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tion efficiency in expensive-to-evaluate systems. Active learning-applied surrogate model-
ing facilitates cost-efficient analysis of demanding engineering systems, while the
existence of heterogeneity in underlying systems may adversely affect the performance. In
this article, we propose the partitioned active learning that quantifies informativeness of
new design points by circumventing heterogeneity in systems. The proposed method parti-
tions the design space based on heterogeneous features and searches for the next design
point with two systematic steps. The global searching scheme accelerates exploration by
identifying the most uncertain subregion, and the local searching utilizes circumscribed
information induced by the local Gaussian process (GP). We also propose Cholesky
update-driven numerical remedies for our active learning to address the computational
complexity challenge. The proposed method consistently outperforms existing active learn-
ing methods in three real-world cases with better prediction and computation time.
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1 Introduction

Active learning is a subfield of machine learning and artificial
intelligence that maximizes information acquisition to train
models’ data efficiently. Contrary to passive learning such as
Latin hypercube design (LHD) and factorial design [1], active learn-
ing sequentially selects design points in the modeling phase after
observing intermediate models and outputs. It is also called query
learning, sequential design, adaptive sampling, or optimal design
in other literature, while they pursue the same objective: finding
the best subset of inputs from the design space according to infor-
mation criteria that evaluates the informativeness of input referring
to uncertainty, disagreement, etc. Active learning has received
increasing attention from various applications in which sampling
is timely and costly demanding, such as quality engineering,
response surface investigation, and image recognition [2,3].

Especially, active learning has been frequently utilized with
Gaussian processes (GPs) for modeling of various systems span-
ning robotics, aerospace, and manufacturing processes [4,5] due
to the capability of uncertainty quantification (UQ) and the simpli-
city [6,7]. However, many existing methods are confined to single
GPs (SGPs) that impose inappropriate homogeneous information
measures for systems with heterogeneity (e.g., discontinuity, and
abrupt variations in gradient norms or frequencies), although
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heterogeneity is ubiquitous in engineering systems. For example,
composite materials, one of the most versatile materials in various
contemporary products, are anisotropic and highly nonlinear to
external treatments [8], so they exhibit different behaviors in the
design space [9]. Another example is the corrosion of alloys.
Figure 1 illustrates the corrosive rates of aluminum alloys emulated
with the finite element method (FEM) over two pairs of control var-
iables. We can observe that the response surface shows spatial het-
erogeneity, so the design space can be partitioned into three
subregions according to degrees of variation. In both cases, the effi-
ciency of active learning with a homogeneous information criterion
can be significantly deteriorated by the misleadingly measured
information.

A straightforward way to address heterogeneity is to employ a
locally adaptive information measure, which can be realized with
so-called divide-and-conquer framework. For example, partitioned
GPs (PGPs) overcome the limitations of SGPs in heterogeneous
systems by allocating multiple independent local GPs on disjoint
subregions. Subregions are defined or estimated according to distin-
guishable characteristics of target systems, so PGPs can efficiently
accommodate heterogeneity. Moreover, the partitioning improves
the scalability of GPs, one of their main drawbacks, by introducing
sparsity in their covariance matrices. However, the partitioning
methods in most of existing PGPs have the following drawbacks
to directly use for active learning.

(1) Existing PGP methods [10,11] adopt Voronoi tessellation as
a basis of partitioning, which is computationally prohibitive
for high-dimensional design spaces.
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(2) Many PGPs are established as hierarchical models in which
partitioning models are submodels of local models [12,13].
Consequently, their partitions are driven by fitting their com-
posite likelihoods, not directly referring to heterogeneity,
which may yield implausible partitions (e.g., too many parti-
tions, generation of trivial subregions).

(3) The hierarchical models using Markov chain Monte-Carlo
(MCMC) methods are subject to computationally intractable
posterior distribution, which should be utilized for active
learning.

Moreover, existing works on PGPs utilize conventional active
learning criteria [14,15], which are originally devised for a single
model, so they are suboptimal for partitioned models in terms of
learning and computational efficiency.

Motivated by the aforementioned limitations, we propose parti-
tioned active learning for data acquisition in heterogeneous
systems. To generate a locally adaptive measure, we divide the
design space based on finite difference or output variance that are
prevalent in many engineering systems. The proposed partitioning
is based on mean-shift, so that partitioning can be efficiently adjusted
with a single hyperparameter even in high-dimensional design
spaces. Then, the localized integrated mean-squared error (IMSE)
criterion is used, so that the IMSE criterion on each subregion
cannot be distorted by other heterogeneous regions. To accelerate
the searching time, we utilize the partitioned structure with global
searching that seeks the most informative subregion and provide
the Cholesky update method for computation of the local IMSE cri-
terion. Our contributions in this article can be summarized as follows.

(1) Aheterogeneity-based partitioning method is developed. The
method outperforms the existing approaches in PGPs with
(i) direct incorporation of heterogeneity features in partition-
ing; (ii) scalability to high-dimensional problems; and
(iii) flexibility with a single tunable hyperparameter.

(2) A novel active learning strategy with a two-step searching
that exploits the partitioned structure is established. The strat-
egy first searches the region, which has the most potential to
decrease the model variance, via global searching, and then
the localized IMSE criterion is used to find the query location
as local searching.

(3) Numerical remedies are provided to accelerate the proposed
algorithm. Global searching is used to reduce the number of
candidates by narrowing down the area for local searching,
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and the Cholesky factor update method is used to reduce
the cost of local searching.

The proposed method is applied to prediction of three real-world
cases: (i) fuselage deformation in aircraft manufacturing; (ii) tribo-
corrosive rates of aluminum alloy; and (iii) inverse dynamics of
seven-joint robot arm. In the case study, we observed that active
learning with a homogeneous criterion can be even inferior to
passive learning, which can be effectively resolved by the proposed
method.

The remainder of this article is organized as follows. In Sec. 2, we
review existing active learning methods for GPs and discuss several
PGP modeling approaches. Section 3 elucidates the new partitioned
active learning algorithm and provides applicable techniques for
improving the learning efficiency and numerical costs. In Sec. 4,
we implement our method on function approximation problems
and apply to three real-world problems in Sec. 5 with existing learn-
ing algorithms. Finally, a brief summary of this article is provided in
Sec. 6.

2 Literature Review

In this section, we review related literature of existing active
learning strategies for GPs and their applications in real-world prob-
lems. Afterward, we discuss literature of PGP methods.

2.1 Active Learning for Gaussian Processes. Due to the
capability of UQ in GPs, predictive uncertainty has been frequently
involved in the construction of active learning criteria for GPs. Two
criteria for GP regression, called active learning Mackay (ALM)
and active learning Cohn (ALC), were compared in Ref. [16].
ALM refers to the variance as the information criterion that
selects the most uncertain data.

Meanwhile, ALC refers to the IMSE criterion that seeks the point
expected to reduce the model variance the most over the design
space, and it has also been widely applied to different GP frame-
works. The IMSE criterion was utilized for stochastic kriging, so
as to balance between exploration over the design space and exploi-
tation with additional replications [17]. Two other active learning
algorithms were proposed for GP surrogate models of multimodal
systems. The variance weighted active learning uses the weighted
sum of variance criteria of modes, and the D-optimal weighted
active learning uses the Fisher information matrix with the same
engineering-driven weighting procedure [5]. By incorporating the
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physics constraints, a failure-averse active learning algorithm has
been proposed to realize efficient data collection as well as avoid
failures [18]. Bayesian optimization (BO) is another interesting
trend of sequential sampling that utilizes predictive uncertainty of
GPs for global optimization problems, and it achieves outstanding
performance [19,20]. Although BO and active learning show a
subtle nuance in their objectives, they share the common principle
and the sampling cost reduction. There are several criteria (also
called acquisition functions) for BO, such as the expected improve-
ment and the probability of improvement. They refer to the GP
model of the objective function and choose the point that is the
most likely to be optimal.

For strategies that do not take predictive uncertainty into account
or less considered, space-filling designs were suggested to use in the
Kernel Hilbert space induced by intermediate GP models [21]. The
expected model output change was also used as one criterion for
active learning [22]. The strategy chooses the location where is
expected to induce the largest change in model outputs. The gradi-
ent of the GP model was involved in active learning so as to draw
more samples from where the response abruptly changes [23,24].
Consequently, the gradient-based criterion focuses more on local
variations, thereby reducing the prediction error more efficiently.
Kim et al. [25] referred to the discrepancy of multiple GP models
trained on different subsets of data. However, the aforementioned
active learning strategies are mostly devised for SGPs that are inap-
propriate for modeling heterogeneous systems. Therefore, it is inef-
ficient to directly apply them to PGPs since they cannot consider the
partitioned structure. A comprehensive review of adaptive sampling
strategies for GPs in the engineering domain can be found in
Ref. [26].

2.2 Partitioned Gaussian Processes. Although there are tech-
niques other than partitioning design spaces to overcome the limita-
tion of stationary GP models such as input-dependent length scale,
warping, and convolution kernels [24,27], we mainly focus on
PGPs that explicitly partition the design space for multiple GP
models. The piecewise GP was proposed using Voronoi tessellation
with training dataset for partitioning the design space [10]. Advan-
tages of Voronoi tessellation are simplicity, consistency, and
distance-based algorithm that coincides with stationary GPs. They
estimated the number of regions and centers with the Monte-Carlo
approach and fitted independent GP models for subregions. Subse-
quently, the partitioning was generalized by merging convex
Voronoi cells in order to generate nonconvex subregions and
relaxed centers of cells [15]. The Treed GP was developed to use
decision trees for partitioning [12]. They fitted independent local
GPs on each leave associated with a subregion. Heaton et al. [11] pro-
posed to partition the design space prior to GP modeling by hierarchi-
cal clustering referring to finite differences of samples. They insist
that the approach allows avoiding the expensive MCMC algorithm
in the aforementioned approaches. The mixture of GP experts pro-
posed by Ref. [28] is another approach using multiple stationary
GPs. Although components in their modeling process have own ter-
minologies, the underlying idea is very close to the aforementioned
methodologies.

For active learning in PGPs, an active learning algorithm was
proposed, and it takes a point within boundaries and maximizes
the space-filling property of design points [15]. However, it
focuses more on detecting discontinuity in the design space rather
than reducing the prediction error, although such discontinuity is
rare in industrial and engineering applications. Active learning algo-
rithms considering the posterior structure of partitioned design
space were proposed [13,14]. However, their approaches are
highly dependent on the tree classifier, while the tree partitioning
mostly induces boundaries parallel to axes that may not be realistic
in practice [11,15]. Moreover, the choice of design point candidates
is dependent on the areas of partitioned regions, so it can be irrele-
vant when a plausible partition is not realizable with a few tree-
partitioned regions.

Journal of Computing and Information Science in Engineering

3 Methodology

In this section, we propose the partitioned active learning algo-
rithm. First, we briefly review a generic framework of partitioned
modeling and two widely used active learning strategies for GPs.
Then, we elucidate our strategy including partitioning based on het-
erogeneity and the partitioned information criterion. Finally, we
provide applicable remedies to improve the computational cost of
the proposed method.

As mathematical notations, we use lower letters for scalars and
distinguish vectors with boldface. Upper letters indicate sets or
matrices, and a set of indices is denoted as [M]={1,..., M}. In
subscriptions, we parenthesize the number for the region index
and use normal letters for indices of data. If the index of the subre-
gion is apparent, we omit the region index and only use the index in
the set for simplicity.

3.1 Partitioned Modeling for Heterogeneous Systems. A
partitioned model of a heterogeneous system can be expressed as
a function f defined over the design space Q ¢ R? mapping to R.
The partitioned model employs a region classifier g : Q — [M]
that partitions Q into M mutually disjoint subregions such that Q =
UY_, Q) in accordance with heterogeneity. Then, the partitioned
model can be written as follows:

M
&= Tgmmfm®), X E€Q M
m=1

where 1(¢y is an indicator function that has value 1 when C is true
and 0 otherwise, and f;,,, is a local GP assigned to Q. Although
PGPs can take any valid kernel, we mainly consider stationary
kernel family such as radial basis function (RBF) and Matérn.
Suppose any X, X' €Q, and x=[x; ... x4]7. The local GP
defined over Q,,) with the RBF kernel is expressed as follows:

ﬁl?l)(x) ~ gp(ﬂ(n1)(x)9 k(m)(Xv X/))

, d (o — x))?
ki (x, X) = T(zm) 1—[ exp (— 1127/
i1 j

2
+ 00 Lix=x)

where fi,,,(X) is the mean function assumed to be 0 without loss of
generality, and kg, is the kernel of which nonnegative 7, [,
and 6(2,”) are referred as scale, length, and noise hyperparameters,
respectively.

Suppose we have finite n observations on X = {x,..., X,} C Q
such that D={(x1, y1),..., Xy, yn)}, Where y;=f(x;)+¢ of
which & ~ N (0, ¢2), and let ® be the hyperparameter of the
region classifier and ® be that of local GPs. There are mainly two
schemes in hyperparameter estimation of PGPs. One is to maximize
the likelihood of the hierarchical structure of Eq. (1), and the other
way is to estimate the region classifier in advance based on some
criteria and fit local models by maximizing the likelihood with
the fixed region classifier. We will discuss more about two
schemes in Sec. 3.3.1. Suppose we have a region classifier from a
prior or a separated algorithm, so that X and D can be partitioned
as Xy and Dy, respectively. Let the covariance matrix associated
with X(m) be K(m) such that (K(m))ijzk(m)(x(m),i’ X(m)J) for i, ]6
[7¢my], Where ng,, is the number of samples in mth subregion. For
the fixed g, the PGP model can be trained with D by maximizing
the log marginal likelihood of local GPs, which is expressed as
follows:

M
£(®I2) Y (Yoo Ko ¥im) — 0g detKiy — nm log 27) - (2)
m=1

where y,) = V.1 --- Yoy, ] - Note that the log likelihood in
Eq. (2) is the sum of local GPs’ due to their independence.
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Consequently, possibly with some ordering process, the PGP pro-
duces a block diagonal covariance matrix, which implies that the
numerical advantage of PGPs comes from the sparsity. Although
the construction of entire covariance matrix is generally unneces-
sary in practice, it informs us that the model can be manipulated
more efficiently by treating each local GP independently. Evidently,
PGPs may exhibit discontinuity at partitioning boundaries, and it
would be undesirable when the underlying truth is known to be con-
tinuous. Making PGPs continuity requires additional techniques,
which is beyond the scope of this article, such as ensemble of the
posterior local models [12] or patchwork kriging [29].

3.2 Review of Active Learning for Gaussian Processes. The
essence of active learning is the information criterion, the function
quantifying informativeness of unobserved data. By optimizing the
information criterion in the design space, the learning machine
determines the design point to learn and the queries to the oracle.
The variance and the IMSE criteria are widely considered in
active learning for GPs due to their versatility and simplicity
[16,14,5], so we briefly review two criteria following terminologies
in Ref. [16] and then establish our new criterion.

Suppose we intend to determine the next sampling location X,
€Q with the GP without partitioning. The variance criterion is
expressed as follows:

Jy(x) = k(x) — k(x, X)K~'k(x, X)" 3)

where f'is the posterior GP given X. ALM maximizes the variance
criterion so as to select the location with the greatest predictive var-
iance. Meanwhile, the IMSE criterion is expressed as follows:

Jivse(X) = j Var( f(s| x)) p(s) ds
Q

Var( £(s]%)) =k(s) — k(s, Xy DK ks, Xoe)T Y

n+1

Xns1 =X, X]T

where s € Q with the density (or importance) p(s) and K,,,; is the
covariance matrix associated with X,, ;. Minimizing the IMSE cri-
terion selects the location, which is expected to reduce predictive
uncertainty the most over Q, and we refer to the active learning
with the IMSE criterion as ALC.

There are more behind derivations of both criteria, while we
mention shortly herein. It turns out that ALM is equivalent to the
maximum entropy design since the choice leads to maximizing
the determinant of covariance matrix. Meanwhile, ALC can be
explained by minimizing the generalized mean-squared error
(MSE) in statistical learning, which can be decomposed into the
bias and the variance. Although the variance criterion is straightfor-
ward and numerically inexpensive, ALC empirically has shown
better performance than ALM [14,16]. Moreover, ALC can com-
prehensively consider the importance of s € Q in the information
criterion. It allows us to incorporate prior knowledge and to give
more weight on a specific region, thereby making the algorithm
more distinguishable from the space-filling design.

3.3 Partitioned Active Learning Strategy. Dividing the
design space in heterogeneous systems allows flexible modeling
for GPs, while most of existing partitioning methods do not
refer to heterogeneous features therein. Moreover, the most
widely used active learning strategies in the previous section
also do not take account partitions in their information criteria.
This section illustrates our proposed active learning strategy that
includes a separated partitioning scheme based on heterogeneity
and the new information criterion that exploits the partitioned
structure.

3.3.1 Partitioning Based on Heterogeneity. The main objec-
tive of partitioning in our method is to exclude the adverse effect

041009-4 / Vol. 23, AUGUST 2023

from the heterogeneous subsystems. There are two ways to deter-
mine partitions in PGPs: model driven and model free. Model-
driven partitioning establishes the region classifier by maximizing
the likelihood of the hierarchical model in Eq. (1). It is promising
to exploit the training data to construct a well-fitted model, while
it may induce partitions that are difficult to interpret. For
example, the number of subregions can be unnecessarily high,
which leads to the loss of correlation information with overfitting.
Another drawback is the expensive computational cost from parti-
tioning and MCMC algorithms. Existing methods utilize Voronoi
tessellation or decision tree as a basis. The numerical complexity
of Voronoi tessellation is known to be O(nlogn + nl4/?1) [30],
which exponentially increases with the dimension, so it can be
numerically problematic in high-dimensional problems such as
our case study in Sec. 5.3. Furthermore, it is inapplicable when
the number of samples is less than the problem dimension. Decision
tree is also dependent to the input dimension in its complexity,
which is O(dn log n).

Meanwhile, model-free approach builds the region classifier
separately before fitting local models. Although it may induce an
inferior fit of the partitioned model with respect to the training
data, the region classifier can be directly established based on pre-
determined criteria (e.g., heterogeneous factors). Moreover, the par-
titioning can be examined and modified with background
knowledge by experts before plugging the classifier into the parti-
tioned model. Therefore, if we have a prior knowledge in partition-
ing (e.g., the number of subregions, features that determines the
heterogeneity), the model-free approach is more reasonable.
Agglomerative clustering in Ref. [11] is model free, and it utilizes
the finite difference in observed data as the heterogeneous feature.
However, it is also based on Voronoi tessellation and may yield
undesirable singleton clusters, in which local GPs cannot be
trained, as shown in Fig. 2. Although it is possible to employ the
agglomerative clustering for some cases, we provide another path
of partitioning, which tackles the aforementioned limitations.

To divide the design space based on heterogeneity, we first need
to define heterogeneous characteristics. There could be many candi-
dates that induces heterogeneity in systems, and the example
includes variations and variances. Let i be the heterogeneous
feature. The degree of variation at a point can be quantified with
the gradient norm, while the best accessible reference with finite
observations would be finite differences between the point and
neighbors, which is

d(yi’ )’)
d(Z,‘, X)

h(x) = avg(

z; € N;‘(X)) (&)

where N,(x) = {z|d(x, z) < r, z € Q}. The radius r should be large
enough to cover more than one adjacent point, but not too large to
exclude irrelevant points. A plausible value is 1-1.5 times of the
minimum distance in observations. The main difference between
Eq. (5) and the dissimilarity in [11] is that Eq. (5) considers all adja-
cent samples for every design point, while the other calculates the
dissimilarity of every pairs like a graph model to conduct agglom-
erative clustering. For heteroscedastic stochastic systems, variance
can be a good reference. The regional variance can be approximated
as follows:

h(x) = Var(yi| x; € N,(x)) (©)

Once heterogeneous features are evaluated for observed data, the
kernel density estimation can be used to cluster them. In this article,
we utilize mean-shift [31] to detect modes of heterogeneity in the
design space as follows. There are several advantages in the use
of mean-shift for clustering. First, it does not require a specific
number of clusters to implement the procedure. There are many
ways to estimate the bandwidth with data a prior [32], and it can
be easily modified with a single bandwidth parameter for a specific
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Fig. 2 Partitioning in 2D simulation study: (a) agglomerative clustering [11] and (b) SVC on mean-shift

number of clusters. Second, its complexity is independent to input
dimension, so it is numerically more advantageous than the
tessellation-based methods in high-dimensional problems. The
training complexity is the squared number of data, but can be
reduced to O(n log n) with additional algorithms. Let X; be the aug-
mented vector of x; with 4; = h(x;) and consider a nonnegative band-
width parameter y for the kernel to climb the density of the
heterogeneity feature (e.g., finite difference). Then, we can find
the heterogeneity mode associated with X € Q X R by iteratively
updating the mean-shift vector (Z) as follows:

2
i Kiexp (—(1/2>H @ —-%)/7| )

ij+| =ij +

. ™
iy exp (—(1/2>H @ —x)/r| )

for j=1, 2, ..., until its convergence. The sequence of Eq. (7)
begins from each of Z, € {X;}\_,, and the number of converging
modes is the number of clusters. The number of partitions is
important, while the mean-shift procedure may not provide a
desirable partition. Especially, in the case of no prior knowledge
about the presence of heterogeneity, decision of the number of
partitions can be very challenging. In this case, the number of
clusters should be set in a conservative manner (i.e., as small as
possible) to keep the possible correlation between subregions,
and the mean-shift result should be examined and modified
according to some criteria (e.g., the size of each cluster, the
number of clusters).

However, the resulting mean-shift model cannot be used for
active learning, since it requires the heterogeneous feature of unob-
served data. Thus, we need to employ a discriminative function that
classifies input to the heterogeneity classes induced by the mean-
shift procedure. Although there are several candidate classifiers
(e.g., support vector classification (SVC), decision tree, k-nearest
neighbor) for the discriminative function, nonlinear SVC is
mainly employed in this article owing to its flexibility and effective-
ness in high-dimensional problems. The discriminative function
will be the region classifier, and the procedure is provided in
Algorithm 1.

Journal of Computing and Information Science in Engineering

3.3.2 Partitioned Information Criterion. In this section, we
dedicate to the construction of the information criterion induced
by the heterogeneity-based region classifier. When the IMSE crite-
rion is considered for a candidate location x € Q,,) with PGPs, it
can be written as follows:

J(x) = Z Lz Var( fu(sa))p(sq) dsgy

I#m

+ J Var(fimSom %) P(Son) dSony (8)
Q)

where s,,,) € £,,). The interpretation of each term in Eq. (8) is quite
worthwhile. The first term is the sum of IMSEs except for f(,,,), and it
is invariant to the choice of x € Q,,,). The second term is equivalent
to Eq. (4), in which f,,,, is only considered, so that Eq. (8) will only
take account of the local region where the candidate is located.
Briefly, there are two main differences between (4) and (8): (i) con-
sideration of IMSEs over other local regions; and (ii) the localized
IMSE criterion. We focus on each term subsequently considering
their meanings, thereby efficiently minimizing Eq. (8).
Heuristically, Eq. (8) is more likely to be minimized when the
most uncertain local GP, which has more potential to be reduced
with additional observations, is considered in the second term,
since the local GP. Each IMSE in the first term indicates the
regional uncertainty of PGP, so it can be used for investigating
the most uncertain region. Let us denote the regional uncertainty
of each local GP as V, for me[M]. The global searching
choose the most uncertain region from the following categorical dis-

tribution:
N V
m ~Cat< M(liv M(M\)/ ) ©)
2=t Vom 2=t Vom

A straightforward way to choose the most uncertain region is to
select the maximum in the sequence of regional uncertainty,
while sampling from Eq. (9) can prevent some undesirable states
such as falling into a specific subregion due to insufficient informa-
tion about other subregions, or presence of multiple subregions with
comparable variance.

Once the most uncertain region is determined by Eq. (9), we
focus on the second term within Q.+, as the local searching with
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the following criterion:

x*=arg min J Var(fim) (Sony| X)) X p(Seue)) dSguey — (10)
ﬂ(m*)

XEQ(%)

Since the local GP in Eq. (10) reflects the local behavior of under-
lying function excluding heterogeneity from other regions, it can
lead to improvement in the exploitation of active learning by avoid-
ing implausible predictive uncertainty. We call the sequential crite-
ria (9) and (10) by partitioned IMSE (PIMSE) and the active
learning with PIMSE as partitioned ALC (PALC). The PIMSE cri-
terion asymptotically converges to a steady state as the number of
observations increases as the following proposition.

ProrosiTioN 1 (Convergence of PALC). The PIMSE criterion
uniformly converges on Q as n — co.

Proof. Let us denote the local IMSE criterion in Eq. (10) with n
observations as J,,. The sequence of {J,,, J+1, ...} is monotonically
decreasing for all x € Q by Theorem 2 of Ref. [17] and clearly lower
bounded by zero. Thus, it converges. n

It is noteworthy that the uniform convergence in Proposition 1
implies that it leads to the best estimator of f, which of uncertainty
is irreducible. That is, if one employed the stochastic local kriging,
the PIMSE criterion will be asymptotically dominated by the intrin-
sic uncertainty of the nugget effect.

Algorithm 1 Partitioned ALC

1:  Prerequisite: D = (X, y), Niter, Nrefs Neand
2: Partitioning based on Heterogeneity
Calculate h with D
Implement mean-shift (7) on (X, h) to generate M clusters
Train g on X and the generated cluster labels m
Train f on D with g by maximizing (2)
: while i < Ny, do
5: Global Searching:
Generate X C Q with Nr space-filling design
Calculate V,,, for m € [M] with Xe¢ with (11)

Vi V) )
m* ~ Cat( s
2 Von > Vo

6: Local Searching:
Generate Xcang C Q) With Neang space-filling design
Obtain x* by solving (10) with Q(,;) = Xcand
Obtain y* at x*
D =Du{(x*,y")}
Update g and f on D
i=i+l
end while

W

R
T e

The pseudocode of PALC is provided in Algorithm 1. The pre-
requisite values {Njer, Nier, Neana} stand for the number of attainable
samples (i.e., budget), reference design points for Eq. (9) and can-
didate points for Eq. (10), and they are required for practical imple-
mentation of the proposed algorithm. X, is a reference set
composed of N.s space-filling points ({s,-}?ijf C Q), which is

required to implement the global searching as follows:

Nyer

> Var(f(six)) p(Son.) (1)

i=1

Vi =~
o N ref

where p(S()i) is the approximated probability mass function at
Sgmy.i- Then, Neung is passed to generate the candidate pool X ng C
Qun+, and the subset of the reference set associated with the
chosen subregion will be used for solving Eq. (10). In this article,
we have generated X,.r and X ,,q with new LHD in every step in
order to encourage exploration.

041009-6 / Vol. 23, AUGUST 2023

Aside from the main algorithm, there is no universal concrete
theorem for the optimal portion of initial sampling, while some
empirical suggestions can be found in Refs. [5,26]. However, we
can conjecture that the number of initial samples has a trade-off
property. If the initial sampling is weighed too much, the advantage
of active learning will be diluted. Otherwise, active learning can be
hindered by low-quality information from unreliable intermediate
models. Also, in the case of the region classifier g, the number
should be enough to obtain an acceptable g. For termination of
the active learning procedure, early stopping can be a reasonable
choice other than the sampling budget in Algorithm 1 when a sep-
arated testing dataset or cross-validation scheme is available.

3.4 Cholesky Update-Based Numerical Remedies to Tackle
the Computational Complexity Challenge. The IMSE criterion is
numerically more demanding than the variance criterion, since it
involves the inversion of K,.;, which should be updated for
every candidate. That is, calculation of the IMSE criterion requires
O(n?) for each candidate. Moreover, when N candidates are pro-
vided to the active learning module, the computational cost is mul-
tiplied by the number. Although the significance of their effects may
vary with situations, the effect of candidate number can be more
considerable than the inversion cost. Therefore, in order to
improve the numerical aspect of PALC, we should provide some
remedies for both matrix inversion and the number of candidates.

The global searching reduces the number of candidates by nar-
rowing down the region of interest. Generally, candidates for
active learning are given with space-filling or dense-grid over the
design space. Therefore, taking the subset of candidates in the
most uncertain region with the global searching leads to reduction
in the number of matrix inversions proportional to the ratio of the
chosen region from Eq. (9).

The matrix inversion cost of PGP is automatically alleviated by
partitioning the design space with the block diagonal covariance
matrix. That is, the inversion cost reduces from O(x°) to at most
O(ngmy*), where ng,y<n. Another applicable remedy is updating
the inverse of K,, .1 in Eq. (10) exploiting K, ] iteratively.
Although it is possible to apply the Sherman—Morrison formula
to get the updated inverse matrix [14], the Cholesky decomposition
[6] for solving the linear system K, ’}”k could be more preferable
considering the numerical stability and cost. Given that the Cho-
lesky factor (a lower triangular matrix) of K, is known, updating
the Cholesky factor of K, +1 only requires the forward substitution
step of the size n,, triangular system; thus, it needs only O(n%m))
instead of O(ny°). A more detailed procedure of the Cholesky
update is provided as follows.

Suppose we have the Cholesky factor L of K, which is the
covariance matrix of X,,, such that K, =LLT. We aim to get the
Cholesky factor L of

K, k;
Kn+] - |:k:;T k(X*)j|
where x* is a candidate input and k, = k(X,,, x*). Since K, shares
the same part of K,,, it turns out that the first n x n elements of L is

equivalent to L. Therefore, we can apply the Cholesky—Banachie-
wicz algorithm for L as follows:

; L (k:i Sy ijLiJ)v i€ [n]
i = —
VR =3 Ly, i=n+1

Rather than calculating the PIMSE directly, PALC can be faster
by skipping the redundant computation by applying the Cholesky
updating approach. The Cholesky factor L can be used for the pre-
dictive variance of GP in Eq. (3) for s € Xg., and the global search-
ing criterion of Eq. (9) can be expressed as follows:

Var’(s) =k(s) =V, Va, Vo =L7'k,
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where Kk, =k(X,, s). In the same manner, the optimal solution of
local searching in Eq. (10) can be obtained by minimizing

Var(zm*)’n(m*) +18) =k(s) —v* Ty (12)

v =L""k(Xys1, 9) (13)

Since we already have the solution of (13) partially with v (i.e.,
v¥[1 : n]=v,), we need only v, : =v*[n+ 1], which can be cal-
culated with a forward substitution as follows:

n
Vi =k(x*, s) - ZLij
=1

Since k(s) in Eq. (12) is invariant to s and x*, only the second term
v*v* is usually considered as the simplified PIMSE criterion,

which must be maximized in PALC.

4 Simulation Study

In this section, we evaluate our active learning algorithm with
simulation data. Two functions are considered that can be visualized
straightforwardly. Both functions contain heterogeneous response
surfaces, and observation noise is involved. In order to reduce the
variability from the random initial dataset, each simulation is repli-
cated ten times. As our benchmark methods, ALC and ALM are
considered for SGPs, and the following partitioned active learning
methods are considered: (i) the variance criterion for the local
searching (PALM); (ii) PALC without global searching
(PALC-NoG). In addition, uniform random sampling (Rand) and
LHD are also considered as passive learning. For evaluation of
models, one thousand space-filling design points for each design
space are used with root-mean-squared error (RMSE) as the
metric. Total computational times spent on querying are also com-
pared excluding the model training time.

4.1 One-Dimensional Data. We apply our proposed active
learning algorithm to a one-dimensional simulation function:

F(x) = 2xsin (87x*)

which is defined on [0, 1] as the dotted line in Fig. 3. Zero-mean
Gaussian noise is imposed with variance o*=10"*. We allocate
ten samples for initial training using Maximin LHD, and 20
samples are sequentially obtained via active learning. The function
is differentiable, with heterogeneous frequency and amplitude over
the domain. With the variation feature in Eq. (5), heterogeneity-
based partitioning provided two to three partitions, and the
number is set to two considering the number of initial samples

VAR

IMSE

00 025 05 075 10
X

and the dimension by adjusting the bandwidth parameter with
grid searching over [107>, 10°]. Afterward, logistic regression is
used for the region classifier, which resulted in the decision bound-
ary around x =0.38-0.65.

Figure 3 shows each GP model fitted with initial samples. First,
Fig. 3(b) illustrates that the PGP prevents misled active learning by
providing appropriate predictive uncertainty. Also, we can observe
from Fig. 3(a) that the next design point to be queried in the SGP
model is chosen from the low-frequency region with both variance
and IMSE criteria. Meanwhile, in the PGP model, the variance cri-
terion takes the point from the boundary, while the IMSE does not.
It implies that the IMSE criterion can be more promising when the
adjacent local GPs show comparable predictive uncertainties.

Table 1 summarizes the results after the full data acquisition,
where the numbers in parentheses indicate standard deviation of
the results from replications. We grouped the considered methods
into three: (i) passive learning (Rand; and LHD); (ii) variance
methods (ALM; and PALM); and (iii) IMSE-based methods
(ALC; PALC-NoG:; and PALC). We can observe that the predictive
accuracy of PALC outperforms the others. In the computational
time, variance methods (ALM and PALM) are definitely faster
than the IMSE-based methods, while they are deficient in predictive
accuracy; ALM even worse than the random sampling and the
LHD. Among the IMSE-based methods, PALC is faster than the
others. Moreover, if we focus on PALC and PALC-NoG, we can
observe that the global searching does not only reduce the compu-
tational time but also improve the learning efficiency.

4.2 Two-Dimensional Data. We extend the simulation study
to a two-dimensional function (shown in the left of Fig. 4(a)),
which is also used in Refs. [13,14]. The function is composed of
two regions: even and uneven, and zero-mean Gaussian noise
with variance 6*=107° is imposed as the observation noise. In a
similar manner, we begin with 15 samples with LHD and obtain
15 additional samples via active learning.

For partitioning the design space, we used finite differences as the
heterogeneous feature and used SVC after labeling initial samples
based on the mean-shift result as shown in Fig. 4(a). Some initial
dataset yielded three partitions with affordable evenness, while
we adhered to two partitions due to the majority of two partitions
in all replications. Since region 1 is less interesting than region 2,
we can observe that the PIMSE criterion induced by two indepen-
dent local GPs provides more relevant information of design
points as shown in Fig. 4(c). Consequently, the IMSE criterion
with the SGP fails to pick from the more interesting region due to
the misled information criterion. The results with standard deviation
(in parentheses) are summarized in Table 2, and we can see that
PALC surpasses the other methods again in both predictive accu-
racy and computational time among the IMSE-based methods.

;
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Fig. 3 Results of different active learning algorithms in 1D simulation: (a) SGP and (b) PGP with two local GPs
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Table 1 One-dimensional simulation study results
Methods RMSE Time (s)
Rand 0.395 (0.152) —

LHD 0.332 (0.133) —

ALM 0.352 (0.159) 0.341 (0.140)
PALM 0.072 (0.270) 0.144 (0.049)
ALC 0.272 (0.205) 11.468 (0.424)
PALC-NoG 0.051 (0.277) 7.049 (0.024)
PALC 0.048 (0.273) 3.553 (0.137)

Note: Predictive accuracy of PALC outperforms the others, which is denoted

in bold.

5 Case Study

In this section, we apply our approach to construct surrogate
models for three different real-world cases. The purpose of the sur-
rogate models is to embed them into automated systems and to
provide UQ in posterior analysis. Apart from the benchmark

(@)

10

methods in the simulation study, we also considered agglomerative
clustering in Ref. [11] for case study, while it was inapplicable due
to generation of singleton clusters as in Sec. 3.3.1. For mean-shift in
our approach, we adjusted the number of partitions referring to
evenness of clusters for all cases as the simulation study, since
we have no prior knowledge about underlying partitioning. Case
studies include higher input dimensions than the previous

simulations.

5.1 Residual Stress of Composite Fuselages in Aerospace
Manufacturing. We apply our proposed active learning strategy
to construct the predictive model of residual stress in the composite
fuselage assembly process. In the aircraft manufacturing process,
composite fuselages are built in several subsections independently,
so they are subject to the discrepancy in the junction part. The com-
posite fuselage is reshaped using multiple fixed actuators in the
automatic shape control. In order to achieve the optimal manufac-
turing process, the shape control needs to consider not only the
deformation but also the residual stress in the structure due to
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Fig. 4 IMSE criterion contour plots in 2-D simulation: (a) Ground truth and initial design points with partitioned regions,

(b) IMSE of ALC, and (c) PIMSE of PALC
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Table 2 Two-dimensional simulation study results

Methods RMSE Time (s)
Rand 0.044 (0.017) —
LHD 0.046 (0.021) —
ALM 0.060 (0.023) 0.344 (0.081)
PALM 0.019 (0.025) 0.151 (0.026)
ALC 0.039 (0.013) 8.368 (0.161)
PALC-NoG 0.026 (0.004) 5.570 (0.593)
PALC 0.016 (0.005) 1.924 (0.016)

Note: PALC surpasses the other methods in both predictive accuracy and
computational time among the IMSE-based methods, which is denoted in
bold.

their fatal affects on the final product. The development of highly
accurate predictive model for the shape control is very challenging
since the problem is endowed with both heterogeneity and the
demanding cost of real experiments. Especially, the stress of com-
posite fuselage is more difficult to predict than deformation [9], we
apply our method and other benchmarks to predictive modeling of
the stress.

In order to implement our case study cost efficiently, we utilized
the FEM model with ANSYS [33], which is well calibrated based
on the real experiment. The simulation mimics the real-shape
adjustment process that has ten actuators under the fuselage
section as shown in Fig. 5(a) [34], and the maximum magnitude
of actuator’s force is 450 1bf. The maximum residual stress on the
fuselage section is our interest, which is shown in Fig. 5(b) and
measured in the psi scale. The ten-dimensional design space is par-
titioned into three regions with SVC based on finite differences,
since a higher number of partitions yields singleton clusters. The
Matérn kernel is used for GPs. As the initial dataset, 50 LHD
samples are drawn, and additional 30 samples are sequentially
obtained from 1,000 LHD points with different active learning strat-
egies. The model evaluation is conducted with a separated testing
dataset composed of 100 LHD samples, and mean absolute error
(MAE) is used as a metric.

Table 3 summarizes the results of each learning strategy in the
case study. PALC surpasses the other methods in both predictive
error and the computational time among the IMSE criterion-based
methods. Interestingly, except for PALC-NoG, the other active
learning methods are worse than two passive learning strategies.
The reasons can be summarized as follows. First, the superiority
of PALC over ALC tells that partitioning is beneficial in this
problem. Second, even though PALM also partitions the design
space, the variance criterion thereof is subject to oversampling at

o

boundaries [1]. That is, the variance criterion tends to sample
from decision boundaries, which is also preferred in the adjacent
subregions due to independence. Moreover, it can be exacerbated
when the design space dimension and the number of subregions
increase, thereby the decision boundary getting more complexity.
In computational times, we can observe that PALC-NoG took
more time than ALC.

5.2 Tribocorrosion in Aluminum Alloys. As our second case
study, the material loss rate during stress corrosion (i.e., tribocorro-
sion) in aluminum alloys with six control variables is considered.
To test the tribocorrosion resistance of metals, experimental tests
and FEM simulations were carried out by scratching the surface
of the samples in the corrosive environment [35,36] as shown in
Fig. 6. During the tribocorrosion process, the mechanical deforma-
tion and the electrochemical processes including active corrosion
and passivation work synergistically to cause material degradation.
The FEM model calculates the contact mechanics between the
indenter and the sample, simulates the wear process as well as the
wear-accelerated material dissolution of the corrosion process,
and generates the volume loss results. The six control variables
for the FEM model are material property descriptors: young’s
modulus, yield strength, anodic Tafel slope, anodic exchange
current density, cathodic Tafel slope, and cathodic exchange
current density. The former two govern the mechanical properties,
while the latter four determine the corrosion behavior of the alloy.
The output of the FEM model is the tribocorrosion rate of the alloy,
expressed as volume loss per time.

The surrogate model of the FEM model is constructed to assist
the optimal design of alloys with uncertainty quantification and alle-
viating the high-computational cost of the FEM model. To establish
the relationship between material property and tribocorrosion rate, a
total of 106 FEM simulations were performed by systematically
varying the six control variables. Since scales of variables in the
dataset are inconsistent, each variable is normalized to be within a
unit interval. For evaluation, relative mean absolute error
(RMAE) is used as a metric due to the infinitesimal scale of the
output. The RMAE is calculated as follows:

1 lyi — (x;
RMAE=—Z|y (x7)]
ni=l |yl|

The PGP in this case is composed of three local GPs with the
RBF kernel, and the SVC model is used for partitioning based on
the finite differences, which provided quite even-sized clusters.
Considering the relatively small size of samples, fivefold cross-
validation is used. That is, about 84 samples are passed to each

Fig. 5 Shape adjustment of composite fuselage: (a) composite fuselage installed upon the fixture with actuators [34] and

(b) simulated residual stress of composite fuselage in ansys
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Table 3 Residual stress case study results

Table 5 Inverse dynamics of robot arm case study results

Methods MAE Time (s) Methods SMSE Time (s)
Rand 3.858 — Rand 1.578 0.474
LHD 3.319 — LHD 1.441 0.551
ALM 4.545 26x107*  ALM 1.446 0.973
PALM 11.555 25%x107*  ALC 1.452 425.740
ALC 4.693 11.596 PALC 1.093 237.672
PALC-NoG 3.691 12.750

PALC 3.207 9.729

Note: PALC surpasses the other methods in both predictive error and the
computational time among the IMSE criterion-based methods, which is
denoted in bold.

AN kv,:

SRR
WAVa

Fig. 6 Schematic tribocorrosion simulation setup

Table 4 Tribocorrosion case study results

Methods RMAE Time (s)
Rand 0.028 (0.017) —
LHD 0.028 (0.017) —
ALM 0.026 (0.017) 0.014 (0.003)
PALM 0.023 (0.012) 0.104 (0.000)
ALC 0.022 (0.013) 1.283 (0.127)
PALC-NoG 0.022 (0.012) 0.764 (0.018)
PALC 0.020 (0.013) 0.757 (0.017)

Note: PALC achieves the minimum averaged predictive error and the
computational time among the IMSE-based methods, which is denote in
bold

model as the candidate set, and the rest of samples are used for the
model evaluation. Compared methods are trained up to 50 samples
from 20 common initial samples.

Table 4 shows the result of each learning strategy, where the
parenthesized numbers are standard deviations from cross-
validation. We can observe that PALC achieves the minimum
averaged predictive error and the computational time among the
IMSE-based methods. Passive learning methods are worse than
others, and the variance methods are also worse than the IMSE-
based methods. In this case, overall computational times are
much lower than the previous case due to the small number of
samples in the candidate pool, while the numerical remedies in
PALC have significantly reduced the time of ALC.

5.3 Inverse Dynamics of Robot Arm. We apply partitioned
active learning to the inverse dynamics problem for a seven
degrees-of-freedom robot arm, of which original data are introduced
in Ref. [6]. This problem has 21-dimensional input: positions,

041009-10 / Vol. 23, AUGUST 2023

Note: PALC can significantly reduce the time of naive IMSE with our
proposed method, which is denoted in bold.

velocities, and accelerations of seven joints, and seven-joint
torques as the output. The dataset contains 44,484 training
samples and 4,449 testing samples. We regard the training dataset
as the unlabeled data pool, so that we take 30 initial samples with
D-optimal design [1] and obtain 30 additional samples from the
pool. The testing dataset is referred to as the reference dataset in
IMSE-based methods. For model evaluation, standardized MSE
(SMSE) is used, which is

It (w —f(Xi))2
SMSE= ; Var(Vees)

considering the scale issue. Since we had no specific prior knowl-
edge in the problem, we assigned two partitions according to the
finite difference clustering result.

Results in Table 5 show that PALC outperforms other methods in
the prediction accuracy. The computational time result also shows
that PALC can significantly reduce the time of naive IMSE with
our proposed method. To compare partitioning methods in high-
dimensional setting, we also implemented agglomerative clustering.
For the initial dataset, agglomerative clustering was inapplicable
when the number of initial dataset was less than the input dimen-
sion. For 30 samples, it took 3—4 s, while the proposed partitioning
method took only less than 0.1s. Moreover, for 60 samples, our
method took only 0.3 s, while the agglomerative clustering took
more than 1200 s with memory overflow error in Voronoi
tessellation.

6 Conclusion

Active learning is machine learning that seeks to improve sam-
pling efficiency and lower data collection cost. Existing active
learning strategies mainly focus on investigating homogeneous
response surfaces, and hence, they are insufficient for reliable and
cost-efficient surrogate modeling of heterogeneous systems. This
article dedicated establishing an efficient partitioned active
leaning strategy that adopts two-step searching schemes based on
the PIMSE criterion structure. By partitioning the design space
into multiple subregions according to heterogeneity in the target
system, the global searching scheme refers to the integrated predic-
tive uncertainties of local GPs to determine the most uncertain sub-
region. The global searching scheme allows us to reduce the region
of interest, thereby not only accelerating the searching speed but
also improving the overall learning efficiency. The local searching
scheme exploited the chosen local GPs in the global searching
phase, so the localized IMSE criterion may provide more relevant
information minimizing the interruption of heterogeneous charac-
teristics in other regions. For the numerical perspective of active
learning, the following applicable remedies are provided: reducing
the number of candidates with the global searching scheme, and the
Cholesky factor update, which can be embedded into PALC.

In the simulation and the case study, PALC outperformed the
benchmark methods including passive learning, the variance crite-
rion, and the IMSE-based methods. Furthermore, the global search-
ing scheme dramatically improved the performance of PALC by
comparing our method to the PIMSE without the global searching
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step. Although the proposed method needs some parameter explo-
ration for mean-shift, the partitioning method is computationally
much faster in the high-dimensional problems. It would be benefi-
cial to incorporate other types of heterogeneity apart from the pro-
vided features in this article, e.g., different distribution family,
linear and nonlinear. Diverse case study results imply that our
method is also applicable to other domains where heterogeneity
exists.
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