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Abstract
The ability to identify and track T-cell receptor (TCR) sequences from patient samples is becoming central to the field of cancer research
and immunotherapy. Tracking genetically engineered T cells expressing TCRs that target specific tumor antigens is important to
determine the persistence of these cells and quantify tumor responses. The available high-throughput method to profile TCR repertoires
is generally referred to as TCR sequencing (TCR-Seq). However, the available TCR-Seq data are limited compared with RNA sequencing
(RNA-Seq). In this paper, we have benchmarked the ability of RNA-Seq-based methods to profile TCR repertoires by examining 19 bulk
RNA-Seq samples across 4 cancer cohorts including both T-cell-rich and T-cell-poor tissue types. We have performed a comprehensive
evaluation of the existing RNA-Seq-based repertoire profiling methods using targeted TCR-Seq as the gold standard. We also highlighted
scenarios under which the RNA-Seq approach is suitable and can provide comparable accuracy to the TCR-Seq approach. Our results
show that RNA-Seq-based methods are able to effectively capture the clonotypes and estimate the diversity of TCR repertoires, as
well as provide relative frequencies of clonotypes in T-cell-rich tissues and low-diversity repertoires. However, RNA-Seq-based TCR
profiling methods have limited power in T-cell-poor tissues, especially in highly diverse repertoires of T-cell-poor tissues. The results of
our benchmarking provide an additional appealing argument to incorporate RNA-Seq into the immune repertoire screening of cancer
patients as it offers broader knowledge into the transcriptomic changes that exceed the limited information provided by TCR-Seq.
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INTRODUCTION
Immunotherapy is an effective approach to treat a variety of
advanced malignancies [1, 2]. The success of immunotherapy
relies in part on the presence of CD8+ cytotoxic T cells, which
recognize tumor antigens via their T-cell receptors (TCRs), and
then induce targeted cell apoptosis [1]. The ability to characterize
the TCR repertoire in patient samples is increasingly central to the
field of immunotherapy and cancer research [3, 4]. Targeted TCR
sequencing (TCR-Seq) approaches are currently used to measure
the diversity and clonality of the TCR repertoire [5–9], which can
be affected by immune checkpoint inhibitors and can serve as a
surrogate measure of effectiveness and overall prognosis [10–12].
Furthermore, the ability to track genetically engineered T cells
expressing chimeric TCRs that target specific tumor antigens is
important to determine the persistence of these cells and corre-
sponding clinical responses. However, TCR-Seq is not frequently
done compared with RNA-Seq; thus, there is a significant amount
of RNA-Seq data available that can be used to extract TCR data.
RNA-Seq-based TCR profiling methods have been developed to
bridge the gap [13–15]. For example, a recent study demonstrated
that MiXCR could detect all TCRβ sequences with relative fre-
quencies greater than 0.15% in one of T-cell-rich tissues [16]. How-
ever, despite the great promise of RNA-Seq-based TCR profiling
methods, such methods were not systematically benchmarked

and they were validated in extremely small numbers of samples
and limited scenarios. Thus, the biomedical communities remain
uninformed regarding the advantages and limitations of these
RNA-Seq-based TCR profiling methods. In addition, the feasibility
of applying these methods across various cancer tissue types and
TCR repertoire types remains unknown.

Here, we performed a comprehensive benchmarking of existing
RNA-Seq-based TCR profiling methods. The performance of these
methods was investigated by using TCR-Seq as a gold standard
across T-cell-rich and T-cell-poor tissues from different cancer
tissue types and immune repertoire types. We have carefully
examined the scenarios of low Shannon Diversity Index (SDI)
(repertoires are dominated by one or a few clonotypes with high
frequencies) and high SDI (repertoires are composed of clonotypes
with frequencies nearly evenly distributed) TCR repertoires under
which such tools can leverage RNA-Seq data and provide reliable
estimates of TCR repertoires, which is currently unknown. Our
results show that RNA-Seq-based TCR profiling methods are
able to effectively capture the majority of TCR-Seq confirmed
clonotypes in low SDI repertoires. These methods are also capable
of precisely estimating the overall TCR repertoire diversity and
clonotype frequencies in T-cell-rich low SDI repertoires. However,
in the case of low SDI repertoires, the small number of receptor
reads that capture major clonotypes is enough to estimate
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Table 1. Overview of the gold standard dataset. We had different cohorts from five different tissue types in total. We documented the
average number of TCR-Seq reads in million (indicated in the column ‘Average number of TCR-Seq reads’), the average number of
RNA-Seq reads in million (indicated in the column ‘Average number of RNA-Seq reads’), RNA-Seq read length (indicated in the column
‘Length of RNA-Seq reads’), the fraction of T cells in certain tissue type (indicated in the column ‘Fraction of T cells in tissue’), the
number of samples from each tissue type (indicated in the column ‘Number of samples ’), the number of low SDI samples and high
SDI samples from each tissue type (indicated in the column ‘Number of low SDI/high SDI samples’)

Tissue type Number of
TCR-Seq reads
(millions)
(mean ± SD)

Number of
RNA-Seq reads
(millions)
(mean ± SD)

Length of
RNA-Seq
reads (bp)

Fraction
of T cells
in tissue

Number
of
samples

Number of low
SDI/high SDI
samples

Resources

PBMC 0.122 + 0.1 66.8 + 24.4 150 High 5 3/2 In-house
Melanoma biopsy 0.951 + 0.523 74.7 + 15.9 100 Low 9 1/8 In-house
Renal cell 0.0102 + 0.007 88.3 + 28 50 Low 3 0/3 TCGA
Lymph node 3.26 66 100 High 1 0/1 SRA
Small intestine 3.05 72.7 100 Low 1 0/1 SRA

diversity even in T-cell-poor tissues. Moreover, bulk RNA-Seq
stored both TCRα and TCRβ chain information; these methods
offered the possibility to characterize both TCRα and TCRβ

repertoires. However, cautions need to be taken for T-cell-poor
tissues as the results typically were less accurate because of the
lack of ability of RNA-Seq-based methods to detect clonotypes
with low frequencies. To conclude, we have examined the ability
of RNA-Seq-based TCR profiling methods in different types of
tissues and repertoires, thus providing a comprehensive guide in
which tissues RNA-Seq-based TCR profiling methods are feasible
to deliver comparable results to targeted TCR-Seq.

RESULTS
We assembled the largest multi-cohort dataset which was
composed of 19 samples and 5 tissue types (Table 1,
Supplementary Table 1, Supplementary Figure 1). These samples
include peripheral blood mononuclear cells (PBMCs) (N = 5),
melanoma biopsy samples (N = 9) [12, 17], renal clear cell
carcinoma (N = 3) [18] samples and melanoma specimens from
the ileocecal lymph node (N = 1) and the small intestine (N = 1)
[16]. All the samples were sequenced by both TCR-Seq (only
for TCRβ chain) and RNA-Seq. The samples have different T-
cell levels based on deconvolution results provided by the Gene
Expression Deconvolution Interactive Tool (GEDIT) [19], and
different diversity levels based on SDI and clonality. We defined
the samples with SDI <2 as low SDI samples, otherwise high SDI
samples (Supplementary Figure 2). The distribution of clonotypes
in the samples is shown in Supplementary Figure 3. Available
RNA-Seq-based repertoire profiling methods that are designed
to assemble the complementarity-determining regions 3 (CDR3)
from RNA-Seq data were included in this benchmarking study,
which includes MiXCR [13], ImReP [14], TRUST4 [15] and CATT
[20] (Table 2, Supplementary Table 2). We excluded IMSEQ [21]
because it was originally designed for TCR or immunoglobulin
(Ig) sequencing, but not for RNA-Seq. The details of the samples
and methods are described in the method section.

RNA-Seq-based TCR profiling methods were able
to successfully capture TCRβ low SDI repertoires
across various T-cell-rich tissues
First, we have investigated the ability of RNA-Seq-based TCR pro-
filing methods to characterize TCRβ repertoires across different
repertoire types and tissue types. The capturing ability of the
RNA-Seq-based methods was examined based on the sum of
the TCR-Seq confirmed TCRβ clonotypes frequencies that each

method was able to capture. Each distinct amino acid sequence
was considered as one unique clonotype in the TCRβ repertoire.

The surveyed RNA-Seq-based methods were able to capture
93.2% of clonotypes in T-cell-rich low SDI samples and 76.45% in
T-cell-poor low SDI samples on average. The portions of clono-
types that could be captured were much lower in high SDI sam-
ples. The results of the portions from each tool were similar
across T-cell-rich samples. CATT and TRUST4 had statistically
significant higher portions in T-cell-poor high SDI samples than
MiXCR (Supplementary Table 3).

In Figure 1, we present the average fraction of cumulative
frequencies of assembled TCR clonotypes by RNA-Seq-based
methods with clonotype frequency greater than the value shown
on the x-axis. Similar to the previous study [16], we observed
that MiXCR, TRUST4 and CATT were able to capture all the
clonotypes with frequencies above 0.03% in T-cell-rich low SDI
samples. All surveyed methods captured all the clonotypes with
frequencies above 0.036% in T-cell-rich low SDI samples and
clonotypes with frequencies above 2.66% in T-cell-poor low SDI
samples (Figure 1A–D). Moreover, they were able to capture all
the clonotypes with frequencies above 1.553% in T-cell-rich high
SDI samples (Figure 1E–H). However, only TCRβ clonotypes with
relatively high frequencies in the T-cell-poor high SDI samples
were captured by ImRep, TRUST4 and CATT, but not by MiXCR.
Among ImRep, TRUST4 and CATT, TRUST4 and CATT achieved the
best performance compared with ImReP in the T-cell-poor high
SDI samples, with TRUST4 and CATT being able to capture all
the TCRβ clonotypes with frequencies greater than 10.1%, while
this threshold was 40.5% for ImReP (Figure 1E–H). One reason
that may have caused this was that on average TCRβ-derived
reads from RNA-Seq reads in T-cell-poor tissues were much
smaller than those in T-cell-rich tissues (4.1 versus 655.3 TCR-
derived reads per million RNA-Seq reads) (Supplementary Table 4,
Supplementary Table 5, Supplementary Figure 4). The results for
individual samples are shown in Supplementary Figure 5.

We further examined the ability of the surveyed methods to
capture the most abundant clonotypes (top 5 and top 10 clono-
types in each sample) in T-cell-rich tissues. MiXCR, TRUST4 and
CATT were able to capture the entire set of the top five clonotypes
in T-cell-rich low SDI samples, while ImReP was able to capture
93.3% of those clonotypes. For the top 10 clonotypes in T-cell-
rich low SDI samples, MiXCR, ImReP, TRUST4 and CATT were able
to capture 93.3, 86.7, 96.7 and 93.3%, respectively, while in the
T-cell-rich high SDI samples, 68.3% of the top 5 clonotypes and
54.2% of the top 10 clonotypes were captured by these methods on
average.
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Table 2. Overview of evaluated RNA-Seq-based TCR profiling methods’ parameters, publication details and technical characteristics.
RNA-Seq-based TCR profiling methods are sorted by the year of publication (indicated in the column ‘Published year’). We
documented the name of the methods (indicated in the column ‘Method’), the version of methods that were used in this
benchmarking project (indicated in the column ‘Version’), the alignment algorithms (indicated in the column ‘Alignment/Assembly
algorithm’), the programming language (indicated in the column ‘Programming language’), the input file type (indicated in the column
‘Input file type’), the types of sequencing data accepted by the method (indicated in the column ‘Types of sequencing data’), the
organism accepted by the method (indicated in the column ‘Organism’), the journal that the method was published in (indicated in
the column ‘Journal’), the computational tools that the method was compared with in the publication (indicated in the column ‘In the
publication compared to’), the method webpage (indicated in the column ‘Method webpage’)

Method Version Alignmen-
t/assembly
algorithm

Published
year

Program-
ming
language

Input file
type

Types of
supported
data

Organism Journal In the
publication
compared to

Webpage

MiXCR 3.0.13 Modified
Smith–
Waterman
and
Needleman–
Wunsch

2015 Java FASTA,
FASTQ,
FASTQ[.gz]
Paired-end
FASTQ[.gz]

AIRR-seq,
RNA-seq

Human,
mouse, rat

Nature
Methods

MiTCR,
Decombinator,
IgBLAST,
IMGT/HighV
QUEST

https://mixcr.
com

ImReP 1.0 Not required 2020 Python BAM RNA-seq Human,
mouse

Nature Com-
munication

MiXCR, IMSEQ,
IgBLAST

https://github.
com/Mangul-
Lab-USC/ImReP

CATT 1.9.1 BioAlign-
ments

2020 Julia BAM, FASTQ RNA-seq Human,
mouse,
swine

Bioinformat-
ics

MiXCR, IMSEQ,
LymAnalyzer,
TraCeR, RTCR

http://bioinfo.
life.hust.edu.cn/
CATT

TRUST4 1.0.2 Seed-
extension

2021 C/C++ BAM, FASTQ AIRR-seq,
RNA-seq

Human Nature
Methods

MiXCR, CATT,
TRUST3

https://github.
com/liulab-dfci/
TRUST4

RNA-Seq-based TCR profiling methods were able
to effectively estimate clonality in T-cell-rich
tissues
We evaluated the ability to effectively estimate the diversity
of TCR repertoire by RNA-Seq-based methods. The diversity is
estimated by SDI and the absolute error is used to examine the
feasibility of the methods to estimate diversity. The differences
between the SDI estimated from TCR-Seq results and RNA-Seq
TCR-derived results were measured using the absolute error. The
average absolute error of diversity estimation from RNA-Seq-
based methods compared with TCR-Seq results in T-cell-rich
tissues was 2.48. The best performance was achieved by TRUST4
with an absolute error of 2.07. When we compared the abso-
lute error of diversity estimation in different types of repertoires
among T-cell-rich samples, all the methods offered more precise
diversity estimation in low SDI samples than in high SDI sam-
ples. The average absolute error in T-cell-rich low SDI samples
was 0.57, while the average absolute error in T-cell-rich high
SDI samples was 4.4 (Figure 2A). Notably, MiXCR had the best
performance in estimating diversity in low SDI samples but worse
performance in high SDI samples (Figure 2A). These tools had
similar performance in estimating diversity among low SDI sam-
ples (Supplementary Table 6). In contrast to T-cell-rich low SDI
samples, all RNA-Seq-based TCR profiling methods showed poor
performance in high SDI samples (Figure 2A). Among the T-cell-
poor low SDI samples, the average absolute error was 2.23 across
the surveyed methods, which was larger than in T-cell-rich low
SDI samples (Figure 2A). TRUST4 had statistically significantly
better estimation of diversity in both T-cell-rich and T-cell-poor
high SDI samples than MiXCR and CATT (Supplementary Table 6).
For example, TRUST4 had smaller absolute error of SDI compared
with CATT in T-cell-rich high SDI samples (TRSUT4: 3.49, CATT:
5.43, P = 0.041).

T-Cell level and SDI classification can be confounded by
each other. For example, T-cell level affects the SDI, especially
for high SDI samples. We examined the fraction of the top 10
TCR clonotypes in each sample (Supplementary Table 7). On
average, the fraction of the top 10 TCR clonotypes was higher
in T-cell-rich tissues than it was in T-cell-poor tissues (49.2
versus 29.87%). Therefore, we also calculated clonality to account
for the substantial differences in the number of clonotypes
which the SDI does not account for directly. All these methods
provided precise estimates of clonality for low SDI samples
of T-cell-rich tissues with an average absolute error of 0.0677
(Figure 2B). Among the surveyed methods, MiXCR provided the
most precise estimates for both clonality and diversity in T-cell-
rich low SDI samples, with average absolute errors of 0.015 and
0.141, respectively. However, these were not statistically different
(Supplementary Table 6 and Supplementary Table 8). Different
from T-cell-rich tissues, all the survey methods were not able to
provide accurate clonality estimates in T-cell-poor tissues, with
average absolute errors of 0.184 in high SDI samples and 0.376
in low SDI samples (Figure 2B). MiXCR and TRUST4 provided
statistically more accurate clonality estimates in T-cell-poor high
SDI samples than CATT (Supplementary Table 8). In addition, we
observe consistent estimates of diversity and clonality across
different SDI thresholds to classify low or high SDI samples
(Supplementary Table 9).

In addition, we investigated the ability of RNA-Seq-based meth-
ods to accurately estimate the diversity and clonality when single-
ton (clonotypes supported by a single read) TCRs were included.
The presence of singletons in the sample decreases the accuracy
of estimation for all methods. The average absolute error of SDI in
T-cell-rich tissues across all methods was slightly higher than the
samples excluding singleton TCRs, with values of 2.67 and 2.48,
respectively. Similar to the samples excluding singleton TCRs, the
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Figure 1. The ability to capture TCR-Seq confirmed clonotypes by RNA-Seq-based methods in low SDI samples (A–D) and high SDI samples (E–H). The
x-axis corresponds to TCR-seq confirmed clonotypes with a frequency of Z on a log scale. The y-axis corresponds to the average fraction of assembled
TCR clonotypes by RNA-Seq-based methods with clonotype frequency greater than Z across samples. The samples with no clonotype (by RNA-Seq or
TCR-Seq) at a given frequency are excluded to compute the average portion. The brown dash lines indicate the minimal clonotype frequency above
which all the clonotypes are captured. The numbers on the brown dash lines are the actual values for the threshold. Area plots show the proportion of
the TCR clonotypes captured by MiXCR, ImReP, TRUST4 and CATT based on clonotype frequencies. Results from T-cell-rich low SDI samples, T-cell-poor
low SDI samples, T-cell-rich high SDI samples and T-cell-poor high SDI samples are shown in blue, orange, green and red, respectively.

surveyed methods provided reliable estimates of diversity in T-
cell-rich low SDI samples (Supplementary Figure 6a). Except for
CATT, other methods (MiXCR, ImRep and TRUST4) had precise
clonality estimates in T-cell-rich tissues regardless of repertoire
types (Supplementary Figure 6b).

Furthermore, we have employed the Hill curves to access
a broad spectrum of diversity metrics, allowing systematically
examining the ability of RNA-Seq-based methods to accurately
estimate the TCR diversity of a sample. Hill curves approach [22]
represents an array of diversity indices corresponding to various q
values using different diversity metrics (Supplementary Table 10).

These diversity metrics include the exponential of the SDI (when
q value is 1) and the inverse Simpson index (when q value is
2). Hill curves simultaneously account for the total number of
clonotypes and expansion of the clonotypes [23]. As the q value
increases, the clonotypes with high relative abundance have a
larger contribution to the overall diversity estimates. We have
used pyTCR [24] to compute and plot the Hill curves. To evaluate
the ability of RNA-Seq-based methods to accurately estimate the
TCR diversity, we have compared the RNA-Seq-based diversity
estimates across various q values to the diversity estimates based
on TCR-Seq results, of which the latter was considered the gold
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Figure 2. TCR-Seq-based TCRβ and RNA-Seq-based diversity and clonality comparison. (A–B) Bar plot of absolute error between diversity (A) and clonality
(B) estimated based on RNA-Seq data and TCR-Seq data in T-cell-rich low SDI samples (rich_low_SDI), T-cell-rich high SDI samples (rich_high_SDI), T-
cell-poor low SDI samples (poor_low_SDI) and T-cell-poor high SDI samples (poor_high_SDI). Each dot on the bar represents each sample. The results
from MiXCR are represented in blue, the results from ImReP are represented in orange, the results from TRUST4 are represented in green and the results
from CATT are represented in red.

standard. The closer the estimates to the TCR-Seq-based results,
the more accurate the diversity estimates were considered.
According to all diversity metrics provided by Hill curves, RNA-
Seq-based methods provided the most accurate estimates of
TCR diversity for T-cell-rich low SDI samples compared with
other tissue types and repertoire types (Supplementary Figure
7a–c). We noticed that RNA-Seq-based methods overestimated
the diversity of TCR repertoires when the q value was 1 in low
SDI samples, and the estimations were more precise when q
values were greater than 1 (Supplementary Figure 7a–d). Even
though the absolute errors of SDI estimates were relatively small
in low SDI samples, the exponential of the SDI (corresponds to
the diversity estimate when the q value is 1) may exaggerate the
differences between diversity estimates. For high SDI samples,
RNA-Seq-based profiling methods underestimated the diversity
regardless of the q values or tissue types (Supplementary Figure
7e–s).

Even though these methods captured much fewer clonotypes
compared with TCR-Seq results in T-cell-rich high SDI samples,
if the clonotype counts were taken into account by calculating
clonality, these methods were able to offer comparable clonality
estimates in T-cell-rich high SDI samples as they were in T-cell-
rich low SDI samples, with absolute errors of 0.113 and 0.068,
respectively.

RNA-Seq-based TCR profiling methods were able
to successfully estimate relative frequencies of
clonotypes in low SDI samples
Although differences in diversity and clonality estimates were
observed, we further examined whether the surveyed methods
were able to provide accurate estimates of the frequency of
assembled clonotypes in different types of repertoires. The results
showed that all four RNA-Seq-based methods accurately esti-
mated the relative frequencies in low SDI samples (Figure 3A–H),
especially in T-cell-rich tissues (MiXCR: r = 1, P < 0.001; ImReP:
r = 0.9999, P < 0.001; TRUST4: r = 0.9999, P < 0.001; CATT:
r = 0.9999, P < 0.001). MiXCR had the best linear correlation
between RNA-Seq-based clonotype frequencies and TCR-Seq-
based clonotype frequencies compared with other methods. The
linear correlations between the clonotype frequencies measured

by TCR-Seq and RNA-Seq in T-cell-rich low SDI samples are shown
in Supplementary Figure 8. In addition, the clonotype frequencies
between results from TCR-Seq and from RNA-Seq were positively
correlated in T-cell-rich high SDI samples (MiXCR: r = 0.7942,
P = 7.3e−85; ImReP: r = 0.7335, P < 0.001; TRUST4: r = 0.7205,
P < 0.001; CATT: r = 0.8226, P = 3.1e−245) (Figure 3I–L). When
comparing the clonotype frequencies in T-cell-poor high SDI
samples, the positive correlations were weaker compared with
other tissue and repertoire types (MiXCR: r = 0.7334, P = 4.2e−28;
ImRep: r = 0.5225, P = 6.6e−23; TRUST4: r = 0.5859, P = 3e−48; CATT:
r = 0.518, P = 4.6e−27) (Figure 3M–P).

We also examined the scenario when singleton TCRs were
included in the samples. In this case, the correlations between
RNA-Seq-based frequencies and TCR-Seq-based frequencies
were similar to the cases when singleton TCRs were filtered
out (Supplementary Figure 9). Furthermore, we noticed that
including singletons had a positive effect on the ability to estimate
clonotype frequencies in T-cell-rich high SDI samples (MiXCR:
r = 0.908, P < 0.001; ImReP: r = 0.8857, P < 0.001; TRUST4: r = 0.9121,
P < 0.001; CATT: r = 0.9263, P < 0.001) (Supplementary Figure 9i–l).

These findings suggested that all surveyed RNA-Seq-based
methods were able to provide accurate estimations of relative
frequencies of the detected clonotypes in low SDI samples, while
the positive correlations were weaker in high SDI samples. CATT
provided the best result in the correlation of clonotypes in T-cell-
rich high SDI samples than those provided by other methods.

Fewer clonotypes were detected by
RNA-Seq-based TCR profiling methods compared
with TCR-Seq-based methods
Next, we compared the number of clonotypes detected by RNA-
Seq-based methods compared with TCR-Seq-based methods. On
average, TRUST4 captured the most clonotypes among four RNA-
Seq-based methods with 4451 in T-cell-rich low SDI samples and
1038 in T-cell-rich high SDI samples, while MiXCR had the lowest
with 1723 in T-cell-rich low SDI samples and 145 in T-cell-rich high
SDI samples (Supplementary Figure 10a). The clonotype counts
detected by MiXCR were statistically significantly smaller than
the clonotype counts detected by other methods in T-cell-rich low
SDI samples (Supplementary Table 11). When we considered the
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Figure 3. Correlation of TCRβ clonotype frequency based on the TCR-Seq data (x-axis) and the TCR-derived reads from RNA-seq (y-axis). Only clonotypes
assembled from both TCR-Seq and RNA-Seq data are presented. The clonotype frequencies are renormalized to only the set of clonotypes in the TCR-
Seq and RNA-Seq repertoire space. The clonotype frequencies are log-transformed. Pearson correlation coefficients and the corresponding P-values are
calculated and reported. (A–D) The results of T-cell-rich low SDI samples (blue). (E–H) The results of T-cell-poor low SDI samples (orange). (I–L) The
results of T-cell-rich high SDI samples (green). (M–P) The results of T-cell-poor high SDI samples (red).

absolute count of the TCR-Seq confirmed clonotypes, TRUST4 had
the largest number of clonotypes confirmed by TCR-Seq, while
MiXCR had the lowest (Supplementary Figure 10b). For example,

on average, TRUST4 detected 538 TCR-Seq confirmed clonotypes
and MiXCR only detected 317 in T-cell-rich low SDI samples. How-
ever, these results were not statistically different when compared
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across tools (Supplementary Table 12). These TCR-Seq confirmed
clonotypes were highly overlapped across the survey methods
in T-cell-rich low SDI samples compared with high SDI samples
(Supplementary Figure 10c–f). However, when we considered the
fraction of validated TCRs from RNA-Seq-based methods when
varying clonotype abundance thresholds, ImRep and TRUST4
captured all the hyperexpanded clonotypes in T-cell-rich low SDI
samples. MiXCR had the highest percentage of detecting large
clonotypes in all samples. CATT had the lowest fractions of TCR-
Seq confirmed hyperexpanded and large clonotypes in the major-
ity of the tissue types and repertoire types (Supplementary Figure
10g–j). Combined with our findings above, these results suggested
that ImRep, TRUST4 and CATT were able to detect more clono-
types and TCR-Seq confirmed clonotypes than MiXCR in T-cell-
rich tissues. However, CATT had higher portions of the detected
hyperexpanded and large clonotypes that were not confirmed by
TCR-Seq than all other surveyed methods in T-cell-rich tissues
and T-cell-poor high SDI samples.

The effect of the number of TCR-derived reads on
the performance of RNA-Seq-based TCR profiling
methods
We examined how the number of receptor-derived reads from
RNA-Seq data influences the diversity estimates and capturing
ability of the RNA-Seq-based methods. TCR-derived reads were
calculated by the total number of TCR reads matching the assem-
bled clonotypes detected by RNA-Seq-based TCR profiling meth-
ods. To investigate the effect of TCR-derived reads, we subsampled
the RNA-Seq TCR-derived reads from the original to 310, which
represents the average TCR-derived reads in T-cell-poor tissues,
based on the original RNA-Seq assembled TCR clonotype frequen-
cies obtained from surveyed methods in three T-cell-rich low SDI
samples. We first measured the ability of RNA-Seq-based methods
to estimate the diversity among these computationally modified
samples by using the SDI. The results indicated that an increased
number of TCR-derived reads resulted in a more precise diversity
estimate (Supplementary Figure 11a).

We then investigated the portion of repertoire captured by
these methods depending on the number of TCR-derived reads
presented in the sample. As the number of receptor-derived reads
decreases, the methods were more likely to miss the clonotypes
with low abundance. For example, all TCRβ clonotypes with fre-
quencies above 0.094% were captured across all four surveyed
methods when the number of TCR-derived reads was 310 (Sup-
plementary Figure 11b–e), while, without reducing TCR-derived
reads, all TCRβ clonotypes with frequencies greater than 0.045%
were captured. The fact that the surveyed methods failed to
detect low abundant clonotypes also contributed to the reduced
accuracy in estimating diversity with the reduced number of TCR-
derived reads.

The effect of read length on the performance of
RNA-Seq-based TCR profiling methods
We investigated the effect of RNA-Seq read length on the ability
of RNA-Seq-based methods to characterize the TCR repertoires
by measuring the portion of clonotypes that can be captured
as well as diversity estimates. The length of RNA-Seq read was
computationally reduced to 50 and 75 bp for PBMC samples. We
were able to generate results from MiXCR, ImRep and TRUST4
with reduced read length; however, CATT failed to produce the
result for one 50 bp T-cell-rich low SDI sample.

RNA-Seq-based methods were able to capture the majority
of the clonotypes in T-cell-rich low SDI samples even with the

reduced read length (Supplementary Figure 12a–d). Except for
CATT, other methods captured at least 91.8% of the clonotypes
regardless of the read length that we examined in T-cell-rich
low SDI samples. MiXCR, ImRep and TRUST4 captured all the
clonotypes with clonotype frequencies greater than 0.094% when
the RNA-Seq samples had 50 bp read length in T-cell-rich low
SDI samples, which this threshold was 0.036% with the original
read length of 150 bp. The portions of TCR clonotypes that can
be captured were similar in T-cell-rich low SDI samples among
all read lengths by MiXCR, ImRep and TRUST4. However, such
portions dropped substantially with reduced read length in high
SDI samples (Supplementary Figure 12e–h). Only MiXCR captured
all abundant clonotypes with reduced read lengths in T-cell-rich
high SDI samples. Furthermore, when we examined the diversity
estimate in the reduced read length samples, we noticed that
the diversity estimates were only reliable in T-cell-rich low SDI
samples with reduced read length with an average absolute error
of 0.58 in 50 bp read length samples and 0.48 in 75 bp read length
samples (Supplementary Figure 12i). In T-cell-rich high SDI sam-
ples, the accuracy of estimating diversity was worse. The absolute
error decreased with an increased RNA-Seq read length in ImReP
results, whereas the accuracy was similar between MiXCR results
from 75 to 150 bp (Supplementary Figure 12j). Selected RNA-Seq-
based TCR profiling methods provided reliable results in T-cell-
rich low SDI samples across a variety of sequencing parameters.

Complement the TCRβ chain analysis with TCRα
chain analysis
TCR-Seq requires separate library preparation and sequencing for
α and β chains, while RNA-Seq can capture all four TCR chains (α,
β, γ and δ chains) at the same time with single library preparation
and sequencing. We compared the results for the TCRα chain with
the TCRβ chain across different tissue types and repertoire types.
However, we have determined that delta and gamma chains did
not have enough reads to be reliably profiled.

First, we compared the number of TCRα- and TCRβ-derived
reads from RNA-Seq. Except for CATT, the average number of
TCRα chain reads derived from RNA-Seq was higher than the
number of TCRβ chain reads derived from RNA-Seq in T-cell-rich
low SDI samples, while there were more reads from β chains than
α chains in T-cell-rich high SDI samples (Supplementary Figure
13a and b). The number of TCRα- and TCRβ-derived reads was
highly positively correlated in T-cell-rich low SDI samples across
MiXCR, ImRep and TRUST4, but not CATT (MiXCR: r = 0.9998,
P = 0.013; ImReP: r = 0.9956, P = 0.06; TRUST4: r = 0.9855, P = 0.11;
CATT: r = 0.549, P = 0.63).

Next, we compared the number of TCRα and TCRβ clono-
types. Similar results were observed that more TCRα and TCRβ

clonotypes were captured by RNA-Seq-based methods in low
SDI samples than in high SDI samples among T-cell-rich tissues
(Supplementary Figure 13c and d). Other than CATT, the num-
ber of clonotypes from α and β chains was comparably similar
across repertoire types by RNA-Seq-based methods. All methods
provided highly similar numbers of TCRα and TCRβ clonotypes in
T-cell-rich tissues. In addition, the clonotype count correlations
estimated by MiXCR and TRUST4 were highly positive in T-cell-
poor high SDI samples.

Performance of RNA-Seq methods in the samples
from healthy individuals
To examine whether the RNA-Seq-based TCR profiling methods
perform differently between cancer and non-cancer RNA-
Seq samples, we performed the same analyses as described
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above on 10 PBMC samples from healthy individuals (Sup-
plementary Table 13). Based on the SDI values and pre-
dicted T-cell levels, these samples were classified as T-cell-
rich high SDI samples (Supplementary Figure 14). All four
methods captured the clonotypes with frequencies above 2.39%
(Supplementary Figure 15). The metrics were calculated and
compared (Supplementary Figures 16–19); these showed similar
results to those from samples from cancer patients.

Computational resources comparison across
RNA-Seq-based tools
We compared the run time and required computational resources
across MiXCR, ImRep, TRUST4 and CATT. We selected four sam-
ples with RNA-Seq reads ranging from 40 524 817 to 122 632 451
and recorded the central processing unit (CPU) time and memory
usage for each tool to process these samples. In general, ImRep
and TRUST4 had shorter processing time compared with MiXCR
and CATT (Supplementary Figure 20a). TRUST4 required the least
amount of memory across the samples we tested (Supplementary
Figure 20b).

DISCUSSION
TCR-Seq is a powerful tool to profile TCR repertoires, gain novel
insight into immunological phenomena and serve as a biomarker
for immunotherapy efficacy. However, such technology is cost
prohibitive in clinical cohorts and is often unable to be routinely
applied in such settings [25]. In contrast, RNA-Seq is becoming
a default technology to profile patient tissues in clinical pathol-
ogy [26]. By utilizing an RNA-Seq approach to characterize the
presence and relative frequency of TCR sequences within a given
blood sample or T-cell-rich tissue sample, clinical samples can be
more efficiently utilized without the need for additional dedicated
sequencing experiments using TCR-Seq.

This study is the first one to benchmark the performance of
RNA-Seq-based TCR profiling methods in both T-cell-rich and T-
cell-poor tissues across the largest number of clinical samples.
Although the previous study only included a certain type of
TCR repertoire [16], we expanded the examination to a broad
range of cancer tissue types and repertoire types. The repertoire
category is highly relevant to the biological features of a sample.
A low SDI sample is more predominated by one or a few TCR
clonotypes. Such type of clonotype presentation is often observed
in transgenic TCR cell therapies, where a TCR of interest has been
inserted into a T cell via retroviral or lentiviral vectors, for the
treatment of cancer or viral infections, or in situations where only
a few TCR clonotypes are preferentially expanded in the setting
of targeting cancer or viral antigens, thus reflecting their relative
biological importance in a given sample. Conversely, a high SDI
sample would be more reflective of circulating T cells which are
not subject to the stressors of chronic antigen exposure, or tumor
samples which have T-cell infiltrates directed at a wider variety
of tumor neoantigens, which are diverse and unique to a given
patient or individual tumor.

We determined the scenarios under which RNA-Seq analysis
using RNA-Seq-based TCR profiling methods can offer a compa-
rable quality of characterizing immune repertoires. Given tissue
with a sufficient degree of T-cell level and with one or a few
hyperexpanded clonotypes made up for the whole repertoires,
and with adequate RNA sequencing depth and satisfactory qual-
ity, RNA-Seq-based TCR profiling methods are able to capture the
majority of TCRβ clonotypes and effectively estimate the diversity
of the repertoire. Despite the inability of RNA-Seq-based TCR

profiling methods to capture the ultra-rare clonotypes supported
by several TCR-Seq reads, these methods are generally able to
capture the clonotypes with a frequency greater than 1.553% in
T-cell-rich tissues. This suggests that RNA-Seq can potentially
complement TCR-Seq technology in T-cell-rich tissues to success-
fully estimate the overall diversity of the sample and effectively
detect clones with greater frequencies. The diversity estimated
based on high-throughput measures usually underestimates true
diversity [2, 5, 27, 28], but in cases where there is a major clonotype
existing with high relative frequency than even capturing the
small portion of the repertoire, one can estimate the diversity.
However, when comparing different samples, the commonly used
diversity measurement, SDI, is limited when comparing samples
with different TCR repertoire sizes. On the other hand, clonality,
which normalizes clonotype counts based on SDI, can be an
appealing approach to estimate diversity [29].

In more heterogeneous tissues which are more relatively T-cell-
poor tissues, such as tumor biopsies, RNA-Seq-based TCR profiling
methods are only able to capture the dominant clonotypes with
the highest frequencies. This results in unreliable estimates of
diversity and clonality in such tissues. These suggested that extra
caution needs to be taken when utilizing RNA-Seq-based TCR
profiling methods in T-cell-poor tissues, especially in high SDI
samples of the T-cell-poor tissues.

The ability to effectively characterize the TCR repertoire
depends on the proportion of the total repertoire captured
by a given technology. Even state-of-the-art high-throughput
technologies fail to capture the entire diversity of the T-cell
repertoire. Instead, they often focus on capturing the most com-
mon clones, as this is often sufficient to effectively characterize
TCR diversity. Identification of dominant TCR clones within
responding patient biopsies can be useful for the characterization
of potential neoantigens being targeted by the TCRs. Capturing
rare clones is extremely challenging due to the enormous diversity
of the individual T-cell repertoire and the limited throughout
of commercially available TCR-Seq protocols. As a result, rare
clones can become unsampled and remain undetected in high-
throughput measurements of the samples. This may lead to the
missing of important TCR information in some autoimmune
disease settings, such as autoimmune hepatitis [30] and patients
with Sjögren’s syndrome [31]. In these diseases, clonotypes with
low frequencies may relate to disease activity. In other disease
settings, such as myelodysplastic syndrome, responsiveness to
treatment with hypomethylating agents has been associated with
rare and novel TCR clonotypes which manifest during treatment
[32].

Diversity is measured based on the clonotypes that are present
in the sequencing results and their relative frequencies. The
surveyed methods are able to provide reliable diversity estimates
in T-cell-rich low SDI samples but not so in high SDI samples. On
average, the absolute errors of estimating diversity in different
types of samples range from 0.57 to 4.4. As expected, the num-
ber of clonotypes and derived reads detected by RNA-Seq-based
methods are always lower than those from TCR-Seq. Clonotypes
with low frequencies are not captured by the RNA-Seq-based
methods; this may have caused a systematic underestimated
error in estimating diversity. In addition to the undetected clono-
types with low abundance, the differences in clonotype frequency
estimation as well as in the number of detected clonotypes could
be the reasons that cause differences in the accuracy of diversity
estimates between various tissue types and repertoire types.

There are a few limitations of our study. First, there is no
standardized method to distinguish between low SDI and high
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SDI TCR repertoires. We chose the SDI value of 2 as the threshold
which represents the distribution of clonotypes in the samples
that we used in the study. We explored various SDI thresholds
to classify low or high SDI samples and observed consistent
estimates of clonality and diversity across various thresholds.
Second, the TCR-Seq sequencing protocols that were used were
not consistent across different study cohorts. The lymph node and
small intestine samples were sequenced by rapid amplification
of 5′ complementary ends (5′RACE) approach, while all other
samples were sequenced by immunoSEQ (Adaptive Biotechnology,
Seattle, WA). The biases across multiplex PCR and 5′RACE are
known [33, 34]; however, the differences between immunoSEQ and
other TCR-Seq profiling methods were unknown. Third, TCR-Seq
computational methods used for processing were different across
study cohorts as well. TCR-Seq raw data from lymph node and
small intestine samples were processed through MiXCR, while the
others were processed via internal methods at Adaptive Biotech-
nology. Unfortunately, Adaptive Biotechnology does not share raw
TCR-Seq data or bioinformatics methods [35], so we were not able
to process all samples through the same bioinformatics software.
The use of MiXCR for processing both TCR-Seq and RNA-Seq
on lymph node and small intestine samples may lead to biases
in the results. Fourth, TCR-derived reads corresponded to T-cell
levels. However, RNA-Seq-based TCR profiling methods may also
detect natural killer (NK) cells. Although NK cells were relatively
rare compared with T cells, they could be added to the number
of T cells that were deduced from the TCR reads. By utilizing
GEDIT, we observed values of zeros in several samples, which
may not indicate that there were no T cells in the samples;
instead, these samples had low expressions which were below the
detection limit. Fifth, the distribution of the samples is heavily
biased toward T-cell-poor high SDI samples compared with other
categories. The comparison between sample types with different
numbers of samples may lead to over- or underestimating the
differences in the results. Sixth, only two types of cancer were
included in this study, which were melanoma and kidney renal
clear cell carcinoma. The conclusions from different types of
cancers are inherently biological-context dependent. Further val-
idation is needed if more TCR-Seq and RNA-Seq data on the same
samples become available. Last, we observed that there were TCR
clonotypes discovered by RNA-Seq-based profiling methods that
were not confirmed by TCR-Seq. These may be false positives
of RNA-Seq-based methods or false negatives of the TCR-Seq
method which are true TCR clonotypes that are not captured
by TCR-Seq. However, the benchmarking approach used in this
project is incapable of differentiating between false positives
of RNA-Seq-based methods and false negatives of the TCR-Seq
method. The presence of false positives in the results of RNA-Seq-
based methods may limit the application of RNA-Seq-based TCR
profiling in clinical settings.

Although available approaches require separate assays for the
detection of the α and β chains of the TCR, RNA-Seq-based TCR
profiling methods are able to detect both α and β chains simul-
taneously from a single library preparation, reducing the overall
cost of the assay. With the increasing emphasis on personalized
medicine, there is an increasing demand for cost-effective and
reproducible measures to comprehensively characterize cancer
cells and profile immune cell populations. This technique can
be employed in large-scale clinical cohorts. Furthermore, the
detection of TCR sequences at the RNA level provides increased
assurances that such sequences are transcriptionally active and
more likely to be biologically relevant. It also provides opportuni-
ties to reuse the existing RNA-Seq data instead of initiating new

TCR-Seq. Finally, RNA-Seq has already been used in clinical spec-
imens and provides an additional analysis tool for use on a
variety of clinical samples. Overall, RNA-Seq-based methods are
appealing alternatives for profiling TCR repertoires in T-cell-rich
tissues and low SDI samples when TCR-Seq is not yet available.

METHODS
Gold standard datasets
PBMCs (N = 5) and melanoma biopsy samples (N = 9) were
generated from patients at UCLA enrolled in transgenic NY-
ESO-1 TCR adoptive cell therapy (IRB#12-000153 and 13-001624)
[17] and PD-1 blockade clinical trials (IRB#11-003066) [12], as
previously described. The studies were conducted in accordance
with local regulations, the guidelines for Good Clinical Practice
and the principles of the Declaration of Helsinki. Renal clear
cell carcinoma (N = 3) [18] samples were acquired from The
Cancer Genome Atlas (TCGA), and melanoma specimens from
the ileocecal lymph node (N = 1) and the small intestine (N = 1)
[16] were acquired from the Sequence Read Archive (SRA). For the
PBMC samples, three were from patients that were transduced
with a retroviral vector containing the NY-ESO-1 TCR [17], while
another two were from patients being treated for melanoma
[12]. The average number of RNA-Seq reads ranged from 66
to 88.3 million. The average numbers of TCR-Seq reads ranged
from 0.01 to 3.26 million reads (Table 1, Supplementary Table 1,
Supplementary Figure 1a and b). The number of clonotypes
detected by TCR-Seq varied across different tissue types. Kidney
samples had the lowest average number of clonotypes (1917) in
the tissue samples analyzed. Note that the lymph node sample
has an extremely high number of TCRβ clonotypes (202 869)
compared with all other samples (Supplementary Figure 1c).
Importantly, the cohorts we used correspond to various tissue
types with substantially different levels of T cells and repertoire
types. We computationally estimated the T-cell levels across all
samples by GEDIT [19]. Samples with high levels of T cells were
from PBMCs and lymph nodes, which were considered T-cell-rich
tissues, while low levels of T cells were the samples from the
renal cells, small intestine and melanoma biopsies, which were
considered as T-cell-poor tissues.

We used SDI to classify TCR repertoires as low SDI or high SDI
samples. The minimal value of SDI is 0, which value closer to 0 cor-
responds to the increased monoclonality of the TCR population.
The three PBMC samples that were transduced with a retroviral
vector containing the NY-ESO-1 TCR [17] and one melanoma
biopsy sample were low SDI samples, while all other samples
were high SDI samples. In our dataset, the clonotypes with fre-
quencies greater than 0.01 (hyperexpanded clonotypes), which
usually consisted of only one or a few TCRβ clonotypes, on average
comprised 91.08% of all TCRβ clonotypes in low SDI samples,
while the hyperexpanded clonotypes only comprised 24.36% of all
TCRβ clonotypes in high SDI samples (Supplementary Figure 3).

Choice of RNA-Seq-based TCR profiling methods
MiXCR supports various sequencing technologies, while ImReP,
TRUST4 and CATT are designed mainly for RNA-Seq data (Table 2).
The input format varied across tools: MiXCR requires RNA-Seq
raw reads, ImReP accepts only aligned reads, and TRUST4 and
CATT accept both raw reads and aligned reads. The details
on how the RNA-Seq-based methods were run are available in
Supplementary Table 2.
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Isolate genomic DNA and RNA
Genomic DNA and RNA from patient-derived transgenic NY-ESO-
1 TCR PBMCs and normal control PBMCs [17] were isolated with
an AllPrep DNA/RNA isolation kit according to the manufacturer’s
instructions (Qiagen). For patient melanoma biopsies treated
with anti-PD-1 blockade [12], genomic DNA was isolated from
formalin-fixed, paraffin-embedded tumor biopsy shavings on an
Anaprep 12 nucleic acid extraction platform (BioChain), while
RNA was isolated from tumor samples which had been preserved
in RNAlater (Qiagen) and stored at −80◦C using an AllPrep RNA
Isolation kit, as above. Melanin was then removed from visibly
pigmented samples using a PCR Inhibitor Removal kit (Zymo
Research, Irvine, CA).

Generate DNA-based TCR-Seq data
TCRβ alleles were sequenced at 100 000 reads by Adaptive
Biotechnologies. Briefly, this process utilizes a synthetic immune
repertoire, corresponding to every possible biological combination
of Variable (V) and Joining (J) gene segments for each TCR locus,
spiked into every sample at a known concentration. These inline
controls enable rigorous quality assurance for every sample
assayed and allow for correction of multiplex PCR amplification
bias, providing an absolute quantitative measure of T cells
containing the transgenic TCR relative to the other endogenous
TCR clonotypes, with no difference in amplification efficiency
[36]. Productive TCRβ sequences i.e. those that could be translated
into open reading frames and did not contain a stop codon, were
reported.

Analyze PBMC and melanoma biopsy TCR-Seq
data
The assembled CDR3 sequences and corresponding VDJ recom-
binations were obtained from Adaptive Biotechnologies. We have
only considered clones supported by at least two reads.

Only full-length clonotypes (starting with C and ending with F)
were considered. Other clonotypes were filtered out.

RNA-Seq of PBMC and melanoma biopsy
samples
For both PBMC and melanoma biopsy samples, mRNA libraries
were generated using the Kapa Stranded mRNA kit (Roche) and
were subjected to 150 bp paired-end sequencing (PBMCs) or 100 bp
paired-end sequencing (melanoma biopsies) on a HiSeq 3000
platform.

Download renal carcinoma clear cell samples
We used RNA-seq data from the TCGA that correspond to
three renal carcinoma clear cell samples sequenced by RNA-
Seq and TCR-Seq. RNA-Seq data are from Illumina HiSeq
sequencing of 50 bp paired-end reads. We downloaded the
mapped and unmapped reads in BAM format from the TCGA
portal (TCGA-CZ-5463-01A, TCGA-CZ-5985-01A, TCGA-CZ-4862-
01A). The corresponding TCR-Seq data were downloaded from
immuneACCESS portal (https://clients.adaptivebiotech.com/pub/
Liu-2016-NatGenetics).

Download ileocecal lymph node and small
intestine samples
We downloaded the RNA-Seq data of one sample of melanoma
specimens from the ileocecal lymph node (SPX6730, run:
SRR5233639) and another sample of melanoma specimens
from the small intestine (SPX8151, run: SRR5233637) from SRA

(accession: PRJNA371303). The corresponding TCR-Seq data
were downloaded from https://figshare.com/articles/dataset/
Antigen_receptor_repertoires_profiling_from_RNA-Seq/4620739?
file=9787642.

Run RNA-Seq-based repertoire profiling tools
RNA-Seq-based repertoire profiling tools were run using the direc-
tions provided by each of the respective tools. Wrappers were then
prepared to run each of the respective tools as well as create
standardized log files. When running the tools, we have chosen
the most appropriate parameters. For MiXCR, we used the single
analyze shotgun command. MiXCR accepts the raw fastq files as
input for generating a report of the clonotypes present within
the sample. Starting with the RNA sequence data, we mapped
the reads onto the human chromosome to generate the bam file.
Together with the bam file and the indexed bam file generated
from samtools, we ran ImReP, TRUST4 or CATT to extract TCR
clonotypes and corresponding supporting reads. The computa-
tional pipeline to compare RNA-Seq-based repertoire profiling
methods with the gold standard is open source, free to use under
the MIT license and available at https://github.com/Mangul-Lab-
USC/TCR-profiling-benchmark.

Estimate TCR diversity and relative frequency
To estimate the diversity within each sample, we only consider
clonotypes that are supported by at least two reads. The relative
frequency of each clonotype is then calculated as the number of
supporting reads divided by the total number of reads supporting
all clonotypes that occur at least twice.
SDI:

H = −
n∑

i=1

[(pi) × ln(pi)]

Clonality:

1 − H/ [ln(n)]

pi = frequency of clonotype i.
n = number of unique clonotypes in the sample.

Classify T-cell-rich and T-cell-poor tissues
We first ran Salmon [37] to quantify transcript levels from RNA-
Seq data with the reference transcriptome for Homo sapiens. Then,
we used the Ensembl Human genes (GRCh38.p13) as the reference.
When converting transcript expression levels to gene expression
levels, the isoform with the highest expression transcript was
used. Later, we ran the GEDIT [19] v2.0 to estimate the T-cell
fraction in each sample. Based on the recommendation of the
benchmarking results [38], the Human Skin Signatures matrix
was used as the reference in our study. We estimated the T-
cell fraction as the sum of fractions of CD3, CD4 and CD8 cells.
Samples with estimated T-cell fractions greater than 0.05 are
considered from T-cell-rich tissues, otherwise from T-cell-poor
tissues.

Generate Hill curves
We have used Hill curves functionality provided by pyTCR [24] to
estimate TCR diversity and generate Hill curves. We computed
the diversity estimates when q values varied from 1 to 6 across
different RNA-Seq-based TCR profiling methods.
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Computationally modify the properties of
RNA-Seq samples
To reduce the length of RNA-Seq reads, we split each original
sequence (150 bp) from the raw fastq files into two and three seg-
ments and got new 75 and 50 bp sequences. The sequences were
written into new fastq files. We also computationally reduced
the number of TCR-derived reads to generate in silico samples
based on the T-cell-rich low SDI samples. The clonotypes that
can be detected by the RNA-Seq-based methods were randomly
selected, in proportion to the original clonotype frequency in the
samples. The total numbers of TCR-derived reads from each tool
were reduced to around 310, 1300, 2600, 13 500 and 28 000.

Additional dataset from healthy individuals
Ten samples from PBMC samples collected from healthy individu-
als were sequenced by TCR-Seq via 5′RACE with unique molecular
identifiers and RNA-Seq technologies. The use of human mate-
rials was approved by the Office for the Protection of Research
Subjects at the University of Southern California (IRB#HS-16-
00274). TCR-Seq data were processed with MiXCR for clonotype
identification and quantification. The overview of the additional
dataset is recorded in Supplementary Table 13.

Compare computational resources across
RNA-Seq-based repertoire profiling tools
We ran MiXCR, ImRep, TRUST4 and CATT separately on four
selected samples (sample02, sample05, sample13, TCGA-CZ-
5463). The CPU time and RAM usage were recorded. A high-
performance computing cluster was utilized to acquire the
results. We set up the bash file by one node, eight cores per node,
and 16 GB Memory Efficiency for each run. The CPU time was
recorded in seconds and the RAM was computed in gigabytes
(GB).

Key Points

• RNA-Seq-based TCR profiling methods are able to effec-
tively capture the majority of TCR-Seq confirmed clono-
types in low SDI samples

• RNA-Seq-based TCR profiling methods are able to accu-
rately estimate the diversity and clonality of the reper-
toire in T-cell-rich low SDI samples

• RNA-Seq-based methods are appealing alternatives for
profiling TCR repertoires in T-cell-rich tissues and low
SDI samples when TCR-Seq is not yet available

• Extra caution needs to be taken when utilizing RNA-
Seq-based TCR profiling methods in T-cell-poor high SDI
samples

SUPPLEMENTARY DATA
Supplementary data are available online at http://bib.oxfordjournals.
org/.
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