Evaluating the Effect of Symbolic Problem Solving on Assessment
Validity and Reliability

Abstract

Problem-solving is a typical type of assessment in engineering dynamics tests. To solve a problem,
students need to set up equations and find a numerical answer. Depending on its difficulty and
complexity, it can take anywhere from ten to thirty minutes to solve a quantitative problem. Due
to the time constraint of in-class testing, a typical test may only contain a limited number of
problems, covering an insufficient range of problem types. This can potentially reduce validity and
reliability, two crucial factors which contribute to assessment results.

A test with high validity should cover proper content. It should be able to distinguish high-
performing students from low-performing students and every student in between. A reliable test
should have a sufficient number of items to provide consistent information about students’ mastery
of the materials.

In this work-in-progress study, we will investigate to what extent a newly developed assessment
is valid and reliable. Symbolic problem solving in this study refers to solving problems by setting
up a system of equations without finding numeric solutions. Such problems usually take much less
time. As a result, we can include more problems of a variety of types in a test.

We evaluate the new assessment's validity and reliability. The efficient approach focused in
symbolic problem-solving allows for a diverse range of problems in a single test. We will follow
Standards for Educational and Psychological Testing, referred to as the Standards, for our study.
The Standards were developed jointly by three professional organizations including the American
Educational Research Association (AERA), the American Psychological Association (APA), and
the National Council on Measurement in Education (NCME). We will use the standards to evaluate
the content validity and internal consistency of a collection of symbolic problems. Examples on
rectilinear kinematics and angular motion will be provided to illustrate how symbolic problem
solving is used in both homework and assessments.

Numerous studies in the literature have shown that symbolic questions impose greater challenges
because of students’ algebraic difficulties. Thus, we will share strategies on how to prepare
students to approach such problems.

Introduction

In engineering dynamics tests, students’ problem-solving skills are commonly assessed through
open-ended items. To solve a problem, students need to set up equations and find a numerical
answer. Depending on its difficulty and complexity, it can take anywhere from ten to thirty minutes
to solve a quantitative problem. Due to time constraints, a conventional in-class test can include
only a limited number of problems with an insufficient number of problem types. This can
potentially reduce the validity and reliability of the test, two crucial factors which contribute to
assessment results.



As stated in the Standards, validity is “the degree to which evidence and theory support the
interpretations of test scores for proposed uses of tests.” [1] When evaluating validity, we need to
find the quantity and quality of evidence that supports interpreting test scores for an intended
purpose [2]. As emphasized in the Standards, validity is considered “a unitary concept” rather than
being composed of distinct categories (e.g., content validity or construct validity) [1, 2]. The
Standards provides five types of evidence that support the proper interpretations of test scores [1].
For this study, the most pertinent source of evidence is validity evidence based on test content.
Such evidence can be acquired by analyzing the relationships between the content of a test and
knowledge and skills the test is intended to assess.

Another important indicator of test quality is reliability [3-6]. Reliability represents a test’s
consistency. Taking a test of high reliability, students should get the consistent score even when
they take it on different days if students’ knowledge and mental states remain the same. The
general guideline for increasing reliability is to add more items because we could gather more
information of students’ learning to ensure consistency in scoring [1, 2]. But the tradeoffs is time.

Table 1 An Example of Conventional Problem Solving and Symbolic Problem Solving
Example: The acceleration of a regional airliner during its takeoff run is a = 14 — 0.0003v2
ft/s?, where v is its velocity in ft/s. How long does it take the airliner to travel 3000 ft? How fast
is the airliner moving when s = 3000 ft? [4]

Conventional Solution Proposed Symbolic Solution
(see Appendix A for the full
expected solution)
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An example of rectilinear motion can help illustrate how conventional problem-solving might
compromise validity and reliability. Table 1 shows the conventional solution in the left column
and the proposed symbolic solution in the right column. The conventional solution presents
equations with their numerical answers, while the symbolic approach provides solely the equations
with unknowns denoted. Nevertheless, for most students, integrating equations as shown in the
example can be a significant challenge, possibly taking up to 30 minutes to find the numerical
answer. This implies that in a 50-minute test, only two or three problems can be incorporated,
potentially leaving some aspects of the content unaddressed. A lack of content coverage can result
in insufficient evidence to support valid interpretations of test scores. Furthermore, construct
irrelevance can also impact test scores, particularly since students often allocate significant time



to calculations, and capabilities such as taking integrals may be unrelated to the test's intended
purpose. In addition to the aforementioned validity concerns, the reliability could be diminished
due to the limited number of problems included.

In contrast, the symbolic solution entails setting up equations without calculations, as exemplified
in the right column of Table 1. This approach allows for a more diverse range of content, mitigating
the risk of content underrepresentation. Furthermore, since students need only to set up equations,
construct irrelevance is minimized. Additionally, incorporating more items in the test can enhance
its reliability.

As illustrated in the above example, the proposed symbolic approach has the potential to improve
validity and reliability. By skipping time-consuming calculations, we could include more problem
types to gather more information on how students solve problems. We intend to use this article to
share our practice on improving validity and reliability in a practical manner such that instructors
who are interested but with little knowledge of psychometrics could easily implement the process
in their test design. The article is organized as follows. We will first introduce the test design and
development process to delineate the considerations of evidence for validity. Then we show how
we develop items followed by the evaluation of the validity and reliability of the test followed by
the results.

Test Design and Development

Test design is a process of developing questions or tasks to measure students’ knowledge and skill
[1]. A test plan delineates the steps and considerations along with specifications for test
administration and scoring procedures for this process. In this section, we will demonstrate how
to develop a test plan by taking validity and reliability into account. To develop a test plan, one
must first consider the intended use of the test scores and the expected interpretations that will
arise from them. Subsequently, the test’s content and format are carefully determined to ensure
that the resulting evidence supports the intended interpretations for their respective purposes. Test
items are then created based on the test specifications and are evaluated against the criteria to
ensure proper use of the test. Additionally, procedures for scoring individual items and the entire
test are established, reviewed, and modified as necessary. Typically, test design is an iterative
process (Figure 1), and adjustments are made based on data from tryouts and operational use [1].
Upon completing the iterative process, a question bank is created for use in rotations to prevent
question leak among students. While the test plan presented in this article focuses on rectilinear
motion and angular motion, it can be easily extended to other learning outcomes and other subjects.

Intended
Interpretations
of Test Score

Scoring Content and
Procedure Format
Test
Administration Test Items

Figure 1 A schematic of a test development process



Intended Interpretations of Test Scores

In our study, we aimed to assess students’ knowledge and skills in solving rectilinear and angular
motion problems. Specifically, we sought to understand how students apply integrals and time
derivatives correctly. This focus was based on students’ knowledge deficiencies revealed in a prior
knowledge assessment. The prior knowledge assessment was administered in two sections of
Engineering Dynamics at Embry-Riddle Aeronautical University (ERAU), a southeastern US
private institution. Over 60% of students did not represent linear functions v(t) and v(s) correctly
from graphs, and over 70% of students failed to recognize that the kinematics equation v = v, +
a - t is applicable only to motion with constant acceleration. No students could determine the first-
order time derivative of the radial position function r(8) = 2 cos 8 m. The results were consistent
with findings on students’ limited understanding of functions reported in [7, 8]. Such knowledge
deficiencies present significant challenges to solving rectilinear motion problems where the
acceleration is dependent on t, v, or s. Additionally, many students face difficulties in learning
curvilinear motion with normal and tangential components due to unfamiliarity with kinematics
relationships between 8, w, and a. Owing to the similar problem-solving strategies between
angular and rectilinear motion, incorporating angular motion problems can help students gain
fluency with the kinematics relationships in angular motion while improving their understanding
and skills in integrating functions with different functional dependencies.

Content, Format, and Test Items
Before selecting problems, we employed a test blueprint to outline the test at a high level to define
what we intend to measure [2, 3]. This practice not only assisted us in creating the test, but also

provided supporting evidence for validity.
Table 2 The Test Blueprint for Rectilinear and Angular Motion

Total # Cognitive Level

e P e ow | Mid | High
a(t) 18% 2 0 2 0
a(v) 9% 1 0 0 1
a(w) 18% 2 1 1 0
a(s) 27% 3 1 0 2
a(0) 27% 3 1 1 1
Total 100% 11 3 4 4

As shown in the test blueprint (Table 2), the test comprises 11 problems across five types. All these
problems aim to assess the use of definite integrals to solve rectilinear and angular motion
problems. Each topic in Column 1 represents the given (angular) acceleration along with functional
dependence. For example, a(w) in Row 3 represents one problem type in which the angular
acceleration is given as a function of angular velocity. To solve this type of problem, students need
to integrate the angular acceleration to find the angular velocity at a given instant or the time to
attain a specific angular velocity. The cognitive levels are related to the difficulty level for students.
Generally, problems which require more steps and higher skill levels are at a higher cognitive
level. For example, setting up the equation a(t)dt = dw has a lower cognitive level than setting

up the equation dt = $ dw as the latter takes one more step to apply separation of variables in

dw . 1 ) ‘ 3
a = —; setting up dt = mdw is easier than d@ = o)

of the chain rule, which many students find challenging to master. A task analysis was conducted

dw as the latter requires the application



to identify the cognitive levels [9]. See the sample problems in Appendix B for different problem
types and cognitive levels.

Test Administration

Numerous studies have indicated that symbolic problem-solving presents significant challenges
for students [7, 10-12]. To prevent cognitive overload and ensure learning success, it is crucial to
offer support and prompt feedback. Consequently, these problems were implemented as formative
assessments to monitor student progress and provide timely feedback. The eleven problems were
distributed across five weekly assessments, spanning from the fourth week to week 10.

Scoring Procedures

All submissions were graded in Gradescope, an online grading and assessment platform.
Gradescope allows instructors to create customized rubrics for grading assignments. Furthermore,
it provides various statistics and analytics, including overall scores, scores by question, and
average grades for the class, which significantly aids in evaluating reliability in terms of internal
consistency. For each problem, 80% of the score was based on the accuracy of the equations used,
while 15% was assigned for correctly representing the given information using symbols in the
equations, and 5% was allocated for identifying the unknown variables. See Appendix C for an
example of grading in Gradescope. All assessments were graded by the course instructor to avoid
incorrect grading due to graders’ lack of experience. If test correction is offered, the assessments
can be graded in two rounds: the first round by the grader and the second round by the course
instructor for award partial credit in addition to checking grading accuracy.

Results and Discussions
Table 3 Assessment Schedule

Problems and Cognitive Level
P1(L), P2(L)

P3(M), P4(H), P5(M), P6(L)
P7(M), P8(M), P9(H)

P10(H)

P11(H)

Cognitive Level: L: Low; M: Medium; H: High

The five assessments were administered in two sections of Engineering Dynamics at ERAU in the
Fall of 2022 (see Table 3 for the assessment schedule). The letter inside the parentheses in Table
3 represents the presumed cognitive level of each problem. Figure 2 presents the scores for the 11
problems. A notable increase in learning performance was observed when comparing the scores
of P3-6 in week 6 to those of P7-9 in week 8. Similarly, solving problems with the high cognitive
level exhibited significant improvement from week 6 to week 8. However, no further progress was
seen in solving difficult problems beyond week 8.

When evaluating the internal consistency of the formative assessments for all eleven items using
Cronbach’s alpha with 61 samples, the result was o = .88. The score falls in the range for
Cronbach’s alpha scores from .84 to .90, indicating the test is reliable using the criteria from [13].



The assessment scores from the five assessments reflect students’ learning progress. As indicated
in Figure 2, students’ performance increased steadily from week 6 to week 8 followed by a plateau
after week 8. This can be partly explained by the students’ practice methods. Throughout weeks 3
and 7, students were assigned daily homework to help them develop skills for applying the
symbolic problem-solving approach. The homework problems were designed following the
instructional design model Four Component Instructional Design (4C/ID), which provides
systematic strategies for developing learning tasks to help novices learn effectively and efficiently
[9, 14]. Since the problem-solving process can be divided into two stages -- setting up equations
and solving equations -- each stage requires different skills, so students need to practice with
problems targeting the desired skills. When solving problems aimed at setting up equations,
students can focus on applying separation of variables and the chain rule, if necessary, to integrate
the equations without considering how to solve the equation. When solving equations to find
numeric solution, they only need to consider how to take integrals. Such practice is designed to
help a learner develop a specific skill beyond the learner’s current ability [15, 16]. The benefit of
this practice strategy also includes increasing the variability of problems, which facilitates learning
transfer [14]. During these five weeks, students were assigned 29 problems, including 18 problems
on rectilinear motion and 11 problems on angular motion. After week 8, students were not assigned
any problem, which might explain why a plateau was reached. Further studies need to be conducted
to explore the factors correlated with progress.

Assessment Scores
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Figure 2 Assessment Results

Although the symbolic problem-solving approach can enhance validity and reliability, it presents
challenges in teaching, as the literature has shown that students often struggle with symbolic
questions due to algebraic difficulties [7, 10-12, 17]. To implement this approach, scaffolding is
necessary to provide support and guidance, helping students develop the required skills and
knowledge [14]. For instance, before students were assigned to solve problems in week 3, they
were asked to only represent givens and finds and identify unknowns. This helps them become
familiar with the symbolic representation of given information. Since this is not the focus of the
study, we will elaborate on the design in a separate paper.

Conclusions

In this article, we have shared our experience in following the test development process
recommended by the Standards for designing assessments on solving rectilinear and angular
motion problems. By adopting the symbolic problem-solving approach, we were able to
incorporate a more diverse range of problems, while maintaining a focus on the pertinent construct.
Consequently, this approach offers the advantage of improving both validity and reliability in



comparison to traditional methods. Moreover, we have highlighted the importance of providing
students with effective scaffolding to improve their skills in symbolic problem-solving. These
strategies not only foster a deeper understanding of the subject matter but also enable students to
overcome the challenges often associated with algebraic difficulties. By combining a well-
designed assessment with targeted instructional support, educators can promote deep learning
effectively.
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Appendix A: Complete Solution Format

Figure 3 illustrate the complete solution format students are expected to employ in both homework
and assessments. Each problem is presented with double spacing, providing ample room for
representing each piece of given information’s variable beneath its corresponding statement. For
a given function, students must include the function’s argument to show the functional
dependency, facilitating separation of variables when setting up equations. For given kinematics
information at different instants, students must include a subscript to denote the corresponding
instants (e.g., add the subscript “0” to s and v to represent the position and velocity at the initial
instant). When examining unknowns in each equation, students are encouraged to cross out used
givens to ensure that all information is presented and all unknowns are identified in each equation.
The ultimate goal is to set up equal number of independent equations for the unknowns.

Example: The acceleration of a regional airliner during its takeoff run is @ = 14 — 0.0003v?
R
ft/s?, where v is its velacity in ft/s. How long does it take the airliner to travel 3000 {i? How fast
i st
is the airliner moving when s = 3000 fi? [4]
Implicit Given: —{'./e, ﬁ;/o, U,f/u
. - Number of Number of
Equation Unknown Unknows Equations
+ Vi
D= [ h, v,
La d+ = JVE mwdv LY 2 f
i U Yy None
[§o 4 =}y aw “ d
Total 2 =2

Figure 3 The Full Solution Format

Appendix B: Sample Problems

Example 1 (Type: a(w); Cognitive level: mid) : The rotor of a jet engine is rotating at 10,000 rpm
(revolutions per minute) when the fuel is shut off. The ensuing angular acceleration (in rad/s?) is
a=—0.02w, where w is the rotor’s angular velocity in rad/s. How long does it take the rotor to slow
to 1000 rpm?

Example 2 (Type: a(v); Cognitive level: high) : A rock that’s dropped from the top of a cliff will
experience an acceleration due to gravity, along with a deceleration due to drag. The total
downward acceleration is g — c4$2, where g = 32.2 ft/s?, ¢; = 0.01 m ™!, and the downward
speed s is in ft/s. If the rock is dropped from 100 ft up, calculate the rock’s impact velocity.



Example 3 (Type: a(0); Cognitive level: high) : A motorcycle moves along a circular track 300-
m in radius and its angular acceleration is given by @ = —0.0016 rad/s*. If its speed at the initial
position is 30 m/s, determine its speed and the time when it travels another quarter revolution.

Appendix C: Grading Rubric

Figure 4 shows the grading interface in Gradescope. Each marked rubric indicates an error. Since
both equations were not set up correctly and three givens (i.e., ty, Sg Vo) were not provided, the
first three rubric items were marked.

Example: The acceleration of a regional airliner during its takeoff run is @ = 14 — 0.0003v?
Ayl - s0udv® f1/5™

ft/s?, where v is its velocity in fi/s. How long does it take the airliner to travel 3000 ft? How fast
FL S s w0 g+ [V, Ji

Student

Total Points
0.05/1 pts

Question 1
P1 0.05/1 pt
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- 0.05 pts Incomplete unknowns

-0pts Well done!

Figure 4 Grading Interface in Gradescope
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