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ARTICLE INFO ABSTRACT

Dataset link: https://github.com/nanoMFG/un Scanning electron microscopy (SEM) is one of the most common approaches to the characterization of
et-sem synthesized 2D materials such as graphene. Images from SEM contain detailed information about crystalline
properties, domain size, and nucleation density, but typically are analyzed through a laborious, serial process
that relies on the trained eye of synthesis experts. In this work, we demonstrate an image segmentation neural
network that automatically distinguishes between pixels in SEM images that correspond to regions where
graphene is and is not present. We utilize the U-Net architecture to learn on a training data set of more than 90
pre-labeled images coupled with moderate image augmentation. Comparing the performance of models trained
on smaller high fidelity data set to those trained on larger low fidelity data sets, we find that higher quality is
more valuable than higher quantity for achieving good performance. When neural network hyperparameters
such as batch size and learning rate are properly tuned, the learned model shows an accuracy for classification
of over 90% and an F1 score over 80%. The neural network trained on SEM images of graphene shows
reasonable performance when directly applied to other 2D materials, suggesting the possibility of use in transfer
learning. Detailed analysis of the inner workings of the model reveals that the domain edges are most critical
for making classifications when segmenting the image. We also show the use of a post processing technique
to estimate the graphene domain size using segmented masks. This demonstration shows the potential for
SEM image segmentation at scale using deep learning approaches and gives insights into best practices for
improving model performance.
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1. Introduction

Rapid, efficient, and accurate characterization of graphene will
accelerate the discovery of scalable manufacturing recipes to enable
high performance mechanical [1,2] and electrical devices [3-6]. After
years of effort, synthesis still remain a pervasive challenge [7-10]. Scal-
able manufacturing of graphene-based electronics requires high quality
graphene synthesized reliably on substrates compatible for device use.
Currently, synthesis recipes suffer from trade-offs between repeatabil-
ity, quality, and growth conditions [11]. For instance, high quality
graphene with large single crystalline orientation requires expensive
single crystalline catalyst substrates, extremely demanding conditions
(temperature and duration), or inefficient transfer from growth to
device substrate [11].

An elusive bottleneck to explore and optimize synthesis recipes is
the slow, qualitative, and laborious process of characterizing the pro-
duced graphene. Most commonly, scanning electron microscopy (SEM)
images are used to analyze samples and collect quantitative data [12].
SEM images provide information such as coverage (percentage of the
area covered by graphene), domain (or grain) size and shape, and
nucleation density — important metrics to quantify the quality of
synthesized material. But producing these metrics efficiently requires
accurate, automated methods of feature extraction that overcome the
time intensive analysis process. Feature extraction from SEM images of
2D materials at scale could be used by data-driven or machine learning
techniques in a closed loop optimization of synthesis recipes towards
reliable manufacture of large quantities of graphene.
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Fig. 1. Example SEM micrographs of graphene showing a diversity of coverage, contrast, flake size, and flake shape in the graphene domains taken at varying magnifications.

Some images contain artifacts which makes the task of segmentation more difficult.

In the past few years, several machine and deep learning techniques
have been employed for segmentation of microscopy images with both
speed and accuracy. While most of these techniques have been applied
to optical images [13-22], a few have focused on transmission [23-
31] or scanning [32,33] electron microscopy. Optical microscopy often
generates colorful images with sharp features and contrast. Machine
and deep learning approaches here largely employ supervised learn-
ing [13-16,20-22,27-31], although a few unsupervised methods also
work well [17-19]. The contrast and distinctive features offered by
optical micrographs of 2D materials have enabled real-time detection
within autonomous robotic systems [14], detection of diverse materials
and van der Waals heterostructures [15], and feature analysis includ-
ing edges, shapes, flake sizes, and their distributions [13]. Analysis
of electron microscopy images has proven to be more challenging.
Whereas optical microscopy provides red—green-blue (RGB) channels
for data analysis, the gray scale nature of electron microscopy images
inherently contains less information (a single channel) to distinguish
features. Applications of deep learning to electron microscopy images
include nanoparticles and their coarsening dynamics [23,31], neu-
ronal membranes [24], defect detection [27-30], and classification
of disparate types of OD, 1D, 2D, and 3D nanostructures [32,33].
For electron microscopy images, most techniques to date use neural
networks [23,24,32] with architectures such as AlexNet, ResNet, and U-
Net. AlexNet [34] is the first study using convolutional neural networks
(CNNs) in the field of computer vision and is still widely used. The
“levels” of features identified by such networks can be improved by
increasing the number of layers (depth) in such networks. Unfortu-
nately, a result of increasing depth is often higher training and testing
error [35]. ResNet [35] is another popular CNN architecture employed
for computer vision tasks. It uses “shortcut connections” to allow the
network to skip a few layers and tackle the problem of rising error. Both
these architectures require large training data sets, ranging from 500 to
millions of training images, which is not ideal for applications involving
2D materials where a labeled data set of images does not exist. U-
Net [36], an encoder-decoder that can be trained on relatively small

data sets, stands out for its effectiveness in the medical field [37-41]
and on optical images of 2D materials [13-16,20-22].

Segmentation of SEM images of 2D materials like graphene presents
unique hurdles for deep learning approaches. Graphene, when viewed
in an SEM, exhibits a visual contrast from its surroundings that makes it
amenable for automated image segmentation [12]. Yet, graphene shows
up in various sizes and shapes (although ideally hexagonal), various
contrast ratios, and often with many artifacts and other undesirable fea-
tures present (see Fig. 1). Due to graphene’s 2D nature, images do not
benefit from distinctive differences in dimensionality and depth. Due
to this complexity, simple techniques such as binary color masking are
inaccurate (see example in Figure S1). Unsupervised techniques such
as k-means clustering [42] are not scalable, since they require time-
consuming manual input from users to select the number of clusters,
adjust hyperparameters, and assign labels to each cluster (Figure S2).
Neural network based approaches that work with gray scale electron
microscopy images have been developed for, e.g., nanoparticles with
depth [32,33] or cross sections of 3D materials with regular defining
features [23,24]. However, their application to 2D materials is chal-
lenging since these models may have difficulty extracting meaningful
features from images that lack depth and exhibit irregularity in shape,
contrast, and size.

In this work, we demonstrate the application of U-Net to automated
segmentation of SEM images of graphene synthesized by chemical
vapor deposition (CVD). We use software developed in-house, as part
of the Graphene Recipes for Synthesis of high Quality materials (Gr-
ResQ) framework [43], to first generate a data set of training images.
Using this data set, we train a U-Net neural network to segment SEM
images of graphene into pixels that contain and pixels that do not
contain graphene, and show that it can automatically and rapidly
quantify the coverage of graphene. We analyze the effect of training
data quality on the performance of the model, and find that a smaller
set of high quality training data is more valuable than a larger set of
lower quality training data. The model trained on images of graphene
is additionally able to segment SEM images of other 2D materials
with reasonable accuracy, showing promise for transfer learning. Since
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Fig. 2. Workflow for the training of a neural network to automate the analysis of SEM images of graphene. First SEM images of graphene samples are segmented using unsupervised
techniques to generate training data. Data augmentation is sued to generate a larger data set of training images. Then the U-Net neural network is trained and its hyperparameters
optimized. The trained model is capable of calculating the percent coverage of graphene. Finally, the trained model is analyzed to obtain a better understanding of the inner

workings of the neural network.

Table 1

Parameters used for image augmentation.
Operation Range
Rotation +20°
Width Shift 5%
Height Shift 5%
Shear 0.05 radians
Zoom 95-105%
Brightness y =10.2,1.8]
Vertical Flip 50%
Horizontal Flip 50%

)

neural networks are sometimes viewed as “black box” methods, we
perform DeepLIFT [44] analysis to obtain a visual interpretation of
the inner workings of the model, which provides insights into the key
aspects of the image that enable accurate classification. This work
presents an automated technique for the analysis of SEM images of
graphene, towards fostering the closed loop optimization of synthesis
recipes for scalable manufacturing. The trained model is available for
general use [45], and is compatible with deeplmageJ [46], a plug-in
that allows users to use pre-trained neural networks in ImageJ and Fiji.

2. Methods

Fig. 2 shows the complete workflow we used. To generate training
data for the neural network, starting with a set of SEM images we first
created a binary mask for each image that segments the image into
regions that contain graphene and those that do not. For this, we used
techniques such as template matching [47] and k-means clustering [42]
for accelerated mask generation with the help of the Gr-ResQ Image
Tool [48]. We next applied data augmentation to grow the data set,
used the masks to train a U-Net neural network, and explored different
batch sizes and learning rates to find the optimal hyperparameters.
Once a good model was obtained, we performed DeepLIFT analysis to
identify the importance of each pixel in the segmentation process to get
insights into how the neural network determinations are made. These
steps are discussed in more detail below.

2.1. Generation of training data

To begin, we collected a comprehensive set of 203 SEM images from
in-house CVD graphene synthesis experiments that were carried out
over the last ~5 years in the Kinetic Materials Research Group (lead:
Tawfick). These images were collected under diverse conditions using
several different scanning electron microscopes. A selection of these
images is presented in Fig. 1, showing a diversity of nucleation densi-
ties, flakes sizes and shapes, and different magnifications. Some images
show large monodomain regions, while others show large numbers of

small hexagons distributed across the field of view. Some images may
not even contain discernable graphene.

Using this collection of images, we generated 113 “high fidelity”
masks, which were split into 93 training and 20 testing high fidelity
masks, and 90 “low fidelity” masks (all subsequently used for training).
While high fidelity masks are those could be accurately segmented
using manual techniques, the low fidelity set comprises images with
complex features that made manual mask generation challenging and
resulted in less accurate masks. Examples include images with large
numbers of small, disperse graphene domains spread across the SEM
field or images that include artifacts or contaminants that were difficult
to distinguish from substrate or graphene. Masks from such images
proved to be too cumbersome or even impossible to fix manually. Note
that the distinction between high and low fidelity was made by human
inspection, and a selection of examples of high and low fidelity masks
are shown in the Supporting Information (Figure S3).

Due to the laborious process creating masks manually to use for
training data, our set of training images is small in comparison to
some other data sets used for segmentation of images from electron
microscopy. For example, the general purpose shared data set [49] used
in Refs. [32,33] contains ~18,580 images from a variety of sources
including biological systems, fibers, MEMS devices, patterned surfaces,
and others but does not contain images of 2D materials that are of
interest here. A data set of 2,400 TEM images was generated to train
a neural network to detect nanoparticles on a substrate [23]. On the
other hand, only 30 images were used to train a neural network for the
specific application of identification of neuronal membranes from TEM
images [24], showing that segmentation is possible on smaller data sets
for dedicated applications.

To capitalize on the relatively small data set of images, we em-
ployed data augmentation to generate and provide images of varying
shape, size, contrast, and other sources of complexity of SEM images
of graphene. For each augmented batch, an image was selected and
the following augmentations were performed: rotation, shift, shearing,
magnification, horizontal and vertical flipping, and brightness modi-
fication. The parameters for these augmentations are summarized in
Table 1. These augmentations were applied to both the high and low
fidelity data sets.

2.2. U-Net neural network

U-Net is a convolutional neural network (CNN) architecture that
reduces an input image to a latent space representation with successive
downsampling. This latent representation is then upsampled with each
layer including additional input from the downsampling steps to impart
contextual information to the output. To create the neural network, we
used the Keras/Tensorflow python framework [50,51] run in parallel
across 8 Voltal00 GPUs.
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Fig. 3. The U-Net architecture. The encoding half of the U-Net reduces the input to
a latent space representation where the relevant pixels are activated and the decoding
half brings the latent space representation back to 2D space with the copy and crop
steps imparting contextual and spacial information. Legend: ReLU denotes Rectified
Linear Unit (ReLU) activation; the dropout layer uses a 0.5 dropout rate; “copy and
crop” indicates a concatenation layer with information copied and cropped from a
previous layer.

The specific architecture we used is illustrated in Fig. 3. The
512 x 512 resolution input image is first run through two convolution
layers (with padding) with 3 x 3 tile sizes. The output is then put
through a 2 x 2 max pooling layer. This process is repeated three more
times, with the last downsampling iteration adding a 50% dropout
step before max pooling. The first convolution increases the number of
channels to 64 and for each subsequent level, the number of channels
is doubled until there are 1024 channels as illustrated. The first upsam-
pling step is also combined with a 50% dropout layer. Each upsampling
step goes through a 3 x 3 convolution layer that halves the number of
channels. It is then concatenated with the output from the convolution
layer from a corresponding downsampling step, as indicated by the gray
arrows in Fig. 3. Following two more convolution layers, the number of
channels is halved. The upsampling step is repeated three more times
until the number of channels is again 64. The output is then fed into
one last 3 x 3 convolution layer with two input channels and a 1 x 1
convolution layer with a single output channel. With the exception
of the last layer which has a sigmoidal activation, all activations are
rectified linear unit (ReLU) functions. The model was trained with
batch sizes of 8, 16, and 32 images for 100 epochs. We used the binary
cross entropy to calculate the loss as:

L(x,z) = —(zlog(g(x)) + (1 — z) log(1 — g(x))) (@]

where x are the logits (converted from the output layer), z are the labels
(i.e. 0 or 1), and g is the sigmoid function. To calculate the gradient
updates, we used the RMSprop optimizer with an initial learning rate
of 0.0001.

2.3. Domain size estimation via post-processing

As the trained network outputs pixel masks with classification of
graphene vs. background, post-processing of these masks is needed for
analysis of other quantities of interest such as domain size or regularity
of crystalline domains. As an example of post-processing images for
structural analysis, we have developed an automated technique to
automatically calculate the mean domain size of the graphene domains
in the image from the model output, i.e. the binary segmented images.
In this subsection, ‘“domain” indicates a single grain of graphene, and
“continent” indicates an area of continuous connected domains. Fig. 4
shows the steps in this technique for an example image. To estimate
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Table 2

Multiplication factor used in domain size
calculation. The angle indicates the angle
between the first and last vector of the con-
vex loop signifying the edge of a domain,
measured in radians.

Angle (0) Multiplier
(4 <§ 0
f<o<x 10.0
Zcg<z 6.0
Zcg<t 4.0
o<z 3.0
Zcp< 2.0
Zcp< 1.2
<9 1.0

domain size, the image is first divided into individual continents.
All continents with an area exceeding 0.4% of the image area are
then included for subsequent analysis, with the others ignored. For
each continent, Canny edge detection [52] is used to detect edges,
and probabilistic Hough transform [53] is used to return small line
segments along the edges of the continents. These small line segments
are then joined to form larger line segments based on their proximity
in distance and orientation. Then, starting at a randomly picked corner
of a segment, these long line segments are connected as linked lists of
vectors, where each linked list contains only the segments connected
to each other in a convex loop. Each convex loop indicates a separate
domain along the edge of a continent. For each convex loop, the end
is connected to the beginning and the enclosed area is measured.

Since the domain might be only partially visible in the SEM field of
view, a multiplication factor is needed to estimate the true area of the
domain. This factor is calculated from Table 2 based on the angle be-
tween the first and last vectors of the convex loop. The final estimated
area of the continent is given by the product of this multiplication factor
with the measured area of the continent. The mean domain area and
number of domains in each continent are obtained by assuming that the
mean area of all domains in the continent is the same as the mean area
of all domains along the edge of that continent. To estimate the mean
domain area across all the continents in one image, the total area of all
continents analyzed is divided by the total number of domains. Finally,
the mean domain size is estimated, assuming ideal regular hexagons for
each domain.

The results from this method were compared with manually ana-
lyzed images and showed agreement for most cases. The most common
source of error arises in cases where the total area covered comes from
a large number of small continents, each <0.4% of the total area and
therefore ignored. Such images have a very small mean domain size,
but some continents are very large because many domains overlap each
other. To mitigate this source of error, the area of all continents is
plotted in ascending order and the elbow point of the curve is picked as
a cutoff, to ignore continents with large number of connected domains.
The mean area of the remainder of the continents is used as a measure
of the mean area of the domains in the image and the mean domain
size is calculated as described above. The results from this method
were also compared with manually analyzed images and found to be
in agreement.

3. Results and discussion
3.1. Effect of quality of data set
A critical consideration when using ML models for image segmen-

tation is the quality of the training data. Since preparing training
data is a laborious process, understanding the trade off between data
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Fig. 4. Approach to estimating domain size from a segmented mask: (i) the image is divided into individual “continents” each having multiple merged graphene domains, and
(ii) canny edge detection and probabilistic Hough transform are used to identify small line segments along the edges of each continent. (iii) Line segments are joined based on
their proximity in distance and orientation to form larger line segments, and (iv) the larger segments are then grouped into convex loops, and stored as a linked list. Each convex
loop represents one domain. (v) For each convex loop, the area covered (A;) and angle between the first and last vector of the linked list (6,) is measured. (vi) The angle is used
to determine a multiplication factor, whose product with the measured area is equal to the calculated area of each domain in that continent.

set quantity and quality can help to most efficiently create useful
data sets that train effective models. We therefore began by assessing
the performance of U-Net on two sets of masks: (i) accurate masks
generated from 93 high-fidelity images (called ‘“high-fidelity”), and (ii)
a set of masks generated from the “high fidelity” and “low fidelity” data
set combined (labeled “all”). Data augmentation was included for both
cases. While the high fidelity data set contained more accurate training
images, it was only approximately half as large as the “all” data set.

Figs. 5(a, b) show the accuracy and the loss during training. The
model trained on the “high fidelity” data set is represented by the red
curves and the model trained on the “all” data set is represented by
the blue curves. For both cases, the light-colored curves represent the
training loss and accuracy, and the dark curves represent the test loss
and accuracy. These models were trained with a batch size of 16 and
a learning rate of 10~*. When trained on the high fidelity data set, the
training and test accuracy were similar. By contrast, when trained on
“all”, the difference between the training and test loss was observed to
increase with epoch.

This observation is indicative of a substantial difference in training
data (sometimes called a data set shift) between the two data sets.
The neural network trained on “all”, as a result of having trained on
less accurate data, was unable perform as well as the neural network
trained on only the high-fidelity training data, when assessed on the
same testing set. This evaluation indicates that, for use cases like ours,
higher quality data sets even if smaller may be better for training than
larger data sets containing less accurate training information.

3.2. Hyperparameter optimization
We investigated the effect of hyperparameters on the model perfor-

mance, specifically batch size and learning rate. The metrics used to
evaluate the model are the accuracy and the F1 score:

Accuracy = TP+TN ) (2)
TP+TN+ FP+FN
F1 Score = 2P ) 3)

2TP+ FP+ FN
where TP is the number of true positives (pixels correctly labeled
as “graphene”), TN is the number of true negatives (pixels correctly
labeled as “not graphene”), FP is the number of false positives (pixels

a) 9)
1.0 —— training (all data) 1.24 =1 Mean accuracy
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0.8 validation (high fidelity) ] .
0.8 ]
0 0.6
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3 0.6
0.4 -
0.4 4
N !
0.2 1 ST, e 0 TN 024
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0.0 T T T T T 0.0 T
0 20 40 60 80 100 8 16 32
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0.95 1 N7 DA IR A 1 Mean F1 score
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Fig. 5. Effect of data quality, hyperparameter exploration, and training. (a, b) Loss
and accuracy vs. epoch. The model trained on the higher quality but smaller data set
is more accurate than the one trained on the lower quality but larger data set. (c, d)
Mean accuracy and mean F1 score vs. batch size and learning rate. Models trained on
either data set were validated using the same images from the high fidelity data set.

incorrectly labeled as “graphene”), and FN is the number of false
negatives (pixels incorrectly labeled as “not graphene”). Intuitively, ac-
curacy is the percentage of pixels correctly classified. As the harmonic
mean of the recall (the proportion of graphene pixels identified as being
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Fig. 6. Performance of trained U-Net model on example images. The model is capable
of accurately segmenting the images, which leads to quantitative estimates of coverage.
The model also filters most precipitates (seen as white hot spots) in the original images.

graphene pixels) and the precision (ratio of the number of graphene
pixels to the number of pixels identified as graphene), the F1 score is a
measure of the similarity between the prediction and the ground truth.
Fig. 5(c) shows the best values obtained for mean accuracy and mean
F1 score when training with a batch size of 8, 16 and 32. Fig. 5(d)
shows the best values obtained for mean accuracy and mean F1 score
when the initial learning rate was set to 10~ and 10~#. A learning
rate of 10~3 (not shown) proved to be too high, and the loss diverged.
A batch size of 16 and an initial learning rate of 10~* gave the best
results. All the models shown in Fig. 5(c, d) were trained on only the
high fidelity data.

3.3. Discussion of model performance

Fig. 6 shows the performance of the final model on SEM images
of graphene. The model performs well on typical images of graphene,
as shown. It is capable of identifying domains of graphene that span
across two grains of substrate. It is also capable of ignoring the spots
made by precipitates. Both the training and validation losses decrease
monotonically with training (Fig. 5(a)), and the difference between
them is small — indicating that overfitting was not occurring. The
trained model has an accuracy of 0.945 + 0.089 and an F1 score of
0.812+0.227. We believe that the lower F1 score arose from the selected
loss function, which prioritizes accuracy and penalizes incorrect classi-
fication of both classes — “graphene” and “not graphene”. This was a
deliberate selection, since high accuracy is preferable for the purpose of
quantifying graphene coverage. We can further see the effect of the loss
function in the variance of the accuracy which is very low as compared
to that of the F1 score.

Fig. 7 shows the performance of the model on 20 unseen images,
for graphene coverage (top panel) and subsequent domain size estima-
tion (lower panel). The images are presented in order of increasing
coverage. Overall, the predictions are in good agreement with the
actual values across the full range of coverages shown which vary
from near zero to around 80%. A possible trend, that low coverages
are slightly overestimated and higher coverages are slightly underesti-
mates, emerges from this picture. The lower panel of Fig. 7 compares
the actual to predicted domain size for the same twenty images. Over-
all, the estimated domain size is in good agreement with the true value.
As the images selected include both those with low and high coverages,
with both small and large domain sizes, accurate prediction of domain
size appears possible across diverse types images. This may include, for
example, large coverage achieved by a single domain or by numerous
smaller domains; alternatively it may include small coverage arising
from a single small domain or from disperse miniscule domains spread
across the field. Finally, as with the case of coverage described above,
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of this article.)
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Fig. 8. Examples of SEM images for which the trained U-Net model displays high/low
accuracy and high/low precision. The model performs well on images with starker
contrast and less complexity. Additionally, spurious artifacts that sometimes appear,
such as unwanted precipitates and contaminants, can dramatically affect the results.

while an accurate pixel classification implies accurate predicted domain
sizes it is not necessarily the case that an accurate predicted domain
size implies accurate pixel classification.

While the model performs well overall, in analyzing its performance
we observed that it sometimes generates spurious artifacts in the out-
putted mask. Fig. 8 shows a few instances that illustrate the disparities
we observed in the test results, based on examples corresponding to
various combinations of high and low accuracy and precision. In the
simplest cases, the model performed with high accuracy and high pre-
cision as shown in first row of Fig. 8. The raw image is fairly typical of
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SEM images of graphene synthesized by CVD — the graphene domains
have a significant difference in contrast with the background, sharp and
well-defined boundaries, and there are not many contaminants and/or
kinks in the substrate.

The image in the second row shows only a small amount of graphene
present. This is an example of an image for which the model showed
reasonably high accuracy but low precision. Here, there are a few
kinks and bends in the substrate, and some grain boundaries leading
to changes in contrast. Here the small proportion of graphene relative
to kinks and artifacts in the image causes the neural network to
overclassify pixels as “graphene”, resulting in a low positive predictive
value.

For the image in the third row, the model performs with high preci-
sion but low accuracy. This means that pixels classified as graphene are
generally indeed graphene, but many actual graphene pixels were not
identified as such. The performance here can be attributed to the irreg-
ularity and non-hexagonality of the graphene domains, which made the
neural network not detect them. We expect that with more illustrative
training data, this type of misclassification could be overcome.

The fourth row shows an image that is indicative of the types of
SEM micrographs for which the trained model struggled, showing both
low precision and low accuracy. The challenging nature of the image
arises from the high density of small, distributed nucleation sites and
the small domain sizes. Variations in the contrast of the substrate
are present, due to the large number of grains, further complicating
classification. We expect that these types of images may ultimately
prove to be the most challenging ones, as boundaries between graphene
and not-graphene occur at high frequency when scanning across pixels,
making it difficult for convolution operations to make accurate classifi-
cation. Additionally, such images are highly sensitive to the pixel-wise
accuracy of the training masks.

While these examples highlight some of the challenges encountered
by deep learning methods in the classification of SEM micrographs
of 2D materials, we expect that several of these challenges could be
surmounted as the training data set grows.

3.4. Application of trained U-Net model to other 2D materials

As with graphene, there is interest in rapid segmentation of images
of other 2D materials, for example in order to develop better synthe-
sis recipes for transition metal dichalcogenide molybdenum disulfide
(MoS,) [54]. Given the challenges of generating training data and train-
ing a neural network for one 2D material, it is of interest to determine
whether a neural network trained to segment one 2D material could
be used to segment images of other 2D materials as well. If feasible,
conversion of a model trained for one material to another could bypass
the need for generation of new training data by generalizing the
challenge of 2D materials image segmentation. Another option may be
transfer learning [55], where a U-Net model trained to segment images
of graphene from a large training data set is used as the starting point
for a model geared to segment images of other 2D materials by adaption
to a smaller data set.

To assess this possibility, Fig. 9 shows the performance of our model
(trained on images of graphene) directly applied to several SEM images
of 2D MoS, [56]. As can be seen from the input images, the domains of
MoS, are triangular, in contrast to the hexagonal domains of graphene.
Otherwise, similar to the graphene images the NN was trained on, these
SEM micrographs exhibit no contrast arising from depth. Still, from
Fig. 9 we observed that qualitatively the model performs well on the
new images, despite not having trained on them. This initial perfor-
mance is promising for adaptation of the current model to other 2D
materials, and indicates the possibility of using transfer learning from
our pre-trained model for similar applications to other 2D materials.
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Output

Fig. 9. Performance of U-Net model trained on images of graphene, now directly
applied to SEM images of 2D MoS,. The model performs well, suggesting the possibility
of facile transfer learning. Reprinted (adapted) with permission from Jianping Shi,
Donglin Ma, Gao-Feng Han, Yu Zhang, Qingqing Ji, Teng Gao, Jingyu Sun, Xiuju Song,
Cong Li, Yanshuo Zhang, Xing-You Lang, Yanfeng Zhang, and Zhongfan Liu, ACS Nano
2014 8 (10), 10196-10204. Copyright 2022 American Chemical Society.

3.5. DeepLIFT analysis

While neural networks are sometimes considered to operate as black
box methods [57], it can sometimes be useful to analyze the inner
workings of the model. We used the DeepLIFT [44] algorithm to ana-
lyze the sample image illustrated in Fig. 10(a) to reveal detailed aspects
of U-Net classification. DeepLIFT is an approach that determines the
relative contributions of different features (pixels of the input image) to
the output mask. It then compares this to a reference input, an array of
zeros (a black image) to determine the pixels that play a dominant role
in determining the likelihood that an output pixel is labeled “graphene”
or “not graphene”.

Fig. 10(b—d) shows the pixels that are most important for all attribu-
tions, graphene attributions, and substrate attributions respectively. It
is seen that the edges of the domains are most important in determining
what is and what is not graphene. Some pixels in the center of the
domains also play a role, to judge the continuity and connectivity of
different edges. This observation matches intuition, as edge detection is
known to be important for human vision as well [58], and suggests that
images that have a greater contrast between graphene and substrate —
i.e. sharper edges — might generate better predictions.

4. Conclusion

In this study, we demonstrated the use of a neural network based
on the U-Net architecture as an effective approach to the segmentation
of SEM images of graphene synthesized by chemical vapor deposition
on substrates. Compared to other image segmentation applications,
2D materials segmentation offers new challenges in the form of lack
of contrast arising from depth, limited availability of data, and high



A. Shah et al.

Original Image All Attributions

| (b)

Graphene Attributions
O . @

Fig. 10. DeepLIFT analysis of the U-Net classifier, which illustrates the contribution
that each input pixel has on the outputted predicted mask. The (a) original image is
shown along with (b) all attributions, (c) attributions that contribute to classifying as
graphene, and (d) attributions that contribute to classifying as substrate. The pixels
that contribute most to classification are those at the edge of the graphene domains.

variance in the size, shape and contrast of domains. The trained model
performs with an accuracy of around 90% and an F1 score of around
80%, despite the relatively small sized training data set. Given the
accuracy achieved, we expect that model can be used for future high
throughput analysis of SEM images for the determination of graphene
coverage. We also observed that lesser but high quality training data
produces a better model than larger amount of low quality data. Pat-
terns in images for which the trained neural network shows high/low
accuracy and precision are identified. We also demonstrated the use of
a post processing technique to estimate the graphene domain size using
segmented masks which can help compute the effect of annealing and
growth recipes on the nucleation density and growth rate, respectively.
We expect that automated segmentation of SEM images, in conjunction
with associated recipe parameters, will help expedite the optimization
of high-quality graphene synthesis. We also highlight the possibility of
transfer learning for application to images of other 2D materials.
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