the common neighborhood
sizes of different subsets of ¢ in G. We will need to argue that
for random graphs, with high probability, all such sets behave
as expected and the innermost sums are therefore bounded.

Furthermore, since each graph F' has at most 3d with
incident edges, there are fewer such graphs: according to
Lemma I3 at most 234(d+1ogk)  Gince k < nl/% and
d < 2nlogn, for some small constant 7, it holds that there
are at most 24(d+1ogk) < pd/50 many such graphs F. Thus, an
upper bound of n* (%) on the absolute value of two innermost
sums in Equation (28) can now be used to obtain the claimed
bound |p4(Q)| < n=*4). This completes the proof sketch for
bounding the measure on edge axioms.

In Section IV we formally define these core graphs F' and
the families H(F, E}.). In Section V we introduce the pseudo-
randomness property of graphs we rely on in order to bound
the two innermost sums in Equation (28). In Section VI-A we
formally prove that the measure on subrectangles of axioms is
bounded in absolute value. The verification that random graphs
indeed satisfy our notion of pseudorandomness can be found
in the full version.

D. Rectangles Should Be Approximately Non-Negative

To show that all rectangles ) have essentially non-negative
measure, the main idea is to decompose () into a collection
Q of rectangles satisfying the following properties.

O(d)

2) Each rectangle @) € Q is either
a) small:|Q| <n1==)* and hence|uq(Q)|is negligible,
b) a subrectangle of an axiom; |uq(Q)| is bounded, or
¢) all common neighborhoods in ) are of expected
size and therefore 114(Q) ~ |Q|/n* > 0.

In other words, Q contains some rectangles that have negligible
measure and a collection of larger rectangles on which the
measure behaves as expected. As the latter rectangles have
strictly positive measure we may conclude that our pseudo-
measure is essentially non-negative on all rectangles.

We bound the measure on small rectangles by summing the
maximum possible magnitude of any character appearing in
the definition of our pseudo measure.

Lemma IIL4. Any rectangle Q satisfies |pqa(Q)] <
O(|Q|Tl_kk‘dp_dk).

Proof. We bound p4(Q) by counting the number of pattern
graphs I we sum over multiplied by the maximum magnitude
of each such character. We have that

d ik
@1 <33 Y xmw(©)

(29)
i=0 j=i teQ Vc(g:)ﬂ
\B(H)|=j
LR\ L ik 1 —p
< —k - 30
S (S e
1= Jj=
kN 1
_ —k — < —kyd, —dk 1
@3 (§) i < 0ttt 6n
as claimed. O

We implement the above proof outline in Section VI-B.
Proving that our pseudo-measure concentrates around a positive
value on rectangles as described in Item 2c is the most delicate
part of our proof. In fact, above proof outline is somewhat
inaccurate in that the value the pseudo-expectation concentrates
around is not simply |Q|/n"* but further depends on the number
of small blocks in the rectangle ). We refer to Definition VI.6
for the precise definition of these rectangles and to Lemma VI.7
for the claimed concentration inequality. We do not include
the proof of Lemma VI.7 in this extended abstract—it can be
found in the full-length version of this paper.

IV. CORES

In this section we introduce the notion of a core of a pattern
graph, which will be used extensively throughout the rest of
the paper. Our notion of a core seems to be loosely connected
to the notion of a vertex cover kernel as used in parameterized
complexity (see, e.g., the survey by Fellows et al. [26]).

A. Cores and Boundaries

Recall that when bounding the measure of subrectangles of
axioms A., we were left with sums over graphs H such that
ve(H) = d and ve(H U{e}) = d+1 (see Equation (22)). Such
graphs motivate the following definition of sets of graphs in
the boundary of an edge.

Definition IV.1 (boundary). Let i € N, H be a graph and
e € (V") be an edge. The graph H is in the (i, )-boundary,
denoted by H;(e), if and only if ve(H) = i and ve(HU{e}) =
i + 1. Furthermore, we say that H is in the e-boundary if and
only if H is in an (i, e)-boundary for some i € N.

As mentioned in the proof sketch bounding the edge axioms,
we cannot bound each H in the e-boundary separately (there
are too many pattern graphs H) so we partition such graphs
according to cores as explained below.

Definition IV.2 (core). A vertex induced subgraph F' of H
is a core if any minimum vertex cover of F' is also a vertex
cover of H.

The notions of cores and (4, e)-boundaries interact nicely in
the following sense.



Proposition IV.3. A core of a graph H is in the (i, e)-boundary
if and only if H is.

Proof. Let F be a core of H. We first argue that if a core F' of
the graph H is in the (4, €)-boundary, then so is H. Indeed, by
definition it holds that ve(F') = ve(H ) = 4. Moreover, F being
in the (7, e)-boundary implies that the minimum vertex cover
of F'U {e} has size i 4+ 1, and therefore the minimum vertex
cover of H U {e} must also be ¢ + 1 since F is a subgraph
of H.

It remains to argue that if H is in the (7, ¢)-boundary, then
so is the core F'. By definition of core, vc¢(F') = ve(H) = .
Suppose, for the sake of contradiction, that F' is not in the
(i, e)-boundary and thus ve(FU{e}) = i. Let W be a minimum-
sized vertex cover of F''U {e}. Since |W| = ¢, it holds that
W is also a minimum-sized vertex cover of F' and thus, by
definition of core, W is also a vertex cover of H. But this
contradicts the assumption that H is in the (7, e)-boundary
since W also covers the edge e and hence is a vertex cover
of size i of H U {e}. O

Recall that H is the set of graphs on k labeled vertices.
We consider a map core from H to small cores that satisfies
certain properties as described in the lemma below.

Lemma IV4. There is a map core that maps graphs H € H to
a core of H with the following properties. For every graph F' in
the image of core we have that |V (E(F))| < 3-vc(F') and that
there exists an edge set E}, C V(E(F)) x ([k] \ V(E(F)))
such that core(H) = F if and only if E(H) = E(F)U E for
E C Ey.

From now on we only consider the cores given by the map
core as in Lemma IV.4. With a slight abuse of nomenclature
we say that core(H) is the core of H. Note that for a graph F'
in the image of core we have that core™!(F) = H(F, E}) =
{H | E(H) = E(F)UE, for E C E}}, as introduced in
Section III-C.

We refer to the full paper for the proof of Lemma IV.4. In
the following we sketch the construction of a core for intuition
without proving that it satisfies the stated properties. Given a
graph H with lexicographic minimum vertex cover W we let
U; be the lex first maximal set of vertices with a matching
from U; to W that covers all vertices in U;. Similarly we let
U, be the lex first maximal set of vertices in H \ U; with a
matching from Uy to W covering all vertices in Us to define
core(H) = H[D U Uy UUs]. An illustration can be found in
Figure 2.

V. WELL-BEHAVED GRAPHS

In this section, we define the notion of well-behaved graphs,
which is based on two combinatorial properties of graphs
related to common neighborhoods of small tuples, and two
analytic properties that bound certain character sums. In the
following sections we prove that our measure satisfies the
required conditions to obtain our unary Sherali-Adams lower
bound for any well-behaved graph.

B

Figure 2. A candidate core with edges in M7 and Mo highlighted

Let us start by introducing the concepts needed to define well-
behaved graphs. We say a rectangle Q) is s-small if |Q;] < s
for all 4 € [k] and, given a set A C [k], a rectangle @ is said
to be (s, A)-large if |Q;| > s for all 4 € A. For any set D we
say that a function f : D — R is r-bounded if f(z) < r for
all z € D.

We require some terminology and notation from graph theory.
The neighborhood of a vertex v € V' in a graph G = (V, E)
is N(v) = Ng(v) = {u | {u,v} € E} and the neighborhood
of a set of vertices U C V is N(U) = Ng(U) = {v ¢ U |
Ju e U :{u,v} € E}. For aset W C V the neighborhood of
a vertex v in W is N(v,W) = N(v) N W and similarly for
a set U we let the neighborhood of U in W be N(U, W) =
N(U) N W. The common neighborhood of U is N™(U) =
Nucy N(u) and the common neighborhood of U in W is
N (U,W) = N"(U)NW. This notation is naturally extended
to a tuple ¢ by considering ¢ as a set of vertices.

The next two definitions are purely combinatorial. They are
similar to definitions that have appeared in previous papers
on k-clique [11], [15], [17]. Recall that throughout the paper
graphs denoted by G are k-partite with partitions V7,..., Vy
of size n each.

Definition V.1 (bounded common neighborhoods). A graph
G has (B, p)-bounded common neighborhoods from Q@ =
Xica Q; to R C V(G) if it holds that for all B C A and all

te@np
INT(t,R)| € (1£B)p"|R| .

A graph G has (8, p, d)-bounded common neighborhoods in
every block if for all A C [k] of size at most d and all i € [k]\ 4,
G has (3, p)-bounded common neighborhoods from V4 to V;.

While it turns out that random graphs do have bounded
common neighborhoods, the graph induced by a rectangle may
certainly have tuples with ill-behaved common neighborhoods:
we may for example have an isolated vertex in a rectangle.
The following definition roughly states that, while there
may be tuples with ill-behaved neighborhoods in a rectangle,
there is a large sub-rectangle which has bounded common
neighborhoods.



Definition V.2 (bounded error sets). A graph G has
(s,w, B, p,d)-bounded error sets if for all rectangles QQ =
Xici Q; satisfying |Q;| > s or |@Q;| = 0 it holds that there
exists a small set of vertices W C V(G), |W| < w, such
that for all S C [k] of size at most d it holds that all tuples
t € X,eg(Qi \ W) satisty

INO(,Q; \W)| € (1% B)p Qs \ W]
for all j € [k] \ S. We refer to W as the error set of Q.

Recall from the edge axiom proof sketch in Section III-C
that we require bounds of the form n*~2(¢(F)) on the absolute
value of certain character sums. It turns out that, in order to
prove that monomials are mapped to an essentially non-negative
value, we need tighter (depending on |Q|) as well as “localized”
versions of these bounds. For conciseness we introduce the
following terminology.

Definition V.3 (bounded character sums). Let s € N*, B C [k],
@B = X,cp Qi and F' be a core graph. A graph G has s-
bounded character sums over Qg for F' if it holds that

DINEDY

teQp HEH(F,EL(B])

xuB)1)(G)| <5 .

We are now ready to state the pseudorandomness property
of graphs that allows us to prove average-case unary Sherali-
Adams lower bounds for the k-clique formula. As Properties 3
and 4 are somewhat difficult to parse we give an informal
description upfront.

Property 3 states that all character sums over the families
H(F, E}.) are of bounded magnitude if the rectangle con-
sidered has large minimum block size. Smaller rectangles
are unfortunately not as well-behaved. However, for certain
rectangles, we can guarantee something similar: Property 4
states that if the common neighborhood of small tuples in a
rectangle are bounded, then the mentioned character sums can
still be bounded.

First time readers may, for now, choose to skip the formal
definition of Property 4. It might be more insightful to first
read Section VI and return Property 4 once it is used.

Definition V.4 (well-behaved graph). We say that a k-partite
graph G with partitions of size n is D-well-behaved if, for
p =n"2/P the following properties hold:
1) G has (1/k,p, D/4)-bounded common neighborhoods
in every block.
2) There exists a constant C € R7T such that G has
(2s,s,1/k, p,¢)-bounded error sets for all £ < D/4 and
s > Ck*1nn/p*.
3) For any core F with v¢(F) < D/4 and any
(n/2,V(E(F)))-large rectangle @ it holds that G has
s-bounded character sums over Q,) for F', where

5= 6. pl B ph=Ave(P)/4
for any A < 1 —log(k)/log(n).

4) For any A > 20 klogn, any core F with ve(F) < D/4,
any B C [k] and any (4A)-small rectangle @ that is also

)

(A, B)-large the following holds for A =V (E(F)) N B.
If G has (3/k, p)-bounded common neighborhoods from
Qa4 to Q;, for every i € B\ A, then G has s-bounded
character sums over (Qp for F', where

s = O(p_‘E(F[BDI . (A/lOkJlogn)_VC(F[BD/4 . \QBD .

In what follows we often state that a graph G is D-well-
behaved in which case it is implicitly understood that G is
k-partite with partitions of size n. In the full-length version
of this paper, we prove that a graph G, sampled from the
distribution G(n, k,n=2/P), is asymptotically almost surely
D-well-behaved, as stated next.

Theorem V.5. If n is a large enough integer, k € NT and
D € RT satisfy 4 < D < 2logn and k < n'/®, then
G ~ G(n,k,n=2/P) is asymptotically almost surely D-well-
behaved.

VI. CLIQUE IS HARD ON WELL-BEHAVED GRAPHS
In this section we prove that our measure g is an n~*(P)-
pseudo-measure for the k-clique formula, if the formula is

defined over a D-well-behaved graph G.

Theorem VI.1. There are constants n,c > 0 and Dy € N
such that the following holds for large enough n € N and all
D satisfying Dy < D < 2logn. If D < k < n'/%, d = nD
and G is a D-well-behaved k-partite graph with n vertices
per block, then the measure g is an n~°P-pseudo-measure
for the k-clique formula over G and, furthermore, satisfies
pa(1) > 1 —n=0),

From Theorem V.5 and Theorem VI.1 along with Proposi-
tion III.3 we obtain Theorem III.1.

In order to prove that the measure 4 satisfies the prop-
erties of a pseudo-measure as listed in Definition IIL.2, we
show that py maps any axiom multiplied by a monomial
to approximately O and that all monomials are associated
with an essentially non-negative value. Finally, we argue that
pa(1) > 1 —n= ),

For all axioms except the edge axioms, it is easy to see that
(g maps the axiom times any monomial not only to approxi-
mately O but to precisely 0. Indeed, by definition of p4, for any
monomial m and variable z, we have pg(m(1 — 2 —z)) =0
and piq(m(z* — x)) = 0. Similarly we may observe that
I (m(Zvew 2, — 1)) = 0 by linearity of y over tuples. With
regards to bounding the measure on axioms we are left to prove
that for any edge axioms p,, = z,, and any monomial m
it holds |uq(mpuy)| < n=¢P. The following lemma states
a slightly more precise bound which we use when proving
Lemma VIL.3.

Lemma VI.2. Let G be a D-well-behaved graph, let n be
a large enough integer and let d = nD < 2nlogn for some
constant 1 > 0. It holds that all edge axioms p,,,, and all rectc(lin—
gles Q C Q(puv) satisfy |ud(Q)| < O((n)\/4712n/(2k)3)_ )
for any A < 1 —log(k)/log(n).

Note that by choosing A = 1/2, and considering k¥ < n
and 7 > 0 small enough, Lemma VI.2 implies that any
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subrectangle of an edge axiom satisfies |uq(Q)| < n~°P
for some small enough constant c. We postpone the proof
of Lemma VI.2 to Section VI-A.

In addition to the bound on the magnitude of the measure on
the axioms we also need to prove that the measure is essentially
non-negative. We state this formally below and defer the proof
to Section VI-B.

Lemma VL3. There are constants n,c > 0 such that if G is a
D-well-behaved graph, n is large enough, d = nD < 2nlogn

and D < k < n'/%, then any rectangle Q satisfies j1q(Q) >
—n—eb,

In Section ITI-B we argued that, with high probability, f4(1)
is approximately 1 if G is a random graph. In what follows
we show that this holds for any D-well-behaved graph.

Lemma VI.4. There are constants n,c > 0 such that for n
large enough, k < n'/?°, D < 2logn and d = nD it holds
that if G is a D-well-behaved graph, then 14(1) > 1 —n"¢

Proof. This is a direct consequence of the definition of a D-
well behaved graph and Lemma IV.4. Recall the map core
from Lemma IV.4 and the families

H(F,E})={H|E(H)=E(F)UE,where E C E}}, (32)

defined for core graphs F' € img(core) which satisfy ve(F') <
d. From Property 3 of Definition V.4, choosing A = 4/5, it
follows that for every F img(core) we have

2. >

teQ(1) HEH(F,E})

Xu)(G)| <n=veE/6 1 (33)

where we use the bound p~|EU)| < p=3dve(F) < p6nve(F)
and the fact that 77 is a small enough constant. As the families
defined in Equation (32) partition the set of graphs H of vertex
cover at most d, using the bound from Equation (33), it holds
that

pa(1) = 140737 3" yuw (G (34)
HeHateQ(1)
75@
>1-n kz O Ywe©)| 6
i=1F¢cimg(core)tcQ(1)HEH(F,EL)
ve(F)=1
d
>1-— 223i(d+10g k)nfi/G (36)
i=1
>1-n"°, (37

for some constant ¢ > 0. In above inequalities we relied on
Lemma II.3 for an upper bound on the number of cores in
img(core) with vertex cover of size i, on the fact that d <
2nlogn, that 7 is a small enough constant and that k& < n'/20,
This completes the proof of Lemma VI.4. O

This completes the proof of Theorem VI.I modulo
Lemma VI.2 and Lemma VI.3, which we prove in Section VI-A
and Section VI-B, respectively.

A. Axioms Have Small Measure

In this section, we show that, with high probability, any
subrectangle of an edge axiom has small measure in absolute
value. We rely on the following technical lemma.

Lemma VLS. If G is a D-well-behaved graph, then for any
core graph F and any rectangle @), we have that

PIED>

teQ HEM(F,E})

XHe (G)‘ < 6. 2l Al B ph=Ave(F)/4

)

where A =V (E(F)) and X < 1 —log(k)/log(n).
Proof. Let F be a core graph, let A = V(E(F)) and s =
6-p~ B pk=Ave(F)/4 By Property 3 of Definition V.4 we
have that if Q is (n/2, A)-large (i.e., if Q satisfies |Q;| > n/2
for all i € A), then | > oteq EHQ{(F’E}) xuw(G)] < s.
Given any rectangle @) (not necessarily (n/2, A)-large), let
T C A be the set of blocks of ) such that |Q;| < n/2. By a
simple inclusion-exclusion argument, we have that

Q= (~DFI(XVi\ Q) x (X Vi) x (X Qi)
ST zeS i€T\S  i€R\T
For S C T, denote by Q¥ the rectangle (X,_.(Vi\ Q;)) x

S
(XiET\S Vi) x (Xzek\T Q). Note that Qg is (n/2, A)-
large and therefore, by roperty 3 of Definition V.4, G has
s-bounded character sums over Q° for F. This implies that

‘Z Z XH(t)(G)‘

t€Q HEH(F,E},)

DD

SCT teQs HeH( FE;)

. (38)

(39)
(t)(G) < 2|A‘ ©S

as claimed. O
We are now ready to prove Lemma VI.2.

Proof of Lemma VI.2. Fix an edge {u,v} ¢ E(G), leti,j €
[k] such that u € V; and v € V}, consider the edge axiom
Puv = Ty &y and let Q C Q(puy) be an arbitrary subrectangle
of this edge axiom. Recall from Section III-C that every tuple
t € @ contains the vertices v and v and thus, for e = {3, j},
we may write

a@ =n"FY" > xuw(G (40)
teQ HEH

=n"> "N xue(G (41)
tGQHd(e)

where H4(e), as defined in Section IV, denotes the set of graphs
in the (d, ¢)-boundary. Let the map core be as guaranteed by
Lemma IV.4. Recall that, according to Proposition IV.3, the
graph core(H) is in H4(e) if and only if H is. Hence the sets

{core " (F)=H(F, E%) | FEHqa(e) A F €img(core)} (42)
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Figure 3. The rectangle () is a good rectangles as the vertices in R have
all vertices as neighbors, the blocks outside R are large and small tuples on
these blocks have common neighborhoods of expected size

|
R

partition the (d, e)-boundary H4(e) and we may thus write

@1 =730 Y xuw(@)]

teQ HeHal(e)

Z‘n_k o> Y XH(t)(G)‘ (44)

FeHq(e) t€Q HEH(F,EF)
Feimg(core)

st Y Y Y we@)].@s)

FeHq(e) t€EQ HEH(F,E})
Feimg(core)

(43)

By Lemma VLS5 each inner part can be bounded by 6 - 24!
p~ 1B pk=Ave(F)/4 Note that ve(F) = d and, according to
Lemma IV4, it holds that |A| < 3d and p~1F(F)l < p=34" —
n%¢, using the assumption that d < 27 logn. Hence

|/~Ld(Q)| S Z G- 23d . n*d(}\/476’r]) (46)
FEHd(e)
Fecimg(core)
S 23d(d+10g k:) . 6 . 23d . n—d()\/4—617) (47)
< 6 - (n)\/4—12n/(2k)3)_d , (48)

where we used Lemma II.3 to bound the number of core graphs
and the assumption d < 2nlogn. This concludes the proof of
Lemma VI.2. O
B. All Rectangles Are Approximately Non-Negative

Before defining good rectangles formally, let us give an

informal description. A good rectangle () consists of two parts.

The first part is very small: on a few blocks the rectangle )
only consists of single vertices. Each vertex in this small part
is adjacent to all other vertices in (). Equivalently, on this
small part we have a clique and the remaining vertices in
are in the common neighborhood of this clique.

On the other blocks, where () does not consist of a single
vertex, we require that these blocks are large, of size at least
s = poly(n). In addition we also require that all common
neighborhoods are bounded on this large part. An illustration
of a good rectangle can be found in Figure 3. The formal
definition follows.

Definition VI.6 (good rectangle). Let G be a k-partite
graph and let s,3,p,d € RT and R C [k]. A rectangle
Q= Xie[k] Q; is (s, B,p,d, R)-good for G if it satisfies the
following properties.

1) If i € R, then Q; = {v;}; otherwise |Q;| > s.

2) For all i € R it holds that N (v;) 2 U#i Qj.

3) Forall S C [k]\R of size at most d and for all i ¢ RUS,
G has (8, p)-bounded common neighborhoods from Qg
to Qz

On good rectangles the measure is tightly concentrated
around the expected value. In the full-length version of the
present paper we prove the following concentration bound.

Lemma VL7. For constants € > 0 and n < 1/25, for n, k,d €
N and p = n=2/D < 1/2 satisfying d <nD and D < k <n
the following holds. If s > k3n*®"*¢logn and G is a D-
well-behaved graph, then any (s,1/k,p,d, R)-good rectangle
Q for G with |R| = { < d satisfies

pa(Q) = p~ " FED QI k(1 £ O(n /%))

In the remainder of this section we prove Lemma VL3,
assuming Lemma VIL.7. As outlined in Section III-D, we
intend to decompose any rectangle @ into a small family O
of rectangles such that each rectangle in Q either contains
few tuples, is a subrectangle of an edge axiom or is a good
rectangle. The following lemma summarizes our claim.

Lemma VL8. Let G be a D-well-behaved graph, let p =
n=2/P 4 < D/4 and s > Ck4dlnn/p2d for some large
enough constant C. Then any rectangle Qo can be partitioned
into a set of rectangles Q of size |Q| < 2kn(2s)¢ such that
each Q € Q satisfies that either

1) Q is small: |Q < O((n-p?)F=9),

2) Q is a subrectangle of an edge axiom, or

3) Qis(s,1/k,p,d, R)-good for G, where R C [k] satisfies

|R| < d.

Before proving Lemma VI.8, let us show how Lemma VI.3
follows. The idea of the proof is to apply Lemma VI.8 to a
given rectangle Qg to obtain a collection Q of rectangles. It
holds that y14(Qo) = > e 1a(Q). By Lemma IIL4 there
is a 6 > 0 such that all small rectangles Q € Q satisfy
l11a(Q)| < n~°P and similarly by Lemma VI.2 the same holds
for @) € Q that are a subrectangle of an edge axiom. Further,
by our choice of parameters, the size of Q is small—we may
think of it as n®P/2. We can thus lower bound

pa(Qo) = Y 1a(Q) = —n PR+ 3" Q) . @9)
QeQ QQEQd
18 0O

Lemma V1.7 states that the remaining good rectangles in above
sum have strictly positive value. Thus 114(Qg) > —n~°P/? as
claimed. In what follows we verify that this indeed holds for
our choice of parameters.

Proof of Lemma VI.3. Let (Qy be any rectangle. Our goal is to
show that 114(Qo) > —n~°P, for a sufficiently small constant c.
Let D < k < nl'/% be as in the statement of the lemma
and choose A = 1 — ¢ —log(k)/log(n) for sufficiently small
constants € > 0 and 1 > 0 such that for s = k13n*®1+<1ogn
it holds that s < n*/4=121=¢ /i3 Let d = nD < 2nlogn and
p = n~2/P. Note that for our choice of parameters it holds



that s = w(k*n*"log” n), hence s = w(k*dInn/p>?), and we
may thus apply Lemma VI.8 with d = nD to the rectangle Q)
to obtain a family Q of size at most |Q| < 2kn(2s)%.

By Lemma V1.2, any subrectangle of an axiom has measure
bounded by O((n’\/4_12"/(2k)3)_d). Moreover, according to
Lemma III.4 each small rectangle ) € Q has measure of
magnitude at most

|ﬂd(Q)| S O(|Q|nikkdp7dk) — O(n*d/2) ,

which is even smaller than the bound on axioms. Since s <
nA4=121—¢ /13 we conclude that the measure of all small
rectangles and all subrectangles of axioms in Q add up, in
magnitude, to at most |Q)| ~O((n’\/4’12’7/(2k)3)7d) <n=°P,
for a small enough constant c.

Hence the measure of ()¢ is mostly on the good rectangles
of Q and on these rectangles we know that it is closely
concentrated around a strictly positive value. Indeed, we can
apply Lemma V1.7 to any rectangle ) which is (s, 1/k, p,d, R)-
good for G to conclude that

14(Q) = p~ kDD QI TF (1 £ O(n~/%)) >0 . O

(50)

Let us proceed to prove Lemma VLS.

Proof of Lemma VI.8. Let us describe a recursive decompo-
sition procedure that can be applied to any rectangle Q) =
Xie[k] Qi-

If either () is small, a subrectangle of an axiom or
(s,1/k,p,d, R)-good for some R C [k], then return Q.
Otherwise decompose in the following recursive fashion.

1) If there is a singleton @; = {v;} such that N(v;) 2
U;» Qj. then we decompose Q into @\ N(v;)| + 1
many rectangles as follows. Denote by w1, us, ..., Un
the vertices in () that are not a neighbor of v; and assume
that they are in blocks ji,j2,...,Jm- Forv=1,....m
we remove all tuples that contain the vertex u,,: let R® =
() so we can write

QY ={u,} x X R]”-_1 and
J#dv
R = (Ry" \wuy)x X Ry
J#jv
Note that the rectangles Q',...,Q™, R™ partition Q.
Add the Q¥ to the partition as these are subrectangles
of edge axioms and recursively decompose R™.
2) If there is a block i € [k] of size 1 < |Q;]| < 2s, then
split @ into the |Q;| rectangles

{{vi} x X Qj:vi € Qi}
J#i
and recursively decompose each of these rectangles.

3) Let A be the set of blocks of size greater than 2s. Because
G is D-well-behaved, by Property 2 of Definition V.4,
it holds that G has (2s, s, 1/k, p, d)-bounded error sets.
In particular Q4 has an error set U = {uy,...,upn}
of size at most s. Decompose @ into Q',...,Q™ and
R™ as in Case 1. By definition the rectangle R™

(S

(52)

is (s,1/k,p,d,[k] \ A)-good and we may thus add it
to the partition. Recursively decompose the rectangles
QL,...,Q™.

This completes the description of the decomposition pro-
cedure. We need to argue that the decomposition Q created
by above procedure is not too large, that is, of size |Q| <
2kn - (25)?. Let us start with a few observations.

Because G is D-well-behaved it holds that G has
(1/k,p, D/4)-bounded common neighborhoods in every block
(see Property 1 of Definition V.4). Let () be a rectangle with
d blocks of size 1 and with the remaining vertices contained
in the common neighborhood of these singletons. All such
rectangles () are small. Thus the decomposition procedure
does not need to decompose such rectangles (Q any further.

Whenever we decompose a rectangle in Cases 2 and 3
all rectangles that we need to recursively decompose have
one more singleton. Because we can stop decomposing after
identifying d singletons and in Cases 2 and 3 we create at
most 2s many rectangles that require further decomposition we
end up with at most 2(2s)¢ many rectangles. We ignored the
rectangles from Case 1 so far. But each rectangle that requires
further decomposition from Cases 2 and 3 results in at most
another kn many rectangles from Case 1. Thus the size of the
family of rectangles is bounded by 2kn - (2s)9. O

VII. CONCLUDING REMARKS

For k < n'/109 we prove an essentially tight average-case
n*(P) size lower bound on unary Sherali-Adams refutations
of the k-clique formula for Erd6s-Rényi random graphs with
maximum clique of size D. In fact, we obtain a lower bound
on the sum of the magnitude of the coefficients appearing in
a (general) Sherali-Adams refutation. The obvious problem
left open is to prove an n2P) monomial size lower bound on
Sherali-Adams refutations of the clique formula.

One possible avenue to prove such a monomial size lower
bound is to argue that any Sherali-Adams proof of the clique
formula can be converted into a proof of the same monomial
size but with small coefficients. In fact, a slightly weaker
statement would suffice: recall that our lower bound only
counts the size of the coefficients of generalized monomials
as well as of monomials multiplied by edge axioms. As such
we would just need to be able to convert a general Sherali-
Adams refutation into a refutation with low coefficients for
such monomials.

In contrast to previous lower bounds for clique, our proof
strategy is not purely combinatorial. It might be fruitful to
obtain an explicit combinatorial description of p;—we believe
this could potentially be used to prove average-case clique
lower bounds for other proof systems, including resolution.

A strength of our lower bound approach is that it is quite
oblivious to the encoding: one can introduce all possible
extension variables depending on a single block and the lower
bound argument still goes through. This is because the only
property we require of a monomial m is that the set of tuples
Qm = {t | p:(m) # 0} whose associated assignment p; sets
m to non-zero is a rectangle. By extending p in the natural



manner to extension variables it is easy to see that @, is still
a rectangle.

Our lower bound strategy seems to fail quite spectacularly
once the edge probability is increased well beyond 1/2. More
precisely, once D = w(logn), we fail to counter exponential
in d? factors that arise from encoding the core graphs: as long
as D = O(logn) we can counter these with s~ terms, where
s is the minimum block size of a good rectangle. As s is
clearly bounded by the block size n, this approach fails once
D = w(logn). We leave it as an open problem to extend our
result to the dense setting.

We rely on rather unorthodox pseudorandomness properties
of the underlying graph. It is natural to wonder whether
these properties follow from a previously studied notion of
pseudorandomness. Furthermore, it is wide open whether our
lower bound can be made explicit. In particular, we have not
investigated whether graphs that satisfy our pseudorandomness
property can be constructed deterministically.

Another application of our pseudo-measure (g iS in commu-
nication complexity. Suppose we consider the k-player number-
in-hand model, where player i obtains a single node u; from
block V;. The goal of the k players is to find an edge missing
in the induced subgraph by the tuple (ug,...,u). Consider
the leaves of such a communication protocol. Note that each
leaf ¢ is associated with a subrectangle (), of an edge axiom.
As the family of these associated rectangles (), partition the
whole space, but |1q(Q¢)| < n~P), there must be at least
n(P) leaves.

Finally, we have not investigated whether our technique
can be used to obtain lower bounds for other proof systems.
For example, is it possible that with similar ideas one could
obtain tree-like cutting planes lower bounds with bounded
coefficients? Possibly even with unbounded coefficients? The
communication complexity view of the problem suggests that
this may be a viable approach.
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