
Evaluating the Effect of Symbolic Problem Solving on Assessment 

Validity and Reliability  

Abstract 

Problem-solving is a typical type of assessment in engineering dynamics tests. To solve a problem, 

students need to set up equations and find a numerical answer. Depending on its difficulty and 

complexity, it can take anywhere from ten to thirty minutes to solve a quantitative problem. Due 

to the time constraint of in-class testing, a typical test may only contain a limited number of 

problems, covering an insufficient range of problem types. This can potentially reduce validity and 

reliability, two crucial factors which contribute to assessment results. 

 

A test with high validity should cover proper content. It should be able to distinguish high-

performing students from low-performing students and every student in between. A reliable test 

should have a sufficient number of items to provide consistent information about students’ mastery 

of the materials. 

 

In this work-in-progress study, we will investigate to what extent a newly developed assessment 

is valid and reliable. Symbolic problem solving in this study refers to solving problems by setting 

up a system of equations without finding numeric solutions. Such problems usually take much less 

time. As a result, we can include more problems of a variety of types in a test.  

 

We evaluate the new assessment's validity and reliability. The efficient approach focused in 

symbolic problem-solving allows for a diverse range of problems in a single test. We will follow 

Standards for Educational and Psychological Testing, referred to as the Standards, for our study. 

The Standards were developed jointly by three professional organizations including the American 

Educational Research Association (AERA), the American Psychological Association (APA), and 

the National Council on Measurement in Education (NCME). We will use the standards to evaluate 

the content validity and internal consistency of a collection of symbolic problems. Examples on 

rectilinear kinematics and angular motion will be provided to illustrate how symbolic problem 

solving is used in both homework and assessments. 

 

Numerous studies in the literature have shown that symbolic questions impose greater challenges 

because of students’ algebraic difficulties. Thus, we will share strategies on how to prepare 

students to approach such problems. 

Introduction 

 

In engineering dynamics tests, students’ problem-solving skills are commonly assessed through 

open-ended items. To solve a problem, students need to set up equations and find a numerical 

answer. Depending on its difficulty and complexity, it can take anywhere from ten to thirty minutes 

to solve a quantitative problem. Due to time constraints, a conventional in-class test can include 

only a limited number of problems with an insufficient number of problem types. This can 

potentially reduce the validity and reliability of the test, two crucial factors which contribute to 

assessment results.  

 



As stated in the Standards, validity is “the degree to which evidence and theory support the 

interpretations of test scores for proposed uses of tests.” [1] When evaluating validity, we need to 

find the quantity and quality of evidence that supports interpreting test scores for an intended 

purpose [2]. As emphasized in the Standards, validity is considered “a unitary concept” rather than 

being composed of distinct categories (e.g., content validity or construct validity) [1, 2]. The 

Standards provides five types of evidence that support the proper interpretations of test scores [1]. 

For this study, the most pertinent source of evidence is validity evidence based on test content. 

Such evidence can be acquired by analyzing the relationships between the content of a test and 

knowledge and skills the test is intended to assess. 

 

Another important indicator of test quality is reliability [3-6]. Reliability represents a test’s 

consistency. Taking a test of high reliability, students should get the consistent score even when 

they take it on different days if students’ knowledge and mental states remain the same. The 

general guideline for increasing reliability is to add more items because we could gather more 

information of students’ learning to ensure consistency in scoring  [1, 2]. But the tradeoffs is time.  

Table 1 An Example of Conventional Problem Solving and Symbolic Problem Solving 

Example: The acceleration of a regional airliner during its takeoff run is 𝑎 = 14 − 0.0003𝑣2 

ft/s2, where 𝑣 is its velocity in ft/s. How long does it take the airliner to travel 3000 ft? How fast 

is the airliner moving when 𝑠 = 3000 ft? [4] 

Conventional Solution Proposed Symbolic Solution 

(see Appendix A for the full 

expected solution) 

∫ 𝑑𝑠

3000

0

= ∫
𝑣

14 − 0.0003𝑣2
𝑑𝑣

𝑣

0

⇒ 

𝑣 = √
14(1 − 𝑒−2⋅0.0003⋅3000)

0.0003
= 197.4 m/s  

 

∫ 𝑑𝑡

𝑡

0

= ∫
1

14 − 0.0003𝑣2
𝑑𝑣

𝑣

0

⇒ 

𝑡 =
1

2√14 ⋅ 0.0003
ln

14 + 𝑣√14 ⋅ 0.0003

14 − 𝑣√14 ⋅ 0.0003
 = 23.9 s  

∫ 𝑑𝑡

𝑡1

𝑡0

= ∫
1

𝑎(𝑣)
𝑑𝑣

𝑣1

𝑣0

 

∫ 𝑑𝑠

𝑠1

𝑠0

= ∫
𝑣

𝑎(𝑣)
𝑑𝑣

𝑣1

𝑣0

 

 

Two unknowns: (𝑡1 and 𝑠1)  

Two equations 

 

An example of rectilinear motion can help illustrate how conventional problem-solving might 

compromise validity and reliability. Table 1 shows the conventional solution in the left column 

and the proposed symbolic solution in the right column. The conventional solution presents 

equations with their numerical answers, while the symbolic approach provides solely the equations 

with unknowns denoted. Nevertheless, for most students, integrating equations as shown in the 

example can be a significant challenge, possibly taking up to 30 minutes to find the numerical 

answer. This implies that in a 50-minute test, only two or three problems can be incorporated, 

potentially leaving some aspects of the content unaddressed. A lack of content coverage can result 

in insufficient evidence to support valid interpretations of test scores. Furthermore, construct 

irrelevance can also impact test scores, particularly since students often allocate significant time 



to calculations, and capabilities such as taking integrals may be unrelated to the test's intended 

purpose. In addition to the aforementioned validity concerns, the reliability could be diminished 

due to the limited number of problems included. 

 

In contrast, the symbolic solution entails setting up equations without calculations, as exemplified 

in the right column of Table 1. This approach allows for a more diverse range of content, mitigating 

the risk of content underrepresentation. Furthermore, since students need only to set up equations, 

construct irrelevance is minimized. Additionally, incorporating more items in the test can enhance 

its reliability. 

 

As illustrated in the above example, the proposed symbolic approach has the potential to improve 

validity and reliability. By skipping time-consuming calculations, we could include more problem 

types to gather more information on how students solve problems. We intend to use this article to 

share our practice on improving validity and reliability in a practical manner such that instructors 

who are interested but with little knowledge of psychometrics could easily implement the process 

in their test design. The article is organized as follows. We will first introduce the test design and 

development process to delineate the considerations of evidence for validity. Then we show how 

we develop items followed by the evaluation of the validity and reliability of the test followed by 

the results. 

Test Design and Development 

Test design is a process of developing questions or tasks to measure students’ knowledge and skill  

[1]. A test plan delineates the steps and considerations along with specifications for test 

administration and scoring procedures for this process. In this section, we will demonstrate how 

to develop a test plan by taking validity and reliability into account. To develop a test plan, one 

must first consider the intended use of the test scores and the expected interpretations that will 

arise from them. Subsequently, the test’s content and format are carefully determined to ensure 

that the resulting evidence supports the intended interpretations for their respective purposes. Test 

items are then created based on the test specifications and are evaluated against the criteria to 

ensure proper use of the test. Additionally, procedures for scoring individual items and the entire 

test are established, reviewed, and modified as necessary. Typically, test design is an iterative 

process (Figure 1), and adjustments are made based on data from tryouts and operational use  [1]. 

Upon completing the iterative process, a question bank is created for use in rotations to prevent 

question leak among students. While the test plan presented in this article focuses on rectilinear 

motion and angular motion, it can be easily extended to other learning outcomes and other subjects. 

 
Figure 1 A schematic of a test development process 

 



Intended Interpretations of Test Scores 

In our study, we aimed to assess students’ knowledge and skills in solving rectilinear and angular 

motion problems. Specifically, we sought to understand how students apply integrals and time 

derivatives correctly. This focus was based on students’ knowledge deficiencies revealed in a prior 

knowledge assessment. The prior knowledge assessment was administered in two sections of 

Engineering Dynamics at Embry-Riddle Aeronautical University (ERAU), a southeastern US 

private institution. Over 60% of students did not represent linear functions 𝑣(𝑡) and 𝑣(𝑠) correctly 

from graphs, and over 70% of students failed to recognize that the kinematics equation 𝑣 = 𝑣0 +
𝑎 ⋅ 𝑡 is applicable only to motion with constant acceleration. No students could determine the first-

order time derivative of the radial position function 𝑟(𝜃) = 2 cos 𝜃 m. The results were consistent 

with findings on students’ limited understanding of functions reported in  [7, 8]. Such knowledge 

deficiencies present significant challenges to solving rectilinear motion problems where the 

acceleration is dependent on 𝑡, 𝑣, or 𝑠. Additionally, many students face difficulties in learning 

curvilinear motion with normal and tangential components due to unfamiliarity with kinematics 

relationships between 𝜃 , 𝜔 , and 𝛼 . Owing to the similar problem-solving strategies between 

angular and rectilinear motion, incorporating angular motion problems can help students gain 

fluency with the kinematics relationships in angular motion while improving their understanding 

and skills in integrating functions with different functional dependencies. 

 

Content, Format, and Test Items 

Before selecting problems, we employed a test blueprint to outline the test at a high level to define 

what we intend to measure [2, 3]. This practice not only assisted us in creating the test, but also 

provided supporting evidence for validity. 
Table 2 The Test Blueprint for Rectilinear and Angular Motion 

Topics Percentage 
Total # 

of Items 

Cognitive Level 

Low Mid High 

𝒂(𝒕) 18% 2 0 2 0 

𝒂(𝒗) 9% 1 0 0 1 

𝜶(𝝎) 18% 2 1 1 0 

𝒂(𝒔) 27% 3 1 0 2 

𝜶(𝜽) 27% 3 1 1 1 

Total 100% 11 3 4 4 

 

As shown in the test blueprint (Table 2), the test comprises 11 problems across five types. All these 

problems aim to assess the use of definite integrals to solve rectilinear and angular motion 

problems. Each topic in Column 1 represents the given (angular) acceleration along with functional 

dependence. For example, 𝛼(𝜔) in Row 3 represents one problem type in which the angular 

acceleration is given as a function of angular velocity. To solve this type of problem, students need 

to integrate the angular acceleration to find the angular velocity at a given instant or the time to 

attain a specific angular velocity. The cognitive levels are related to the difficulty level for students. 

Generally, problems which require more steps and higher skill levels are at a higher cognitive 

level. For example, setting up the equation 𝛼(𝑡)𝑑𝑡 = 𝑑𝜔 has a lower cognitive level than setting 

up the equation 𝑑𝑡 =
1

𝛼(𝜔)
𝑑𝜔 as the latter takes one more step to apply separation of variables in 

𝛼 =
𝑑𝜔

𝑑𝑡
; setting up 𝑑𝑡 =

1

𝛼(𝜔)
𝑑𝜔 is easier than 𝑑𝜃 =

𝜔

𝛼(𝜔)
𝑑𝜔 as the latter requires the application 

of the chain rule, which many students find challenging to master. A task analysis was conducted 



to identify the cognitive levels  [9]. See the sample problems in Appendix B for different problem 

types and cognitive levels. 

  

Test Administration 

Numerous studies have indicated that symbolic problem-solving presents significant challenges 

for students  [7, 10-12]. To prevent cognitive overload and ensure learning success, it is crucial to 

offer support and prompt feedback. Consequently, these problems were implemented as formative 

assessments to monitor student progress and provide timely feedback. The eleven problems were 

distributed across five weekly assessments, spanning from the fourth week to week 10. 

 

Scoring Procedures 

All submissions were graded in Gradescope, an online grading and assessment platform. 

Gradescope allows instructors to create customized rubrics for grading assignments. Furthermore, 

it provides various statistics and analytics, including overall scores, scores by question, and 

average grades for the class, which significantly aids in evaluating reliability in terms of internal 

consistency. For each problem, 80% of the score was based on the accuracy of the equations used, 

while 15% was assigned for correctly representing the given information using symbols in the 

equations, and 5% was allocated for identifying the unknown variables. See Appendix C for an 

example of grading in Gradescope. All assessments were graded by the course instructor to avoid 

incorrect grading due to graders’ lack of experience. If test correction is offered, the assessments 

can be graded in two rounds: the first round by the grader and the second round by the course 

instructor for award partial credit in addition to checking grading accuracy. 

Results and Discussions 
Table 3 Assessment Schedule 

Time Problems and Cognitive Level 

Week 4 P1(L), P2(L) 

Week 6 P3(M), P4(H), P5(M), P6(L) 

Week 8 P7(M), P8(M), P9(H) 

Week 9 P10(H) 

Week 10 P11(H) 
Cognitive Level: L: Low; M: Medium; H: High 

 

The five assessments were administered in two sections of Engineering Dynamics at ERAU in the 

Fall of 2022 (see Table 3 for the assessment schedule). The letter inside the parentheses in Table 

3 represents the presumed cognitive level of each problem. Figure 2 presents the scores for the 11 

problems. A notable increase in learning performance was observed when comparing the scores 

of P3-6 in week 6 to those of P7-9 in week 8. Similarly, solving problems with the high cognitive 

level exhibited significant improvement from week 6 to week 8. However, no further progress was 

seen in solving difficult problems beyond week 8. 

 

When evaluating the internal consistency of the formative assessments for all eleven items using 

Cronbach’s alpha with 61 samples, the result was α = .88. The score falls in the range for 

Cronbach’s alpha scores from .84 to .90, indicating the test is reliable using the criteria from [13]. 

 



The assessment scores from the five assessments reflect students’ learning progress. As indicated 

in Figure 2, students’ performance increased steadily from week 6 to week 8 followed by a plateau 

after week 8. This can be partly explained by the students’ practice methods. Throughout weeks 3 

and 7, students were assigned daily homework to help them develop skills for applying the 

symbolic problem-solving approach. The homework problems were designed following the 

instructional design model Four Component Instructional Design (4C/ID), which provides 

systematic strategies for developing learning tasks to help novices learn effectively and efficiently  

[9, 14]. Since the problem-solving process can be divided into two stages -- setting up equations 

and solving equations -- each stage requires different skills, so students need to practice with 

problems targeting the desired skills. When solving problems aimed at setting up equations, 

students can focus on applying separation of variables and the chain rule, if necessary, to integrate 

the equations without considering how to solve the equation. When solving equations to find 

numeric solution, they only need to consider how to take integrals. Such practice is designed to 

help a learner develop a specific skill beyond the learner’s current ability  [15, 16]. The benefit of 

this practice strategy also includes increasing the variability of problems, which facilitates learning 

transfer  [14]. During these five weeks, students were assigned 29 problems, including 18 problems 

on rectilinear motion and 11 problems on angular motion. After week 8, students were not assigned 

any problem, which might explain why a plateau was reached. Further studies need to be conducted 

to explore the factors correlated with progress.  

 

 
Figure 2 Assessment Results 

Although the symbolic problem-solving approach can enhance validity and reliability, it presents 

challenges in teaching, as the literature has shown that students often struggle with symbolic 

questions due to algebraic difficulties  [7, 10-12, 17]. To implement this approach, scaffolding is 

necessary to provide support and guidance, helping students develop the required skills and 

knowledge  [14]. For instance, before students were assigned to solve problems in week 3, they 

were asked to only represent givens and finds and identify unknowns. This helps them become 

familiar with the symbolic representation of given information. Since this is not the focus of the 

study, we will elaborate on the design in a separate paper. 

Conclusions 

In this article, we have shared our experience in following the test development process 

recommended by the Standards for designing assessments on solving rectilinear and angular 

motion problems. By adopting the symbolic problem-solving approach, we were able to 

incorporate a more diverse range of problems, while maintaining a focus on the pertinent construct. 

Consequently, this approach offers the advantage of improving both validity and reliability in 



comparison to traditional methods. Moreover, we have highlighted the importance of providing 

students with effective scaffolding to improve their skills in symbolic problem-solving. These 

strategies not only foster a deeper understanding of the subject matter but also enable students to 

overcome the challenges often associated with algebraic difficulties. By combining a well-

designed assessment with targeted instructional support, educators can promote deep learning 

effectively.  
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Appendix A: Complete Solution Format 

Figure 3 illustrate the complete solution format students are expected to employ in both homework 

and assessments. Each problem is presented with double spacing, providing ample room for 

representing each piece of given information’s variable beneath its corresponding statement. For 

a given function, students must include the function’s argument to show the functional 

dependency, facilitating separation of variables when setting up equations. For given kinematics 

information at different instants, students must include a subscript to denote the corresponding 

instants (e.g., add the subscript “0” to 𝑠 and 𝑣 to represent the position and velocity at the initial 

instant). When examining unknowns in each equation, students are encouraged to cross out used 

givens to ensure that all information is presented and all unknowns are identified in each equation. 

The ultimate goal is to set up equal number of independent equations for the unknowns. 

 

 
Figure 3 The Full Solution Format 

 

Appendix B: Sample Problems 

Example 1 (Type: 𝛼(𝜔); Cognitive level: mid) : The rotor of a jet engine is rotating at 10,000 rpm 

(revolutions per minute) when the fuel is shut off. The ensuing angular acceleration (in rad/s2) is 

𝛼=−0.02𝜔, where 𝜔 is the rotor’s angular velocity in rad/s. How long does it take the rotor to slow 

to 1000 rpm? 

Example 2 (Type: 𝑎(𝑣); Cognitive level: high) : A rock that’s dropped from the top of a cliff will 

experience an acceleration due to gravity, along with a deceleration due to drag. The total 

downward acceleration is 𝑔 − 𝑐𝑑𝑠̇2 , where 𝑔 =  32.2 ft/s2, 𝑐𝑑 = 0.01 m−1, and the downward 

speed 𝑠̇ is in ft/s. If the rock is dropped from 100 ft up, calculate the rock’s impact velocity.  



Example 3 (Type: 𝛼(𝜃); Cognitive level: high) : A motorcycle moves along a circular track 300-

m in radius and its angular acceleration is given by 𝛼 = −0.001𝜃 rad/s2. If its speed at the initial 

position is 30 m/s, determine its speed and the time when it travels another quarter revolution. 

 

Appendix C: Grading Rubric 

Figure 4 shows the grading interface in Gradescope. Each marked rubric indicates an error. Since 

both equations were not set up correctly and three givens (i.e., 𝑡0, 𝑠0 𝑣0) were not provided, the 

first three rubric items were marked.  

 
Figure 4 Grading Interface in Gradescope 
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