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Global, Non-scattering solutions to the energy critical wave maps equation

Mohandas Pillai

Abstract

We consider the 1-equivariant energy critical wave maps problem with two-sphere target. Using a method based on
matched asymptotic expansions, we construct infinite time relaxation, blow-up, and intermediate types of solutions
that have topological degree one. More precisely, for a symbol class of admissible, time-dependent length scales, we
construct solutions which can be decomposed as a ground state harmonic map (soliton) re-scaled by an admissible
length scale, plus radiation, and small corrections which vanish (in a suitable sense) as time approaches infinity.
Our class of admissible length scales includes positive and negative powers of t, with exponents sufficiently small
in absolute value. In addition, we obtain solutions with soliton length scale undergoing damped or undamped
oscillations in a bounded set, or undergoing unbounded oscillations, for all sufficiently large t.
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1 Introduction

We consider the wave maps equation for maps Φ : R1�2 Ñ S
2. This wave maps equation is the Euler-

Lagrange equation associated to

S♣Φq ✏
➺
R2�1

①❇αΦ♣t, xq, ❇αΦ♣t, xq②g♣Φ♣t,xqqdtdx

where g denotes the round metric on S
2, and the α indices are contracted using the Minkowski metric. We

consider the 1-equivariant symmetry reduction of this wave maps equation, which corresponds to writing

Φu♣t, xq ✏ ♣sin♣u♣t, rqq cos♣φq, sin♣u♣t, rqq sin♣φq, cos♣u♣t, rqqq
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where ♣r, φq are polar coordinates on R
2. The resulting equation for u is the following.

✁❇ttu� ❇rru� 1

r
❇ru✁ sin♣2uq

2r2
✏ 0, r → 0 (1.1)

Sufficiently regular solutions to (1.1) satisfy the condition that the energy EWM ♣u, ❇tuq is independent of
time, where

EWM ♣u, vq ✏ π

➺ ✽
0

✂
v
2 � ♣❇ruq2 � sin2♣uq

r2

✡
rdr

We note that the family of solitons, Qλ♣rq ✏ 2 arctan♣rλq, for λ → 0, are solutions to (1.1), which minimize
EWM ♣u, 0q within a class of functions u such that Φu has topological degree one.

The work of Shatah and Tahvildar-Zadeh, [29], studied the Cauchy problem associated to (1.1), with
data ♣u0, u1q such that

♣x1, x2q ÞÑ ♣x1u0♣rq
r

,
x2u0♣rq

r
q P H1

loc♣R2q, ♣x1, x2q ÞÑ ♣x1u1♣rq
r

,
x2u1♣rq

r
q P L2

loc♣R2q

As in the previous work of the author, [25], we will say that u is a finite energy solution to (1.1) if u is a
solution to (1.1) in the sense of distributions, with Φu P C0

t
✾H1♣R2q and ❇tΦu P C0

t L
2♣R2q. Throughout this

work, we will consider the following wave equation with various right-hand sides.

✁❇2t u� ❇2ru� 1

r
❇ru✁ u

r2
✏ 0 (1.2)

The quantity E♣u, ❇tuq is formally conserved for solutions to (1.2), where

E♣u, vq ✏ π

➺ ✽
0

✂
v
2 � ♣❇ruq2 � u2

r2

✡
rdr (1.3)

The work [5] of Cote, Kenig, Lawrie, and Schlag classified all solutions, u, to (1.1), which satisfy the condition
that Φu has topological degree one, and EWM ♣Q1, 0q ➔ EWM ♣u, ❇tuq ➔ 3EWM ♣Q1, 0q. In particular, the
result of [5] implies that any such solution which also exists globally in time can be decomposed as

Q 1

λ♣tq
♣rq � ϕL♣t, rq � ǫ♣t, rq (1.4)

where ϕL solves (1.2), λ♣tq ✏ o♣tq, tÑ ✽, and ǫÑ 0 in an appropriate sense, as tÑ ✽. According to [5],
at the time of its writing, there were no known constructions of solutions to (1.1) which can be decomposed
as above, for λ♣tq Ñ 0 or λ♣tq Ñ ✽ as t Ñ ✽. To the knowledge of the author, the only currently known
examples of such solutions with λ♣tq Ñ 0, are those constructed in the previous work of the author, [25].
More precisely, for all b → 0, and all functions λ0 P C✽♣r100,✽qq which satisfy the following conditions for
some constants Cl, Cm, Cm,k → 0,

Cl

logb♣tq
↕ λ0♣tq ↕ Cm

logb♣tq
, ⑤λ♣kq0 ♣tq⑤ ↕ Cm,k

tk logb�1♣tq
, k ➙ 1, t ➙ 100

the work [25] constructs finite energy solutions to (1.1), for t sufficiently large, of the form

u♣t, rq ✏ Q 1

λ♣tq
♣rq � vrad♣t, rq � ue♣t, rq

where vrad solves (1.2), with E♣vrad, ❇tvradq ➔ ✽,

E♣ue, ❇t
✁
Q 1

λ♣tq
♣rq � ue

✠
q ↕ C

t2 log2b♣tq
and

λ♣tq ✏ λ0♣tq � e♣tq, ⑤e♣tq⑤ ↕ C

logb♣tq
❛
log♣log♣tqq

The main result of this work can be summarized as follows. For each positive λ P C✽♣♣50,✽qq satisfying the
following for all t sufficiently large and Cl, Cu, C2 → 0 sufficiently small (see (1.6) for the precise conditions)

✁Cl

t
↕ λ✶♣tq

λ♣tq ↕
Cu

t
,
⑤λ♣kq♣tq⑤
λ♣tq ↕ Ck

tk
, for k ➙ 2

this work constructs a solution to (1.1) which can be decomposed as in (1.4) (see Theorem 1 for the precise
sense in which ǫ Ñ 0). This class of λ includes positive and negative powers of t, as well as oscillatory
functions which satisfy any combination of the following (see the Remarks after Theorem 1)

lim inf
tÑ✽ λ♣tq ✏ 0 or lim inf

tÑ✽ λ♣tq ✏ λ0 → 0 and lim sup
tÑ✽

λ♣tq ✏ λ1 → 0 or lim sup
tÑ✽

λ♣tq ✏ ✽, where λ0 ↕ λ1
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(in addition to oscillatory λ such that lim inftÑ✽ λ♣tq ✏ lim suptÑ✽ λ♣tq ✏ 0 or ✽). The method of con-
struction of the ansatz of this work is quite different than that used in [25], see Remark 7 after Theorem 1
(as well as Section 3) for a comparison.

To the knowledge of the author, the solutions constructed in this work are the first examples of solutions
to (1.1) of the form (1.4), with λ♣tq Ñ ✽. Our class of solutions also enlarges the symbol class of known
infinite time blow-up rates for (1.1), and also includes solutions for which λ♣tq is a power of t, or oscillates
as described above, see also Remarks 4, 5, 6 after Theorem 1.

Before we state our main theorem, we will have to precisely describe the set of admissible λ♣tq, and this
will require a short discussion of the work [16] of Krieger, Schlag, and Tataru. The work [16] constructed
a continuum of finite time blow-up solutions to (1.1), with blow-up rates given by λ♣tq ✏ t1�ν , for ν → 1

2 .
(Here, λ♣tq is the length scale of the soliton).

When completing our approximate solution to (1.1) to an exact one, we use two important notions from
[16] in this present work. First, we will use the distorted Fourier transform, F , associated to (a conjugation
of) the elliptic part of the wave equation obtained by linearizing (1.1) around Q1. This distorted Fourier
transform is defined in Section 5 of [16]. Second, we will use the “transference operator”,K, defined in
Section 6 of [16] by

F♣r❇ruq ✏ ✁2ξ❇ξF♣uq �K♣F♣uqq
In order to precisely describe the set of λ♣tq to which our main theorem applies, we will have to define a few
absolute constants. First, we let ρ denote the density of the spectral measure of F , as defined in Theorem
5.3 of [16]. From Proposition 5.7b of [16], there exists Cρ → 0, such that, for all y, z → 0,

ρ♣yq
ρ♣zq ↕ Cρ

✂
y

z
� z

y

✡
Second, by Theorem 6.1, and Proposition 6.2 of [16], the operators K and rξ❇ξ,Ks are bounded on L2,α

ρ , for
example, for α ✏ 0, 12 , where

⑤⑤f ⑤⑤
L

2,α
ρ

✏ ⑤⑤f♣ξq①ξ②α
❛
ρ♣ξq⑤⑤L2♣dξq (1.5)

Now, we define Λ to be the set of positive functions λ P C✽♣♣50,✽qq such that there exists Tλ → 100,
constants Cl, Cu, C2 ➙ 0 satisfying (1.7), (1.8), and (1.9), and constants Ck ➙ 0 for k ➙ 3, such that the
following hold for t ➙ Tλ

✁Cl

t
↕ λ✶♣tq

λ♣tq ↕ Cu

t
,

⑤λ♣kq♣tq⑤
λ♣tq ↕ Ck

tk
, for k ➙ 2 (1.6)

where, for M :✏ maxtCl, Cu✉,
0 ↕ Cu ➔ 1

30
✁ Cl

5
(1.7)

❛
Cρ ☎ 179

267
☎
✂
M♣1� 2⑤⑤K⑤⑤L♣L2

ρqq �M
2

✂
1

4
� 2⑤⑤rξ❇ξ,Ks⑤⑤L♣L2

ρq � ⑤⑤K⑤⑤2L♣L2
ρq

✡
�C2

✂
1

2
� ⑤⑤K⑤⑤L♣L2

ρq
✡
� 4

✂
M

2 � C2

3
♣3� 2π2q

✡✡
➔ 1

3

(1.8)

M ➔ 1

3
❛
Cρ

☎ 1513
1044

☎ 1✂
1� 2⑤⑤K⑤⑤

L♣L2, 1
2

ρ q

✡
(1.9)

Remark : Given any positive function f P C✽♣♣0,✽qq such that there exists Tf → 100 so that

⑤f ♣kq♣tq⑤
f♣tq ↕ Cf,k

tk
, k ➙ 1, t ➙ Tf (1.10)

if, for d → 0, we define λ by

λ♣tq ✏ f♣t 1

d q, t ➙ 50

then, λ P Λ for d chosen sufficiently large so that the smallness constraints (1.7) through (1.9) are satisfied.
The main theorem of this paper is the following.

Theorem 1 For all λ P Λ, there exists T0 → 0 such that there exists a finite energy solution, u, to (1.1) for

t ➙ T0, satisfying the following properties.

u♣t, rq ✏ Q 1

λ♣tq
♣rq � ue♣t, rq � vrad♣t, rq (1.11)

where

✁❇2t vrad � ❇2rvrad � 1

r
❇rvrad ✁ vrad

r2
✏ 0, E♣vrad, ❇tvradq ➔ ✽
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and

E♣ue, ❇t
✁
Q 1

λ♣tq
� ue

✠
q ↕ C log2♣tq

t2✁2Cu

where Cu is as in (1.6)

Remark 1. The function ue appearing in (1.11) satisfies

ue♣t, rq ✏ ue,0♣t, rq � v6,0♣t, rq

where ue,0 is fairly explicit, and v6,0 is constructed with a fixed point argument, and satisfies

♣t, r, θq ÞÑ e
iθ
v6,0♣t, rq P C0

t ♣rT0,✽q, H2♣R2qq

♣t, r, θq ÞÑ e
iθ❇tv6,0♣t, rq P C0

t ♣rT0,✽q, H1♣R2qq
where ♣r, θq are polar coordinates on R

2. This follows from the continuity of dilation on L2, and Lemma
10.1 of [16].

Remark 2. Our class of solutions includes infinite time relaxation solutions, in other words, solutions of
the form (1.11), for λ♣tq Ñ ✽ as t approaches infinity. For example, we can apply the remark before
Theorem 1 to f♣tq ✏ t, to get that

λ1♣tq ✏ t
Cu t ➙ 50

is in Λ, for Cu → 0 sufficiently small.

Remark 3. We also have infinite time blow-up solutions, obtained by applying the remark before Theo-
rem 1 to f♣tq ✏ t✁1, which shows that

λ2♣tq ✏ t
✁Cl , t ➙ 50

is in Λ, for 0 ➔ Cl sufficiently small.

Remark 4. (Oscillatory λ, part 1). If 0 ➔ λ0 ↕ λ1 are two real numbers, and 0 ↕ α0, α1 with α1 � α0 ➔ 1,
define λ by

λ♣tq ✏ λ0 log
✁α0♣tq � λ1 log

α1♣tq
2

�

✁
λ1 log

α1♣tq ✁ λ0 log
✁α0♣tq

✠
2

sin♣log♣log♣tqqq

Then, λ♣tq ➙ λ0 log
✁α0♣tq. Therefore,

⑤λ♣kq♣tq⑤
λ♣tq ↕ Ck

tk log✁α0✁α1�1♣tq , t ➙ 50, k ➙ 1

Since α0�α1 ➔ 1, there exists Tλ → 100 so that (1.8),(1.9), and (1.7) are satisfied for t ➙ Tλ (for appropriate
choices of Cu, Cl, C2). So, λ P Λ and, by considering any combination of

α0 ✏ 0 or α0 → 0, and α1 ✏ 0 or α1 → 0

we can satisfy any combination of the following

lim inf
tÑ✽ λ♣tq ✏ 0 or lim inf

tÑ✽ λ♣tq ✏ λ0 and lim sup
tÑ✽

λ♣tq ✏ λ1 or lim sup
tÑ✽

λ♣tq ✏ ✽

Remark 5. (Oscillatory λ, part 2). We have solutions of the form (1.11), for λ♣tq with bounded (damped or
undamped), or unbounded oscillations for all t sufficiently large. To ease notation, let

f♣x, y, zq :✏ x♣1� 2⑤⑤K⑤⑤L♣L2
ρqq � y

✂
1

4
� 2⑤⑤rξ❇ξ,Ks⑤⑤L♣L2

ρq � ⑤⑤K⑤⑤2L♣L2
ρq

✡
� z

✂
1

2
� ⑤⑤K⑤⑤L♣L2

ρq
✡
� 4

✁
y � z

3
♣3� 2π2q

✠
so that the constraint (1.8) is ❛

Cρ ☎ 179
267

f♣M,M
2
, C2q ➔ 1

3

We can, for example, let

0 ➔ c0 ➔ mint 2

73
,

4m

2m� 9
✉

and
0 ↕ ⑤a⑤ ➔ c0

2✁ c0
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where

m ✏ mint 1513

3132
❛
Cρ♣1� 2⑤⑤K⑤⑤

L♣L2, 1
2

ρ q
q ,

89

179
❛
Cρf♣1, 1, 1q

✉.

Then, define

Cu ✏ ⑤a⑤ � c0

2✁ c0
✏ Cl, C2 ✏

✂
⑤a⑤ � 2c0

2✁ c0

✡
♣1� ⑤a⑤q

and
λ3♣tq :✏ t

a ♣2� c0 sin♣log♣tqqq , t ➙ 50

For instance C2 ➙M ➙M2. We thus have f♣M,M2, C2q ↕ C2f♣1, 1, 1q, and this shows that (1.8),(1.9), and
(1.7) are satisfied, and λ3 P Λ. When a ✏ 0, this is an example of λ♣tq undergoing undamped oscillations
while staying in a bounded set for all t sufficiently large, if a ➔ 0, λ undergoes damped oscillations, and if
a → 0, λ♣tq oscillates, while staying positive, but is unbounded.

Remark 6. If fj satisfy (1.10) for j ✏ 1, 2, then, since fj♣tq → 0, we have, for k ➙ 1, and t ➙ Tf1
� Tf2

,

⑤♣f1 � f2q♣kq♣tq⑤
f1♣tq � f2♣tq ↕ ⑤f ♣kq1 ♣tq⑤

f1♣tq � ⑤f ♣kq2 ♣tq⑤
f2♣tq ↕ Dk

tk

Therefore, by the remark before Theorem 1, we get

λ5♣tq ✏ ♣f1 � f2q ♣t
1

d q P Λ, d → 0, sufficiently large

In particular, for any c0 → 0, some sufficiently small c1, a → 0, and a sufficiently large d → 0,

c0 � t
✁⑤a⑤

✂
2� c1 sin♣ log♣tq

d
q
✡
P Λ

Remark 7. We provide a quick comparison and contrast of the method used in this work and the previous
work of the author [25]. In [25], the leading order part of λ♣tq, say λ0♣tq was chosen from an appropriate
class of functions. Then, the radiation v2 was inserted into the ansatz by hand, and its data was chosen so
as to allow λ♣tq ✏ λ0♣tq to be the leading order solution to an equation resulting from enforcing that the
principal part of an error term is orthogonal to φ0♣ ☎

λ♣tq q.

Here, the exact λ♣tq is prescribed from the beginning of the argument. An accurate approximate solution
is obtained by constructing approximate solutions for small and large r, matching them in an intermediate
region, and then, writing a function which interpolates between these two approximate solutions (see Sec-
tion 3 for more information). This method was inspired by the discussions (in the textbooks of Nayfeh, [23],
and Bender-Orszag, [3]) of matched asymptotic expansions for one-dimensional boundary value problems
with a singular perturbation.

In order to be able to match our approximate solutions in the intermediate region, we need to use gen-
eral solutions to various inhomogeneous wave equations, for example a particular solution which has zero
Cauchy data at infinity, plus a free wave (radiation). The radiation component of our solution in this
work therefore naturally arises from the fact that we need to use general solutions to inhomogeneous wave
equations when doing matching, rather than being inserted into the ansatz by hand. The relation between
the radiation component of our solution and λ♣tq is thus determined by a matching condition, rather than
by enforcing an orthogonality condition. Despite the very different approaches to the construction of the
ansatz, and different methods of determining the relation between λ♣tq and the radiation, we still have the
same leading order relation in this work between λ♣tq and the radiation (for example, when we restrict
attention to λ♣tq ✏ 1

logb♣tq for b → 0 so that λ is in the admissible class of rates from [25]) as we had in [25].

(See the discussion following (3.4)).

Finally, the method of completion of our ansatz to an exact solution to (1.1) uses a simpler version of
the same argument used in the previous work of the author [25]. (As we will describe in the summary of
the proof, there is no orthogonality condition on the error term of our ansatz here, as opposed to [25],
and this is what makes the iteration here simpler, at the expense of requiring a more accurate ansatz). We
remark again that this final step of completing the ansatz to an exact solution uses the distorted Fourier
transform, and the transference identity from [16].

Now, we briefly mention previous results which are related to this work. For the energy critical wave
maps problem with S

m target, the work [32] of Tao proved global regularity at small energies. The works
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[30] and [31], of Sterbenz and Tataru established a threshold theorem for the energy critical wave maps
equation with a general compact Riemannian manifold target. The work [4], of Cote, Kenig, Lawrie, and
Schlag, proved a threshold theorem for the 1-equivariant, energy critical wave maps problem with degree
zero data, and a refined threshold, which accounts for the topological degree. The work [22], of Lawrie and
Oh proved an analogous result, but without the equivariance restriction.

The works of Jendrej, and Jendrej, Lawrie [11], [13], constructed and classified, respectively, topological
degree zero, threshold energy solutions to the k-equivariant wave maps equation for k ➙ 2. The subsequent
works of Jendrej and Lawrie, [12] and [14] give a more precise classification of the topological degree 0,
threshold energy solutions to the k-equivariant critical wave map problem with S

2 target, for k ➙ 4. The
work, [28], of Rodriguez, classifies threshold energy degree 0 solutions to the 1-equivariant wave maps
problem, in particular obtaining a finite-time blow-up solution in this setting.

As previously mentioned, the work [16] of Krieger, Schlag, and Tataru constructed finite time blow-up
solutions to (1.1) with a continuum of possible rates. The subsequent work of Gao and Krieger, [8], extended
the set of solutions constructed in [16] to include ones for which λ♣tq ✏ t1�ν , for ν → 0. The stability of
these solutions under equivariant perturbations was studied in the work of Krieger and Miao [18], and under
non-equivariant perturbations, in the recent work of Krieger, Miao, and Schlag, [19]. The works [17] and
[21] of Krieger, Schlag, and Tataru are analogs of [16] for an equivariant reduction of the 4� 1-dimensional
Yang-Mills equation with gauge group SO♣4q, and the 3� 1-dimensional quintic, focusing semilinear wave
equation (for which the work [7] of Donninger, Huang, Krieger, and Schlag also constructed finite time

blow-up solutions with soliton length scale given by λ♣tq ✏ t1�νeǫ0 sin♣log♣tqq, with ν → 3, ⑤ǫ0⑤ ✦ 1). The work
[20] extends the solutions of [21], analogously to [8] for the solutions in [16]. We also remark that the work
of Perelman [24] constructs solutions of a similar form to those of [16], for the 1-equivariant Schrodinger
map problem with domain R

1�2 and target S2. In addition, the work of Bahouri, Marachli, and Perelman,
[1], constructs finite time blow-up solutions to the vanishing mean curvature flow in Minkowski space, with
blow-up rate given by a power of t, using a matching procedure. In addition, the work of Rodnianski and
Sterbenz, [27], constructed finite time blow-up solutions to the k equivariant wave maps problem, for k ➙ 4.
Finite time blow-up solutions to the critical wave maps equation in all equivariance classes, as well as for
the 4 � 1 dimensional Yang-Mills equation with gauge group SO♣4q were constructed in the work [26] of
Raphael and Rodnianski. The work [15] of Jendrej, Lawrie, and Rodriguez also constructed new finite time
blow-up solutions to (1.1). The work of Bejenaru, Krieger, and Tataru, [2] constructed solutions to (1.1)
with energy close to that of Q1, and whose modulated soliton component has length scale bounded away
from 0 and infinity, for all time.

The work [6], of Donninger and Krieger, constructed infinite time blow-up and infinite time relaxation
solutions to the quintic, focusing, energy critical semilinear wave equation on R

1�3, with rates λ♣tq ✏ tµ,
where ⑤µ⑤ is sufficiently small, but µ can be positive or negative. The procedure used in this work is
quite different than that used in [6]. We also note that the work of Gustafson, Nakanishi, and Tsai, [10],
constructs solutions to the 2-equivariant harmonic map heat flow with soliton length scale having several
possible asymptotic behaviors, including approaching zero, a positive constant, infinity, or having various
combinations of finite or infinite lim sup with positive or zero lim inf as t approaches infinity.

1.1 Acknowledgments

Part of this work was completed while the author was a graduate student of Daniel Tataru, whom the
author thanks for useful discussions. This material is based upon work partially supported by the National
Science Foundation under Grant No. DMS-1800294.

2 Notation

2.1 Index of terms in the ansatz

Our final ansatz will involve several functions, which are listed here, along with the references to the
equations they solve.
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Function Definition Purpose

uell (4.6) Corrects ❇2tQ 1

λ♣tq
for small r

uell,2 (4.8) Corrects linear error term of uell
uw (4.19) Corrects ❇2tQ 1

λ♣tq
for large r

uw,2 (4.49) Corrects part of the linear error term of uw (and contributes to matching)

v2,2 (4.50) Allows for third order matching

f5,0 (4.156) Eliminates the part of the matching error term given in (4.152)

fex,sub (4.157) Corrects part of the linear error term of uw (but does not contribute to matching)

fell,2 Lemma 37 Corrects part of linear error term of uell,2
f2,2 (4.166) Corrects linear error term of v2,2
uN0

(4.173) Corrects principal part (given in (4.172)) of first set of nonlinear interactions

uN0,corr (4.181) – (4.183) Corrects the linear error term of uN0

uN0,corr,2 (4.196) Corrects the linear error term of part of uN0,corr

uN2
(4.207) Corrects the principal part of the second set of nonlinear interactions.

The first five corrections in the list above are combined into ue and uwave, which are defined in (4.139),
and are further combined into uc, which is defined in (4.141). uc is combined with other corrections, to
form ua, which is defined in (4.167). The sum of the rest of the terms in the listing above are combined
into the sum of un (defined in (4.203)), and uN2

).

If f P Ck♣Dq, and a P D, we let Pk,a♣fq♣xq ✏
➦k

j✏0
f♣jq♣aq

j! ♣x✁ aqj .
We use the notation

⑤⑤f ⑤⑤2
✾H1
e

✏ ⑤⑤❇rf ⑤⑤2L2♣rdrq � ⑤⑤f
r
⑤⑤2L2♣rdrq

We let m↕1 denote the following cutoff function.

m↕1♣xq P C✽♣r0,✽qq, 0 ↕ m↕1♣xq ↕ 1, m↕1♣xq ✏
★
1, x ↕ 1

2

0, x ➙ 1
(2.1)

We will use the notation

If ♣s, y, ρ, θq ✏ ❇2f♣s,
❛
ρ2 � y2 � 2ρy cos♣θqq ♣y � ρ cos♣θqq2

♣ρ2 � y2 � 2ρy cos♣θqq

� f♣s,
❛
ρ2 � y2 � 2ρy cos♣θqq❛

ρ2 � y2 � 2ρy cos♣θq

✂
1✁ ♣y � ρ cos♣θqq2

ρ2 � y2 � 2ρy cos♣θq
✡
, s →M,y, ρ ➙ 0, y ✘ ρ, θ P r0, 2πs

(2.2)

for various choices of M ✧ 1, and functions f : ♣M,✽q ✂ r0,✽q Ñ R throughout the paper.
We denote, by In and Kn, the modified Bessel functions of the first and second kind, respectively. We use
the standard definition of ①☎②, namely

①x② ✏
❛
1� x2

The wave maps equation, (1.1), linearized around Q1♣rq takes the form

✁❇ttu✁ L
✝
Lu ✏ 0, L♣fq ✏ f

✶♣rq ✁ cos♣Q1♣rqq
r

f♣rq

where ♣☎q✝ denotes the L2♣rdrq adjoint. We will also use the notation

L 1

λ♣tq
♣fq ✏ f

✶♣rq ✁
cos♣Q1♣ r

λ♣tq qq
r

f♣rq

We denote by e2 and φ0 the following two linearly independent solutions to L✝L♣uq ✏ 0:

e2♣Rq ✏ R4 � 4R2 log♣Rq ✁ 1

2R ♣R2 � 1q , φ0♣Rq ✏ 2R

1�R2
(2.3)

We will use ♣☎ to denote the Hankel transform of order 1:

♣f♣ξq ✏ ➺ ✽
0

J1♣rξqf♣rqrdr

Recalling the definition of ⑤⑤f ⑤⑤
L

2,α
ρ

given in the introduction, (1.5), we will use the notation ⑤⑤A⑤⑤
L♣L2,α

ρ q to

denote the operator norm of a bounded operator A : L2,α
ρ Ñ L

2,α
ρ . We use the standard notation for the

dilogarithm function.

Li2♣xq ✏
➺ x

0

✁ log♣1✁ yq
y

dy
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3 Summary of the Proof

We start by letting λ P Λ, and considering, for t sufficiently large, the modulated soliton Q 1

λ♣tq
♣rq. The

error term of the modulated soliton is ❇2tQ 1

λ♣tq
♣rq. We fix g♣tq ✏ tα, where α satisfies (4.2). (A priori, one

might not know what constraints α must satisfy, and one could leave α general, until the very end of the
argument, at which point the constraints would be clear. This is what was originally done, but, this results
in many long expressions that can be greatly simplified once the constraints (4.2) are imposed. This is why
we impose the constraints from the beginning of the argument. We will provide some intuition about why
(4.2) has its particular form throughout this section).

Our first step is to obtain an approximate solution whose error term is small for all r, to the following
linear equation

✁❇ttu1 � ❇rru1 � 1

r
❇ru1 ✁

cos♣2Q1♣ r
λ♣tq qq

r2
u1 ✏ ❇2tQ1♣ r

λ♣tq q

Our plan is to start with a function of the form

uc♣t, rq ✏ χ↕1♣ r

h♣tq qusmallr � ♣1✁ χ↕1♣ r

h♣tq qqularger, h♣tq :✏ g♣tqλ♣tq (3.1)

where usmallr and ularger are good approximate solutions for r ➚ h♣tq and h♣tq ➚ r, respectively, and whose
asymptotic expansions for large t in the region r ✒ h♣tq “match”. Here, by “match”, we mean that the
terms at various orders in the aforementioned expansions of our corrections take the form

j➳
k,l✏✁⑤j⑤

qk,l♣tqrk log♣rql

for various choices of j ➙ 0, and the difference between these sums associated to usmallr and ularger is equal
to zero (see sections 4.3, 4.5, 4.6, 4.7).

We start with a correction to the soliton error term that we will use for r ➚ h♣tq. (In other words, we
start with a part of usmallr.) More precisely, we consider the general solution (in general, in order to do
the matching process described above, one must keep sufficiently many degrees of freedom in the various
corrections, which will be later fixed when we impose the matching) to the ODE

❇2ruell � 1

r
❇ruell ✁

cos♣2Q 1

λ♣tq
♣rqq

r2
uell ✏ ❇2tQ 1

λ♣tq
♣rq

which does not have a singularity near the origin. (This ODE was also considered in the previous works
[16], [26], but we will end up choosing a different solution to this ODE than what was considered in the
aforementioned works). The general solution that does not have a singularity at the origin depends on one
function of t, say, c1♣tq, see (4.7). The linear error term associated to uell is ❇2t uell♣t, rq. (Even though uell
will appear in our ansatz only after being multiplied by χ↕1♣ r

h♣tq q, it is still useful for us to consider the

linear error term associated to uell alone, when trying to improve the error term in the region r ➚ h♣tq).
Strictly speaking, this error term depends on c1♣tq, which is not yet chosen, but we can still give the reader
an idea of the size of the error term of uell by noting that

⑤❇2t uell♣t, rq⑤ ↕
✩✫✪

Crλ♣tq
t4

� C r
λ♣tq
➦2

j✏0
⑤c♣jq

1
♣tq⑤

t2✁j , r ↕ λ♣tq
Cλ♣tq

r

➦2
j✏0

⑤c♣jq
1

♣tq⑤
t2✁j � Crλ♣tq

t4
♣1� log♣ r

λ♣tq qq, r ➙ λ♣tq

Even for r ↕ λ♣tq, the error term of uell is not quite good enough for our purposes. (The error term, F5, of
our final ansatz, satisfies the following estimates, for some δ → 0 (see Lemma 54)).

⑤⑤F5♣t, rq⑤⑤L2♣rdrq
λ♣tq2 ↕ C5 log

30♣tq
t4�2δ

, ⑤⑤L 1

λ♣tq
F5♣t, rq⑤⑤L2♣rdrq ↕

C log2♣tq
t2�5α

� C log6♣tq
t4�2α✁3Cu

� C log30♣tq
t9④2✁Cl✁15Cu

(3.2)

Therefore, we correct the error term ❇2t uell♣t, rq, with a second term in usmallr, by considering a particular
solution to the following ODE (see (4.10)).

❇rruell,2♣t, rq � 1

r
❇ruell,2♣t, rq ✁

cos♣2Q1♣ r
λ♣tq qq

r2
uell,2♣t, rq ✏ ❇2t uell♣t, rq

Defining usmall,r ✏ uell�uell,2 will turn out to be sufficient for us. (Strictly speaking, the error terms of uc
depend not only on the quality of the matching between usmallr and ularger (for the terms which involve
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derivatives of χ↕1) but also on c1♣tq, since uell,2 depends on c1♣tq. Also, c1♣tq is chosen during a second
order matching process, and is not specifically chosen to make the error of uell,2 small, see section 4.6).

After defining uell,2, we start defining the various components of ularger. In particular, we consider the
solution to

✁❇ttuw � ❇rruw � 1

r
❇ruw ✁ uw

r2
✏ ❇2tQ1♣ r

λ♣tq q

given by
uw♣t, rq ✏ v1♣t, rq � v2♣t, rq

where v1 solves

✁❇ttv1 � ❇rrv1 � 1

r
❇rv1 ✁ v1

r2
✏ ❇2tQ1♣ r

λ♣tq q

with 0 Cauchy data at infinity, and v2 solves the following Cauchy problem✩✬✫✬✪
✁❇ttv2 � ❇rrv2 � 1

r ❇rv2 ✁ v2

r2 ✏ 0

v2♣0q ✏ 0

❇tv2♣0, rq ✏ v2,0♣rq

where v2,0 P L2♣rdrq will be chosen later. We remark that, in general, one needs to use general solutions,
rather than particular solutions, to the inhomogeneous equations defining corrections, if one wishes to use
the matching procedure described above. We also remark that, if λ✶♣tq ✘ 0, then, ♣1✁χ↕1♣ r

h♣tq qquw has infi-

nite kinetic energy, as does Q 1

λ♣tq
♣rq (because ❇tQ 1

λ♣tq
♣rq ❘ L2♣rdrq, for λ✶♣tq ✘ 0). However, there is sufficient

cancellation in the sum v1♣t, rq�Q 1

λ♣tq
♣rq for large r, so that ❇t

✁
♣1✁ χ↕1♣ r

h♣tq qqv1♣t, rq �Q 1

λ♣tq
♣rq
✠
P L2♣rdrq,

see (4.218). (The function w1 appearing in (4.218) is such that ❇t
✁
♣1✁ χ↕1♣ r

h♣tq qq ♣v1♣t, rq ✁ w1♣t, rqq
✠
P

L2♣rdrq).
Next, we do the “first order matching” as follows. As long as ②v2,0♣ξq satisfies, for example, that ⑤②v2,0♣ξq⑤ ↕

C
ξ3 , ξ ➙ 1

100 (so that the integral below in (3.3) converges), the leading contributions of uell♣t, rq, v1♣t, rq,
and v2♣t, rq in the region r ✒ h♣tq are, respectively:

uell,firstorder ✏ r

λ♣tq
✂
1

2
λ
✶♣tq2 � λ♣tqλ✷♣tq ✁ λ♣tqλ✷♣tq log♣ r

λ♣tq q
✡

v1,firstorder♣t, rq ✏ r

✂
log♣2q � 1

2

✡
λ
✷♣tq � r

➺ 2t

t

♣λ✷♣sq ✁ λ✷♣tqq
s✁ t

ds� rλ
✷♣tq log♣ t

r
q � r

➺ ✽
2t

λ✷♣sqds
♣s✁ tq

v2,firstorder ✏ ✁r
4

✂
✁2
➺ ✽
0

ξ sin♣tξq②v2,0♣ξqdξ✡ (3.3)

Note that the r log♣rq terms from uell,firstorder and v1,firstorder already match. Therefore, it is possible to
achieve

uell,firstorder ✏ v1,firstorder � v2,firstorder

by choosing v2,0 appropriately. In particular, we choose v2,0 to satisfy the following equation, for all suffi-
ciently large t:

F ♣tq :✏ ✁2
➺ ✽
0

ξ sin♣tξq②v2,0♣ξqdξ
✏ 4

✂✂
log♣2q ✁ 1

2

✡
λ
✷♣tq �

➺ 2t

t

✂
λ✷♣sq ✁ λ✷♣tq

s✁ t

✡
ds� λ

✷♣tq log♣ t

λ♣tq q �
➺ ✽
2t

λ✷♣sqds
s✁ t

✁ λ✶♣tq2
2λ♣tq

✡ (3.4)

In particular, we have ②v2,0♣ξq ✏ ✁1
πξ

➺ ✽
0

H♣tq sin♣tξqdt

with

H♣tq ✏ 4

✂✂
log♣2q ✁ 1

2

✡
λ
✷♣tq �

➺ 2t

t

✂
λ✷♣sq ✁ λ✷♣tq

s✁ t

✡
ds� λ

✷♣tq log♣ t

λ♣tq q �
➺ ✽
2t

λ✷♣sqds
s✁ t

✁ λ✶♣tq2
2λ♣tq

✡
ψ♣tq

where ψ is a relatively unimportant cutoff defined in (4.42).
The function v2 is the leading part of our radiation in the matching region. (The other free waves v2,2

and v2,4 which are part of our ansatz and added later on in the argument, have much more decay in t in
the entire region, for instance, r ↕ t

2 , and contribute to higher-order matching). Therefore, the relation
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between the leading part of the radiation in the matching region, and λ♣tq is determined by the matching
of leading terms from parts of usmallr with corresponding terms from ularger.

Note that the integral on the left-hand side of (3.4) is the precise integral which determined the relation
between the radiation and the leading order dynamics of λ♣tq in the previous work of the author, [25] (see
Section 3, pg. 6 of [25], keeping in mind that K1♣xq ✏ 1

x � O ♣x⑤ log♣xq⑤q , x Ñ 0), though it arose from
very different considerations, namely the inner product of the linear error term of v2 with φ0♣ ☎

λ♣tq q rather
than the near origin behavior of v2. The fact that there is a connection between these two quantities also
appears in (4.166), pg. 34 of [25].

Despite the very different approaches between the two works, if we consider the example, for b → 0,
λ♣tq ✏ λb♣tq ✏ 1

logb♣tq , then, λb is in the admissible class of λ in the work [25] (as described in the discussion

following (1.4)), and the leading order relation between λb♣tq and the radiation of this work is the same as
that of [25] (see the third equation of pg. 6 of [25]).

We provide some intuition on why the α appearing in g♣tq ✏ tα has the constraints (4.2). Note that, if
uell♣t, rq and uw♣t, rq are roughly of the same size in a region r ✒ q♣tq for some q♣tq ✧ λ♣tq, then, firstly, the
linear error term of uell♣t, rq is ❇2t uell♣t, rq, and is roughly on the order of uell♣t,rq

t2
. The linear error term of

uw♣t, rq is
✂

cos♣2Q1♣ r
λ♣tq qq✁1

r2

✡
uw♣t, rq, is roughly λ♣tq2

q♣tq4 uw♣t, rq, for r ✒ q♣tq. Since we assume that uell♣t, rq
and uw♣t, rq are roughly of the same size for r ✒ q♣tq, the linear error terms would be of comparable size if

q♣tq ✒
❛
tλ♣tq

This is not quite exactly what we have, but provides some intuition on why it is natural to expect that
1
2 � Cl

2 appears as part of (4.2). In addition, we choose to eliminate certain error terms of borderline size
which become large if g♣tq is taken too large. In this way, certain other error terms of borderline size can
be made perturbative by having α → 1

2 � Cl

2 . On the other hand, some other, less delicate errors become
too large if g♣tq is taken to be too large, which is why (4.2) involves an upper bound on α as well.

We then add a second term in ularger, namely, uw,2 � v2,2 (see (4.49)), which corrects the linear error
term associated to w1 � v2, where w1 is part of v1, and is defined in (4.22). We also remark that uw,2 is
a particular solution to an inhomogeneous wave equation (and it has zero Cauchy data at infinity), while
v2,2 is a free wave, which we will choose later on, as part of a higher-order matching process.

Next, we consider the terms in an expansion of ularger and usmallr in the matching region, which

are roughly of size r3 logk♣rq, multiplied by expressions that involve roughly four derivatives of λ♣tq. In
particular, we note that uell,2, w1, and v2, respectively, contribute the following terms when expanded in
the matching region.

vell,2,0,main♣t, r

λ♣tq q ✏
r3

8
❇2t
✂
λ✶♣tq2
2λ♣tq � λ

✷♣tq ✁ λ
✷♣tq log♣ r

λ♣tq q
✡
� 3

32
r
3
λ
✹♣tq

w1,cubic,main♣t, rq ✏ 3

32
r
3
λ
✹♣tq � r3

8

✂
λ
✹♣tq

✂
log♣2q � 1

2

✡
✁ log♣rqλ✹♣tq � log♣tqλ✹♣tq

�
➺ 2t

t

λ✹♣sq ✁ λ✹♣tq
s✁ t

ds�
➺ ✽
2t

λ✹♣sqds
s✁ t

✡

v2,cubic,main♣t, rq ✏ ✁r3
32

F
✷♣tq

Note that these quantities do not involve any degrees of freedom (like, for instance, integration constants,
or free waves) which can be tuned so as to guarantee matching. In fact, the coefficient of r3 in v2,cubic,main

is precisely one-eighth of two time derivatives of the r coefficient in v2,firstorder (recall (3.3)). On the other
hand, the r3 coefficient of vell,2,0,main♣t, r

λ♣tq q and that of w1,cubic,main♣t, rq are not precisely one-eighth of

two time derivatives of the r coefficients of uell,firstorder♣t, rq and v1,firstorder♣t, rq, respectively. However,
the r3 coefficient of the difference of these two functions is precisely one-eighth of two time derivatives
of the r coefficient of uell,firstorder♣t, rq ✁ v1,firstorder♣t, rq. Note the important cancellation between the
3
32r

3λ✹♣tq terms when vell,2,0,main♣t, r
λ♣tq q and w1,cubic,main♣t, rq are subtracted. Therefore, the matching

of the r3 terms is already accomplished with our above choice of v2,0. In other words, by the choice of v2,0,
we have

vell,2,0,main♣t, r

λ♣tq q ✁
�
w1,cubic,main♣t, rq � v2,cubic,main♣t, rq

✟ ✏ 0

Next, we consider the terms arising from expansions of usmallr and ularger in the matching region which

are roughly of size logk♣rq
r multiplied by roughly two derivatives of λ♣tq. These terms coming from uell, uw,
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and uw,2, respectively, are

vell,sub,cont♣t, rq

✏ c1♣tqλ♣tq ✁ 3
2λ♣tqλ✶♣tq2
r

✁
λ♣tq2λ✷♣tq

✁
✁6 log♣rq♣4 log♣λ♣tqq � 1q � 6 log♣λ♣tqq♣2 log♣λ♣tqq � 1q � 12 log2♣rq � π2 � 12

✠
6r

vex,cont♣t, rq ✏ 1

2r

✁
log♣rq

✁
✁4λ♣tqλ✶♣tq2 ✁ 2λ♣tq2λ✷♣tq

✠
� 4λ♣tq log♣λ♣tqqλ✶♣tq2 ✁ λ♣tq2λ✷♣tq � 2λ♣tq2λ✷♣tq log♣λ♣tqq

✠

and

uw,2,ell,0,cont♣t, rq ✏ ✁2
r

✁
log♣rq

✁
✁λ♣tqλ✶♣tq2 ✁ λ♣tq2λ✷♣tq ✁ 2λ♣tq2 log♣λ♣tqqλ✷♣tq

✠
�λ♣tq log♣λ♣tqqλ✶♣tq2 � λ♣tq2 log♣λ♣tqqλ✷♣tq � λ♣tq2 log2♣λ♣tqqλ✷♣tq

� λ♣tq2 log2♣rqλ✷♣tq � 1

2
λ♣tq2λ✷♣tq ✁ 1

12
π
2
λ♣tq2λ✷♣tq

✡
Note that the only free parameter we can choose in this expression is c1, which multiplies λ♣tq

r . On the

other hand, both uw,2,ell,0,cont and vex,cont involve logk♣rq
r terms, for k → 0. It therefore appears that it is

not possible to enforce
vell,sub,cont♣t, rq ✏ vex,cont♣t, rq � uw,2,ell,0,cont♣t, rq

by choosing c1♣tq appropriately. However, it turns out that the log♣rq
r and log2♣rq

r terms from vell,sub,cont
happen to exactly match those from vex,cont�uw,2,ell,0,cont, which therefore allows us to choose c1♣tq as just
discussed. (This “automatic” matching of the logarithmically higher order terms for large r is reminiscent
of what we saw at the first order as well, recall the remark after (3.3)). In other words, we have

vell,sub,cont♣t, rq ✁
�
uw,2,ell,0,cont♣t, rq � vex,cont♣t, rq

✟ ✏ ✁λ♣tq
�✁6c1♣tq � �

3� 2π2
✟
λ♣tqλ✷♣tq � 9λ✶♣tq2✟

6r

which vanishes if

c1♣tq :✏ 3

2
λ
✶♣tq2 � λ♣tqλ✷♣tq

2
� π2

3
λ♣tqλ✷♣tq

From the point of view of constructing an approximate solution of the form (3.1), the matching conditions
are needed to reduce the size of error terms involving derivatives of χ↕1♣ r

h♣tq q. Our three matching conditions

thus far reduce these error terms, but not quite enough, so that we need to do a third order matching. We
remark that the previous two matching conditions are called second order matching, part 1 and 2 in the
paper, since, if g♣tq ✏

❛
λ♣tqt (again, we do not quite exactly choose g♣tq ✏ g♣tq, but g is the scale at which

the elliptic and wave corrections are expected to have comparably sized error terms) then, the terms from
the previous two matching conditions are of comparable size:

g♣tq3λ♣tq
t4

✏ λ♣tq 5

2

t5④2
, and

λ♣tq3
t2 ☎ g♣tq ✏

λ♣tq5④2
t5④2

The third order matching involves comparing terms from uell,2, v1, uw,2, and v2,2, which are on the order

of r logk♣rq, for 0 ↕ k ↕ 3, multiplied by terms involving roughly four derivatives of λ. The computations of
these terms are lengthy, and the terms themselves result in very long expressions, which we will not repro-
duce here. We remark that the uell,2 contributions are given in (4.129), and the v1 and uw,2 contributions
are individually computed in Lemmas 12, 13, 15, (4.126) combined with Lemma 22, and (4.119), combined
with Lemma 19. A very careful inspection reveals that, for j ✏ 1, 2, 3 the r logj♣rq terms involved in (4.129)
exactly match those terms from the v1 and uw,2 contributions (which we denote, in (4.130), by uw,3) see
(4.131). We therefore again see the “automatic” matching of logarithmically higher order in r (for large
r) terms involved in the expansions. Precisely because of this “automatic” matching, we can choose the
data for v2,2 in a similar way for v2 in order to do the third order matching, which is precisely stated in
Proposition 2.

There are a few more corrections needed to be added to our ansatz in order to improve the linear terms,
namely f5,0, fex,sub, fell,2, and f2,2. These corrections are not as delicate as those mentioned up to this
point, so we refer the reader to Section 2.1 and the equation references therein. We also remark that the
cutoff, χ↕1♣xq ✏ 1 ✁ χ➙1♣xq, where χ➙1♣xq is chosen in Lemma 27, so as to satisfy certain orthogonality
conditions, for technical reasons.
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At this stage, our ansatz is

ua♣t, rq ✏ uc♣t, rq � f5,0♣t, rq � fex,sub♣t, rq � fell,2♣t, rq � f2,2♣t, rq

with

uc♣t, rq ✏ χ↕1♣ r

λ♣tqg♣tq que♣t, rq �
✂
1✁ χ↕1♣ r

λ♣tqg♣tq q
✡
uwave♣t, rq

and

ue♣t, rq ✏ uell♣t, rq � uell,2♣t, rq, uwave♣t, rq ✏ uw♣t, rq � uw,2♣t, rq � v2,2♣t, rq
The ansatz ua has a linear error term, ea, which is small enough for our purposes, see Lemma 40.

We also remark that the radiation component of our ansatz thus far, is v2 � v2,2. On the other hand, the
nonlinear error terms of ua are not small enough. For example, the v2 cubic self-interactions near the cone
are roughly of the size

⑤
cos♣2Q1♣ r

λ♣tq qq
2r2

♣sin♣2v2q ✁ 2v2q ⑤ ↕ C

t2
☎ 1

t3④2

More precisely, the set of nonlinear interactions between the terms of ua is decomposed into N0�N1, where
N1 is perturbative, and

N0♣t, rq ✏
cos♣2Q1♣ r

λ♣tq qq
2r2

♣sin♣2ua,0q ✁ 2ua,0q �
sin♣2Q1♣ r

λ♣tq qq
2r2

♣cos♣2ua,0q ✁ 1q

where

ua,0♣t, rq ✏ χ↕1♣ r

h♣tq quell♣t, rq �
✂
1✁ χ↕1♣ r

h♣tq q
✡
♣w1♣t, rq � v2♣t, rq � v2,2♣t, rqq

First, we define uN0
to be the solution to the following equation with zero Cauchy data at infinity.

✁❇2t uN0
� ❇2ruN0

� 1

r
❇ruN0

✁ uN0

r2
✏ N0♣t, rq (3.5)

The linear error term of uN0
is eN0

✏
✂

cos♣2Q1♣ r
λ♣tq qq✁1

r2

✡
uN0

, which is small for r such that h♣tq ➚ r (see

Lemma 43 for the precise details). Therefore, the addition of uN0
reduces us to the task of eliminating an

error term which is localized to the region r ➚ h♣tq. We carry out this task as follows. We start with solving
the equation

❇rruN0,ell �
1

r
❇ruN0,ell ✁

cos♣2Q 1

λ♣tq
♣rqq

r2
uN0,ell ✏ m↕1♣ r

2h♣tq qeN0
♣t, rq

and then inserting the following function into the ansatz

uN0,corr♣t, rq :✏
✂
uN0,ell♣t, rq ✁

rλ♣tq
4

①m↕1♣Rλ♣tq
2h♣tq qeN0

♣t, Rλ♣tqq, φ0♣Rq②L2♣RdRq
✡
m↕1♣2r

t
q � v2,4♣t, rq

where v2,4 solves

✁❇ttv2,4 � ❇rrv2,4 � 1

r
❇rv2,4 ✁ v2,4

r2
✏ 0

and v2,4♣t, rq matches rλ♣tq
4 ①m↕1♣Rλ♣tq

2h♣tq qeN0
♣t, Rλ♣tqq, φ0♣Rq②L2♣RdRq for small r. (where m↕1 is a cutoff, and

is otherwise unimportant). In particular, we choose the initial velocity, say v2,5 of v2,4 by requiring, for all
t sufficiently large,

✁r
4

☎ ✁2

➺ ✽
0

ξ sin♣tξq②v2,5♣ξqdξ ✏ rλ♣tq
4

①m↕1♣Rλ♣tq
2h♣tq qeN0

♣t, Rλ♣tqq, φ0♣Rq②L2♣RdRq

This is analogous to how we chose the data for v2. The point is that the error term of v2,4♣t, rq is worst
for small r, while that of uN0,ell♣t, rq is worst for large r. On the other hand, the error term of v2,4♣t, rq ✁
rλ♣tq

4 ①m↕1♣Rλ♣tq
2h♣tq qeN0

♣t, Rλ♣tqq, φ0♣Rq②L2♣RdRq is much smaller than the error term of v2,4♣t, rq alone, for

small r, and the error term of

uN0,ell♣t, rq✁ rλ♣tq
4 ①m↕1♣Rλ♣tq

2h♣tq qeN0
♣t, Rλ♣tqq, φ0♣Rq②L2♣RdRq is much smaller than the error term of uN0,ell♣t, rq

alone for large r. So, the term rλ♣tq
4 ①m↕1♣Rλ♣tq

2h♣tq qeN0
♣t, Rλ♣tqq, φ0♣Rq②L2♣RdRq cancels the worst behavior of

both v2,4 and uN0,ell in the regions where the associated error terms are largest. This is again reminiscent of
arguments related to matched asymptotic expansions for one-dimensional boundary value problems with a
singular perturbation, see [23]. After adding one more term to our ansatz, namely m➙1♣ rt quN0,corr,2♣t, rq, in
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order to eliminate the linear error term associated to v2,4 for large r, we have the improved ansatz ua�un,
where

un♣t, rq :✏ uN0
♣t, rq � uN0,corr♣t, rq �m➙1♣r

t
quN0,corr,2♣t, rq

At this stage, the linear error terms of ua � un are perturbative, but, some nonlinear interactions are not.
In particular, the correction un involves a free wave, v2,4♣t, rq, which has no more pointwise decay in t near
the cone than v2 did. The nonlinear error terms of ua � un are decomposed into N2 �N3, where

N2♣t, rq : ✏
cos♣2Q1♣ r

λ♣tq qq
2r2

♣✁2♣ua0 � v2,4q � sin♣2♣ua,0 � v2,4qq ✁ ♣sin♣2ua,0q ✁ 2ua,0qq

�
sin♣2Q1♣ r

λ♣tq qq
2r2

♣cos♣2ua,0 � 2v2,4q ✁ cos♣2ua,0qq

and the precise formula for N3 is not important for the purposes of summarizing the main points of the
argument. N3 is defined in (4.205), and is perturbative.

We recall that, after adding ua into our ansatz, we had perturbative linear error terms, and some non-
perturbative nonlinear error terms, collected together in N0. After adding the correction to N0, namely
un, we again have perturbative linear error terms, and some non-perturbative nonlinear error terms, and
the pointwise in t decay of the nonlinear self interactions of v2,4♣t, rq near the cone are no better than that
of the nonlinear self interactions of v2♣t, rq near the cone. It thus might not be clear why ua � un is an
improvement over ua. However, the point is that v2,4♣t, rq has much more decay in the variable ①t ✁ r②, in
the region t

2 ↕ r ↕ t, than does v2 (compare Lemma 46, and Lemma 5). This allows us to eliminate N2

with a correction, uN2
, which solves the following equation with 0 Cauchy data at infinity.

✁❇2t uN2
� ❇2ruN2

� 1

r
❇ruN2

✁ uN2

r2
✏ N2♣t, rq

It is possible to eliminate N2 in this manner because the decay of v2,4♣t, rq in the variable ①t✁ r② inside
the cone leads to uN2

having decay in the variable ①t✁ r② inside the light-cone, see Lemma 51. This decay

of uN2
is important because the linear error term of uN2

is

✂
cos♣2Q1♣ r

λ♣tq qq✁1

r2

✡
uN2

♣t, rq, which is thus most

delicate in the region, for example, r ↕ t
2 , because

⑤
✄
cos♣2Q1♣ r

λ♣tq qq ✁ 1

r2

☛
uN2

♣t, rq⑤ ↕ Cλ♣tq2
t4

⑤uN2
♣t, rq⑤, r ➙ t

2

On the other hand, when r ↕ t
2 , then,

1
①t✁r② ↕ C

t , which means that the aforementioned decay of uN2
♣t, rq

in the variable ①t✁r②, for r ➔ t, makes the linear error term associated to uN2
much smaller than otherwise.

Without this extra decay in the variable ①t✁r②, we might have had to eliminate N2 by using a matching
process involving a free wave, as in uN0,corr, but then, the nonlinear self interactions of this free wave would
yet again produce nonlinear error terms which are not perturbative from the point of view of our procedure.
The key point here is that uN2

has zero Cauchy data at infinity, and much more than 1❄
t
pointwise decay

near the cone.
The linear error term of uN2

is perturbative, see Lemma 52. Our final ansatz is

uansatz♣t, rq ✏ ua♣t, rq � un♣t, rq � uN2
♣t, rq

and its nonlinear error terms are perturbative, see Lemma 53, and recall the importance of uN2
eliminating

N2, while also not containing a free wave (which leads to improved decay of uN2
near the cone).

At this stage, we are ready to complete the ansatz to an exact solution of (1.1). This step is done by
following a simpler version of the analogous step in [25], with one extra detail. For completeness, we pro-
vide a summary of this step here. Substituting

u♣t, rq ✏ Q1♣ r

λ♣tq q � uansatz♣t, rq � v6♣t, rq

into (1.1), we get

✁ ❇2t v6 � ❇2rv6 � 1

r
❇rv6 ✁

cos♣2Q1♣ r
λ♣tq qq

r2
v6 ✏ F5 � F3♣v6q (3.6)

where F3 is defined in (5.2), and contains error terms involving v6 both linearly and nonlinearly, and F5 is
the error term of uansatz, which we recall satisfies (3.2). We remark that (3.2) is satisfied for δ → 0 partly
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due to (1.7) and (4.2). We will solve (3.6) by first formally deriving the equation for y (namely (3.8)) given
by

y♣t, ξq ✏ F♣❄☎v6♣t, ☎λ♣tqqq♣ξλ♣tq2q
where F denotes the distorted Fourier transform of [16] (which is defined in section 5 of [16]). Then, we
will prove that (3.8) admits a solution, say y0 (with 0 Cauchy data at infinity) which has enough regularity
to rigorously justify the statement that if v6 given by the following expression, with y ✏ y0

v6♣t, rq ✏
❝
λ♣tq
r

F
✁1

✂
y♣t, ☎

λ♣tq2 q
✡✂

r

λ♣tq
✡
, (3.7)

then, v6 is a solution to (3.6). We have (see also (5.4), (5.5), pg. 145 of [25])

❇tty � ωy ✏ ✁F♣❄☎F5♣t, ☎λ♣tqqq♣ωλ♣tq2q � F2♣yq♣t, ωq ✁ F♣❄☎F3♣v6♣yqq♣t, ☎λ♣tqqq♣ωλ♣tq2q (3.8)

where v6♣yq, which appears in the argument of F3, is the expression given in (3.7), and

F2♣yq♣t, ωq ✏ ✁λ
✶♣tq
λ♣tq ❇ty♣t, ωq �

2λ✶♣tq
λ♣tq K

✂
❇1y♣t, ☎

λ♣tq2 q
✡
♣ωλ♣tq2q �

✂✁λ✷♣tq
2λ♣tq � λ✶♣tq2

4λ♣tq2
✡
y♣t, ωq

� λ✷♣tq
λ♣tq K

✂
y♣t, ☎

λ♣tq2 q
✡
♣ωλ♣tq2q � 2

λ✶♣tq2
λ♣tq2

✂
rξ❇ξ,Ks♣y♣t, ☎

λ♣tq2 qq
✡
♣ωλ♣tq2q

✁ λ✶♣tq2
λ♣tq2 K

✂
K♣y♣t, ☎

λ♣tq2 qq
✡
♣ωλ♣tq2q

where K is the transference operator of [16] (which is defined in section 6 of [16]). We solve (3.8) in the
space Z , defined in (5.8), by showing that the operator

T ♣yq♣t, ωq :✏
➺ ✽

t

sin♣♣x✁ tq❄ωq❄
ω

✁
✁F♣❄☎ ♣F5 � F3♣v6♣yqqq ♣x, ☎λ♣xqqq♣ωλ♣xq2q � F2♣yq♣x, ωq

✠
dx (3.9)

is a strict contraction on B1♣0q ⑨ Z. This process essentially only uses Minkowski’s inequality, as well as the
following simple property of the density of the spectral measure of F : (5.7). The reason why this iteration
is simpler than that of [25] is that here, there is no orthogonality condition on the error which we need
to exploit, unlike in [25]. On the other hand, there is one extra detail which is present here, that is not
present in [25]. One of the estimates we have on F2 is the following (see Lemma 56 for the complete set of
estimates).

⑤⑤F2♣t, ωq⑤⑤L2♣ρ♣ωλ♣tq2qdωq

↕ ⑤⑤❇1y♣t, ωq⑤⑤L2♣ρ♣ωλ♣tq2qdωq
⑤λ✶♣tq⑤
λ♣tq

✁
1� 2⑤⑤K⑤⑤L♣L2

ρq
✠

� ⑤⑤y♣t, ωq⑤⑤L2♣ρ♣ωλ♣tq2qdωq

✄✂
λ✶♣tq
λ♣tq

✡2 ✂
1

4
� 2⑤⑤rξ❇ξ,Ks⑤⑤L♣L2

ρq � ⑤⑤K⑤⑤2L♣L2
ρq

✡
� ⑤λ✷♣tq⑤

λ♣tq
✂
1

2
� ⑤⑤K⑤⑤L♣L2

ρq
✡☛
(3.10)

Using the symbol-type estimates on λ♣tq, we see that the terms of (3.10) are of critical size, noting that (3.9)
roughly loses two powers of t decay relative to its integrand. Therefore, we need the constants appearing
in the symbol type estimates on λ to be sufficiently small in order to guarantee that (3.9) is a contraction.
All of the terms estimated in Lemmas 57 and 56 with quantitative constants are where (1.7), (4.2), (1.8)

and (1.9) are used. This detail does not appear in [25] because, there, ⑤λ♣kq♣tq⑤
λ♣tq ↕ Ck

tk log♣tq .

4 Construction of the Ansatz

Let λ P Λ. By definition of Λ, there exists Tλ → 100 such that (1.6) is true. Let T2 ➙ e900♣1 � Tλq be such
that

t
2

3 λ♣tq ➔ t

100
, t ➙ T2 (4.1)

Let T0 ➙ T2 be otherwise arbitrary. For the whole paper, we work in the region t ➙ T0, and C denotes a
constant, independent of T0, unless otherwise specified. We define g by

g♣tq :✏ t
α
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where α is any number satisfying

α → 1

2
� Cl

2
, α ➔ 2

3
✁ 5

6
Cu ✁ Cl

6
(4.2)

(Note that (1.7) implies that 2
3 ✁ 5

6Cu ✁ Cl

6 → 1
2 � Cl

2 , so such α as above exists. We also remind the reader
that some intuition behind this choice of g is given in Section 3.) We note that the definition of Λ implies
that, for x ➙ t ➙ Tλ,✁

x

t

✠✁Cl ↕ λ♣xq
λ♣tq ↕

✁
x

t

✠Cu

, t ÞÑ λ♣tq
t

1

30

is decreasing,
supyPr100,xs♣λ♣yq log♣yqq
supyPr100,ts♣λ♣yq log♣yqq

↕ C
✁
x

t

✠Cu log♣xq
log♣tq (4.3)

All of the properties of our ansatz which will be used in the later sections are listed in the following
proposition, whose proof is completed in this section.

Proposition 1 [Approximate solution to (1.1)] There exists T3 → 0 so that, for all T0 → T3, there exists

uansatz P C2♣rT0,✽q ✂ ♣0,✽qq, satisfying Lemma 55 such that, if u♣t, rq ✏ Q 1

λ♣tq
♣rq � uansatz♣t, rq, then,

✁❇2t u� ❇2ru� 1

r
❇ru✁ sin♣2uq

2r2
✏ ✁F5♣t, rq

where, for

δ :✏ 1

2
mint4α✁ Cl ✁ 2, 1✁ 2Cu ✁ α, 4✁ 5Cu ✁ 6α,

1

2
✁ 2Cl ✁ 15Cu✉

and C5, C ➙ 0,

⑤⑤F5♣t, rq⑤⑤L2♣rdrq
λ♣tq2 ↕ C5 log

30♣tq
t4�2δ

, ⑤⑤L 1

λ♣tq
F5♣t, rq⑤⑤L2♣rdrq ↕

C log2♣tq
t2�5α

� C log6♣tq
t4�2α✁3Cu

� C log30♣tq
t9④2✁Cl✁15Cu

, t ➙ T0

Moreover, there exists vrad satisfying

✁❇2t vrad � ❇2rvrad � 1

r
❇rvrad ✁ vrad

r2
✏ 0, E♣vrad, ❇tvradq ➔ ✽

⑤⑤❇t♣Q 1

λ♣tq
� uansatz ✁ vradq⑤⑤L2♣rdrq ↕

C log♣tq
t1✁Cu

, ⑤⑤uansatz ✁ vrad⑤⑤ ✾H1
e
↕ C log♣tq

t1✁Cu
(4.4)

Remark. The function uansatz is explicitly given in (4.209), where we refer the reader to section 2.1 for
the definitions of the constituent functions. F5 is explicitly given in (4.210) and vrad is given in (4.216), in
terms of v2, v2,2, and v2,4, which are defined in (4.37) (with v2,0 given in (4.43)), (4.50) (with v2,3 given in
(4.134)), and (4.189) (with v2,5 given in (4.187)), respectively.

We begin by constructing an approximate solution to

✁❇ttu1 � ❇rru1 � 1

r
❇ru1 ✁

cos♣2Q1♣ r
λ♣tq qq

r2
u1 ✏ ❇2tQ1♣ r

λ♣tq q (4.5)

starting by matching explicit solutions to certain approximations of the operator on the left-hand side.

4.1 Small r corrections

4.1.1 First Iteration

We first consider the ODE

❇rruell � 1

r
❇ruell ✁

cos♣2Q1♣ r
λ♣tq qq

r2
uell ✏ ❇2tQ1♣ r

λ♣tq q, uell♣t, 0q ✏ 0 (4.6)

We get

uell♣t, rq ✏ vell♣t, r

λ♣tq q

where

vell♣t, Rq ✏ f1♣Rqλ✶♣tq2 � λ♣tqλ✷♣tqf2♣Rq � c1♣tqR
1�R2

(4.7)

and

f1♣Rq ✏ R♣✁2�R2q
2♣1�R2q , f2♣Rq ✏ R2♣✁1� 2R2q ✁ ♣✁1�R4q log♣1�R2q � 2R2Li2♣✁R2q

2R♣1�R2q
and c1 will be chosen later.
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4.1.2 Second iteration

We define a second order correction, uell,2♣t, rq, which is useful in the region of small r, by the following
solution to

❇rruell,2♣t, rq � 1

r
❇ruell,2♣t, rq ✁

cos♣2Q1♣ r
λ♣tq qq

r2
uell,2♣t, rq ✏ ❇2t

✂
vell♣t, r

λ♣tq q
✡

(4.8)

uell,2♣t, rq ✏ vell,2♣t, r

λ♣tq q (4.9)

where vell,2 is defined by

vell,2♣t, Rq ✏ ✁φ0♣Rq
2

➺ R

0

λ♣tq2❇2t
✂
vell♣t, r

λ♣tq q
✡✞✞✞

r✏sλ♣tq
se2♣sqds� e2♣Rq

➺ R

0

λ♣tq2❇2t
✂
vell♣t, r

λ♣tq q
✡✞✞✞

r✏sλ♣tq
sφ0♣sq

2
ds

(4.10)

In order to compute explicit terms in an expansion of vell,2♣t, Rq for large R, we let

vell,lgR♣t, Rq ✏ 1

2
Rλ

✶♣tq2 �Rλ♣tq♣1✁ log♣Rqqλ✷♣tq (4.11)

be the leading behavior of vell♣t, Rq for large R (recall (4.7)), and define

err0♣t, rq ✏ λ♣tq2❇2t
✂
vell,lgR♣t, r

λ♣tq q
✡
✏ rλ♣tq2❇2t

✂
λ✶♣tq2
2λ♣tq � λ

✷♣tq ✁ λ
✷♣tq log♣ r

λ♣tq q
✡

To understand vell,2♣t, Rq for large R, we let

vell,2,0♣t, Rq ✏ ✁φ0♣Rq
2

➺ R

0

err0♣t, sλ♣tqqse2♣sqds� e2♣Rq
➺ R

0

err0♣t, sλ♣tqqsφ0♣sq
2

ds

We get

vell,2,0♣t, Rq ✏ f3♣Rq
✁
2λ✶♣tq4 ✁ 7λ♣tqλ✶♣tq2λ✷♣tq � 4λ♣tq2λ✷♣tq2 � 6λ♣tq2λ✶♣tqλ✸♣tq

✠
� f4♣Rqλ♣tq3λ✹♣tq (4.12)

where

f3♣Rq ✏
2
�
R2

�✁2� 6R2 �R4
✟✁ 2♣✁1�R4q log♣1�R2q � 4R2Li2♣✁R2q✟

32♣R�R3q

f4♣Rq ✏ 1

32♣R�R3q
✁
R

2
✁
✁12� 44R2 � 7R4 ✁ 4♣✁2� 6R2 �R

4q log♣Rq
✠

�8
✁
✁1�R

4
✠
♣✁1� log♣Rqq log♣1�R

2q

�4
✁
✁1� 4R2 �R

4 ✁ 4R2 log♣Rq
✠
Li2♣✁R2q � 16R2

Li3♣✁R2q
✠

For later convenience, we split

vell,2,0♣t, r

λ♣tq q ✏ vell,2,0,main♣t, r

λ♣tq q � soln1♣t, r

λ♣tq q

and write
vell,2♣t, Rq ✏ vell,2,0,main♣t, Rq � soln1♣t, Rq � soln2♣t, Rq (4.13)

where

vell,2,0,main♣t, sq ✏ s3λ♣tq3
8

✂
❇2t

✂
λ✶♣tq2
2λ♣tq � λ

✷♣tq � λ
✷♣tq log♣λ♣tqq

✡
✁ λ

✹♣tq log♣sλ♣tqq � 3

4
λ
✹♣tq

✡
(4.14)

soln1♣t, sq ✏ ♣f3♣sq ✁ f3,0♣sqq
✁
2λ✶♣tq4 ✁ 7λ♣tqλ✶♣tq2λ✷♣tq � 4λ♣tq2λ✷♣tq2 � 6λ♣tq2λ✶♣tqλ✸♣tq

✠
� ♣f4♣sq ✁ f4,0♣sqqλ♣tq3λ✹♣tq

(4.15)

and

f3,0♣xq ✏ x3

16
, f4,0♣xq ✏ 1

32
x
3♣7✁ 4 log♣xqq

Finally,

soln2♣t, s

λ♣tq q ✏ uell,2♣t, sq ✁ vell,2,0,main♣t, s

λ♣tq q ✁ soln1♣t, s

λ♣tq q

✏ ✁
φ0♣ s

λ♣tq q
2

➺ s
λ♣tq

0

err1♣t, qλ♣tqqqe2♣qqdq �
e2♣ s

λ♣tq q
2

➺ s
λ♣tq

0

err1♣t, qλ♣tqqqφ0♣qqdq
(4.16)
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where

err1♣t, rq ✏ λ♣tq2❇2t
✂
vell♣t, r

λ♣tq q ✁ vell,lgR♣t, r

λ♣tq q
✡

Note in particular, that

vell,2,0♣t, r

λ♣tq q ✏
r3

8
❇2t
✂
λ✶♣tq2
2λ♣tq � λ

✷♣tq ✁ λ
✷♣tq log♣ r

λ♣tq q
✡
� 3

32
r
3
λ
✹♣tq �O

✁
r log2♣rq

✠
, r Ñ✽ (4.17)

This observation will be important when we match the small r corrections to the large r corrections. Also,
the leading behavior of err1♣t, rq in the region r ➙ λ♣tq is err1,0 given by

err1,0♣t, rq ✏ λ♣tq2❇2t
✂
λ♣tq

✂✁3
2r
λ
✶♣tq2 � λ♣tqλ✷♣tq

r

✂
✁♣2� π2

6
q � log♣ r

λ♣tq q ✁ 2 log2♣ r

λ♣tq q
✡
� c1♣tq

r

✡✡
(4.18)

4.2 First Wave Iteration

We consider the PDE

✁❇ttuw � ❇rruw � 1

r
❇ruw ✁ uw

r2
✏ ❇2tQ1♣ r

λ♣tq q (4.19)

We consider the solution uw, that can be written as

uw♣t, rq ✏ v1♣t, rq � v2♣t, rq (4.20)

where v1 solves

✁❇ttv1 � ❇rrv1 � 1

r
❇rv1 ✁ v1

r2
✏ ❇2tQ1♣ r

λ♣tq q

with 0 Cauchy data at infinity, and v2 solves✩✬✫✬✪
✁❇ttv2 � ❇rrv2 � 1

r ❇rv2 ✁ v2

r2 ✏ 0

v2♣0q ✏ 0

❇tv2♣0, rq ✏ v2,0♣rq

where v2,0 P L2♣rdrq will be chosen later. To describe v1♣t, rq, we decompose it as

v1♣t, rq ✏ w1♣t, rq � vex♣t, rq (4.21)

where w1 solves

✁❇ttw1 � ❇rrw1 � 1

r
❇rw1 ✁ w1

r2
✏ ✁2λ✷♣tq

r
(4.22)

with 0 Cauchy data at infinity. We use the same procedure used in Section 4.2 of [25] to obtain (4.25) of
[25], to derive the following expression which can be directly checked to be the solution to (4.22) with 0
Cauchy data at infinity.

w1♣t, rq ✏ ✁1
2π

➺ ✽
t

ds

➺ s✁t

0

ρdρ❛
♣s✁ tq2 ✁ ρ2

➺ 2π

0

✁
✁2λ✷♣sq

✠ ♣r � ρ cos♣θqq
r2 � ρ2 � 2rρ cos♣θqdθ

✏
➺ ✽
t

ds
λ✷♣sq
r

➺ s✁t

0

ρdρ❛
♣s✁ tq2 ✁ ρ2

✁
1� sgn♣r2 ✁ ρ

2q
✠

✏ 2

r

➺ t�r

t

dsλ
✷♣sq♣s✁ tq � 2

r

➺ ✽
t�r

dsλ
✷♣sq

✁
♣s✁ tq ✁

❛
♣s✁ tq2 ✁ r2

✠
✏ ✁2

r

✁
λ♣t� rq ✁ λ♣tq ✁ rλ

✶♣t� rq
✠
� 2

r

➺ ✽
t�r

dsλ
✷♣sq

✁
♣s✁ tq ✁

❛
♣s✁ tq2 ✁ r2

✠
(4.23)

(For r ✘ ρ, we can evaluate the following integral using Cauchy’s residue theorem).➺ 2π

0

ρ cos♣θq � r

ρ2 � 2ρr cos♣θq � r2
dθ ✏ π

�
sgn

�
r2 ✁ ρ2

✟� 1
✟

r

First, we note that w1♣t, ☎q P C✽♣♣0,✽qq. This follows from

w1♣t, rq ✏ ✁2
r

✁
λ♣t� rq ✁ λ♣tq ✁ rλ

✶♣t� rq
✠
� 2r

➺ ✽
1

λ
✷♣t� ryq

✁
y ✁

❛
y2 ✁ 1

✠
dy (4.24)
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and the smoothness and symbol type estimates on λ. Next, we introduce some notation. Let

w1,main♣t, rq ✏ r

✂
log♣2q � 1

2

✡
λ
✷♣tq � r

➺ 2t

t

♣λ✷♣sq ✁ λ✷♣tqq
s✁ t

ds� rλ
✷♣tq log♣ t

r
q � r

➺ ✽
2t

λ✷♣sqds
♣s✁ tq (4.25)

w1,sub♣t, rq ✏ w1♣t, rq ✁ w1,main♣t, rq (4.26)

w1,cubic,main♣t, rq ✏ 3

32
r
3
λ
✹♣tq � r3

8

✂
λ
✹♣tq

✂
log♣2q � 1

2

✡
✁ log♣rqλ✹♣tq � log♣tqλ✹♣tq

�
➺ 2t

t

λ✹♣sq ✁ λ✹♣tq
s✁ t

ds�
➺ ✽
2t

λ✹♣sqds
s✁ t

✡
The following lemma will be useful later on when we match the small r and large r corrections.

Lemma 1 For 0 ↕ j ↕ 8, 0 ↕ k ↕ 3 and r ↕ t,

✞✞✞❇jt ❇kr
✄
w1,sub♣t, rq ✁ w1,cubic,main♣t, rq ✁ r5λ♣6q♣tq

576
♣5� log♣8qq

✁ r5

192

☎✆➺ 2t

t

✁
λ♣6q♣sq ✁ λ♣6q♣tq

✠
ds

s✁ t
� λ

♣6q♣tq log♣ t
r
q �

➺ ✽
2t

λ♣6q♣sqds
s✁ t

☞✌☞✌✞✞✞
↕ Cλ♣tqr7✁k

t8�j
♣log♣tq � ⑤ log♣rq⑤q

Proof As a first step, we start with (4.24), and subtract and add the Taylor polynomial centered at 0, of

degree 3, of λ♣t � rq ✁ λ♣tq ✁ rλ✶♣t � rq � r2

2 λ
✷♣t � rq, regarded as a function of r for each fixed t. For the

integral term of (4.24), we first note that

y ✁
❛
y2 ✁ 1 ✏ 1

2y
�O

✂
1

y3

✡

Therefore, we have

2r

➺ ✽
1

λ
✷♣t� ryq♣y ✁

❛
y2 ✁ 1qdy ✏ 2r

➺ ✽
1

λ✷♣t� ryq
2y

dy � 2r

➺ ✽
1

λ
✷♣t� ryq

✂
y ✁

❛
y2 ✁ 1✁ 1

2y

✡
dy (4.27)

After integrating by parts twice in the second integral on the right-hand side, we get the following expression
for w1, whose second line is equal to w1,main♣t, rq, and the other terms vanish faster than O♣r log♣rqq as r
approaches zero.

w1♣t, rq ✏ ✁2
r

✂
λ♣t� rq ✁ λ♣tq ✁ rλ

✶♣t� rq � r2

2
λ
✷♣t� rq ✁ r3

6
λ
✸♣tq

✡
� r

✂
log♣2q � 1

2

✡
λ
✷♣tq � r

➺ 2t

t

♣λ✷♣sq ✁ λ✷♣tqq
s✁ t

ds� rλ
✷♣tq log♣ t

r
q � r

➺ ✽
2t

λ✷♣sqds
♣s✁ tq

� r♣log♣2q � 1

2
q
✁
λ
✷♣t� rq ✁ λ

✷♣tq ✁ rλ
✸♣tq

✠
✁
✂
r2

6
✁ r

2♣1� log♣1
2
qq
✡✁

λ
✸♣t� rq ✁ λ

✸♣tq
✠
✁ r

➺ t�r

t

λ✷♣sq ✁ λ✷♣tq ✁ ♣s✁ tqλ✸♣tq
♣s✁ tq ds

� 1

r

➺ ✽
t�r

λ
✹♣sq

✄
♣s✁ tq3

3

✄
1✁

✂
1✁ r2

♣s✁ tq2
✡3④2

✁ 3r2

2♣s✁ tq2
☛

�r2♣s✁ tq
☎✆1✁

❞
1✁ r2

♣s✁ tq2 � log

☎✆1�

❜
1✁ r2

♣s✁tq2 ✁ 1

2

☞✌☞✌☞✌ds

(4.28)
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Repeating this process, we make manifest the terms composing w1,cubic,main♣t, rq, and recall the notation
for Pk,a♣fq given just above (2.2).

w1♣t, rq ✏ r

✂
log♣2q � 1

2

✡
λ
✷♣tq � r

➺ 2t

t

�
λ✷♣sq ✁ λ✷♣tq✟

s✁ t
ds� rλ

✷♣tq log♣ t
r
q � r

➺ ✽
2t

λ✷♣sqds
s✁ t

✁ 2

r

✂
λ♣t� rq ✁ λ♣tq ✁ rλ

✶♣t� rq � r2

2
λ
✷♣t� rq ✁ r3

6
λ
✸♣tq ✁ r4

8
λ
✹♣tq ✁ r5

20
λ
✹✶♣tq

✡
� r3

8
λ
✹♣tq

✂
log♣2q � 1

2

✡
� 3

32
r
3
λ
✹♣tq

� r

✂
log♣2q � 1

2

✡✁
λ
✷♣t� rq ✁ P3,0♣r ÞÑ λ

✷♣t� rqq
✠

✁ r
2

✂✁5
6

� log♣2q
✡✁

λ
✸♣t� rq ✁ P2,0♣r ÞÑ λ

✸♣t� rqq
✠

✁ r

➺ t�r

t

�
λ✷♣sq ✁ P3,t♣λ✷q♣sq

✟
s✁ t

ds

✁ r3

8
log♣rqλ✹♣tq � r3

8
log♣tqλ✹♣tq � r3

8

➺ 2t

t

λ✹♣sq ✁ λ✹♣tq
s✁ t

ds

� r3

8

➺ ✽
2t

λ✹♣sq
s✁ t

ds✁ r3

8

➺ t�r

t

λ✹♣sq ✁ λ✹♣tq ✁ ♣s✁ tqλ✹✶♣tq
s✁ t

ds

✁ r3

96
♣41✁ 60 log♣2qq

✁
λ
✹♣t� rq ✁ λ

✹♣tq ✁ rλ
✹✶♣tq

✠
�
✁
λ
✹✶♣t� rq ✁ λ

✹✶♣tq
✠
r
4 ♣299✁ 420 log♣2qq

1440
� 1

r

➺ ✽
t�r

λ
✹✷♣sqK♣r, s✁ tqds

(4.29)

K♣r, wq ✏ 1

1440

✄
24w5

✄
1✁

✄❝
1✁ r2

w2
� r2

2w2
� r4

8w4

☛☛
� 332r2w3

✄
1✁

✄❝
1✁ r2

w2
� r2

2w2

☛☛

✁64r4w
✄❝

1✁ r2

w2
✁ 1

☛
� 240r2w3

✄
log

✄
1

2

✄
1�

❝
1✁ r2

w2

☛☛
� r2

4w2

☛

�180r4w log

✄
1

2

✄
1�

❝
1✁ r2

w2

☛☛☛ (4.30)

Finally, to prove the lemma, we treat (4.29) line by line. We show in detail how we obtain the leading part
of terms of different forms. In the following computations, we work in the region r ↕ t. By Taylor’s theorem,
we have

⑤✁2
r

✂
λ♣t� rq ✁ λ♣tq ✁ rλ

✶♣t� rq � r2

2
λ
✷♣t� rq ✁ r3

6
λ
✸♣tq ✁ r4

8
λ
✹♣tq ✁ r5

20
λ
✹✶♣tq

✡
✁
✄
✁λ♣6q♣tqr5

36
✁ λ♣7q♣tqr6

168

☛
⑤

↕ C
r7λ♣tq
t8

where we used (4.3), and the fact that r ↕ t. Other terms in (4.29) of the same form are treated with the
same argument. Next, we have

✁r
➺ t�r

t

ds

♣s✁ tq
✂ ♣s✁ tq4

24
λ
♣6q♣tq � ♣s✁ tq5

120
λ
♣7q♣tq

✡
✏ ✁r

✂
r4

4 ☎ 24λ
♣6q♣tq � r5

600
λ
♣7q♣tq

✡
and ✞✞✞✁r ➺ t�r

t

�
λ✷♣sq ✁ P3,t♣λ✷q♣sq

✟
s✁ t

ds✁
✂
✁r

➺ t�r

t

ds

♣s✁ tq
✂ ♣s✁ tq4

24
λ
♣6q♣tq � ♣s✁ tq5

120
λ
♣7q♣tq

✡✡✞✞✞
✏ ⑤ ✁ r

➺ t�r

t

�
λ✷♣sq ✁ P5,t♣λ✷q♣sq

✟
ds

s✁ t
⑤ ↕ C

λ♣tqr7
t8

where we again used Taylor’s theorem and (4.3). Again, other terms in (4.29) of the same form are treated
with the same argument. Finally, we recall (4.30), and note that

K♣r, wq ✁ r6

192w
✏ O

✂
r8

w3

✡
, w Ñ✽
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Therefore, with the same procedure used in (4.27),

1

r

➺ ✽

t�r

λ
♣6q♣sqK♣r, s✁ tqds

✏ r5

192

☎✆➺ 2t

t

✁
λ♣6q♣sq ✁ λ♣6q♣tq

✠
♣s✁ tq ds� λ

♣6q♣tq log♣ t
r
q �

➺ ✽

2t

λ♣6q♣sq
♣s✁ tq ds

☞✌
✁ r5

192

➺ t�r

t

✁
λ♣6q♣sq ✁ λ♣6q♣tq ✁ ♣s✁ tqλ♣7q♣tq

✠
♣s✁ tq ds✁ r6

192
λ
♣7q♣tq ✁ λ

♣6q♣tqr
5♣218✁ 315 log♣2qq

2880

� λ
♣7q♣tqr6 ♣2413✁ 3465 log♣2qq

100800
�

✁
λ♣7q♣t� rq ✁ λ♣7q♣tq

✠
100800

☎ r6 ♣2413✁ 3465 log♣2qq

✁
✁
λ
♣6q♣t� rq ✁ λ

♣6q♣tq ✁ rλ
♣7q♣tq

✠
r
5 ♣218✁ 315 log♣2qq

2880
✁ r

6
λ
♣7q♣tq ♣218✁ 315 log♣2qq

2880
� Err

where

⑤Err⑤ ↕ 1

r

➺ ✽

t�r

⑤W ♣sqλ♣8q♣sq⑤ds

and, for y ✏ s✁t
r

W ♣sq ✏ r7

2880

✂
✁128

35

✂❝
1✁ 1

y2
✁ 1

✡
y � 15y log

✂
1

2

❝
1✁ 1

y2
� 1

2

✡
✁ 1779

35

✂❝
1✁ 1

y2
� 1

2y2
✁ 1

✡
y
3

✁1518

35

✂❝
1✁ 1

y2
✁
✂
✁ 1

8y4
✁ 1

2y2
� 1

✡✡
y
5 ✁8

7

✂❝
1✁ 1

y2
�
✂

1

16y6
� 1

8y4
� 1

2y2

✡
✁ 1

✡
y
7

�12
✁
2y5 � 5y3

✠✂ 3

32y4
� 1

4y2
� log

✂
1

2

❝
1✁ 1

y2
� 1

2

✡✡
✁ 45

8y

✡

We finish the proof by noting that

W ♣sq ✏ O

✂
r8

♣s✁ tq
✡
, sÑ✽

and estimating Err. The higher derivatives are treated similarly. ❬❭

We remark that w1,main♣t, rq, along with the expression of uell will end up determining the data for the
free wave v2, as w1,main♣t, rq will turn out to be the leading contribution of w1 in the matching region.

We also record some pointwise estimates on w1 and some of its derivatives.

Lemma 2 We have the following estimates. For 0 ↕ k ↕ 8 and 0 ↕ j ↕ 3,

⑤❇kt ❇jrw1♣t, rq⑤ ↕
★

Cr1✁jλ♣tq♣log♣tq�⑤ log♣rq⑤q
t2�k , r ↕ t

C
r1�jtk

supxPrt,t�rs ♣λ♣xqq , r ➙ t
(4.31)

Proof By Lemma 1, it suffices to consider (4.24) in the region r ➙ t:

⑤2
r

✁
λ
✶♣t� rqr ✁ ♣λ♣t� rq ✁ λ♣tqq

✠
⑤ ↕ C

r

✂
λ♣t� rq � λ♣tq � r

λ♣t� rq
t� r

✡
↕ C

r
♣λ♣t� rq � λ♣tqq

Then, we have

⑤2r
➺ ✽

1

λ
✷♣t� ryq

✁
y ✁

❛
y2 ✁ 1

✠
dy⑤ ↕ Crλ♣t� rq

t� r

➺ ✽

1

dy

y♣t� ryq ↕
Crλ♣t� rq
r♣t� rq

log♣1� t
r q

t
r

↕ Cλ♣t� rq
t� r

, r ➙ t

where we used (4.3). Then, using the symbol type estimates on λ, we get (4.31) for r ➙ t. ❬❭



Global, Non-scattering solutions to the energy critical wave maps equation 21

Next, we study vex ((4.21)) which solves the following equation with 0 Cauchy data at infinity.

✁❇2t vex � ❇2rvex � 1

r
❇rvex ✁ vex

r2
✏ ❇2tQ1♣ r

λ♣tq q �
2λ✷♣tq
r

:✏ RHS♣t, rq (4.32)

From integral identities of [9], we have

④RHS♣t, ξq ✏ 2ξK0♣ξλ♣tqqλ♣tqλ✶♣tq2 � 2λ✷♣tq
ξ

♣1✁ ξλ♣tqK1♣ξλ♣tqqq (4.33)

We have the following representation formula for vex

Lemma 3 For r → 0, vex is given by

vex♣t, rq ✏
➺ ✽
t

ds

➺ ✽
0

dξJ1♣rξq sin♣♣t✁ sqξq④RHS♣s, ξq
✏ ✁

➺ ✽
0

J1♣rξq
ξ

④RHS♣t, ξqdξ ✁ ➺ ✽
0

dξJ1♣rξq
➺ ✽
t

ds
sin♣♣t✁ sqξq

ξ2
❇2s④RHS♣s, ξq (4.34)

Proof From asymptotics of K1,K0 (see [9]), we get, for k ✏ 0, 1, 2,

⑤❇ks④RHS♣s, ξq⑤ ↕ C
λ♣sq2
s2�k

ξλ♣sq
1� ξ2λ♣sq2 ①log♣ξλ♣sqq② (4.35)

Using

⑤J1♣rξq⑤ ↕ C❄
rξ
, r → 0

the first integral on the right-hand side of (4.34) converges absolutely, for r → 0. Therefore, by the Fubini
theorem, and (4.35), we get➺ ✽

t

ds

➺ ✽
0

dξJ1♣rξq sin♣♣t✁ sqξq④RHS♣s, ξq ✏ ➺ ✽
0

dξ

➺ ✽
t

dsJ1♣rξq❇s
✂
cos♣♣t✁ sqξq

ξ

✡④RHS♣s, ξq
✏ ✁

➺ ✽
0

J1♣rξq
ξ

④RHS♣t, ξqdξ ✁ ➺ ✽
0

dξJ1♣rξq
➺ ✽
t

ds
sin♣♣t✁ sqξq

ξ2
❇2s④RHS♣s, ξq

Moreover, using

⑤ sin♣♣t✁ sqξq⑤ ↕ 1, ⑤J ✶1♣xq⑤ ↕ C, ⑤J✷1 ♣xq⑤ ↕ C❄
x
, x → 0, and (4.35)

the dominated convergence theorem shows that, for all r0 → 0, and k ✏ 1, 2,

❇kr
✂➺ ✽

0

dξJ1♣rξq
➺ ✽
t

ds
sin♣♣t✁ sqξq

ξ2
❇2s④RHS♣s, ξq✡✞✞✞

r✏r0
✏
➺ ✽
0

dξ❇kr ♣J1♣rξqq⑤r✏r0 ☎
➺ ✽
t

ds
sin♣♣t✁ sqξq

ξ2
❇2s④RHS♣s, ξq

A similar argument shows that we can differentiate (up to) two times under the integral sign in t. Then, by
the fact that the first term on the second line of (4.34) is a solution to the following ODE (which follows,
for instance, by direct computation of the integral, see (4.36))

❇2rf � 1

r
❇rf ✁ f

r2
✏ RHS♣t, rq

we see that vex, the solution to (4.32) with zero Cauchy data at infinity, is given by (4.34). ❬❭

Note that we could not have done the integration by parts in the s variable to get from the first to the second
line of (4.34) if RHS was simply equal to ❇2tQ1♣ r

λ♣tq q, because there would be too large of a singularity of

the resulting integrand at low frequencies. Also, we have

vex,ell♣t, rq :✏✁
➺ ✽
0

J1♣rξq
ξ

④RHS♣t, ξqdξ
✏
✁
✁
2λ♣tq log♣1� r2

λ♣tq2 qλ✶♣tq2 �
✁
λ♣tq2 log♣1� r2

λ♣tq2 q � r2 log♣1� λ♣tq2
r2 q

✠
λ✷♣tq

✠
2r

(4.36)

Finally, we consider v2 solving ✩✬✫✬✪
✁❇ttv2 � ❇rrv2 � 1

r ❇rv2 ✁ v2

r2 ✏ 0

v2♣0q ✏ 0

❇tv2♣0q ✏ v2,0
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with v2,0 not yet chosen. For ②v2,0 P C0♣♣0,✽qq such that ⑤②v2,0♣ξq⑤ ↕ C
✁❄

ξ♣1� ξq5④2
✠✁1

, we have

v2♣t, rq ✏
➺ ✽
0

J1♣rξq sin♣tξq②v2,0♣ξqdξ ✏ ✁ r

4π

➺ π

0

sin2♣θq ♣F ♣t� r cos♣θqq � F ♣t✁ r cos♣θqqq dθ

✏ ✁r
4
F ♣tq ✁ r3

32
F
✷♣tq ✁ r

2π

➺ π

0

sin2♣θq
✂
F ♣t� r cos♣θqq ✁ F ♣tq ✁ r2

2
cos2♣θqF ✷♣tq

✡
dθ

(4.37)

where

F ♣tq ✏ ✁2
➺ ✽
0

ξ sin♣tξq②v2,0♣ξqdξ (4.38)

and we used

J1♣xq ✏ x

π

➺ π

0

cos♣x cos♣θqq sin2♣θqdθ

4.3 First order matching

The error of uell in solving (4.5) is ❇2t uell♣t, rq, which is large for large values of r, because of the growth

of uell♣t, rq for large r. On the other hand, the error of uw in solving (4.5) is

✂
cos♣2Q1♣ r

λ♣tq qq✁1

r2

✡
uw♣t, rq.

The largest contributions to this error term arise from substituting the second line of (4.28) plus (4.37),
expanded for r ✦ t into uw in the error term. Therefore, we choose the data for v2 in order to match the
largest contributions to the error terms of uell and uw. In particular, vell,lgR, defined in (4.11) and recalled
here makes the largest contribution to the error term of uell:

vell,lgR♣t, Rq ✏ R

✂
1

2
λ
✶♣tq2 � λ♣tqλ✷♣tq ✁ λ♣tqλ✷♣tq log♣Rq

✡
(4.39)

Also, as per Lemma 1, the main contribution from w1♣t, rq is

w1,main♣t, rq ✏ r

✂
log♣2q � 1

2

✡
λ
✷♣tq � r

➺ 2t

t

♣λ✷♣sq ✁ λ✷♣tqq
s✁ t

ds� rλ
✷♣tq log♣ t

r
q � r

➺ ✽
2t

λ✷♣sqds
♣s✁ tq

and, by (4.37), the main contribution from v2 is

v2,main♣t, rq ✏ ✁r
4

✂
✁2
➺ ✽
0

ξ sin♣tξq②v2,0♣ξqdξ✡ (4.40)

Note that the r log♣rq terms from w1,main and (4.39) (where R ✏ r
λ♣tq ) are the same. Therefore, it is possible

to choose v2,0 so that (for example, for all t ➙ 2Tλ)

r

λ♣tq
✂
1

2
λ
✶♣tq2 � λ♣tqλ✷♣tq ✁ λ♣tqλ✷♣tq log♣ r

λ♣tq q
✡
✏ v2,main♣t, rq � w1,main♣t, rq

In other words, we choose v2,0 to satisfy, for all t ➙ 2Tλ,

✁ 2

➺ ✽
0

ξ sin♣tξq②v2,0♣ξqdξ
✏ 4

✂✂
log♣2q ✁ 1

2

✡
λ
✷♣tq �

➺ 2t

t

✂
λ✷♣sq ✁ λ✷♣tq

s✁ t

✡
ds� λ

✷♣tq log♣ t

λ♣tq q �
➺ ✽
2t

λ✷♣sqds
s✁ t

✁ λ✶♣tq2
2λ♣tq

✡ (4.41)

We remind the reader of the discussion following (3.4), which compares (4.41) to the relation between the
radiation and λ♣tq from [25].
Since we will only need (4.41) to be true for all t sufficiently large, and since we only assume λ♣tq to be
defined for t → 50, we use a (relatively unimportant) cutoff, ψ P C✽♣r0,✽qq, such that

ψ♣xq ✏
★
0, x ↕ Tλ

1, x ➙ 2Tλ
, 0 ↕ ψ♣xq ↕ 1 (4.42)

where we recall that Tλ → 100 is part of the definition of Λ, see (1.6), and then get

②v2,0♣ξq ✏ ✁1
πξ

➺ ✽
0

H♣tq sin♣tξqdt (4.43)
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with

H♣tq ✏ 4

✂✂
log♣2q ✁ 1

2

✡
λ
✷♣tq �

➺ 2t

t

✂
λ✷♣sq ✁ λ✷♣tq

s✁ t

✡
ds� λ

✷♣tq log♣ t

λ♣tq q �
➺ ✽
2t

λ✷♣sqds
s✁ t

✁ λ✶♣tq2
2λ♣tq

✡
ψ♣tq
(4.44)

We can now record some basic estimates on ②v2,0 and v2. We remark that the estimates of Lemma 4 below
imply that the conditions on ②v2,0 stated just above (4.37) are satisfied.

Lemma 4 For 0 ↕ k, and N ➙ 1, there exist Ck, Ck,N such that

ξ
k⑤②v2,0♣kq♣ξq⑤ ↕

✩✫✪Ck

➩ 1

ξ

100
λ♣σq log♣σqdσ

σ � Ckλ♣1ξ q log♣1ξ q, ξ ↕ 1
100

Ck,N

ξN
, ξ → 1

100

Proof We start with (4.44). By the mean value theorem, there exists x P rt, ss such that

⑤H♣tq⑤ ↕ C

✂
λ♣tq
t2

�
➺ 2t

t

⑤λ✸♣xq⑤ds� log♣tq⑤λ✷♣tq⑤ � 1

t

➺ ✽
2t

λ♣sqds
s2

� λ♣tq
t2

✡
⑤ψ♣tq⑤ ↕ Cλ♣tq log♣tq

t2
✶tt➙Tλ✉

where we used (4.3). Using the symbol-type nature of the estimates on λ, we get, for k ➙ 0,

⑤H♣kq♣tq⑤ ↕ Ck✶tt➙Tλ✉
λ♣tq log♣tq
t2�k

(4.45)

Then, for ξ ➙ 1
100 , we integrate by parts in the formula

②v2,0♣ξq ✏ ✁1
πξ

➺ ✽
0

H♣σq sin♣σξqdσ

noting that no boundary terms arise, to get that, for each k P N, there exists Ck → 0 such that

⑤②v2,0♣ξq⑤ ↕ Ck

ξk
, ξ ➙ 1

100

For ξ ↕ 1
100 , we have

⑤②v2,0♣ξq⑤ ↕
✩✫✪C

➩ 1

ξ

Tλ

λ♣σq log♣σqdσ
σ � C

ξ

➩✽
1

ξ

λ♣σq log♣σq
σ2 dσ ↕ C

➩ 1

ξ

100
λ♣σq log♣σq

σ dσ � Cλ♣1ξ q log♣1ξ q, ξ ↕ mint 1
100 ,

1
Tλ
✉

C
ξ

➩✽
1

ξ

λ♣σq log♣σq
σ2 dσ ↕ C

➩✽
100

log♣σq
σ2✁Cu

dσ ↕ Cλ♣1ξ q log♣1ξ q, 1
Tλ

↕ ξ ↕ 1
100

where we used Tλ ➙ 100 and (4.3) for the first case, and the fact that minxPr100,Tλs♣λ♣xqq log♣100q → 0 for
the second. In particular, the constants C depend on (the fixed function) λ, but not on ξ. Finally, Lemma
4 for k → 0 follows from (4.45) and

②v2,0♣ξq ✏ ✁1
πξ2

➺ ✽
0

H♣ω
ξ
q sin♣ωqdω

❬❭

Lemma 5 For 0 ↕ k ↕ 7, j ✏ 0, 1, we have

⑤❇kt ❇jrv2♣t, rq⑤ ↕ Cr1✁jλ♣tq log♣tq
t2�k

, r ↕ t

2

For all j � k ↕ 7, we have the following two estimates

⑤❇kt ❇jrv2♣t, rq⑤ ↕ C log♣rq❄
r①⑤t✁ r⑤② 1

2
�k�j

sup
xPr100,rs

♣λ♣xq log♣xqq , r ➙ t

2

and

⑤❇jt ❇kr v2♣t, rq⑤ ↕
C❄
r
, r ➙ t

2

⑤ ♣❇t � ❇rq v2♣t, rq⑤ ↕
C log♣rq supxPr100,rs ♣λ♣xq log♣xqq

r3④2
❛
①t✁ r② , r → t

2

⑤❇2rv2♣t, rq⑤ ↕ Crλ♣tq log♣tq
t4

, r ↕ t

2
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Proof To estimate v2, we start with the region r ↕ t
2 . Here, we use (4.37) and (4.45), to get

⑤v2♣t, rq⑤ ↕ Cr

➺ π

0

⑤F ♣t� r cos♣θqq⑤dθ ↕ Cr

➺ π

0

λ♣t� r cos♣θqq log♣t� r cos♣θqq
♣t� r cos♣θqq2 dθ ↕ Crλ♣tq log♣tq

t2

where we used (4.3). For the region r ➙ t
2 , we start with the first term on the right-hand side of (4.37),

namely

v2♣t, rq ✏
➺ ✽
0

J1♣rξq sin♣tξq②v2,0♣ξqdξ
One estimate which will be useful in the region r ➙ t

2 (in particular, it is useful in the region ⑤t✁ r⑤ ↕ 100)

is the following. Using ⑤J1♣xq⑤ ↕ C❄
x
, x → 0 (though a much better estimate is true for small x → 0) we get

⑤v2♣t, rq⑤ ↕ C❄
r

➺ 1

100

0

1❄
ξ

✄
log♣1ξ q
ξCu

�
➺ 1

ξ

100

log♣σqdσ
σ1✁Cu

☛
dξ � C❄

r

➺ ✽
1

100

dξ

ξ5
↕ C❄

r

➺ 1

100

0

log♣1ξ qdξ
ξCu�1④2 � C❄

r
↕ C❄

r
(4.46)

where we also used (4.3). The higher derivatives of v2 are treated similarly. To treat the region where
⑤t✁ r⑤ → 100 and r ➙ t

2 , we use

v2♣t, rq ✏
➺ 1

r

0

J1♣rξq sin♣tξq②v2,0♣ξqdξ � ➺ ✽
1

r

J1♣rξq sin♣tξq②v2,0♣ξqdξ (4.47)

We start with

⑤
➺ 1

r

0

J1♣rξq sin♣tξq②v2,0♣ξqdξ⑤ ↕ C

➺ ✽
r

dσ

➺ 1

σ

0

dξ
rξλ♣σq log♣σq

σ
� C

➺ r

100

dσ

➺ 1

r

0

dξrξ
λ♣σq log♣σq

σ

� C

➺ 1

r

0

dξrξλ♣1
ξ
q log♣1

ξ
q

↕ Crλ♣rq log♣rq
r

➺ ✽
r

dσ

σ2
� C

r

➺ r

100

λ♣σq log♣σqdσ
σ

� Crλ♣rq log♣rq
r2

↕ C

r
sup

σPr100,rs
♣λ♣σq log♣σqq log♣rq

Here, we used (4.3), and Lemma 4 in the region ξ ↕ 1
100 , since

1
r ✦ 1

100 , along with Fubini’s theorem to
switch the order of the ξ and σ integrals. It remains to treat the following integral.➺ ✽

1

r

J1♣rξq sin♣tξq②v2,0♣ξqdξ ✏ ✁
➺ ✽

1

r

1❄
πrξ

♣cos♣rξq ✁ sin♣rξqq sin♣tξq②v2,0♣ξqdξ
�
➺ ✽

1

r

✂
J1♣rξq �

✂
cos♣rξq❄
πrξ

✁ sin♣rξq❄
πrξ

✡✡
sin♣tξq②v2,0♣ξqdξ

We start with➺ ✽
1

r

1❄
πrξ

♣cos♣rξq ✁ sin♣rξqq sin♣tξq②v2,0♣ξqdξ
✏ 1

2
❄
πr

➺ ✽
1

r

1❄
ξ
♣sin♣♣t� rqξq � sin♣♣t✁ rqξq � cos♣♣t� rqξq ✁ cos♣♣t✁ rqξqq②v2,0♣ξqdξ

✏ 1

2
❄
πr

➺ ✽
1❄
r

✁
sin♣♣t� rqω2q � cos♣♣t� rqω2q � sin♣♣t✁ rqω2q ✁ cos♣♣t✁ rqω2q

✠ ②v2,0♣ω2q ☎ 2dω

We will show in detail how to treat the term involving sin♣♣t ✁ rqω2q. The other terms can be treated
with a similar argument.

1❄
πr

➺ ✽
1❄
r

sin♣♣t✁ rqω2q②v2,0♣ω2qdω ✏ 1❄
πr

➺ 1❄
⑤t✁r⑤

1❄
r

sin♣♣t✁ rqω2q②v2,0♣ω2qdω � 1❄
πr

➺ ✽
1❄
⑤t✁r⑤

sin♣♣t✁ rqω2q②v2,0♣ω2qdω

For the first term, we get

⑤ 1❄
πr

➺ 1❄
⑤t✁r⑤

1❄
r

sin♣♣t✁ rqω2q②v2,0♣ω2qdω⑤ ↕ C❄
r

➺ 1❄
⑤t✁r⑤

1❄
r

sup
xPr100, 1

ω2
s
♣λ♣xq log♣xqq log♣ 1

ω2
qdω

↕ C supxPr100,rs ♣λ♣xq log♣xqq log♣rq❄
r
❛
⑤t✁ r⑤
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On the other hand, we integrate by parts to get

⑤ 1❄
πr

➺ ✽
1❄
⑤t✁r⑤

2ω sin♣♣t✁ rqω2q②v2,0♣ω2q
2ω

dω⑤ ↕ C❄
r

☎✆ ⑤②v2,0♣ 1
⑤t✁r⑤ q⑤❛

⑤t✁ r⑤ �
➺ ✽

1❄
⑤t✁r⑤

⑤②v2,0✶♣ω2q⑤ � ⑤③v2,0♣ω2q⑤
ω2

⑤t✁ r⑤ dω

☞✌
This gives

⑤ 1❄
πr

➺ ✽
1❄
⑤t✁r⑤

2ω sin♣♣t✁ rqω2q②v2,0♣ω2q
2ω

dω⑤

↕ C❄
r

⑤②v2,0♣ 1
⑤t✁r⑤ q⑤❛

⑤t✁ r⑤ � C❄
r⑤t✁ r⑤

➺ 1

10

1❄
⑤t✁r⑤

1

ω2
sup

xPr100,⑤t✁r⑤s
♣λ♣xq log♣xqq log♣ 1

ω2
qdω � C❄

r⑤t✁ r⑤
➺ ✽

1

10

dω

ω50

↕ C log♣⑤t✁ r⑤q❄
r
❛
⑤t✁ r⑤ sup

xPr100,⑤t✁r⑤s
♣λ♣xq log♣xqq

Finally

⑤
➺ ✽

1

r

✂
J1♣rξq �

✂
cos♣rξq❄
πrξ

✁ sin♣rξq❄
πrξ

✡✡
sin♣tξq②v2,0♣ξqdξ⑤

↕ C

➺ ✽
1

r

1

♣rξq3④2 ⑤②v2,0♣ξq⑤dξ ↕ C

➺ 1

100

1

r

dξ

♣rξq3④2 sup
xPr100, 1

ξ
s
♣λ♣xq log♣xqq log♣1

ξ
q � C

➺ ✽
1

100

dξ

♣rξq3④2
1

ξ101

↕ C

r
sup

xPr100,rs
♣λ♣xq log♣xqq log♣rq

Combining this with (4.46) finishes the estimation of v2♣t, rq in the region r ➙ t
2 . The derivatives of v2 are

treated similarly. The only important difference in the procedure used to estimate ❇tv2♣t, rq � ❇rv2♣t, rq is
that we exploit the fact that ♣❇t � ❇rq sin♣♣t✁ rqξq ✏ 0, and similarly with cos♣♣t✁ rqξq. ❬❭

Finally, we define v2,sub by

v2,sub♣t, rq ✏ ✁r
2π

➺ π

0

sin2♣θq ♣F ♣t� r cos♣θqq ✁ F ♣tqq dθ ✏ v2♣t, rq ✁ v2,main♣t, rq (4.48)

(where we recall that F is defined in (4.38)). We also define

v2,cubic,main♣t, rq ✏ ✁r3
32

F
✷♣tq

Then, the v2 analog of Lemma 1 is

Lemma 6 We have the following estimates. For 0 ↕ j ↕ 8, 0 ↕ k ↕ 2 and r ↕ t
2 ,

⑤❇jt ❇kr
✂
v2,sub♣t, rq ✁ v2,cubic,main♣t, rq � r5

768
F
♣4q♣tq

✡
⑤ ↕ Cr7✁kλ♣tq log♣tq

t8�j

Proof We expand (4.37) and directly estimate, as in Lemma 5 ❬❭

4.4 Second Wave Iteration

The second wave correction, uw,2 is defined as the solution to

✁❇ttuw,2 � ❇rruw,2 � 1

r
❇ruw,2 ✁ uw,2

r2
✏
✄
cos♣2Q1♣ r

λ♣tq qq ✁ 1

r2

☛
♣w1 � v2q :✏ RHS2♣t, rq (4.49)

with 0 Cauchy data at infinity. (We carried out the first order matching before defining uw,2 so that we
could choose v2,0 before having to consider the equation defining uw,2). Later on, we will add, to uw,2, a
free wave, v2,2, solving ✩✬✫✬✪

✁❇ttv2,2 � ❇rrv2,2 � 1
r ❇rv2,2 ✁

v2,2

r2 ✏ 0

v2,2♣0, rq ✏ 0

❇tv2,2♣0, rq ✏ v2,3♣rq
(4.50)
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with v2,3 chosen so as to satisfy a third order matching condition which we will describe later on. We start

by proving estimates on ④RHS2, which will allow us to justify a representation formula for uw,2. For this,
we start with the following definitions.

RHS2,1♣t, rq ✏
✄
cos♣2Q1♣ r

λ♣tq qq ✁ 1

r2

☛
w1, RHS2,2♣t, rq ✏

✄
cos♣2Q1♣ r

λ♣tq qq ✁ 1

r2

☛
v2 (4.51)

Then, we have the following.

Lemma 7 Recalling that w1 is defined in (4.23), we have, for 2 ↕ k ↕ 4 and 0 ↕ j ↕ 1,

ξ
j
t
k⑤❇j

ξ
❇kt ④RHS2,1♣t, ξq⑤ � ξ

j ⑤❇j
ξ
④RHS2,1♣t, ξq⑤ ↕

✩✫✪
Cξλ♣tq3 log2♣tq

t2
, ξ ↕ 1

λ♣tq
C♣log♣tq�⑤ log♣ξq⑤q❄

λ♣tqξ5④2t2
, 1

λ♣tq ➔ ξ

Proof In the regions where ξ ↕ 1
λ♣tq , we use

④RHS2,1♣t, ξq ✏ ➺ ✽
0

J1♣rξq
✄
cos♣2Q1♣ r

λ♣tq qq ✁ 1

r2

☛
w1♣t, rqrdr

and Lemma 2. When ξ ➙ 1
λ♣tq , we use

④RHS2,1♣t, ξq ✏ 1

ξ2

➺ ✽
0

J1♣rξqH1

✄✄
cos♣2Q1♣ r

λ♣tq qq ✁ 1

r2

☛
w1♣t, rq

☛
rdr

where

H1♣gq ✏ ✁❇2rg ✁ 1

r
❇rg � g

r2

and then use the estimates on w1 from Lemma 2. We use the same procedure to estimate ❇kt ④RHS2,1♣t, ξq.
To estimate ❇ξ❇kt ④RHS2,1♣t, ξq, we start with

④RHS2,1♣t, ξq ✏ ➺ ✽
0

RHS2,1♣t, x
ξ
qJ1♣xqxdx

ξ2

differentiate under the integral, and use the symbol-type nature of the estimates in Lemma 2. ❬❭

Note that some of the estimates in the following lemma can be combined into a single estimate with multiple
cases of numbers of derivatives, but is presented as is for convenience.

Lemma 8 Let

f♣xq ✏
✂
cos♣2Q1♣xqq ✁ 1

x2

✡
✏ ✁8
♣1� x2q2

and

K♣y, zq ✏
➺ ✽
0

J1♣xyqf♣xqJ1♣xzqxdx

Then,

K♣y, zq ✏ 4 ☎
★
zI0♣zqK1♣yq ✁ yI1♣zqK2♣yq, 0 ➔ z ➔ y

yI0♣yqK1♣zq ✁ zI1♣yqK2♣zq, 0 ➔ y ➔ z
:✏ 4 ☎

★
Ky→z♣y, zq, 0 ➔ z ➔ y

Kz→y♣y, zq, 0 ➔ y ➔ z
(4.52)

and, we have the following estimates, for z ✘ y, 0 ↕ j ↕ 1, and 0 ↕ k ↕ 4:

⑤❇jy❇kzK♣y, zq⑤ ↕
✂
maxt1, 1

y
✉
✡j

✩✬✬✬✫✬✬✬✪
Ce✁⑤y✁z⑤

✂
⑤z✁y⑤❄

zy
�
❄

maxty,z✉
minty,z✉3④2

✡
, y, z → 1

C
❄
ye✁yz

1

2
♣♣✁1qk�1q, y → 1 → z

C
❄
ze✁zy, z → 1 → y

For 1 → y, z, y ✘ z, and 0 ↕ j, k ↕ 1,

⑤❇jy❇kzK♣y, zq⑤ ↕ Cy
1✁j

z
1✁k♣1� ⑤ log♣maxty, z✉q⑤q, ⑤❇jy❇2�k

z K♣y, zq⑤ ↕ Cy✁jminty, z✉
zkmaxty, z✉

⑤❇jy❇4�k
z K♣y, zq⑤ ↕

★
Cz1✁k

y1�j , 1 → y → z

Cy1✁j

z3�k , 1 → z → y
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If 1 ↕ j ↕ 2, 0 ↕ n ↕ 1, and 0 ↕ k ↕ 4✁ j, then, for 0 ➔ ω, ξ and ω ✘ ξ, we have

⑤❇nξ ❇kω❇jt ♣K♣ξλ♣tq, ωλ♣tqqq ⑤ ↕
Cλ♣tqk
tj

✂
maxtλ♣tq, 1

ξ
✉
✡n

✩✬✬✬✫✬✬✬✪
e✁λ♣tq⑤ξ✁ω⑤

✂
λ♣tqj ⑤ξ✁ω⑤j�1

❄
ωξ

�
❄

maxtξ,ω✉
mintξ,ω✉3④2λ♣tq

✡
, ω, ξ → 1

λ♣tq

e✁λ♣tqξ ♣ξλ♣tqq1④2�j ♣ωλ♣tqq 1

2
♣♣✁1qk�1q , ξ → 1

λ♣tq → ω

e✁ωλ♣tqξλ♣tq ♣ωλ♣tqq 1

2
�j
, ω → 1

λ♣tq → ξ

For 1 ↕ j ↕ 2 , 0 ↕ n, k ↕ 1, and 1
λ♣tq ➙ ω, ξ, ω ✘ ξ, we have

⑤❇nξ ❇jt ❇kω ♣K♣ξλ♣tq, ωλ♣tqqq ⑤ ↕
Cλ♣tq2
tj

ω
1✁k

ξ
1✁n ♣1� ⑤ log♣maxtξ, ω✉λ♣tqq⑤q

For 0 ↕ n, k ↕ 1, 1 ↕ j ↕ 2, and 1
λ♣tq → ω, ξ, ω ✘ ξ, we have

⑤❇nξ ❇2�k
ω ❇jt ♣K♣ξλ♣tq, ωλ♣tqqq ⑤ ↕

Cλ♣tq2
tj

mintω, ξ✉
maxtω, ξ✉ωkξn

Proof We start with the table of Gradshteyn and Ryzhik, [9], entry 6.541, 1. A special case of this identity
says that, for c → 0, ➺ ✽

0

J1♣xyqJ1♣xzq xdx

x2 � c2
✏
★
I1♣zcqK1♣ycq, 0 ➔ z ➔ y

I1♣ycqK1♣zcq, 0 ➔ y ➔ z

Upon differentiating in c (it is possible to differentiate under the integral, by the dominated convergence
theorem), and setting c ✏ 1, we get

K♣y, zq ✏ ✁8
➺ ✽
0

J1♣xyqJ1♣xzqxdx
♣1� x2q2 ✏ 4 ☎

★
zI0♣zqK1♣yq ✁ yI1♣zqK2♣yq, 0 ➔ z ➔ y

yI0♣yqK1♣zq ✁ zI1♣yqK2♣zq, 0 ➔ y ➔ z

At this stage, the estimates on K♣y, zq and its derivatives follow from a straightforward application of
asymptotics of Bessel functions, which can be found from numerous sources, for example, [9]. To estimate
the time derivatives of K♣ξλ♣tq, ωλ♣tqq, we let V ✏ y❇y � z❇z, and note that

❇t ♣K♣ξλ♣tq, ωλ♣tqqq ✏ λ✶♣tq
λ♣tq V ♣Kq

✞✞✞y✏ξλ♣tq
z✏ωλ♣tq

.

For 1 ↕ j ↕ 4, we can iterate this to obtain expressions for ❇jt ♣K♣ξλ♣tq, ωλ♣tqqq in terms of V n♣Kq for
1 ↕ n ↕ j. Then, we note that, for all 1 ↕ j ↕ 4, there exist constants ck,j,w such that

V
j♣Kq♣y, zq ✏

j➳
w✏0

z
w

j➳
k✏0

ck,j,w♣y ✁ zqk❇ky ♣❇y � ❇zqwK♣y, zq.

This observation (and a decomposition of the above form, except with y and z switched (note that V is
symmetric in y and z)), combined with the same procedure used above, allows us to estimate the time
derivatives of K♣ξλ♣tq, ωλ♣tqq. ❬❭

We can now estimate ④RHS2,2♣t, ξq.
Lemma 9 With RHS2,2 given in (4.51), and m➙1♣xq ✏ 1✁m↕1♣xq, where m↕1 is defined in (2.1), we have

④RHS2,2♣t, ξq ✏ ➺ ✽
0

②v2,0♣ωq sin♣tωqK♣ξλ♣tq, ωλ♣tqqdω (4.53)

and, for any N → 10, there exists CN → 0 such that we have the following estimates for 0 ↕ k ↕ 1:

⑤❇kξ ④RHS2,2♣t, ξq⑤ ↕ Cλ♣tq log2♣tq
t2

sup
xPr100, t

2
s
♣λ♣xq log♣xqq

✩✫✪λ♣tqξ
1✁k log♣tq, ξ ↕ 1

λ♣tq
λ♣tqk❄ξλe✁ξλ♣tq � CNλ♣tqk

①ξ②N , ξ → 1
λ♣tq

⑤❇kξ
✂
❇2t ④RHS2,2♣t, ξq ✁ 8②v2,0♣ξqξλ♣tq2m➙1♣ξtq sin♣ξtq

t4

✡
⑤

↕ Cλ♣tq log2♣tq
t4

sup
xPr100, t

2
s
♣λ♣xq log♣xqq

✩✫✪ξ
1✁kλ♣tq log♣tq, ξ ↕ 1

λ♣tq
♣ξλ♣tqq5④2 λ♣tqke✁ξλ♣tq � CNλ♣tqk♣1�λ♣tqq

①ξ②N , ξ → 1
λ♣tq

(4.54)
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Proof Equation (4.53) follows from insertion of (4.37) into (4.51), and Fubini’s theorem. To prove the stated
estimates, we start with the decomposition

❇2t ④RHS2,2♣t, ξq ✏ ✁
➺ ✽
0

dω②v2,0♣ωqω2 sin♣tωqK♣ξλ♣tq, ωλ♣tqq

� 2

➺ ✽
0

dω②v2,0♣ωqω cos♣ωtq❇t ♣K♣ξλ♣tq, ωλ♣tqqq

�
➺ ✽
0

dω②v2,0♣ωq sin♣ωtq❇2t ♣K♣ξλ♣tq, ωλ♣tqqq
(Strictly speaking, we first split the integral in (4.53) over the regions ω ↕ ξ and ω ➙ ξ, differentiate under
the integral sign, and then combine the resulting integrals). Define inti♣t, ξq to be the ith line on the right-
hand side of the expression above. Starting with int1, we make the following decomposition (where m↕1 is
defined in (2.1))

int1♣t, ξq ✏ int1,a♣t, ξq � int1,b♣t, ξq, int1,a♣t, ξq ✏ ✁
➺ ✽
0

dω②v2,0♣ωqω2 sin♣ωtqm↕1♣ωtqK♣ξλ♣tq, ωλ♣tqq

For int1,a, we separately treat the cases ξ ➔ 1
t ,

1
λ♣tq → ξ → 1

t , and ξ → 1
λ♣tq . In each case, we directly estimate

int1,a using Lemmas 4 and 8. To estimate int1,b, we decompose the integral into the regions ω ↕ ξ and
ω ➙ ξ, and integrate by parts four times in the ω variable. We recall (4.52) and note that

4
✁
❇3zKy→z♣y, zq ✁ ❇3zKz→y♣y, zq

✠✞✞✞
z✏y

✏ 8

y

which explains the form of (4.54). Then, we consider the two cases 1
λ♣tq ➔ 1

100 , and
1

λ♣tq → 1
100 . Within each

of these two cases, we then consider various regions of ξ. For example, in the case 1
λ♣tq ➔ 1

100 , we consider

the regions

ξ ➔ 1

2t
,

1

2t
➔ ξ ➔ 1

λ♣tq ,
1

λ♣tq ➔ ξ ➔ 1

100
,

1

100
➔ ξ

Then, we directly estimate the resulting integrals using Lemmas 4 and 8. After this, we combine the es-
timates in the separate cases 1

λ♣tq ➔ 1
100 , and

1
λ♣tq → 1

100 . We then use the same procedure to estimate

int2, int3 (where we integrate by parts 4✁ i� 1 times to treat inti,b) and combine everything to get (4.54)
for k ✏ 0.

To estimate ❇ξ❇2t ④RHS2,2♣t, ξq, we start with

❇2t④RHS2,2♣t, ξq ✏
➺ ✽
0

②v2,0♣ωq✁✁ω2 sin♣tωqK♣ξλ♣tq, ωλ♣tqq � 2ω cos♣ωtq❇t ♣K♣ξλ♣tq, ωλ♣tqqq

� sin♣ωtq❇2t ♣K♣ξλ♣tq, ωλ♣tqqq
✠
m↕1♣ωtqdω

� 8②v2,0♣ξqξλ♣tq2m➙1♣ξtq sin♣ξtq
t4

✁
➺ ✽
0

sin♣ωtq
t4

❇4ω
✁②v2,0♣ωqω2

K♣ξλ♣tq, ωλ♣tqqm➙1♣ωtq
✠
dω

� 2

➺ ✽
0

sin♣ωtq
t3

❇3ω ♣②v2,0♣ωqω❇t ♣K♣ξλ♣tq, ωλ♣tqqqm➙1♣ωtqq dω

✁
➺ ✽
0

sin♣ωtq
t2

❇2ω
✁②v2,0♣ωqm➙1♣ωtq❇2t ♣K♣ξλ♣tq, ωλ♣tqqq

✠
dω

(4.55)

where m➙1♣xq ✏ 1 ✁ m↕1♣xq. We split each integral of (4.55) into the regions ω ↕ ξ and ω ➙ ξ, and
differentiate with respect to ξ. Finally, we use the estimates of Lemmas 8, 4 to finish the proof of (4.54).
The estimation of ❇kξ④RHS2,2♣t, ξq for k ✏ 0, 1 is done similarly. ❬❭

With the same procedure used to establish Lemma 3, we get that uw,2, the solution to (4.49) with zero
Cauchy data at infinity, is given by the following.

uw,2♣t, rq ✏
➺ ✽
t

ds

➺ ✽
0

dξ sin♣♣t✁ sqξqJ1♣rξq④RHS2♣s, ξq
✏ ✁

➺ ✽
0

J1♣rξq
④RHS2♣t, ξq

ξ
dξ ✁

➺ ✽
0

dξ

➺ ✽
t

ds
sin♣♣t✁ sqξq

ξ2
❇2s ④RHS2♣s, ξqJ1♣rξq (4.56)
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Using Lemmas 2 and 5, we can use Fubini’s theorem to get that the first integral in (4.56) is

uw,2,ell♣t, rq :✏ ✁
➺ ✽
0

J1♣rξq
④RHS2♣t, ξq

ξ
dξ ✏ ✁1

2

✂
1

r

➺ r

0

s
2
RHS2♣t, sqds� r

➺ ✽
r

RHS2♣t, sqds
✡

(4.57)

It will be useful to compute the following function, which will turn out to contain the leading behavior of
uw,2,ell in the matching region.

uw,2,ell,0♣t, rq :✏ ✁1

2

✂
1

r

➺ r

0

s
2
RHS2,0♣t, sqds� r

➺ ✽
r

RHS2,0♣t, sqds
✡

(4.58)

with

RHS2,0♣t, sq :✏
✄
cos♣2Q1♣ s

λ♣tq qq ✁ 1

s2

☛
s
✁
f1♣tq ✁ λ

✷♣tq log♣sq
✠
✏
✄
cos♣2Q1♣ s

λ♣tq qq ✁ 1

s2

☛�
w1,main � v2,main

✟ ♣t, sq
(4.59)

and

f1♣tq ✏ λ
✷♣tq � λ✶♣tq2

2λ♣tq � λ
✷♣tq log♣λ♣tqq (4.60)

where we recall the definitions of w1,main and v2,main in (4.25) and (4.40), which are the main parts of w1

and v2, respectively, in the matching region. We have

uw,2,ell,0♣t, rq ✏
2f1♣tqλ♣tq2 log

✁
r2

λ♣tq2 � 1
✠

r

✁
λ♣tq2λ✷♣tq

✁
Li2

✁
✁ r2

λ♣tq2
✠
� 2 log♣rq

✁
log
✁

r2

λ♣tq2 � 1
✠
✁ r2

λ♣tq2�r2

✠
� log

✁
r2

λ♣tq2 � 1
✠✠

r

✁ rλ
✷♣tq

✂
2λ♣tq2 log♣rq
λ♣tq2 � r2

� log

✂
λ♣tq2
r2

� 1

✡✡
(4.61)

The leading behavior of uw,2,ell,0 in the matching region is uw,2,ell,0,cont, which is defined by

uw,2,ell,0,cont♣t, rq :✏ ✁2
r

✁
log♣rq

✁
✁λ♣tqλ✶♣tq2 ✁ λ♣tq2λ✷♣tq ✁ 2λ♣tq2 log♣λ♣tqqλ✷♣tq

✠
�λ♣tq log♣λ♣tqqλ✶♣tq2 � λ♣tq2 log♣λ♣tqqλ✷♣tq � λ♣tq2 log2♣λ♣tqqλ✷♣tq

� λ♣tq2 log2♣rqλ✷♣tq � 1

2
λ♣tq2λ✷♣tq ✁ 1

12
π
2
λ♣tq2λ✷♣tq

✡ (4.62)

In the above computation, we have used asymptotics of Li2, for example, from [9]. In the course of proving
Proposition 2, which will occur when we do a third order matching, we will record refined estimates on the
difference between uw,2 and its leading parts in the matching region. On the other hand, we will also need
estimates which are global in the spatial coordinate, of the difference between the full correction uw,2, and
the piece uw,2,ell,0,cont. Now that we have established Lemmas 7 and 9, we can estimate uw,2✁uw,2,ell,0,cont.

Lemma 10 For 0 ↕ k ↕ 1, the following two estimates are true:

⑤❇kr
�
uw,2♣t, rq ✁ uw,2,ell

✟ ♣t, rq⑤ ↕ Cr
λ♣tq2✁k♣1� λ♣tqq log5♣t� rq

t4
sup

xPr100, t
2
s
♣λ♣xq log♣xqq , r ➙ g♣tqλ♣tq (4.63)

and

⑤❇kruw,2♣t, rq⑤ ↕ Cλ♣tq 1

2
✁k♣1� λ♣tq2�kq log2♣tq log2♣rq supxPr100,ts ♣λ♣xq log♣xqq❄

rt2
, r ➙ t

2
(4.64)

For 0 ↕ j ↕ 8 and 0 ↕ k ↕ 1, the following two estimates are true.

⑤❇kr ❇jt
�
uw,2,ell ✁ uw,2,ell,0

✟ ♣t, rq⑤ ↕ Cr1✁kλ♣tq2 log♣tq
t4�j

sup
xPr100,ts

♣λ♣xq log♣xqq , r ↕ t

2
(4.65)

and

⑤❇kr
�
uw,2,ell ✁ uw,2,ell,0

✟ ♣t, rq⑤ ↕ Cλ♣tq2 log♣rq
r1�kt2

sup
xPr100,t�rs

♣λ♣xq log♣xqq , r → t

2
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For 0 ↕ j, k ↕ 5,

⑤❇jt ❇kr
�
uw,2,ell,0♣t, rq ✁ uw,2,ell,0,cont♣t, rq

✟ ⑤ ↕
✩✫✪

Cλ♣tq3♣log2♣rq�log2♣tqq
r1�kt2�j , r ↕ λ♣tq

Cλ♣tq5♣⑤ log♣rq⑤�log♣tqq
r3�kt2�j , r ➙ λ♣tq

(4.66)

For 0 ↕ k ↕ 1,

r⑤❇ruw,2,ell♣t, rq⑤ � t
k⑤❇kt uw,2,ell♣t, rq⑤ ↕

✩✬✬✫✬✬✪
Crλ♣tq♣log♣tq�⑤ log♣rq⑤q

t2
, r ↕ λ♣tq

Cλ♣tq2 log♣tq
rt2

supxPr100,ts ♣λ♣xq log♣xqq , λ♣tq ➔ r ➔ t
2

Cλ♣tq2 log♣rq supxPr100,t�rs♣λ♣xq log♣xqq❄
rt5④2 , r → t

2

(4.67)

For 0 ↕ k ↕ 2,

⑤❇2�k
t uw,2,ell♣t, rq⑤ ↕

✩✬✬✬✫✬✬✬✪
Crλ♣tq♣log♣tq�⑤ log♣rq⑤q

t4�k , r ↕ λ♣tq
Cλ♣tq2 log♣tq

rt4�k supxPr100,ts ♣λ♣xq log♣xqq , λ♣tq ➔ r ➔ t
2

Cλ♣tq2 log♣rq supxPr100,t�rs♣λ♣xq log♣xqq❄
r

✂
1

r4①t✁r② 1

2
�k

� 1

t9④2�k

✡
, r → t

2

(4.68)

Finally, we have the following estimate, for all r → 0. (Recall the definition of E in (1.3)).❜
E♣uw,2♣tq, ❇tuw,2q � ⑤uw,2♣t, rq⑤ ↕ C log♣tq

t1✁Cu
(4.69)

Proof We have

uw,2,ell♣t, rq ✁ uw,2,ell,0♣t, rq

✏ ✁1

2

✂
1

r

➺ r

0

s
2 ♣RHS2♣t, sq ✁RHS2,0♣t, sqq ds� r

➺ ✽
r

♣RHS2♣t, sq ✁RHS2,0♣t, sqq ds
✡

(4.70)

where we recall the definitions of RHS2,0 and RHS2 from (4.59), and (4.49), respectively. Inside the inte-
grals, in the region s ↕ t

2 , we use

RHS2♣t, sq ✁RHS2,0♣t, sq ✏
✄
cos♣2Q1♣ s

λ♣tq qq ✁ 1

s2

☛�
v2,sub♣t, sq � w1,sub♣t, sq

✟
and the estimates on v2,sub and w1,sub from Lemmas 1 and 6. (Recall the definitions of w1,sub and v2,sub in
(4.26) and (4.48), respectively). On the other hand, in the region s ➙ t

2 , we use

♣RHS2 ✁RHS2,0q ♣t, sq ✏
✄
cos♣2Q1♣ s

λ♣tq qq ✁ 1

s2

☛✁
v2♣t, sq � w1♣t, sq ✁ s

✁
f1♣tq ✁ λ

✷♣tq log♣sq
✠✠

where f1 is given by (4.60), and the estimates from Lemmas 2 and 5. The only detail to note is that, when
establishing (4.65) for j ➙ 1, we will have terms of the following form, for 1 ↕ k ↕ j.

✁ r
2

➺ ✽
t
2

g♣s, tq❇kt v2♣t, sqds

For these, since the estimates on ❇kt v2♣t, sq in the region s ➙ t
2 from Lemma 5 are not a factor of t✁k better

than the corresponding estimates on v2♣t, sq, we write the following (iterating as needed if j → 2)

❇kt v2♣t, sq ✏
★
♣❇t � ❇sq v2♣t, sq ✁ ❇sv2♣t, sq, k ✏ 1

❇2sv2 � 1
s❇sv2 ✁ v2

s2
, k ✏ 2

(4.71)

and integrate by parts for the terms involving s derivatives, which is why (4.65) has a factor of 1
tj
.

To estimate uw,2 ✁ uw,2,ell, we first note that

uw,2♣t, rq ✁ uw,2,ell♣t, rq ✏
➺ ✽
t

ds

➺ ✽
0

dξ
sin♣♣s✁ tqξq

ξ2
❇2s ④RHS2♣s, ξqJ1♣rξq (4.72)

Then, we recall (4.54), and write

❇2s ④RHS2♣s, ξq ✏ ❇2s ④RHS2,3♣s, ξq � 8②v2,0♣ξqξλ♣tq2m➙1♣ξtq sin♣ξtq
t4

(4.73)
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We split the s integral in (4.72) involving ❇2s ④RHS2,3♣s, ξq into the regions s ✁ t ↕ r and s ✁ t ➙ r. Then,
when s ✁ t ↕ r, we split the ξ integral in (4.72) over the three regions ξ ↕ 1

r ,
1
r ↕ ξ ↕ 1

s✁t and 1
s✁t ➔ ξ.

We make a similar splitting in the region s ✁ t ➙ r, with the following detail. In the region ξ ➙ 1
s✁t , and

s✁ t ➙ r, we integrate by parts in the ξ variable, integrating sin♣♣s✁ tqξq, and differentiating the rest of the
integrand. Then, we use

⑤J1♣xq⑤ ↕
★
Cx, x ↕ 1
C❄
x
, x ➙ 1

along with (4.3) and Lemmas 7 and 9 to estimate each resulting integral. Recalling (4.73), we now need to

consider the
8③v2,0♣ξqξλ♣tq2m➙1♣ξtq sin♣ξtq

t4
contribution to (4.72). For this, we first use

sin♣♣s✁ tqξq sin♣ξsq ✏ 1

2
♣cos♣tξq ✁ cos♣♣2s✁ tqξqq

and then split the ξ integral in (4.72) over the regions ξ ↕ 1
t and ξ ➙ 1

t , integrating by parts in ξ in the
second integral (where we integrate cos♣tξq✁ cos♣♣2s✁ tqξq and differentiate the rest of the integrand). This
establishes (4.63) for k ✏ 0. To establish (4.63) for k ✏ 1, we start by differentiating (4.72) in r, and then
use the same procedure as for uw,2 ✁ uw,2,ell.

To estimate uw,2♣t, rq for r ➙ t
2 , we start with

uw,2♣t, rq ✏
➺ ✽
t

ds

➺ ✽
0

dξ sin♣♣t✁ sqξq④RHS2♣s, ξqJ1♣rξq (4.74)

Then, we use the same procedure as above, except that, whenever ⑤s ✁ t ✁ r⑤ ➙ 1, ξ ➙ 1
s✁t and ξ ➙ 1

r , we
write

J1♣xq ✏ sin♣xq❄
π
❄
x
✁ cos♣xq❄

π
❄
x
� J1♣xq ✁

✂
sin♣xq❄
π
❄
x
✁ cos♣xq❄

π
❄
x

✡
and use

sin♣yq
✂
sin♣xq❄
πx

✁ cos♣xq❄
πx

✡
✏ ✁ sin♣y ✁ xq ✁ sin♣x� yq � cos♣y ✁ xq ✁ cos♣x� yq

2
❄
πx

with y ✏ ♣s ✁ tqξ and x ✏ rξ. Then, we integrate by parts in ξ, and estimate all of the resulting terms
directly. We use the same procedure for ❇ruw,2♣t, rq in the region r ➙ t

2 . This yields an extra factor of
1� 1

λ♣tq relative to the estimates for uw,2♣t, rq in the region r ➙ t
2 . (We can differentiate under the integral

sign in (4.74) by the dominated convergence theorem, and the fact that ξ④RHS2♣s, ξq P L1
s,ξ♣♣t,✽q✂♣0,✽qq).

Finally, to obtain (4.67), we recall the definition of uw,2,ell, in (4.57).

uw,2,ell♣t, rq ✏ ✁1

2

✂
1

r

➺ r

0

s
2
RHS2♣t, sqds� r

➺ ✽
r

RHS2♣t, sqds
✡

If r ↕ t
2 , we write

❇kt uw,2,ell♣t, rq ✏ ✁1
2r

➺ r

0

s
2❇kt RHS2♣t, sqds✁ r

2

➺ ✽
t
2

❇kt RHS2♣t, sqds✁ r

2

➺ t
2

r

❇kt RHS2♣t, sqds (4.75)

If r ➙ t
2 , we have

❇kt uw,2,ell♣t, rq ✏ ✁1
2r

➺ t
2

0

s
2❇kt RHS2♣t, sqds✁ 1

2r

➺ r

t
2

s
2❇kt RHS2♣t, sqds✁ r

2

➺ ✽
r

❇kt RHS2♣t, sqds (4.76)

The point of this decomposition is the following. The function
cos♣2Q1♣ r

λ♣tq qq✁1

r2 is a symbol in t and r. The
estimates on w1♣t, rq and v2♣t, rq from Lemmas 2 and 5 improve by a factor of 1

t with each time derivative
taken (for example, for up to 4 derivatives), in the region r ↕ t

2 . On the other hand, v2♣t, rq is a free wave,
and our estimates on, for example, ❇tv2♣t, rq from Lemma 5 are not a power of t better than the estimates
on v2♣t, rq in the region r ➙ t

2 . Therefore, when s ➙ t
2 , we rewrite ❇kt v2♣t, sq as in (4.71) (iterating these as

needed, to treat k ✏ 3, 4). Then, we insert this re-writing into (4.75) and (4.76), and integrate by parts in s
to remove all s derivatives from v2 (or ♣❇t � ❇sq v2, as appropriate). A direct estimation of all of the integral
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and boundary terms then gives rise to (4.67) and (4.68). The form of the estimates (4.67) and (4.68) are
different in the region r ➙ t

2 because, for sufficiently regular f ,

✁ 1

2r

➺ r

t
2

s
2
f♣t, sq❇sv2♣t, sqds✁ r

2

➺ ✽
r

f♣t, sq❇sv2♣t, sqds

✏ 1

2r

✂
t

2

✡2

f♣t, t
2
qv2♣t, t

2
q � 1

2r

➺ r

t
2

v2♣t, sq❇s
✁
s
2
f♣t, sq

✠
ds� r

2

➺ ✽
r

v2♣t, sq❇sf♣t, sqds

In other words, the boundary terms at r arising from one integration by parts exactly cancel. This does not
happen if ❇sv2♣t, sq in the first line is replaced by ❇ks v2♣t, sq, and we integrate by parts k times, for k ➙ 2. The
estimate (4.66) follows from the explicit formulae (4.61) and (4.62). Finally, we prove the energy estimate,
(4.69). By the dominated convergence theorem, and fact that ξ④RHS2♣s, ξq P L1

s,ξ♣♣t,✽q ✂ ♣0,✽qq, we can
differentiate once in either t or r under the integral in (4.74). The estimate on ⑤⑤❇tuw,2⑤⑤L2♣rdrq implied by

(4.69) then follows directly from Minkowski’s inequality, the L2 isometry property of the Hankel transform
of order 1, and the estimates from Lemmas 2 and 5. Next, we have

❇ruw,2♣t, rq � uw,2♣t, rq
r

✏
➺ ✽
t

ds

➺ ✽
0

dξ sin♣♣t✁ sqξqξJ0♣rξq④RHS2♣s, ξq

Using again Minkowski’s inequality, and the L2 isometry property of the Hankel transforms of orders 0 and
1, we get

⑤⑤❇ruw,2♣t, rq � uw,2♣t, rq
r

⑤⑤L2♣rdrq ↕ C

➺ ✽
t

ds⑤⑤RHS2♣s, rq⑤⑤L2♣rdrq ➔ ✽

where the last inequality is true by the estimates from Lemmas 2 and 5. Therefore, by the dominated
convergence theorem,➺ ✽

0

✂
❇ruw,2♣t, rq � uw,2♣t, rq

r

✡2

rdr ✏ lim
MÑ✽

➺M

1

M

✂
❇ruw,2♣t, rq � uw,2♣t, rq

r

✡2

rdr

Then, we note that✂
❇ruw,2♣t, rq � uw,2♣t, rq

r

✡2

✏ ♣❇ruw,2♣t, rqq2 � uw,2♣t, rq2
r2

� ❇r♣u2w,2q
r

For each M → 0, ➺M

1

M

❇r♣u2w,2q♣t, rq
r

rdr ✏ u
2
w,2♣t,Mq ✁ u

2
w,2♣t, 1

M
q

Again because of ξ④RHS2♣s, ξq P L1
s,ξ♣♣t,✽q ✂ ♣0,✽qq and the dominated convergence theorem,

lim
rÑ0

✂➺ ✽
t

ds

➺ ✽
0

dξ sin♣♣s✁ tqξq④RHS2♣s, ξqJ1♣rξq✡ ✏ 0

Then, by (4.64), we get

lim
MÑ✽

➺M

1

M

❇r♣u2w,2q♣t, rq
r

rdr ✏ 0

Therefore,

✽ →
➺ ✽
0

✂
❇ruw,2♣t, rq � uw,2♣t, rq

r

✡2

rdr ✏ lim
MÑ✽

➺M

1

M

✂
♣❇ruw,2♣t, rqq2 � uw,2♣t, rq2

r2

✡
rdr

By the monotone convergence theorem, we thus get➺ ✽
0

✂
♣❇ruw,2♣t, rqq2 � uw,2♣t, rq2

r2

✡
rdr ↕ C

✂➺ ✽
t

ds⑤⑤RHS2♣s, rq⑤⑤L2♣rdrq
✡2

Finally, (4.69) follows from

⑤uw,2♣t, rq⑤ ↕
➺ ✽
t

➺ ✽
0

⑤④RHS2♣s, ξq⑤❛ξ ⑤J1♣rξq⑤❄
ξ

dξds ↕
➺ ✽
t

✂➺ ✽
0

⑤ ④RHS2♣s, ξq⑤2ξdξ
✡1④2 ✂➺ ✽

0

⑤J1♣xq⑤2
x

dx

✡1④2
ds

↕ C

➺ ✽
t

⑤⑤RHS2♣s, rq⑤⑤L2♣rdrqds

(4.77)

❬❭
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4.5 Second order matching, part 1

The first question is whether the choice of v2,0 allows for matching between the next order ( roughly on

the order of r3λ♣tq
t4

) terms in w1♣t, rq and vell,2♣t, r
λ♣tq q. For clarity, we recall the third, seventh, and eighth

lines of (4.29), and the expression (4.17). The main contribution of vell,2,0♣t, r
λ♣tq q to the matching is

vell,2,0,main♣t, r

λ♣tq q ✏
r3

8
❇2t

✂
λ✶♣tq2
2λ♣tq � λ

✷♣tq ✁ λ
✷♣tq log♣ r

λ♣tq q
✡
� 3

32
r
3
λ
✹♣tq

The r3 contribution of w1♣t, rq is (recall (1))

w1,cubic,main♣t, rq ✏ 3

32
r
3
λ
✹♣tq � r3

8

✂
λ
✹♣tq

✂
log♣2q � 1

2

✡
✁ log♣rqλ✹♣tq � log♣tqλ✹♣tq

�
➺ 2t

t

λ✹♣sq ✁ λ✹♣tq
s✁ t

ds�
➺ ✽
2t

λ✹♣sqds
s✁ t

✡
Finally, the v2 contribution at this order is

v2,cubic,main♣t, rq ✏ ✁r3
32

F
✷♣tq

Recall that we already chose v2,0 to allow for matching of terms of the form rf♣tq coming from vell♣t, r
λ♣tq q

and w1♣t, rq � v2♣t, rq. Note that the coefficient of r3 given in the expression above for v2,cubic,main is
precisely one-eighth of two time derivatives of the r coefficient of v2 (see (4.37)). Although the r3 coefficient
of vell,2,0,main♣t, r

λ♣tq q and that of w1,cubic,main♣t, rq are not precisely one-eighth of two time derivatives of

the main r coefficients in the matching region of vell♣t, r
λ♣tq q and w1♣t, rq, respectively, the r3 coefficient of

the difference of these two functions is precisely one-eighth of two time derivatives of the main r coefficient
in the matching region of vell♣t, r

λ♣tq q ✁ w1♣t, rq. Note the important cancellation between the 3
32r

3λ✹♣tq
terms when vell,2,0,main♣t, r

λ♣tq q and w1,cubic,main♣t, rq are subtracted. Therefore, the matching of the r3

terms is already accomplished with our previous choice of v2,0. In other words, by the choice of v2,0, we
have

vell,2,0,main♣t, r

λ♣tq q ✁
�
w1,cubic,main♣t, rq � v2,cubic,main♣t, rq

✟ ✏ 0

4.6 Second order matching, part 2

Next, we choose the coefficient c1♣tq in (4.7). For convenience, we define vell,sub by

vell,sub♣t, Rq ✏ vell♣t, Rq ✁R

✂
1

2
λ
✶♣tq2 � λ♣tqλ✷♣tq ✁ λ♣tqλ✷♣tq log♣Rq

✡
✏
✁
2c1♣tq ✁ 3λ✶♣tq2

✠
f4♣Rq � λ♣tqλ✷♣tqf3♣Rq

(4.78)

with

f4♣Rq ✏ R

2♣1�R2q

f3♣Rq ✏
R2

�✁3� 2
�
1�R2

✟
log♣Rq✟✁ �

R4 ✁ 1
✟
log♣1�R2q � 2R2Li2♣✁R2q

2R♣1�R2q
The function c1♣tq appears as part of the coefficient of the 1

r term in a large r expansion of uell,sub♣t, rq ✏
vell,sub♣t, r

λ♣tq q. On the other hand, there are also higher order terms, of size log♣rq
r and log2♣rq

r appearing

in the expansion of uell,sub♣t, rq for large r, and c1♣tq does not appear in the coefficients of these terms.

However, it turns out that these terms happen to exactly match corresponding log♣rq
r and log2♣rq

r terms
coming from expansions of vex and uw,2,ell,0, which means that we only need to match terms of size 1

r ,
which can be done by choosing an appropriate c1♣tq. To show this, we note the following.

The main contribution of vell,sub♣t, r
λ♣tq q in the matching region is

vell,sub,cont♣t, rq

✏ c1♣tqλ♣tq ✁ 3
2λ♣tqλ✶♣tq2
r

✁
λ♣tq2λ✷♣tq

✁
✁6 log♣rq♣4 log♣λ♣tqq � 1q � 6 log♣λ♣tqq♣2 log♣λ♣tqq � 1q � 12 log2♣rq � π2 � 12

✠
6r

(4.79)
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On the other hand, the main contribution of vex♣t, rq in the matching region is (recall (4.36))

vex,cont♣t, rq ✏ 1

2r

✁
log♣rq

✁
✁4λ♣tqλ✶♣tq2 ✁ 2λ♣tq2λ✷♣tq

✠
� 4λ♣tq log♣λ♣tqqλ✶♣tq2 ✁ λ♣tq2λ✷♣tq � 2λ♣tq2λ✷♣tq log♣λ♣tqq

✠
(4.80)

Finally, the main contribution of uw,2,ell,0♣t, rq in the matching region is (recall (4.62))

uw,2,ell,0,cont♣t, rq ✏ ✁2
r

✁
log♣rq

✁
✁λ♣tqλ✶♣tq2 ✁ λ♣tq2λ✷♣tq ✁ 2λ♣tq2 log♣λ♣tqqλ✷♣tq

✠
�λ♣tq log♣λ♣tqqλ✶♣tq2 � λ♣tq2 log♣λ♣tqqλ✷♣tq � λ♣tq2 log2♣λ♣tqqλ✷♣tq

� λ♣tq2 log2♣rqλ✷♣tq � 1

2
λ♣tq2λ✷♣tq ✁ 1

12
π
2
λ♣tq2λ✷♣tq

✡
These expressions give

vell,sub,cont♣t, rq ✁
�
uw,2,ell,0,cont♣t, rq � vex,cont♣t, rq

✟ ✏ ✁λ♣tq
�✁6c1♣tq � �3� 2π2

✟
λ♣tqλ✷♣tq � 9λ✶♣tq2✟

6r

(As previously mentioned, the log♣rq
r and log2♣rq

r terms from vell,sub,cont, uw,2,ell,0,cont and vex,cont cancel in
the above expression). We therefore choose c1♣tq so as to make

vell,sub,cont♣t, rq ✁
�
uw,2,ell,0,cont♣t, rq � vex,cont♣t, rq

✟ ✏ 0

by defining

c1♣tq ✏ 3

2
λ
✶♣tq2 � λ♣tqλ✷♣tq

2
� π2

3
λ♣tqλ✷♣tq (4.81)

Note that the matching condition used to determine the initial velocity of v2 is precisely

uell♣t, rq ✁ vell,sub♣t, r

λ♣tq q ✏ v2♣t, rq ✁ v2,sub♣t, rq � w1♣t, rq ✁ w1,sub♣t, rq (4.82)

where we recall that w1,sub and v2,sub were defined in (4.26) and (4.48), respectively.

4.7 Third order matching

It will be convenient for us to define

vex,sub♣t, rq :✏ vex♣t, rq ✁ vex,ell♣t, rq ✏ ✁
➺ ✽
0

dξJ1♣rξq
➺ ✽
t

ds
sin♣♣t✁ sqξq

ξ2
❇2s④RHS♣s, ξq (4.83)

We will now choose v2,2 (recall (4.50)) so as to match the principal terms (which are of the form r logk♣rqgk♣tq)
in uell,2♣t, rq ✁ vell,2,0,main♣t, r

λ♣tq q and vex,sub♣t, rq � uw,2♣t, rq ✁ uw,2,ell,0,cont♣t, rq. The main proposition of

this section is the following.

Proposition 2 (Third order matching) For v2,2 defined in (4.50), where v2,3 is defined by (4.134), and

F3 and G3 are given in (4.131) and (4.133), respectively, we have the following estimate. For 0 ↕ j, k ↕ 1 or

k ✏ 2, j ✏ 0, and g♣tqλ♣tq ↕ r ↕ 2g♣tqλ♣tq,

⑤❇jt ❇kr
✂
uell,2♣t, rq ✁ vell,2,0,main♣t, r

λ♣tq q ✁
�
uw,2♣t, rq ✁ uw,2,ell,0,cont♣t, rq � v2,2♣t, rq � vex ✁ vex,cont ✁ q4,2

✟✡ ⑤
↕ Cλ♣tq2✁k log♣tq

t2�jg♣tq3�k
� Cg♣tq2✁kλ♣tq4✁k log4♣tq supxPr100,ts ♣λ♣xq log♣xqq

t5�j

where q4,2 is defined in (4.116) and satisfies the following inequality for k ✏ 0, 1, and r → 0.

⑤❇kt q4,2♣t, rq⑤ �
❜
E♣❇kt q4,2, ❇k�1

t q4,2q � ⑤⑤❇2rq4,2⑤⑤L2♣♣λ♣tqg♣tq,2λ♣tqg♣tqq,rdrq ↕
Cλ♣tq5 log3♣tq

t5
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Proof We start by computing the leading parts of uell,2♣t, rq✁vell,2,0,main♣t, r
λ♣tq q and vex,sub♣t, rq�uw,2♣t, rq✁

uw,2,ell,0,cont♣t, rq in the matching region, r ✒ g♣tqλ♣tq.

We recall our expressions for vex,sub and uw,2 ✁ uw,2,ell:

vex,sub♣t, rq ✏ ✁
➺ ✽
0

dξJ1♣rξq
➺ ✽
t

ds
sin♣♣t✁ sqξq

ξ2
❇2s④RHS♣s, ξq

uw,2♣t, rq ✁ uw,2,ell♣t, rq ✏
➺ ✽
t

ds

➺ ✽
0

dξ
sin♣♣s✁ tqξq

ξ2
❇2s ④RHS2♣s, ξqJ1♣rξq (4.84)

In particular, these functions solve the following equations with 0 Cauchy data at infinity✂
✁❇2t � ❇2r � 1

r
❇r ✁ 1

r2

✡�
uw,2 ✁ uw,2,ell

✟ ✏ ❇2t uw,2,ell

✂
✁❇2t � ❇2r � 1

r
❇r ✁ 1

r2

✡
vex,sub ✏ ❇2t vex,ell

In order to compute their leading behavior in the matching region, r ✒ g♣tqλ♣tq, we define uw,2,sub,0♣t, rq
and vex,sub,0♣t, rq to be the solutions to the following equations with 0 Cauchy data at infinity✂

✁❇2t � ❇2r � 1

r
❇r ✁ 1

r2

✡
uw,2,sub,0 ✏ ❇2t uw,2,ell,0,cont (4.85)

✂
✁❇2t � ❇2r � 1

r
❇r ✁ 1

r2

✡
vex,sub,0 ✏ ❇2t vex,cont

Each of these right-hand sides are of the following form (recall Section 4.6)

1

r

2➳
k✏0

fk♣tq logk♣rq

In particular, the right-hand sides of the equations for uw,2,sub,0 and vex,sub,0 are technically singular at
r ✏ 0, even though the right-hand sides of the equations for uw,2✁uw,2,ell and vex,sub are not. This will not
cause any problems for us, and is done so that the principal parts of uw,2,sub,0 and vex,sub,0 can be exactly
calculated.

We will first prove the following lemma which will lead to fairly explicit formulae for uw,2,sub,0 and vex,sub,0.
After the lemma we will provide some information about how the formulae arise.

Lemma 11 Let fk be the functions arising from expressing either ❇2t vex,cont or ❇2t uw,2,ell,0,cont in the form
1
r

➦2
k✏0 fk♣tq logk♣rq. If u is given by

u♣t, rq ✏ ✁
➺ ✽
t

f1♣sqK0

✂
r

s✁ t
, r

✡
ds (4.86)

where

K0♣x, rq ✏ 1

x

✩✬✬✫✬✬✪
✁✁

1✁
❛
1✁ x2

✠
♣log♣rq ✁ log♣xqq �

❛
1✁ x2 ✁ 1�

❛
1✁ x2 log

✁❛
1✁ x2 � 1

✠
� log

✁❛
1✁ x2 � 1

✠
✁ 2
❛
1✁ x2 log

✁
2
❛
1✁ x2

✠✠
, 0 ➔ x ➔ 1�❄

x2 ✁ 1 sin✁1
�
1
x

✟� log♣rq ✁ 1
✟
, x → 1

then, u solves

✁❇ttu� ❇rru� 1

r
❇ru✁ u

r2
✏ f1♣tq log♣rq

r
, r → 0

with 0 Cauchy data at infinity. Similarly, if u is defined by

u♣t, rq ✏
➺ ✽
t

f2♣sqK2♣s✁ t

r
, rqds (4.87)

with

K2♣a, rq ✏
2➳

k✏0

Fk♣aq logk♣rq
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where, for a → 1, we have

F0♣aq ✏ a

✂
Li2

✂❄
a2 ✁ 1

a

✡
� Li2

✂
✁ a❄

a2 ✁ 1

✡
� Li2

✁
1✁ 2a

✁
a�

❛
a2 ✁ 1

✠✠
✁Li2

✁
2✁ 2a

✁
a�

❛
a2 ✁ 1

✠✠
� 2
✠
� 1

2

✂
4
❛
a2 ✁ 1Li2

✁
2a
✁
a✁

❛
a2 ✁ 1

✠
✁ 1
✠
� 1

4
a log2

✂
1✁ 1

a2

✡
�2
✁❛

a2 ✁ 1� a
✠
log2

✁❛
a2 ✁ 1� a

✠
� 4

✁
✁a log

✁
2
✁
a
2 ✁ 1

✠✠
✁
❛
a2 ✁ 1

✁
log
✁
a
2 ✁ 1

✠
✁ 1� log♣4q

✠
�a� a log♣aqq log

✁❛
a2 ✁ 1� a

✠
� 1

6

❛
a2 ✁ 1

✁
12 log

✁
a
2 ✁ 1

✠✁
log
✁
a
2 ✁ 1

✠
✁ 2� log♣16q

✠
✁π2 � 24� 24♣log♣2q ✁ 1q log♣4q

✠
✁ 8a

✠
, a → 1

F1♣aq ✏ 2
✁
✁
❛
a2 ✁ 1✁

✁❛
a2 ✁ 1� a

✠
log
✁❛

a2 ✁ 1� a
✠
�
❛
a2 ✁ 1 log

✁
4
✁
a
2 ✁ 1

✠✠
� a
✠
, a → 1

F2♣aq ✏
❛
a2 ✁ 1✁ a, a → 1

and, for 0 ➔ a ➔ 1, we have

F0♣aq ✏ ✁2
❛
1✁ a2Im

✂
Li2

✂
1

2
✁ ia

2
❄
1✁ a2

✡✡
� π

❛
1✁ a2

�
✂
3πa

4
✁ 2
❛
1✁ a2

✡
cos✁1♣aq � 1

4
a

✂
tan✁1

✂
1✁ 2a2

2a
❄
1✁ a2

✡✡2

✁
❛
1✁ a2 log

✁
4✁ 4a2

✠
sin✁1♣aq

� 1

2
a sin✁1♣aq tan✁1

✂
1✁ 2a2

2a
❄
1✁ a2

✡
✁ 2a✁ 3π2a

16
✁ a ♣arccos♣aqq2 , 0 ➔ a ➔ 1

F1♣aq ✏ ✁2
❛
1✁ a2 sin✁1♣aq � 2a, 0 ➔ a ➔ 1

F2♣aq ✏ ✁a, 0 ➔ a ➔ 1

then, u solves

✁❇ttu� ❇rru� 1

r
❇ru✁ u

r2
✏ f2♣tq log2♣rq

r
, r → 0

with 0 Cauchy data at infinity.

Proof To verify that (4.86) is the claimed solution to the Cauchy problem, we start with

u♣t, rq ✏ ✁
➺ 1

0

K0♣1
y
, rqf1♣t� ryqrdy ✁

➺ ✽
1

K0♣1
y
, rqf1♣t� ryqrdy

and note that the explicit formulae for K0♣x, rq in the regions x ➔ 1 and x → 1, combined with the definitions
of fk and the Dominated convergence theorem allow us to differentiate up to two times in either t or r
under the integral signs. An integration by parts then establishes the lemma. (The same procedure is used
to verify the stated property of (4.87)). ❬❭

Remark. To see how the formulae from the lemma can be formally derived, we could first use the same
procedure used for w1 to obtain, for example, for uw,2,sub,0, that

uw,2,sub,0♣t, rq ✏
➺ ✽
t

uw,2,sub,0,s♣t, rqds

where

uw,2,sub,0,s♣t, rq

✏ ✁1
2π

➺ s✁t

0

ρdρ❛
♣s✁ tq2 ✁ ρ2

➺ 2π

0

dθ
♣r � ρ cos♣θqq

r2 � ρ2 � 2rρ cos♣θq
2➳

k✏0

fk♣sq logk
✁❛

r2 � ρ2 � 2rρ cos♣θq
✠ (4.88)

The integral of the k ✏ 0 term in the sum above has been evaluated when computing w1, via Cauchy’s
residue theorem. This same procedure can not directly be applied to the integrals of the k ✘ 0 terms.
We can still explicitly compute these integrals, with a procedure involving introducing a parameter into
the integrals, differentiating in this parameter, and then using Cauchy’s residue theorem. This gives the
following. For r ✘ ρ, we have

➺ 2π

0

4 log♣r2 � ρ
2 � 2rρ cos♣θqq ♣r � ρ cos♣θqq

r2 � ρ2 � 2rρ cos♣θqdθ ✏
✩✫✪8π

r

✁
log♣r2q � log♣1✁ ρ2

r2 q
✠
, r → ρ

✁8π
r log♣1✁ r2

ρ2 q, ρ → r
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➺ 2π

0

log2♣r2 � ρ2 � 2rρ cos♣θqq
r2 � ρ2 � 2rρ cos♣θq ♣r � ρ cos♣θqq dθ ✏

✩✫✪4π
r

✁
log2♣1✁ ρ2

r2 q � 2 log♣rq log♣r ✁ ρ2

r q � Li2♣ρ
2

r2 q
✠
, r → ρ

✁4π
r log♣ρ2 ✁ r2q log♣1✁ r2

ρ2 q, ρ → r

Carrying out the ρ integral in (4.88) then leads to the formulae in the Lemma statement.

Using the information from Lemma 11, we can calculate the principal parts of uw,2,sub,0♣t, rq and vex,sub,0♣t, rq
in the matching region, r ✒ g♣tqλ♣tq. We describe in detail how this is done for uw,2,sub,0, since vex,sub,0 can
be treated in the same way. First, we introduce some notation. Let

K2,0♣s✁ t

r
, rq ✏

r
✁
✁12 log♣s✁ tq log♣4♣s✁ tqq � π2 ✁ 12 log2♣2q

✠
24♣s✁ tq

(4.89)

We define Fk,0 by

K2,0♣a, rq ✏
2➳

k✏0

Fk,0♣aq logk♣rq (4.90)

We also recall the definition of uw,2,ell,0,cont, (4.62), and write

❇2t uw,2,ell,0,cont♣t, rq ✏ g✷0♣tq
r

� g✷1♣tq log♣rq
r

� g✷2♣tq log2♣rq
r

(4.91)

for

g0♣tq ✏ ✁2
✂
1

2
λ♣tq2λ✷♣tq ✁ 1

12
π
2
λ♣tq2λ✷♣tq � λ♣tq2λ✷♣tq log2♣λ♣tqq � λ♣tq2λ✷♣tq log♣λ♣tqq � λ♣tqλ✶♣tq2 log♣λ♣tqq

✡

g1♣tq ✏ ✁2
✁
✁λ♣tq2λ✷♣tq ✁ 2λ♣tq2λ✷♣tq log♣λ♣tqq ✁ λ♣tqλ✶♣tq2

✠
g2♣tq ✏ ✁2λ♣tq2λ✷♣tq

Finally, we let

c0 ✏
➺ ✽
1

♣F0♣aq ✁ F0,0♣aqq da

Note that the exact value of c0 is not needed for our purposes, though the precise value of many other
constants appearing in the following lemma are needed.

Lemma 12 [Leading part of uw,2,sub,0] Let uw,2,sub,0,cont be defined by

uw,2,sub,0,cont♣t, rq

✏ ✁1

2
g
✷
0♣tqr ✁ r

2
g
✷
0♣tq log♣ t

r
q ✁ r

2

➺ 2t

t

♣g✷0♣sq ✁ g✷0♣tqq
♣s✁ tq ds✁ r

2

➺ ✽
2t

g✷0♣sq
s✁ t

ds✁ g
✷
0♣tq r4 ♣log♣4q ✁ 1q

✁ r

16
g
✷
1♣tq

✁
✁12� π

2 � 8 log♣rq
✠
�✁g✷1♣tqr

✄
log♣ tr q log♣2q

2
� 1

4

✁
log2♣tq ✁ log2♣rq

✠☛

✁ r

2

➺ ✽
2t

g✷1♣sq
♣s✁ tq log♣2♣s✁ tqqds✁ r

2

➺ 2t

t

✁
g
✷
1♣sq ✁ g

✷
1♣tq

✠ log♣2♣s✁ tqq
♣s✁ tq ds

� ✁rg✷1♣tq
24

✁
6♣log♣4q ✁ 1q log♣rq ✁ 2π2 � 15� 6 log2♣2q

✠
✁ rg✷2♣tq

16

✁
2 log♣rq

✁
4 log♣rq � π

2 ✁ 12
✠
✁ 28ζ♣3q � π

2 � 28
✠

� g
✷
2♣tq r24 log

✁
r

t

✠✁
4 log♣tq log♣8rtq � 4 log♣rq log♣8rq ✁ π

2 � 12 log2♣2q
✠

�
➺ 2t

t

✁
g
✷
2♣sq ✁ g

✷
2♣tq

✠
K2,0♣s✁ t

r
, rqds�

➺ ✽
2t

g
✷
2♣sqK2,0♣s✁ t

r
, rqds

� g
✷
2♣tqr

✂
c0 � 1

12

✁
2π2 ✁ 15✁ 6 log2♣2q

✠
log♣rq � 1

4
♣1✁ log♣4qq log2♣rq

✡
Then, for 0 ↕ j � k ↕ 2

⑤rktj❇kr ❇jt
�
uw,2,sub,0♣t, rq ✁ uw,2,sub,0,cont♣t, rq

✟ ⑤ ↕ Cr3λ♣tq3 log5♣tq
t6

, λ♣tqg♣tq ↕ r ↕ 2g♣tqλ♣tq
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Proof Using (4.91) and our calculations for w1, along with Lemma 11, we have

uw,2,sub,0♣t, rq ✏ ✁1
r

➺ t�r

t

g
✷
0♣sq♣s✁ tqds✁ 1

r

➺ ✽
t�r

g
✷
0♣sq

✁
♣s✁ tq ✁

❛
♣s✁ tq2 ✁ r2

✠
ds

✁
➺ ✽
t

g
✷
1♣sqK0

✂
r

s✁ t
, r

✡
ds�

➺ ✽
t

g
✷
2♣sqK2

✂
s✁ t

r
, r

✡
ds

(4.92)

The first two terms on the right-hand side of the above expression are treated with the identical procedure
used to study w1, simply replacing λ in the w1 expressions with ✁g0

2 . The leading part of the sum of these
two terms in the matching region r ✒ g♣tqλ♣tq is (note that we will prove concrete estimates on the terms
we claim are subleading)

✁1

2
g
✷
0♣tqr ✁ r

2
g
✷
0♣tq log♣ t

r
q ✁ r

2

➺ 2t

t

♣g✷0♣sq ✁ g✷0♣tqq
♣s✁ tq ds✁ r

2

➺ ✽
2t

g✷0♣sq
s✁ t

ds✁ g
✷
0♣tq r4 ♣log♣4q ✁ 1q

In fact, by inspecting (4.28), we have

⑤✁1
r

➺ t�r

t

g
✷
0♣sq♣s✁ tqds✁ 1

r

➺ ✽
t�r

g
✷
0♣sq

✁
♣s✁ tq ✁

❛
♣s✁ tq2 ✁ r2

✠
ds

✁
✂
✁1

2
g
✷
0♣tqr ✁ r

2
g
✷
0♣tq log♣ t

r
q ✁ r

2

➺ 2t

t

♣g✷0♣sq ✁ g✷0♣tqq
♣s✁ tq ds✁ r

2

➺ ✽
2t

g✷0♣sq
s✁ t

ds✁ g
✷
0♣tq r4 ♣log♣4q ✁ 1q
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Estimates on the t and r derivatives are done similarly, as in the proof of Lemma 1. The third and fourth
terms of (4.92) are treated with the same argument, which is essentially the same argument we used for
w1, but with a few differences in the details. For clarity, we start with the third term. We have

✁
➺ ✽
t

g
✷
1♣sqK0

✂
r

s✁ t
, r

✡
ds ✏ ✁

➺ t�r

t

g
✷
1♣sqK0

✂
r

s✁ t
, r

✡
ds✁

➺ ✽
t�r

g
✷
1♣sqK0

✂
r

s✁ t
, r

✡
ds (4.93)

With y ✏ s✁t
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We treat the next term in (4.93), namely ✁ ➩✽
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We therefore get
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This decomposition also appears in the w1 expression (4.28). The leading contribution from the first four
terms of the right-hand side of (4.95) is
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and using the symbol-type estimates on λ to justify the differentiation under the integral, exactly as in the
proof of Lemma 1. We now turn attention to the fifth term on the right-hand side of (4.95). The point here
is that ♣K0 ✁K0,smq♣ r

s✁t , rq decays faster in s✁ t than does K0,sm♣ r
s✁t , rq. To exploit this, we integrate by

parts in s in the following integral, and the symbol type estimates on g✷1♣sq show that the non-boundary
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terms obtained are subleading relative to the boundary terms (this will be proven once we estimate the
terms that we claim are subleading)
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we finally get the following expression which identifies the leading part of ✁ ➩✽
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canceled to give the above expression.

The same procedure is carried out for the K2 term in (4.92). The details are as follows. The analog of
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where ζ denotes the Riemann zeta function. We remark that one part of this computation involves the
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In particular, we have
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✷
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✸
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(4.99)

The higher derivatives are estimated similarly, with the same procedure used for the g✷1♣tq terms just studied.
Finally, we will show that the last three terms on the left-hand side of the above inequality exactly cancel,
just as was the case for the analogous terms arising from the K0 integral previously. By direct computation,
we have ➺ 1

0

yK2,0♣y, rqdy ✏ ✁ log2♣rq
2

✁ log♣2q log♣rq � log♣2rq � π2
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✠
Finally, using a similar procedure as in (4.98), we get➺ ✽

1
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✄
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A straightforward computation then gives➺ ✽
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In total, we then note that

✁ log2♣rq
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✁
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9
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✁
✂
✁ log2♣rq

6
�
✂
7

9
✁ log♣2q

✡
log♣rq � π2

8
✁ 43

27
✁ 1

2
log2♣2q � log♣2q

✡
✏ 0

which verifies that the last three terms on the left-hand side of (4.99) exactly cancel. Combining our
computations and estimates above finishes the proof of the lemma. ❬❭
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Next, we note that

❇2t vex,cont♣t, rq ✏ 1

r

✁
h
✷
0♣tq � log♣rqh✷1♣tq

✠
where
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2

✁
2λ♣tqλ✶♣tq2 � λ♣tq2λ✷♣tq

✠
, f2♣tq ✏ ✁λ✷♣tq

2

Using the same procedure as for uw,2,sub,0 (in fact, the same computations, except with gj replaced with
hj , for j ✏ 0, 1) we get the following lemma.

Lemma 13 [Leading part of vex,sub,0] Let
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✄
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2
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6 ♣log♣4q ✁ 1q log♣rq ✁ 2π2 � 15� 6 log2♣2q

✠
Then, for 0 ↕ j � k ↕ 2,

⑤rktj❇kr ❇jt
�
vex,sub,0 ✁ vex,sub,0,cont

✟ ⑤♣t, rq ↕ Cr3λ♣tq3 log3♣tq
t6

, g♣tqλ♣tq ↕ r ↕ 2g♣tqλ♣tq

Next, we consider
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✏ ✁1
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➺ r

0

s
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➺ ✽
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(4.100)

We proceed to study each integral term on the right-hand side. The integral over ♣0,✽q requires the longest
argument:

Lemma 14 We have➺ ✽
0

♣RHS2♣t, sq ✁RHS2,0♣t, sqq ds ✏ λ♣tq
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(4.101)

where
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✁
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✠
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✠
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Proof We first note
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Using the representation formula (4.37) for v2, and Fubini’s theorem, we have

➺ ✽
0

✄
cos♣2Q1♣ s

λ♣tq qq ✁ 1

s2
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✡
sin♣tξq②v2,0♣ξq (4.102)

where we used➺ ✽
0
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✠
, ξ Ñ 0 (4.103)

and we recall that F is defined in (4.38). Notice that the first term on the right-hand side of (4.102) is the
leading part, given the smallness at low frequencies of the O term in (4.103). Next, using
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r

➺ t�r

t

λ
✷♣sq♣s✁ tqds� 2r

➺ ✽
1

λ
✷♣t� ryq

✁
y ✁

❛
y2 ✁ 1

✠
dy

we get ➺ ✽
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(4.104)

Using the definitions of v2,sub, w1,sub, and the first order matching (see, e.g. (4.39)), we get
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(4.105)

Given that RHS2,0 was the leading part of RHS2 in the matching region, the integrals (4.102), (4.105),
and (4.104) have cancellation when added together. We show this in detail now. Recalling the definition of
F ♣tq, we have (for all t ➙ T0)

F ♣tq

✏ 4

✂✂
log♣2q ✁ 1
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✡ (4.106)

Therefore, the λ✶♣tq2 terms from F ♣tq and (4.105) cancel. Next, we determine the leading terms of the first
term on the right-hand side of (4.104). The integral is

8
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➺ ✽
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Given the decay (for large w) of the part of the integrand multiplying λ✷♣t � wq, we integrate by parts in
w, differentiating the symbol λ✷♣t�wq, and integrating (backwards from infinity) the rest of the integrand.
This gives
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(4.107)
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Notice the cancellation between the λ✷♣tq terms in the expression above and (4.105). Next, we treat the
second term on the right-hand side of (4.104). We start with

4

λ♣tq2
➺ t

0

dwλ
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Since there will be some cancellation between the integral under consideration and the second term in
(4.106), we start by writing λ✷♣t� wq ✏ λ✷♣tq � λ✷♣t� wq ✁ λ✷♣tq, we have
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(4.108)

where
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(4.109)

Note that the first term on the right-hand side of (4.108) cancels with all of the λ✷♣tq terms outside the
integral operators in (4.106). Next, we note that

G3♣xq ✏ ✁1
x
�O

✂
log♣xq
x3

✡
, xÑ✽ (4.110)

Recalling that G2♣w, λ♣tqq ✏ λ♣tqG3♣ w
λ♣tq q, we have
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✡
The first term on the right-hand side of the above expression cancels with the second term on the right-hand

side of (4.106), and G2♣w, λ♣tqq � λ♣tq2
w decays much more quickly for large w than G2♣w, λ♣tqq does, given

(4.110). Using the same procedure as in (4.107), we get
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where we recall that G4 was defined in (4.109), and

W2♣xq ✏ 1
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Note that the second term on the right-hand side of our previous computation (4.108) cancels with the

term 4
λ♣tq2

✁
✁λ✷♣tqλ♣tq2G4♣ t

λ♣tq q
✠
from (4.111).
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Lastly, we consider

4

λ♣tq2
➺ ✽
t

dwλ
✷♣t� wqG2♣w, λ♣tqq ✏ ✁4

➺ ✽
2t

ds
λ✷♣sq
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t

dwλ
✷♣t� wq

✂
G2♣w, λ♣tqq � λ♣tq2

w

✡
The first term on the right-hand side of the above expression cancels with the fourth term on the right-hand
side of (4.106). Then, we treat the following integral with the same procedure used in (4.107)
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✡

After combining all of our computations, we end up with (4.101), completing the proof of the lemma. ❬❭

Finally, to compute the principal part (in the matching region r ✒ λ♣tqg♣tq) of the other two integrals in
(4.100), we start with

RHS2♣t, rq ✁RHS2,0♣t, rq ✏
✄
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λ♣tq qq ✁ 1
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✟
Next, we replace v2,sub and w1,sub by their principal parts, which are v2,cubic,main and w1,cubic,main, re-
spectively. Then, we use part 1 of second order matching, which says that
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3
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3 log♣rqj2♣tq

We now estimate the difference between uw,2,ell ✁ uw,2,ell,0 and its principal part in the matching region,
which will help us study other contributions to the third order matching.

Lemma 15 Let

♣uw,2,ell♣t, rq ✁ uw,2,ell,0♣t, rqqprinc
:✏ ✁1

2

�♣uw,2,ell ✁ uw,2,ell,0qprinc,1♣t, rq � ♣uw,2,ell ✁ uw,2,ell,0qprinc,2♣t, rq
✟

✁ r

2
λ♣tq

➺ ✽
t

W3♣s✁ t

λ♣tq qλ
✹♣sqds✁ r

2

➺ ✽
0

✂ ✁8
ξλ♣tq2 � 4ξK2♣ξλ♣tqq � 2ξ

✡
sin♣tξq②v2,0♣ξqdξ
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Then, for 0 ↕ k ↕ 2, and 0 ↕ j ↕ 8 we have

⑤❇jt ❇kr
�
uw,2,ell♣t, rq ✁ uw,2,ell,0♣t, rq ✁ ♣uw,2,ell♣t, rq ✁ uw,2,ell,0♣t, rqqprinc

✟ ⑤
↕ C

r1�k

λ♣tq3 log3♣tq
t4�j

✂
r4

t2
� λ♣tq2

✡
, λ♣tq ↕ r ↕ t

2

Moreover, for 0 ↕ m� k ↕ 1, m, k ➙ 0,

⑤❇2�k
t ❇mr

�
uw,2,ell♣t, rq ✁ uw,2,ell,0♣t, rq

✟ ⑤ ↕ Cλ♣tq2 log♣tq supyPr100,ts ♣λ♣yq log♣yqq
t9④2①t✁ r②1④2�k�m

,
t

2
↕ r ↕ 2t (4.112)

In addition, for s ➙ t, and 0 ↕ k ↕ 2,

⑤❇4�k
s

�
uw,2,ell ✁ uw,2,ell,0

✟ ♣s, yq⑤ ↕ Cλ♣sq2 log3♣sq sup
xPr100,ss

♣λ♣xq log♣xqq
★

y
s8�k , y ↕ s

2
1

s9④2t5④2�k ,
s
2 ↕ y ↕ s✁ t� 2g♣tqλ♣tq

(4.113)

Proof We first note that

uw,2,ell♣t, rq ✁ uw,2,ell,0♣t, rq ✁ ♣uw,2,ell♣t, rq ✁ uw,2,ell,0♣t, rqqprinc

✏ ✁ 1

2r

✄➺ r

0

s
2

✄
cos♣2Q1♣ s

λ♣tq qq ✁ 1

s2

☛�
w1,sub♣t, sq � v2,sub♣t, sq ✁

�
v2,cubic,main♣t, sq � w1,cubic,main♣t, sq

✟✟
ds

�
➺ r

0

s
2

✄
cos♣2Q1♣ s

λ♣tq qq ✁ 1

s2

☛
vell,2,0,main♣t, s

λ♣tq qds✁ r♣uw,2,ell ✁ uw,2,ell,0qprinc,1♣t, rq
☛

� r

2

✄➺ r

0

✄
cos♣2Q1♣ s

λ♣tq qq ✁ 1

s2

☛�
w1,sub♣t, sq � v2,sub♣t, sq ✁

�
v2,cubic,main♣t, sq � w1,cubic,main♣t, sq

✟✟
ds

�
➺ r

0

✄
cos♣2Q1♣ s

λ♣tq qq ✁ 1

s2

☛
vell,2,0,main♣t, s

λ♣tq qds�
1

r
♣uw,2,ell ✁ uw,2,ell,0qprinc,2♣t, rq

☛
(4.114)

where we used
v2,cubic,main♣t, sq � w1,cubic,main♣t, sq ✏ vell,2,0,main♣t, s

λ♣tq q

which follows from the second order matching. Next, we use Lemmas 1 and 6, noting that s ↕ r ↕ t
2 in the

integrals which compose the first and third terms of (4.114).
The estimate (4.112) follows directly from Lemma 10 and (4.61), and (4.113) is proven with the same

procedure as in Lemma 10. ❬❭

Next, we need to understand w3♣t, rq :✏ uw,2♣t, rq ✁ uw,2,ell♣t, rq ✁ uw,2,sub,0, since w3 will turn out to
contribute terms which are logarithmically smaller than the largest contributions of uw,2,sub,0♣t, rq in the
matching region, but not quite perturbative. Recalling the equations that these functions solve, (4.84) and
(4.85), we see that w3 solves the following equation with 0 Cauchy data at infinity.

✁❇2tw3 � ❇2rw3 � 1

r
❇rw3 ✁ w3

r2
✏ ❇2t

�
uw,2,ell ✁ uw,2,ell,0,cont

✟
Therefore,

w3♣t, rq ✏
➺ ✽
t

w3,s♣t, rqds, w3,s solves

✩✬✫✬✪
✁❇2tw3,s � ❇2rw3,s � 1

r ❇rw3,s ✁ w3,s

r2 ✏ 0

w3,s♣s, rq ✏ 0

❇1w3,s♣s, rq ✏ ❇21♣uw,2,ell ✁ uw,2,ell,0,contq♣s, rq

By the finite speed of propagation, in the region r ↕ t, we have

w3,s♣t, rq ✏ v3,s♣t, rq, v3,s solves

✩✬✫✬✪
✁❇2t v3,s � ❇2rv3,s � 1

r ❇rv3,s ✁
v3,s

r2 ✏ 0

v3,s♣s, rq ✏ 0

❇1v3,s♣s, rq ✏ ψ↕1♣r ✁ sq❇21♣uw,2,ell ✁ uw,2,ell,0,contq♣s, rq

where

ψ↕1 P C✽♣Rq, and ψ↕1♣xq ✏
★
1, x ↕ 0

0, x ➙ 1
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Since we will only be interested in estimating w3♣t, rq in the matching region g♣tqλ♣tq ↕ r ↕ 2g♣tqλ♣tq, it will
suffice to estimate v3 given below

v3♣t, rq :✏
➺ ✽

t

v3,s♣t, rqds

I.e., v3 solves

✁❇2t v3 � ❇2rv3 � 1

r
❇rv3 ✁ v3

r2
✏ ψ↕1♣r ✁ tq❇2t ♣uw,2,ell ✁ uw,2,ell,0,contq♣t, rq :✏ RHS3♣t, rq (4.115)

with 0 Cauchy data at infinity. Let

ellsoln ✏ ✁1
2

✂
1

r

➺ r

0

s
2
RHS3♣t, sqds� r

➺ ✽

r

RHS3♣t, sqds
✡

and

Q♣tq ✏ ✁1
2

➺ ✽

0

ψ↕1♣s✁ tq❇2t
�
uw,2,ell ✁ uw,2,ell,0

✟ ♣t, sqds
Note that ellsoln satisfies

❇2rellsoln� 1

r
❇rellsoln✁ ellsoln

r2
✏ RHS3♣t, rq

Lemma 16 We have the following estimates. For 0 ↕ j, k ↕ 1,

⑤rk❇kr ❇jt ♣ellsoln✁ rQ♣tqq ⑤ ↕

✩✬✬✬✫✬✬✬✪
Crλ♣tq3♣⑤ log3♣rq⑤�log3♣tqq

t4�j , r ↕ λ♣tq
Cr3λ♣tq2 log3♣tq supxPr100,ts♣λ♣xq log♣xqq

t6�j � C
r

λ♣tq5 log2♣tq
t4�j , λ♣tq ➔ r ➔ t

2
Cλ♣tq2 log3♣tq supxPr100,ts♣λ♣xq log♣xqq

t
3� j

2

, t
2 ↕ r ↕ 2t

⑤❇2r ♣ellsoln✁ rQ♣tqq ⑤ ↕ Cλ♣tq5 log2♣tq
r3t4

� Crλ♣tq2 supxPr100,ts ♣λ♣xq log♣xqq log3♣tq
t6

, g♣tqλ♣tq ↕ r ↕ 2g♣tqλ♣tq

Proof We have

ellsoln✁ rQ♣tq

✏ ✁1
2r

➺ r

0

s
2
ψ↕1♣s✁ tq❇2t

�
uw,2,ell ✁ uw,2,ell,0,cont

✟ ♣t, sqds� r

2

➺ r

0

ψ↕1♣s✁ tq❇2t
�
uw,2,ell ✁ uw,2,ell,0

✟ ♣t, sqds
✁ r

2

➺ ✽

r

ψ↕1♣s✁ tq❇2t
�
uw,2,ell,0 ✁ uw,2,ell,0,cont

✟ ♣t, sqds
We then estimate directly, using Lemmas 15 and 10 and the definitions of uw,2,ell,0 and uw,2,ell,0,cont from
(4.58), (4.61), and (4.62). We use the same procedure to estimate the higher derivatives, except for the last
estimate in the lemma statement, which is obtained by using✂

❇2r � 1

r
❇r ✁ 1

r2

✡
♣ellsoln✁ rQ♣tqq ✏ ψ↕1♣r ✁ tq❇2t

�
uw,2,ell ✁ uw,2,ell,0,cont

✟
and Lemmas 15 and 10. ❬❭

We return to v3, which we recall solves (4.115), with 0 Cauchy data at infinity. If we define

q3♣t, rq :✏ v3♣t, rq ✁ ♣ellsoln✁ rQ♣tqqψ↕1♣r ✁ tq

then, q3 solves the following equation. Moreover, our estimates from Lemmas 16 and 10 show that q3♣t, rq
also has 0 Cauchy data at infinity.

✁❇2t q3 � ❇2rq3 � 1

r
❇rq3 ✁ q3

r2
✏ ψ↕1♣r ✁ tq

✁
❇2t ♣ellsoln✁ rQ♣tqq � ❇2t

�
uw,2,ell ✁ uw,2,ell,0,cont

✟ ☎ ♣1✁ ψ↕1♣r ✁ tqq
✠

� ψ
✶↕1♣r ✁ tq

✂
✁2 ♣❇t � ❇rq ♣ellsoln✁ rQ♣tqq ✁ ♣ellsoln✁ rQ♣tqq

r

✡
:✏ RHS4♣t, rq
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In other words, we have

q3♣t, rq ✏
➺ ✽
t

q3,s♣t, rqds, q3,s solves

✩✬✫✬✪
�✁❇2t � ❇2r � 1

r ❇r ✁ 1
r2

✟
q3,s ✏ 0

q3,s♣s, rq ✏ 0

❇1q3,s♣s, rq ✏ RHS4♣s, rq
We recall that we only need to estimate q3♣t, rq for r ↕ 2g♣tqλ♣tq ➔ t✁ 2, and

ψ↕1♣xq ✏ 1, ψ
✶↕1♣xq ✏ 0, x ↕ 0

Therefore, by the finite speed of propagation, for r ↕ 2g♣tqλ♣tq, we have

q3,s♣t, rq ✏ q4,s♣t, rq, q4,s solves

✩✬✫✬✪
�✁❇2t � ❇2r � 1

r ❇r ✁ 1
r2

✟
q4,s ✏ 0

q4,s♣s, rq ✏ 0

❇1q4,s♣s, rq ✏ ψ↕1♣r ✁ sq❇2s ♣ellsoln✁ rQ♣sqq
So, it suffices to estimate

q4♣t, rq :✏
➺ ✽
t

q4,s♣t, rqds
We recall that

ψ↕1♣r ✁ tq❇2t ♣ellsoln♣t, rq ✁ rQ♣tqq

✏ ψ↕1♣r ✁ tq❇2t
✂✁1
2r

➺ r

0

s
2❇2t

�
uw,2,ell ✁ uw,2,ell,0

✟ ♣t, sqψ↕1♣s✁ tqds

✁ 1

2r

➺ r

0

s
2❇2t

�
uw,2,ell,0 ✁ uw,2,ell,0,cont

✟ ♣t, sqψ↕1♣s✁ tqds

� r

2

➺ r

0

❇2t
�
uw,2,ell ✁ uw,2,ell,0

✟ ♣t, sqψ↕1♣s✁ tqds

✁ r
2

➺ ✽
r

❇2t
�
uw,2,ell,0 ✁ uw,2,ell,0,cont

✟ ♣t, sqψ↕1♣s✁ tqds
✡

We correspondingly decompose q4 into

q4♣t, rq :✏ q4,1♣t, rq � q4,2♣t, rq
where q4,2 solves the following equation with 0 Cauchy data at infinity (and q4,1 ✏ q4 ✁ q4,2)✂

✁❇2t � ❇2r � 1

r
❇r ✁ 1

r2

✡
q4,2♣t, rq

✏ ψ↕1♣r ✁ tq❇2t
✂✁1
2r

➺ r

0

s
2❇2t

�
uw,2,ell,0 ✁ uw,2,ell,0,cont

✟ ♣t, sqψ↕1♣s✁ tqds
✡

✁ ψ↕1♣r ✁ tq❇2t
✂
r

2

➺ ✽
r

❇2t
�
uw,2,ell,0 ✁ uw,2,ell,0,cont

✟ ♣t, sqψ↕1♣s✁ tqds
✡

:✏ RHS4,2♣t, rq

(4.116)

To estimate q4,2, it will suffice to use energy estimates.

Lemma 17 We have the following estimates, for k ✏ 0, 1, and r → 0:

⑤❇kt q4,2♣t, rq⑤ �
❜
E♣❇kt q4,2, ❇k�1

t q4,2q � ⑤⑤❇2rq4,2⑤⑤L2♣♣λ♣tqg♣tq,2λ♣tqg♣tqq,rdrq ↕
Cλ♣tq5 log3♣tq

t5

Proof We first note that the right-hand side of (4.116) includes the term

ψ↕1♣r✁tq
✂✁1
2r

➺ r

0

s
2
ψ
✷↕1♣s✁ tq❇2t ♣uw,2,ell,0 ✁ uw,2,ell,0,contqds✁ r

2

➺ ✽
r

ψ
✷↕1♣s✁ tq❇2t ♣uw,2,ell,0 ✁ uw,2,ell,0,contqds

✡
We integrate by parts in each integral, integrating ψ✷↕1♣s✁tq, and note that the boundary contributions from
each integral at s ✏ r cancel. Then, we directly insert the estimates from Lemma 10 into the other terms
in (4.116), and use the same procedure used for (4.69). Finally, the symbol type estimates on uw,2,ell,0 ✁
uw,2,ell,0,cont from Lemma 10 show that ❇tq4,2 solves✂

✁❇2t � ❇2r � 1

r
❇r ✁ 1

r2

✡
❇tq4,2♣t, rq ✏ ❇tRHS4,2♣t, rq

also with 0 Cauchy data at infinity. Then, we use the same procedure used to estimate q4,2. Finally, we
estimate

⑤⑤❇2rq4,2⑤⑤L2♣♣λ♣tqg♣tq,2λ♣tqg♣tqq,rdrq
using the equation solved by q4,2 and our earlier estimates from the proof of this lemma. ❬❭
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Now, we study q4,1. Let

RHS4,1♣t, rq ✏ ψ↕1♣r ✁ tq❇2t
✂✁1
2r

➺ r

0

s
2❇2t

�
uw,2,ell ✁ uw,2,ell,0

✟ ♣t, sqψ↕1♣s✁ tqds

� r
2

➺ r

0

❇2t
�
uw,2,ell ✁ uw,2,ell,0

✟ ♣t, sqψ↕1♣s✁ tqds
✡ (4.117)

so that we have

q4,1♣t, rq ✏
➺ ✽
t

q4,1,s♣t, rqds, q4,1,s solves

✩✬✫✬✪
�✁❇2t � ❇2r � 1

r ❇r ✁ 1
r2

✟
q4,1,s ✏ 0

q4,1,s♣s, rq ✏ 0

❇1q4,1,s♣s, rq ✏ RHS4,1♣s, rq

Since we only need to estimate q4,1♣t, rq (and hence q4,1,s♣t, rq) in the region r ↕ 2g♣tqλ♣tq ➔ t
2 , the finite

speed of propagation shows that q4,1,s♣t, rq only depends on RHS4,1♣s, yq for y ↕ s ✁ t � 2g♣tqλ♣tq ➔ s ✁ t
2 .

Given the limits of the integrals in the terms defining RHS4,1, this means that we may replace ψ↕1♣s✁ tq
and ψ↕1♣r ✁ tq by 1 when considering q4,1♣t, rq in the region r ↕ 2g♣tqλ♣tq. Now, we estimate RHS4,1.

Lemma 18 For 0 ↕ k, j ↕ 2, j ✏ 3, 0 ↕ k ↕ 1, and s ➙ t, we have

y
k⑤❇ky❇jsRHS4,1♣s, yq⑤ ↕ Cλ♣sq2 log3♣sq sup

xPr100,ss
♣λ♣xq log♣xqq

★
y3

s8�j , y ↕ s
2

1

s5④2t5④2�j ,
s
2 ➔ y ➔ s✁ t� 2g♣tqλ♣tq

Proof We re-write (4.117) as

RHS4,1♣s, yq ✏
➺ y

0

F ♣w, yq❇4s ♣RHS2 ✁RHS2,0q ♣s, wqdw ✁ y3

16

➺ ✽
0

❇4s ♣RHS2 ✁RHS2,0q ♣s, wqdw (4.118)

where

F ♣w, yq ✏ ✁ �w4 ✁ y4 � 4w2y2 log♣y④wq✟
16y

This is of the same form as (4.70), and is treated in the same way, noting that ❇j1F ♣y, yq ✏ 0, j ✏ 0, 1, 2.
In addition, we use s✁ t� 2g♣tqλ♣tq ➔ s✁ t

2 , which implies that

1

①s✁ y② ↕
C

t
,

s

2
➔ y ➔ s✁ t� 2g♣tqλ♣tq

We then directly differentiate (4.118) to treat higher derivatives of RHS4,1. ❬❭

Let

q4,1,0♣t, rq :✏ ✁r
2

➺ ✽
t

ds

➺ s✁t

0

ρdρ❛
♣s✁ tq2 ✁ ρ2

✂
❇2RHS4,1♣s, ρq � RHS4,1♣s, ρq

ρ

✡
(4.119)

Now, we can estimate q4,1.

Lemma 19 For 0 ↕ k ↕ 1, and 0 ↕ j ↕ 2 or k ✏ 2, j ✏ 0, we have

⑤rk❇kr ❇jt ♣q4,1♣t, rq ✁ q4,1,0♣t, rqq ⑤ ↕
Cr2 supxPr100,ts ♣λ♣xq log♣xqqλ♣tq2 log3♣tq

t5�j
, λ♣tqg♣tq ↕ r ↕ 2λ♣tqg♣tq

(4.120)
Also, for 0 ↕ j ↕ 3,

⑤❇jt q4,1,0♣t, rq⑤ ↕
Cr supxPr100,ts ♣λ♣xq log♣xqqλ♣tq2 log3♣tq

t4�j

Proof The spherical means representation formula gives (see also (4.99), pg. 24 of [25])

q4,1♣t, rq ✏ ✁ 1

2π

➺ ✽
t

ds

➺ s✁t

0

ρdρ❛
♣s✁ tq2 ✁ ρ2

➺ 2π

0

RHS4,1♣s,
❛
r2 � ρ2 � 2rρ cos♣θqq❛

r2 � ρ2 � 2rρ cos♣θq ♣r � ρ cos♣θqq dθ (4.121)

If

G♣s, r, ρq ✏
➺ 2π

0

dθ
♣r � ρ cos♣θqq❛

r2 � ρ2 � 2rρ cos♣θqRHS4,1♣s,
❛
r2 � ρ2 � 2rρ cos♣θqq, ρ → 0

Then, by the dominated convergence theorem and Lemma 18, ❇rG♣s, r, ρq can be computed by differentiation
under the integral sign, and

G♣s, 0, ρq ✏ 0 ùñ G♣s, r, ρq ✏ r

➺ 1

0

❇2G♣s, βr, ρqdβ
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Therefore, we have

q4,1♣t, rq ✏ ✁r
2π

➺ ✽
t

ds

➺ s✁t

0

ρdρ❛
♣s✁ tq2 ✁ ρ2

➺ 1

0

dβ

➺ 2π

0

IRHS4,1
♣s, rβ, ρ, θqdθ (4.122)

where we recall the notation (2.2). Recalling (4.119), we get

q4,1♣t, rq ✁ q4,1,0♣t, rq ✏ ✁r
2π

➺ ✽
t

ds

➺ s✁t

0

ρdρ❛
♣s✁ tq2 ✁ ρ2

➺ 1

0

dβ

➺ 2π

0

dθintegrand4,1,2♣s, rβ, ρ, θq (4.123)

where

integrand4,1,2♣s, y, ρ, θq ✏ IRHS4,1
♣s, y, ρ, θq ✁

✂
❇2RHS4,1♣s, ρq cos2♣θq � RHS4,1♣s, ρq

ρ
sin2♣θq

✡
We note that

integrand4,1,2♣s, y, ρ, θq ✏ IRHS4,1
♣s, y, ρ, θq ✁ IRHS4,1

♣s, 0, ρ, θq
Also, for all r ➙ 0, ρ → 3r, s ➙ T0, θ P r0, 2πs, and β P r0, 1s,

y ÞÑ IRHS4,1
♣s, y, ρ, θq P C1♣r0, rβsq, (note that, in this setting,

❛
y2 � ρ2 � 2yρ cos♣θq ➙ Cρ → 0q

Therefore, when s✁ t ➙ 3r, and ρ → 3r in the integral in (4.123), we use

integrand4,1,2♣s, rβ, ρ, θq ✏
➺ rβ

0

❇2IRHS4,1
♣s, y, ρ, θqdy

and we directly substitute our estimates from Lemma 18 into (4.123) for the other regions, to get (4.120)
for k ✏ 0, j ✏ 0. Next, we use (4.123) to get

❇r ♣q4,1 ✁ q4,1,0q ♣t, rq ✏ ✁ 1

2π

➺ ✽
t

ds

➺ s✁t

0

ρdρ❛
♣s✁ tq2 ✁ ρ2

➺ 2π

0

dθintegrand4,1,2♣s, r, ρ, θq

which is treated with the same argument used for (4.123). This gives (4.120) for k ✏ 1, j ✏ 0. To estimate
❇jt ♣q4,1 ✁ q4,1,0q ♣t, rq, we return to (4.123), and let w ✏ s ✁ t. Then, the dominated convergence theorem,
along with the estimates of Lemma 18 allow us to differentiate under the resulting integral signs, and we
get, for j ✏ 1, 2,

❇jt ♣q4,1 ✁ q4,1,0q ♣t, rq ✏ ✁r
2π

➺ ✽
t

ds

➺ s✁t

0

ρdρ❛
♣s✁ tq2 ✁ ρ2

➺ 1

0

dβ

➺ 2π

0

dθ❇jsintegrand4,1,2♣s, rβ, ρ, θq

We then repeat the same procedure used for q4,1 ✁ q4,1,0. To estimate q4,1,0, we use

q4,1,0♣t, rq ✏ ✁r
2

➺ ✽
0

dw

➺ w

0

ρdρ❛
w2 ✁ ρ2

✂
❇2RHS4,1♣t� w, ρq � RHS4,1♣t� w, ρq

ρ

✡
differentiate under the integral sign, then substitute the estimates from Lemma 18. We prove (4.120) for
j ✏ 0, k ✏ 2 by using the equation solved by q4,1 and our previous estimates from this lemma. ❬❭

Next, we study the analogous quantities related to vex,sub which we recall is defined in (4.83). In particular,
we start by studying

w5♣t, rq :✏ vex,sub♣t, rq ✁ vex,sub,0♣t, rq
The function w5 satisfies the following equation with 0 Cauchy data at infinity✂

✁❇2t � ❇2r � 1

r
❇r ✁ 1

r2

✡
w5♣t, rq ✏ ❇2t

�
vex,ell ✁ vex,cont

✟ ✏ ❇2t vex,ell,1♣t, rq

where we define

vex,ell,1♣t, rq :✏ vex♣t, rq ✁ vex,sub♣t, rq ✁ vex,cont♣t, rq ✏ vex,ell♣t, rq ✁ vex,cont♣t, rq

and recall that vex,ell and vex,cont are explicitly given in (4.36) and (4.80), respectively. We have the
following lemma

Lemma 20 For 0 ↕ k, j ↕ 2, we have

⑤❇jt ❇kr vex,ell,1♣t, rq⑤ ↕
Cλ♣tq2✁k

t2�jg♣tq3�k
, g♣tqλ♣tq ↕ r ↕ 2g♣tqλ♣tq
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Proof We directly estimate vex,ell,1 from the formulae (4.36) and (4.80). ❬❭
Next, we define ellsoln2 by

ellsoln2♣t, rq :✏ ✁1
2

✂
1

r

➺ r

0

s
2❇2t vex,ell,1♣t, sqds� r

➺ ✽
r

❇2t vex,ell,1♣t, sqds
✡

Then, we have the following lemma.

Lemma 21 For all j, k ➙ 0, there exists Cj,k → 0 such that

r
k
t
j ⑤❇kr ❇jt ellsoln2♣t, rq⑤ ↕ Cj,k ☎

✩✫✪1
r

λ♣tq5♣1�⑤ log♣ r
λ♣tq q⑤q

t4
, r ➙ λ♣tq

r
λ♣tq3♣1�log2♣ r

λ♣tq qq
t4

, r ↕ λ♣tq
(4.124)

In addition, ❇2t ellsoln2♣t, rq ✏ Fellsoln2
♣t, rq � log2♣rqrg✷1♣tq � r log♣rqg✷2♣tq, where, for each t ➙ T0,

r ÞÑ Fellsoln2
♣t, rq admits a C2 extension to r0,✽q

For 0 ↕ j � k ↕ 2,

⑤❇kr ❇jtFellsoln2
♣t, rq⑤ ↕ C

✩✫✪
r1✁kλ♣tq3 log2♣tq

t6�j , 0 ↕ k ↕ 1
rλ♣tq♣1�⑤ log♣ r

λ♣tq q⑤q
t6�j , k ✏ 2

, r ↕ λ♣tq

⑤g♣kq1 ♣tq⑤ � ⑤g♣kq2 ♣tq⑤ ↕ Ck log♣tqλ♣tq3
t4�k

, k ➙ 0

Proof We have

ellsoln2♣t, rq ✏ ✁1
2

✂
1

r

➺ r

0

s
2❇2t vex,ell,1♣t, sqds� r

➺ ✽
r

❇2t vex,ell,1♣t, sqds
✡
✏ ✁1

2

✂
1

r
f7♣t, r

λ♣tq q � rf8♣t, r

λ♣tq q
✡

where

f7♣t, Rq ✏ λ♣tq
8

✂✁8♣✁2R2 � 3♣1�R2q log♣1�R2qqλ✶♣tq4
1�R2

✁24λ♣tq
✂
R

2 log♣1� 1

R2
q � 3 log♣R2 � 1q

✡
λ
✶♣tq2λ✷♣tq

✁4λ♣tq2
✂
R

2 log♣1� 1

R2
q � log♣1�R

2q
✡✁

3λ✷♣tq2 � 4λ✶♣tqλ✸♣tq
✠

✁λ♣tq3
✂
✁R2 �R

2♣2�R
2q log♣1� 1

R2
q � log♣1�R

2q
✡
λ
✹♣tq

✡
and

f8♣t, Rq ✏ 1

4

✄
✁4♣2� ♣1�R2q log♣1� 1

R2 qqλ✶♣tq4
♣1�R2qλ♣tq

� 12

✂
✁2 log♣1� 1

R2
q � Li2♣✁ 1

R2
q
✡
λ
✶♣tq2λ✷♣tq � 2λ♣tqLi2♣✁1

R2
q
✁
3λ✷♣tq2 � 4λ✶♣tqλ✸♣tq

✠
� λ♣tq2♣✁1� ♣1�R

2q log♣1� 1

R2
q � Li2♣✁1

R2
qqλ✹♣tq

✡
The lemma statement now follows from inspection. ❬❭
We define

q5♣t, rq :✏ w5♣t, rq ✁ ellsoln2♣t, rqψ↕1♣r ✁ tq
so that q5 solves the following equation with 0 Cauchy data at infinity.

✁❇2t q5 � ❇2rq5♣t, rq � 1

r
❇rq5 ✁ q5

r2
✏ ψ↕1♣r ✁ tq❇2t ellsoln2 � ♣1✁ ψ↕1♣r ✁ tqq ❇2t vex,ell,1♣t, rq

✁ ψ
✶↕1♣r ✁ tq

✂
2 ♣❇t � ❇rq ellsoln2 � 1

r
ellsoln2

✡ (4.125)

We define q5,0 by

q5,0♣t, rq ✏ ✁r
2

➺ ✽
t

ds

➺ s✁t

0

ρdρ❛
♣s✁ tq2 ✁ ρ2

✂
❇112ellsoln2♣s, ρq � ❇11ellsoln2♣s, ρq

ρ

✡
(4.126)

Then, we have the following lemma.
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Lemma 22 For 0 ↕ k ↕ 1 and 0 ↕ j ↕ 2,

⑤tjrk❇jt ❇kr ♣q5 ✁ q5,0q ♣t, rq⑤ ↕
Cr2λ♣tq3

✁
log3♣tq � ⑤ log♣rq⑤3

✠
t5

, r ↕ 2g♣tqλ♣tq

For all j ➙ 0, there exists Cj → 0 such that

⑤❇jt q5,0♣t, rq⑤ ↕
Cjr log

2♣tqλ♣tq3
t4�j

⑤❇2r ♣q5 ✁ q5,0q ♣t, rq⑤ ↕ Cλ♣tq3 log3♣tq
t5

, g♣tqλ♣tq ↕ r ↕ 2g♣tqλ♣tq

Proof First, we claim that in the region r ↕ 2g♣tqλ♣tq,

q5♣t, rq ✏ ✁1
2π

➺ ✽
t

ds

➺ s✁t

0

ρdρ❛
♣s✁ tq2 ✁ ρ2

➺ 2π

0

dθ❇21ellsoln2♣s,
❛
r2 � ρ2 � 2rρ cos♣θqq ♣r � ρ cos♣θqq❛

r2 � ρ2 � 2rρ cos♣θq
(4.127)

To verify this, we recall (4.125), and use the finite speed of propagation. The only item remaining is to
show that the integral on the right -hand side of (4.127) solves (4.125) with ❇2t ellsoln2 on the right-hand
side, and zero Cauchy data at infinity. For this purpose, we note that

✁1
2π

➺ ✽
t

ds

➺ s✁t

0

ρdρ❛
♣s✁ tq2 ✁ ρ2

➺ 2π

0

dθ❇21ellsoln2♣s,
❛
r2 � ρ2 � 2rρ cos♣θqq ♣r � ρ cos♣θqq❛

r2 � ρ2 � 2rρ cos♣θq

✏ ✁1
2π

➺ ✽
t

ds

➺ s✁t

0

ρdρ❛
♣s✁ tq2 ✁ ρ2

➺ 2π

0

dθFellsoln2
♣s,
❛
r2 � ρ2 � 2rρ cos♣θqq ♣r � ρ cos♣θqq❛

r2 � ρ2 � 2rρ cos♣θq

� ✁r3
2π

➺ ✽
0

dy

➺ y

0

wdw❛
y2 ✁ w2

➺ 2π

0

dθ♣1� w cos♣θqq
✁
log2♣rqg✷1♣t� ryq

� log♣rq
✁
log♣1� w

2 � 2w cos♣θqqg✷1♣t� ryq � g
✷
2♣t� ryq

✠
� log2♣

❛
1� w2 � 2w cos♣θqqg✷1♣t� ryq

� log♣
❛
1� w2 � 2w cos♣θqqg✷2♣t� ryqq

✠
The point of this splitting is that, by Lemma 21 and the dominated convergence theorem, we can differen-
tiate up to two times in ♣t, rq under the integral sign. Then, we can proceed as in any standard verification
of the spherical means formula. Then, we return to (4.127) and use (4.124) and the same procedure used
to establish Lemma 19.

❬❭
Now, we compute the leading behavior of uell,2♣t, rq ✁ vell,2,0,main♣t, r

λ♣tq q in the matching region. We first

recall that vell,2,0 and vell,2,0,main are explicitly given in (4.12) and (4.14), respectively. So, it suffices to
explain how to compute the leading behavior of uell,2♣t, rq ✁ vell,2,0♣t, r

λ♣tq q. From (4.16), we have

uell,2♣t, rq ✁ vell,2,0♣t, r

λ♣tq q ✏
✁φ0♣ r

λ♣tq q
2

➺ r
λ♣tq

0

err1♣t, sλ♣tqqse2♣sqds� e2♣ r

λ♣tq q
➺ r

λ♣tq

0

err1♣t, sλ♣tqqsφ0♣sq
2

ds

✏
✁φ0♣ r

λ♣tq q
2

➺ r
λ♣tq

0

err1,0♣t, sλ♣tqqse2♣sqds�
✁φ0♣ r

λ♣tq q
2

➺ r
λ♣tq

0

♣err1 ✁ err1,0q ♣t, sλ♣tqqse2♣sqds

� r

2λ♣tq
➺ r

λ♣tq

0

err1♣t, sλ♣tqqsφ0♣sq
2

ds�
✂
e2♣ r

λ♣tq q ✁
r

2λ♣tq
✡➺ r

λ♣tq

0

err1♣t, sλ♣tqqsφ0♣sq
2

ds

where we recall that err1,0♣t, rq is defined in (4.18). Using the definition of vell,2,0,main given in (4.14), we
can write down the leading behavior of uell,2♣t, rq ✁ vell,2,0,main♣t, r

λ♣tq q in the region r ✒ g♣tqλ♣tq, which we

denote by ue,3♣t, rq.

ue,3♣t, rq ✏ ✁2λ♣tq
2r

➺ r
λ♣tq

0

err1,0♣t, sλ♣tqq s
2
sds� r

2λ♣tq
➺ ✽
0

♣err1♣t, sλ♣tqq ✁ err1,0♣t, sλ♣tqqq sφ0♣sq
2

ds

� r

2λ♣tq
➺ r

λ♣tq

0

err1,0♣t, sλ♣tqqφ0♣sqsds
2

� rλ♣tq2λ✹♣tq
96

✂
111✁ 2π2 ✁ 108 log♣ r

λ♣tq q � 24 log2♣ r

λ♣tq q
✡

� r

16
♣5✁ 4 log♣ r

λ♣tq qq
✂
❇2t
✂
λ✶♣tq2
2λ♣tq � λ

✷♣tq♣1� log♣λ♣tqqq
✡
2λ♣tq2 ✁ 2λ♣tq2λ✹♣tq♣1� log♣λ♣tqqq

✡
(4.128)
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By computing the integrals, we get

ue,3♣t, Rλ♣tqq

✏
�
2λ✶♣tq4 ✁ 7λ♣tqλ✶♣tq2λ✷♣tq � 4λ♣tq2λ✷♣tq2 � 6λ♣tq2λ✶♣tqλ✸♣tq✟R ♣5✁ 4 log♣Rqq

16

� 1

96

✁
111✁ 2π2 ✁ 108 log♣Rq � 24 log2♣Rq

✠
Rλ♣tq3λ✹♣tq

� 3

4
Rλ

✶♣tq4 � 3

8
R
✁
✁2λ✶♣tq4 � 5λ♣tqλ✶♣tq2λ✷♣tq

✠
� 3

4
Rλ♣tq2❇t

✁
λ
✶♣tqλ✷♣tq

✠
� 1

24
Rλ♣tq2

✁
21� π

2 ✁ 18 log♣Rq � 12 log2♣Rq
✠
❇2t
✁
λ♣tqλ✷♣tq

✠
� 1

24
Rλ♣tq2

✁
39� π

2 ✁ 42 log♣Rq � 12 log2♣Rq
✠✁

❇2t
✁
λ♣tqλ✷♣tq

✠
✁ λ♣tqλ✹♣tq

✠
� 1

12
Rλ♣tq

✁
60� π

2 ✁ 54 log♣Rq � 12 log2♣Rq
✠
λ
✶♣tq2λ✷♣tq

✁ 1

4
Rλ♣tq2c✷1♣tq ✁ R

2

✂
λ♣tqc✶1♣tqλ✶♣tq � c1♣tq

2

✁
✁2λ✶♣tq2 � λ♣tqλ✷♣tq

✠✡
✁ R

2
c1♣tqλ✶♣tq2

� R

8
λ
✶♣tq4 ♣17✁ 12 log♣Rqq ✁ R

4

✁
5λ♣tqλ✶♣tq2λ✷♣tq ✁ 2λ✶♣tq4

✠
♣✁3� 2 log♣Rqq

� R

4
♣3✁ 8 log♣Rqqλ♣tq2❇t

✁
λ
✷♣tqλ✶♣tq

✠
� Rλ♣tq2❇2t

�
λ♣tqλ✷♣tq✟

24

✁
6� π

2 � 12ζ♣3q ✁
✁
36� 2π2

✠
log♣Rq � 12 log2♣Rq ✁ 8 log3♣Rq

✠
✁ Rλ♣tq2

24

✁
❇2t
✁
λ♣tqλ✷♣tq

✠
✁ λ♣tqλ✹♣tq

✠ ✁
✁27✁ 2π2 ✁ 12ζ♣3q � ♣36� 2π2q log♣Rq

✁24 log2♣Rq � 8 log3♣Rq
✠

�R
λ♣tqλ✷♣tqλ✶♣tq2

72

✁
255� 17π2 � 72ζ♣3q ✁ ♣360� 12π2q log♣Rq � 252 log2♣Rq ✁ 48 log3♣Rq

✠
�R

c✷1♣tqλ♣tq2
4

♣✁1� 2 log♣Rqq �R

✂
λ♣tqλ✶♣tqc✶1♣tq � c1♣tq

2

✁
λ♣tqλ✷♣tq ✁ 2λ✶♣tq2

✠✡
♣✁1� log♣Rqq

�R
c1♣tq
12

λ
✶♣tq2 ♣✁17� 12 log♣Rqq �R

λ♣tq3λ✹♣tq
48

✁
π
2 ✁ 12 log2♣Rq

✠
� R

2
log♣Rqλ♣tq3

✂
❇2t
✂
λ✶♣tq2
2λ♣tq � λ

✷♣tq♣1� log♣λ♣tqqq
✡
✁ log♣λ♣tqqλ✹♣tq

✡

(4.129)

Now, we estimate the difference between uell,2♣t, rq ✁ vell,2,0,main♣t, r
λ♣tq q and ue,3♣t, rq.

Lemma 23 For uell,2 defined in (4.9), vell,2,0,main defined in (4.14), and ue,3 defined in (4.128) we have, for

0 ↕ j � k ↕ 2,

⑤❇jt ❇kr
✂
uell,2♣t, rq ✁ vell,2,0,main♣t, r

λ♣tq q ✁ ue,3♣t, rq
✡
⑤ ↕

Cλ♣tq5♣1� log4♣ r
λ♣tq qq

r1�kt4�j
, r → λ♣tq

Proof We estimate each term in the difference between (4.15) plus (4.16) and (4.128) directly, using the
symbol type estimates on λ♣tq, and the fact that err1♣t, rq and err1,0♣t, rq are symbols in ♣t, rq. ❬❭

Combining our work, we get

leading part of
�
uw,2 ✁ uw,2,ell,0 � vex,sub

✟ ♣t, rq :✏ uw,3♣t, rq
✏ uw,2,sub,0,cont♣t, rq � vex,sub,0,cont♣t, rq

✁ 1

2

�♣uw,2,ell ✁ uw,2,ell,0qprinc,1♣t, rq � ♣uw,2,ell ✁ uw,2,ell,0qprinc,2♣t, rq
✟

✁ r

2
λ♣tq

➺ ✽
t

W3♣s✁ t

λ♣tq qλ
✹♣sqds✁ r

2

➺ ✽
0

dξ

✂ ✁8
ξλ♣tq2 � 4ξK2♣ξλ♣tqq � 2ξ

✡
sin♣tξq②v2,0♣ξq

✁ r

2

➺ ✽
t

ds

➺ s✁t

0

ρdρ❛
♣s✁ tq2 ✁ ρ2

✂
❇112ellsoln2♣s, ρq � ❇11ellsoln2♣s, ρq

ρ

✡
✁ r

2

➺ ✽
0

dw

➺ w

0

ρdρ❛
w2 ✁ ρ2

✂
❇2RHS4,1♣t� w, ρq � RHS4,1♣t� w, ρq

ρ

✡
(4.130)
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A careful inspection of all of the terms shows that the r logk♣rq terms from ue,3 and uw,3 all exactly match,
for k ✏ 1, 2, 3. In other words, we have

ue,3♣t, rq ✁ uw,3♣t, rq

✏ rF2♣tq � rλ♣tq
2

➺ ✽
t

W3♣s✁ t

λ♣tq qλ
✹♣sqds

� r

2

➺ 2t

t

✄
♣g0 � h0q✷♣sq ✁ ♣g0 � h0q✷♣tq

♣s✁ tq �
�♣g1 � 2f1q✷♣sq ✁ ♣g1 � 2f1q✷♣tq

✟
log♣2♣s✁ tqq

♣s✁ tq

✁
�
g✷2♣sq ✁ g✷2♣tq

✟ ✁✁12 log♣s✁ tq log♣4♣s✁ tqq � π2 ✁ 12 log2♣2q
✠

12♣s✁ tq

☞✌ds
� r

2

➺ ✽
2t

✁
♣g0 � h0q✷♣sq � ♣g1 � 2f1q✷♣sq log♣2♣s✁ tqq

✁
g✷2♣sq

✁
✁12 log♣s✁ tq log♣4♣s✁ tqq � π2 ✁ 12 log2♣2q

✠
12

☞✌ ds

♣s✁ tq

� r

2

➺ ✽
0

dξ

✂ ✁8
ξλ♣tq2 � 4ξK2♣ξλ♣tqq � 2ξ

✡
sin♣tξq②v2,0♣ξq

� r

2

➺ ✽
t

ds

➺ s✁t

0

ρdρ❛
♣s✁ tq2 ✁ ρ2

✂
❇112ellsoln2♣s, ρq � ❇11ellsoln2♣s, ρq

ρ

✡
� r

2

➺ ✽
0

dw

➺ w

0

ρdρ❛
w2 ✁ ρ2

✂
❇2RHS4,1♣t� w, ρq � RHS4,1♣t� w, ρq

ρ

✡
:✏ rF3♣tq

(4.131)

where F2♣tq ✏ F2,0♣tq � F2,1♣tq, and

F2,0♣tq ✏ 3λ✶♣tq4
4λ♣tq � ♣12 log♣λ♣tqq � 17qλ✶♣tq4

8λ♣tq ✁ c1♣tqλ✶♣tq2
2λ♣tq � c1♣tq♣✁12 log♣λ♣tqq ✁ 17qλ✶♣tq2

12λ♣tq
� 1

12

✁
12 log2♣λ♣tqq � 54 log♣λ♣tqq � π

2 � 60
✠
λ
✷♣tqλ✶♣tq2 � 3

4
❇t
✁
λ
✶♣tqλ✷♣tq

✠
λ♣tq

� 1

4
❇t
✁
λ
✷♣tqλ✶♣tq

✠
λ♣tq♣8 log♣λ♣tqq � 3q ✁

�
5λ♣tqλ✶♣tq2λ✷♣tq ✁ 2λ✶♣tq4✟ ♣✁2 log♣λ♣tqq ✁ 3q

4λ♣tq
� 1

24
❇2t
✁
λ♣tqλ✷♣tq

✠
λ♣tq

✁
12 log2♣λ♣tqq � 18 log♣λ♣tqq � π

2 � 21
✠

� 1

24
❇2t
✁
λ♣tqλ✷♣tq

✠
λ♣tq

✁
8 log3♣λ♣tqq � 12 log2♣λ♣tqq �

✁
36� 2π2

✠
log♣λ♣tqq � π

2 � 12ζ♣3q � 6
✠

✁ 1

24
λ♣tq

✁
❇2t
✁
λ♣tqλ✷♣tq

✠
✁ λ♣tqλ✹♣tq

✠ ✁
✁8 log3♣λ♣tqq ✁ 24 log2♣λ♣tqq ✁

✁
36� 2π2

✠
log♣λ♣tqq

✁2π2 ✁ 12ζ♣3q ✁ 27
✠

� ♣✁ log♣λ♣tqq ✁ 1q �λ♣tqc✶1♣tqλ✶♣tq � 1
2 c1♣tq

�
λ♣tqλ✷♣tq ✁ 2λ✶♣tq2✟✟

λ♣tq ✁ 1

4
λ♣tqc✷1♣tq

� 1

4
λ♣tq♣✁2 log♣λ♣tqq ✁ 1qc✷1♣tq

� λ✷♣tq
72

λ
✶♣tq2

✁
48 log3♣λ♣tqq � 252 log2♣λ♣tqq �

✁
360� 12π2

✠
log♣λ♣tqq � 17π2 � 72ζ♣3q � 255

✠
� 3

�
5λ♣tqλ✶♣tq2λ✷♣tq ✁ 2λ✶♣tq4✟

8λ♣tq ✁
�
λ♣tqc✶1♣tqλ✶♣tq � 1

2 c1♣tq
�
λ♣tqλ✷♣tq ✁ 2λ✶♣tq2✟✟

2λ♣tq

� ♣4 log♣λ♣tqq � 5q �2λ✶♣tq4 ✁ 7λ♣tqλ✷♣tqλ✶♣tq2 � 6λ♣tq2λ✸♣tqλ✶♣tq � 4λ♣tq2λ✷♣tq2✟
16λ♣tq

� 1

96
λ♣tq2

✁
24 log2♣λ♣tqq � 108 log♣λ♣tqq ✁ 2π2 � 111

✠
λ
✹♣tq � 1

48
λ♣tq2

✁
π
2 ✁ 12 log2♣λ♣tqq

✠
λ
✹♣tq

� 1

24
λ♣tq

✁
12 log2♣λ♣tqq � 42 log♣λ♣tqq � π

2 � 39
✠✁

❇2t
✁
λ♣tqλ✷♣tq

✠
✁ λ♣tqλ✹♣tq

✠
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F2,1♣tq ✏ ✁1

2
log♣λ♣tqqλ♣tq2

✂
❇2t
✂
λ✶♣tq2
2λ♣tq � ♣log♣λ♣tqq � 1qλ✷♣tq

✡
✁ log♣λ♣tqqλ✹♣tq

✡
✁
✂
c0g

✷
2♣tq ✁ 1

2
g
✷
0♣tq ✁ 1

4
♣log♣4q ✁ 1qg✷0♣tq ✁ 1

2
log♣tqg✷0♣tq ✁ 1

16

✁
π
2 ✁ 12

✠
g
✷
1♣tq

✡
✁
✂
✁
✂
log2♣tq

4
� 1

2
log♣2q log♣tq

✡
g
✷
1♣tq ✁ 1

24

✁
✁2π2 � 15� 6 log2♣2q

✠
g
✷
1♣tq

✡
✁
✂
✁ 1

16

✁
✁28ζ♣3q � π

2 � 28
✠
g
✷
2♣tq ✁ 1

24
log♣tq

✁
4 log♣tq♣log♣tq � log♣8qq ✁ π

2 � 12 log2♣2q
✠
g
✷
2♣tq

✡
✁
✂
✁1

8

✁
π
2 ✁ 12

✠
f
✷
1 ♣tq ✁ 2f✷1 ♣tq

✂
1

4
log2♣tq � 1

2
log♣2q log♣tq

✡
✁ 1

2
h
✷
0♣tq

✡
✁
✂
✁1

4
♣log♣4q ✁ 1qh✷0♣tq ✁ 1

2
log♣tqh✷0♣tq ✁ 1

12

✁
✁2π2 � 15� 6 log2♣2q

✠
f
✷
1 ♣tq

✡
� 1

2

✂
1

3
λ♣tq2

✁
✁24j1 log♣λ♣tqq ✁ 12j1 ✁ 12j2 log

2♣λ♣tqq ✁ 12j2 log♣λ♣tqq ✁ π
2
j2

✠✡
� 1

2

✁
✁2
✁
2j1λ♣tq2 ✁ j2λ♣tq2

✠✠
We quickly record some symbol-type estimates on F3♣tq.

Lemma 24 There exists C → 0 such that, for 0 ↕ k ↕ 3,

t
k⑤F ♣kq

3 ♣tq⑤ ↕ Cλ♣tq2
t4

sup
xPr100,ts

♣λ♣xq log♣xqq log3♣tq (4.132)

Proof Using the symbol type estimates on λ, Lemmas 19 and 22, and integration by parts in the region
ξt ➙ 1 to treat the fifth term in (4.131), we get

⑤F3♣tq⑤ ↕ Cλ♣tq2
t4

sup
xPr100,ts

♣λ♣xq log♣xqq log3♣tq

We prove (4.132) for k → 0 as follows. Using the symbol-type estimates on λ, we see that c1, fn, hn, gn, and

jn are all symbols, with estimates implying that their contributions to F
♣kq
3 ♣tq are bounded above by the

right-hand side of (4.132). Moreover,

➺ ✽
t

W3

✂
s✁ t

λ♣tq
✡
λ
✹♣sqds ✏

➺ ✽
0

W3♣wqλ✹♣λ♣tqw � tqλ♣tqdw

is a symbol in t because λ♣tq is. We similarly note that the sum of the third and fourth terms on the
right-hand side of (4.131) is a symbol in t. Finally, we study the following integral

I7♣tq ✏
➺ ✽
0

dξ

✂ ✁8
ξλ♣tq2 � 4ξK2♣ξλ♣tqq � 2ξ

✡
sin♣tξq②v2,0♣ξq

Letting

H♣xq ✏ ✁8
x
� 4xK2♣xq � 2x, x → 0

we get, for 0 ↕ k ↕ 7,

⑤H♣kq♣xq⑤ ↕ C

✩✬✫✬✪
x3✁k♣1� ⑤ log♣xq⑤q, x ↕ 1

2★
x1✁k, 0 ↕ k ↕ 1

1
x1�k , 2 ↕ k

, x → 1
2

Then, by Lemma (4) and inspection of the following formula, I7♣tq is a symbol in t with ⑤tkI♣kq7 ♣tq⑤ bounded
above by the right-hand side of (4.132) (for 0 ↕ k ↕ 3).

I7♣tq ✏ 1

λ♣tq
➺ ✽
0

dω

t
H

✂
ωλ♣tq
t

✡
sin♣ωq②v2,0♣ω

t
q

❬❭
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Now, we can choose the free wave, v2,2 from (4.50), so that the leading part of v2,2♣t, rq in the region
r ✒ g♣tqλ♣tq is exactly equal to ue,3✁uw,3. As in (4.37), the leading part of v2,2♣t, rq in the matching region
is given by

✁r
4

✂
✁2
➺ ✽
0

ξ sin♣tξq②v2,3♣ξqdξ✡ :✏ ✁r
4
G3♣tq (4.133)

and we choose the initial velocity, v2,3 by the following, which is the analog of (4.41).

②v2,3♣ξq ✏ ✁1
πξ

➺ ✽
0

♣✁4F3♣tqqψ2♣tq sin♣tξqdt, ψ2♣xq ✏
★
0, x ↕ T2

1, x ➙ 2T2
, 0 ↕ ψ2♣xq ↕ 1 (4.134)

(We recall that T2 is defined in (4.1)). Note that the sine transform inversion formula implies that

G3♣tq ✏ ✁4F3♣tqψ2♣tq, t → 0 (4.135)

Up to this point, all of our computations and estimates were valid for all t ➙ T0 for any T0 ➙ T2. In
particular, they are valid for all t ➙ T2. At this stage, we restrict T0 so that T0 ➙ 2T2 but is otherwise
arbitrary. Thus, we have G3♣tq ✏ ✁4F3♣tq for t ➙ T0. We start with some estimates on ②v2,3♣ξq:
Lemma 25 For 0 ↕ k ↕ 3,

⑤ξk❇kξ ②v2,3♣ξq⑤ ↕
★
C, ξ ➔ 1

100
Cξk

ξ4 , ξ ➙ 1
100

Proof We use the same procedure as in Lemma 4. For instance, if ξ ➔ 1
100 , then,

②v2,3♣ξq ✏ ✁1
πξ

➺ 1

ξ

0

♣✁4F3♣tqqψ2♣tq sin♣tξqdt✁ 1

πξ

➺ ✽
1

ξ

♣✁4F3♣tqqψ2♣tq sin♣tξqdt

So,

⑤②v2,3♣ξq⑤
↕ C

➺ 1

ξ

0

λ♣tq2 supxPr100,ts ♣λ♣xq log♣xqq log3♣tq✶tt➙T2✉dt
t3

� C

ξ

➺ ✽
1

ξ

λ♣tq2 supxPr100,ts ♣λ♣xq log♣xqq log3♣tq✶tt➙T2✉dt
t4

↕ C

where we used (4.3). Also, the estimates established in this lemma are not rapidly decaying because we
only estimated up to 3 derivatives of F3 in Lemma 24. This was due to the fact that the seventh term of
(4.131) was estimated using Lemma 19. ❬❭

Now, we can estimate v2,2

Lemma 26 We have the following estimates. For 0 ↕ j ↕ 2, 0 ↕ k ↕ 1,

⑤❇jt ❇kr v2,2♣t, rq⑤ ↕

✩✬✬✬✫✬✬✬✪
Cr1✁k λ♣tq2

t4�j supxPr100,ts ♣λ♣xq log♣xqq log3♣tq, r ↕ t
2

C

①t✁r②5④2�j�k
❄
t
supxPr100,ts ♣λ♣xq log♣xqq supxPr100,ts

�
λ♣xq2✟ log3♣tq, t → r → t

2

C❄
r①t✁r② 1

2
�j�k

, r → t, j � k ↕ 2

⑤❇2rv2,2♣t, rq⑤ ↕

✩✬✬✬✫✬✬✬✪
Crλ♣tq2

t6
supxPr100,ts ♣λ♣xq log♣xqq log3♣tq, r ↕ t

2
C

①t✁r②9④2❄t
supxPr100,ts ♣λ♣xq log♣xqq supxPr100,ts

�
λ♣xq2✟ log3♣tq, t → r → t

2

C❄
r①t✁r② 5

2

, r → t

For all 0 ↕ j � k ↕ 3,

⑤❇jt ❇kr v2,2♣t, rq⑤ ↕
C❄
r
, r ➙ t

2

Finally, for 0 ↕ j, k ↕ 1 or k ✏ 2, j ✏ 0,

⑤❇jt ❇kr ♣v2,2♣t, rq ✁ rF3♣tqq ⑤ ↕
Cr3✁kλ♣tq2 supxPr100,ts ♣λ♣xq log♣xqq log3♣tq

t6�j
, r ↕ t

2
(4.136)
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Proof In the region r ↕ t
2 , we use (4.3), Lemma 24, and the same procedure used to estimate v2. Next, we

treat the region t → r → t
2 . Here, we use

v2,2♣t, rq ✏ ✁r
4π

➺ π

0

sin2♣θq ♣G3♣t� r cos♣θqq �G3♣t✁ r cos♣θqqq dθ (4.137)

Note that t ✟ r cos♣θq → 0 since t → r, so G3♣t ✟ r cos♣θqq ✏ ✁4 ♣F3 ☎ ψ2q ♣t ✟ r cos♣θqq, by (4.135). It suffices
to treat the following integral

⑤✁r
4π

➺ π

0

sin2♣θqG3♣t� r cos♣θqqdθ⑤ ↕ Cr sup
xPr100,ts

♣λ♣xq log♣xqq sup
xPr100,ts

✁
λ♣xq2

✠
log3♣tq

➺ π

0

sin2♣θqdθ
♣t� r cos♣θqq4

where we use the fact that ψ2♣xq ✏ 0, x ➔ 100. We then use Cauchy’s residue theorem, recalling that
t → r, to get ➺ π

0

sin2♣θqdθ
♣t� r cos♣θqq4 ✏

1

2

➺ 2π

0

sin2♣θqdθ
♣t� r cos♣θqq4 ✏

πt

2 ♣t2 ✁ r2q5④2
(4.138)

and this gives

⑤v2,2♣t, rq⑤ ↕ C

♣t✁ rq5④2❄t sup
xPr100,ts

♣λ♣xq log♣xqq sup
xPr100,ts

✁
λ♣xq2

✠
log3♣tq, t → r → t

2

The higher derivatives are treated similarly. Note that G3♣tq ✏ ✁2 ➩✽
0
ξ sin♣tξq②v2,3♣ξqdξ is an odd function

of t, and

G3♣tq ✏ ✁4F3♣tqψ2♣tq, t → 0

Also, if r → t, then, the argument of G3 is negative in a region of the θ integral in (4.137). So, the procedure
of estimating v2,2♣t, rq in the region r ➙ t using (4.137) is more involved than in the region r ➔ t. Instead,
we simply use

v2,2♣t, rq ✏
➺ ✽
0

②v2,3♣ξqJ1♣rξq sin♣tξqdξ
and proceed exactly as in the proof of Lemma 5. We also do the same procedure as in (4.46) to finish the
proof of all of the estimates in the lemma statement except for (4.136). The estimate (4.136) follows from

v2,2♣t, rq ✁ rF3♣tq ✏ ✁r
4π

➺ π

0

sin2♣θq
✁
G3♣t�q ✁G3♣tq ✁ r cos♣θqG✶3♣tq �G3♣t✁q ✁G3♣tq � r cos♣θqG✶3♣tq

✠
dθ

where

t✟ ✏ t✟ r cos♣θq

❬❭

Finally, we are ready to obtain the main result of this section, Proposition 2. We start with the decompo-
sition

uell,2♣t, rq ✁ vell,2,0,main♣t, r

λ♣tq q ✁
�
vex♣t, rq ✁ vex,cont♣t, rq � uw,2♣t, rq ✁ uw,2,ell,0,cont♣t, rq � v2,2♣t, rq

✟
✏ uell,2♣t, rq ✁ vell,2,0,main♣t, r

λ♣tq q ✁ ue,3♣t, rq

✁ �
vex,sub,0 ✁ vex,sub,0,cont � q5 ✁ q5,0 � vex,ell ✁ vex,cont � uw,2,sub,0 ✁ uw,2,sub,0,cont

✟
✁ �

q4,2 � ♣ellsoln✁ rQ♣tqqψ↕1♣r ✁ tq � uw,2,ell ✁ uw,2,ell,0 ✁ ♣uw,2,ell♣t, rq ✁ uw,2,ell,0♣t, rqqprinc
✟

✁ �
q4,1 ✁ q4,1,0 � uw,2,ell,0 ✁ uw,2,ell,0,cont � v2,2 ✁ rF3♣tq � ellsoln2♣t, rqψ↕1♣r ✁ tq✟

and use Lemmas 10, 12, 13, 15 - 17, 19 - 23, 26. ❬❭
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4.8 Joining the small r and large r solutions

Define
ue♣t, rq ✏ uell♣t, rq � uell,2♣t, rq, uwave♣t, rq ✏ uw♣t, rq � uw,2♣t, rq � v2,2♣t, rq (4.139)

where we recall that uw is defined in (4.20). The point of the matching done in the previous sections is that
we can transition between ue♣t, rq, which is accurate for small r and uwave♣t, rq, which is accurate for large
r with an expression of the form

χ↕1

✂
r

g♣tqλ♣tq
✡
ue♣t, rq �

✂
1✁ χ↕1

✂
r

g♣tqλ♣tq
✡✡

uwave♣t, rq

for an appropriate choice of χ↕1 (which will be defined later), and not incur large error terms when deriva-
tives act on χ↕1, upon substitution of the above expression into the left-hand side of (4.5). As mentioned
previously, the basic idea of this procedure is inspired by matched asymptotic expansions. (The books [3],
[23] have more information about matched asymptotic expansions for ODEs). In addition, the idea is mo-
tivated by the fact that the correction denoted by v1, defined in (4.12), pg. 11 of [25], has a leading order
cancellation with v2, defined in (4.63), pg. 18 of [25] near the origin, and simultaneously a leading order
cancellation with Q1♣ r

λ♣tq q ✁ π for large r, reminiscent of procedures used to match asymptotic expansions

in various regions.

We now define a cutoff χ➙1 P C✽♣r0,✽qq, with the following properties.

Lemma 27 [Properties of χ➙1] There exists a function χ➙1 P C✽♣r0,✽qq satisfying

χ➙1♣xq ✏
★
0, x ↕ 1

1, x ➙ 2
,

➺ ✽
0

χ➙1♣xq
x3

dx ✏
➺ ✽
0

x
3 ♣1✁ χ➙1♣xqq dx ✏

➺ ✽
0

x
3 log♣xq ♣1✁ χ➙1♣xqq dx ✏ 0

(4.140)
In particular, this implies that, for all k ➙ 0, there exists Ck → 0 such that

⑤
④χ➙1♣☎q
♣☎q5 ♣ηq⑤ ↕

★
Cη3①log♣ηq②, η ➔ 1
Ck

ηk , η ➙ 1

Proof A direct computation shows that

χ➙1♣xq ✏
✂➺ ✽

✁✽
α♣yqdy

✡✁1 ➺ x

✁✽
α♣sqds

where

α♣sq ✏ 1

s4
d

ds

✂
s
d

ds

✁
s
7
φ
✶♣sq
✠✡

, φ♣xq ✏
★
e
✁ 1

1✁♣2x✁3q2 , ⑤x✁ 3
2 ⑤ ➔ 1

2

0, ⑤x✁ 3
2 ⑤ ➙ 1

2

satisfies (4.140), given that

α P C✽
c ♣r1, 2sq,

➺ ✽
0

α♣sqds
s2

✏
➺ ✽
0

α♣sqs4ds ✏
➺ ✽
0

α♣sqs4 log♣sqds ✏ 0,

➺ ✽
✁✽

α♣sqds ✘ 0

To verify the stated estimates on
④χ➙1♣☎q
♣☎q5 ♣ηq, we start with the case of η → 1. We have

④χ➙1♣☎q
♣☎q5 ♣ηq ✏

➺ ✽
0

χ➙1♣xq
x5

J1♣ηxqxdx ✏
➺ ✽
0

χ➙1♣xq
x5

H1 ♣J1♣ηxqq
η2

xdx

where

H1♣fq♣xq ✏ ✁f✷♣xq ✁ 1

x
f
✶♣xq � f♣xq

x2

Then,

⑤
④χ➙1♣☎q
♣☎q5 ♣ηq⑤ ↕ Ck

ηk
, η → 1

follows from repeated integration by parts, noting that there are no non-zero boundary terms obtained in
the process. For η ➔ 1, we use the integral condition on χ➙1. In particular, we have

④χ➙1♣☎q
♣☎q5 ♣ηq ✏ η

2

➺ 1

η

0

χ➙1♣xq
x3

dx�O

✄
η
3

➺ 1

η

0

⑤χ➙1♣xq⑤
x

dx

☛
�O

✄➺ ✽
1

η

⑤χ➙1♣xq⑤
x4

dx

☛
which implies the estimate in the lemma statement. ❬❭



60 Mohandas Pillai

We recall that ue and uwave are defined in (4.139), and define χ↕1♣xq ✏ 1✁ χ➙1♣xq, and

uc♣t, rq ✏ χ↕1♣ r

λ♣tqg♣tq que♣t, rq �
✂
1✁ χ↕1♣ r

λ♣tqg♣tq q
✡
uwave♣t, rq (4.141)

Let h♣tq ✏ λ♣tqg♣tq. The error term of uc in solving the linear PDE (4.5) is

✁
✄✄

✁❇tt � ❇rr � 1

r
❇r ✁

cos♣2Q1♣ r
λ♣tq qq

r2

☛
uc ✁ ❇2tQ1♣ r

λ♣tq q
☛

✏ χ↕1♣ r

h♣tq q❇ttuell,2♣t, rq �
✂
1✁ χ↕1♣ r

h♣tq q
✡✄cos♣2Q1♣ r

λ♣tq qq ✁ 1

r2

☛
♣vex♣t, rq � uw,2♣t, rq � v2,2♣t, rqq

✁ ♣ue ✁ uwaveq
✄
✁χ✷↕1♣ r

h♣tq q
r2h✶♣tq2
h♣tq4 ✁ χ

✶↕1♣ r

h♣tq q
✂
✁ rh✷♣tq
♣h♣tqq2 �

2rh✶♣tq2
h♣tq3

✡
� 1

r

χ✶↕1♣ r
h♣tq q

h♣tq �
χ✷↕1♣ r

h♣tq q
h♣tq2

☛

✁ 2χ✶↕1♣ r

h♣tq q
rh✶♣tq
h♣tq2 ❇t ♣ue ✁ uwaveq ✁ 2

h♣tqχ
✶↕1♣ r

h♣tq q❇r♣ue ✁ uwaveq
(4.142)

Some of the error terms in (4.142) are already perturbative, while some will need additional corrections.
We first record estimates on those terms which are already perturbative. We recall the definitions of vex,ell
in (4.36), and uw,2 in (4.56), and start with the following lemma.

Lemma 28 If

eex,ell♣t, rq ✏
✂
1✁ χ↕1♣ r

λ♣tqg♣tq q
✡✄cos♣2Q1♣ r

λ♣tq qq ✁ 1

r2

☛
vex,ell♣t, rq

and

ew,2♣t, rq ✏
✂
1✁ χ↕1♣ r

λ♣tqg♣tq q
✡✄cos♣2Q1♣ r

λ♣tq qq ✁ 1

r2

☛
uw,2♣t, rq

then, for k ✏ 0, 1,

⑤⑤Lk
1

λ♣tq
♣eex,ellq♣t, rq⑤⑤L2♣rdrq ↕

Cλ♣tq1✁k log♣tq
t2g♣tq4�k

(4.143)

⑤⑤Lk
1

λ♣tq
♣ew,2q♣t, rq⑤⑤L2♣rdrq ↕

Cλ♣tq2✁k

t4

♣1� λ♣tqq log5♣tq supxPr100,ts ♣λ♣xq log♣xqq
g♣tq2 � Cλ♣tq1✁k log2♣tq

g♣tq4�kt2
(4.144)

Proof The estimate in (4.143) follows from straightforward estimation of the expression (4.36) for vex,ell.
To establish (4.144), we write uw,2 ✏ uw,2 ✁ uw,2,ell � uw,2,ell ✁ uw,2,ell,0 � uw,2,ell,0, and use Lemma 10 as
well as (4.61). ❬❭

We recall the definitions of vell,sub from (4.78) and vell,sub,cont from (4.79), and define

vell,sub,1♣t, Rq ✏ vell,sub♣t, Rq ✁ vell,sub,cont♣t, Rλ♣tqq (4.145)

We will now describe the difference ue ✁ uwave. We have

ue♣t, rq ✏ uell♣t, rq � uell,2♣t, rq, uwave♣t, rq ✏ w1♣t, rq � vex♣t, rq � v2♣t, rq � uw,2♣t, rq � v2,2♣t, rq

We recall the first order matching (4.82), which says that

uell♣t, rq ✁ vell,sub♣t, r

λ♣tq q ✏ v2♣t, rq ✁ v2,sub♣t, rq � w1♣t, rq ✁ w1,sub♣t, rq

From the second order matching, we have

vell,2,0,main♣t, r

λ♣tq q ✏ w1,cubic,main♣t, rq � v2,cubic,main♣t, rq

and

vell,sub,cont♣t, rq ✏ vex,cont♣t, rq � uw,2,ell,0,cont♣t, rq
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From the third order matching, we have the estimates from Proposition 2. These give

ue♣t, rq ✁ uwave♣t, rq
✏ uell,2♣t, rq ✁ vell,2,0,main♣t, r

λ♣tq q ✁
�
uw,2♣t, rq ✁ uw,2,ell,0,cont♣t, rq � v2,2♣t, rq � vex ✁ vex,cont ✁ q4,2

✟
✁ q4,2♣t, rq � vell,sub,1♣t, r

λ♣tq q

✁
✄
w1,sub♣t, rq ✁ w1,cubic,main♣t, rq ✁ r5λ♣6q♣tq

576
♣5� log♣8qq

✁ r5

192

☎✆➺ 2t

t

✁
λ♣6q♣sq ✁ λ♣6q♣tq

✠
ds

s✁ t
� λ

♣6q♣tq log♣ t
r
q �

➺ ✽
2t

λ♣6q♣sqds
s✁ t

☞✌☞✌
✁ r5

192

☎✆➺ 2t

t

✁
λ♣6q♣sq ✁ λ♣6q♣tq

✠
ds

s✁ t
� λ

♣6q♣tq log♣ t
r
q �

➺ ✽
2t

λ♣6q♣sqds
s✁ t

☞✌
✁ r5λ♣6q♣tq

576
♣5� log♣8qq ✁

✂
v2,sub♣t, rq ✁ v2,cubic,main♣t, rq � r5

768
F
♣4q♣tq

✡
� r5

768
F
♣4q♣tq

where any function appearing without arguments is evaluated at the point ♣t, rq. We also recall that F is
defined in (4.38) (see also (4.41)). Using

F
♣4q♣tq ✏ 4

☎✆✂log♣2q ✁ 1

2

✡
λ
♣6q♣tq �

➺ 2t

t

✁
λ♣6q♣sq ✁ λ♣6q♣tq

✠
s✁ t

ds� λ
♣6q♣tq log♣tq

✁❇4t
✁
λ
✷♣tq log♣λ♣tqq

✠
✁ ❇4t

✂
λ✶♣tq2
2λ♣tq

✡
�
➺ ✽
2t

λ♣6q♣sq
s✁ t

ds

☛

we get

ue♣t, rq ✁ uwave♣t, rq
✏ uell,2♣t, rq ✁ vell,2,0,main♣t, r

λ♣tq q ✁
�
uw,2♣t, rq ✁ uw,2,ell,0,cont♣t, rq � v2,2♣t, rq � vex ✁ vex,cont ✁ q4,2

✟
✁ q4,2♣t, rq � vell,sub,1♣t, r

λ♣tq q

✁
✄
w1,sub♣t, rq ✁ w1,cubic,main♣t, rq ✁ r5λ♣6q♣tq

576
♣5� log♣8qq

✁ r5

192

☎✆➺ 2t

t

✁
λ♣6q♣sq ✁ λ♣6q♣tq

✠
ds

s✁ t
� λ

♣6q♣tq log♣ t
r
q �

➺ ✽
2t

λ♣6q♣sqds
s✁ t

☞✌☞✌
✁
✂
v2,sub♣t, rq ✁ v2,cubic,main♣t, rq � r5

768
F
♣4q♣tq

✡
✁ r5
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✂
6

✂
❇4t
✁
λ
✷♣tq log♣λ♣tqq

✠
� ❇4t

✂
λ✶♣tq2
2λ♣tq

✡✡
� ♣13✁ 6 log♣rqqλ♣6q♣tq

✡
All of the terms (and sufficiently many of their derivatives) appearing in this expression have been estimated
already, except for the last term (which will be eliminated with another correction, utilizing the properties
of χ➙1) and vell,sub,1♣t, r

λ♣tq q. We now record estimates on vell,sub,1♣t, r
λ♣tq q, and another estimate on vex,sub

which will be useful later on.

Lemma 29 For j ✏ 0, 1 and k ✏ 0, 1, 2, the following estimate is true.

⑤❇jt ❇kr
✂
vell,sub,1♣t, r

λ♣tq q
✡
⑤ ↕ C

λ♣tq2✁k log2♣tq
t2�jg♣tq3�k

, g♣tqλ♣tq ↕ r ↕ 2g♣tqλ♣tq

In addition, we have

⑤vex♣t, rq⑤ ↕ C log2♣t� rqλ♣tq3❄
rt5④2

, r ➙ t

2
(4.146)

⑤❇kt vex,sub♣t, rq⑤ ↕ Crλ♣tq3 log3♣t� rq
t4�k

, g♣tqλ♣tq ↕ r, k ✏ 0, 1, 2 (4.147)
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⑤❇r❇kt vex,sub♣t, rq⑤ ↕ Cλ♣tq3 log3♣t� rq
t4�k

, g♣tqλ♣tq ↕ r, k ✏ 0, 1

⑤❇2rvex,sub♣t, rq⑤ ↕ Cλ♣tq3 log3♣tq
rt4

, g♣tqλ♣tq ↕ r ↕ t

Finally, we also have the following (non-sharp, but sufficient) estimates

⑤❇rvex♣t, rq⑤ ↕ Cλ♣tq 5

2

r
3

2 t2
, ⑤❇tvex♣t, rq⑤ ↕ Cλ♣tq3④2

tr3④2
, r ➙ g♣tqλ♣tq (4.148)

Proof We directly estimate vell,sub,1 using its definition, (4.145), and the explicit formulae for vell,sub and
vell,sub,cont from (4.78) and (4.79), respectively. To obtain (4.147), we start with the definition (4.83), use
Fubini’s theorem to switch the order of s and ξ integrals, and (for r ➙ g♣tqλ♣tq) divide the s integral into
three regions.

a : t ↕ s ↕ t� λ♣tq, b : t� λ♣tq ↕ s ↕ t� r, c : t� r ↕ s ➔ ✽ (4.149)

In each above region of s integration, we then divide the ξ region of integration into four subintervals, based
on the scales 1

r ,
1

λ♣tq ,
1

s✁t . For example, in region a of the s integration, we have the four regions of the ξ

variable

0 ➔ ξ ↕ 1

r
,

1

r
➔ ξ ↕ 1

λ♣tq ,
1

λ♣tq ➔ ξ ↕ 1

s✁ t
,

1

s✁ t
➔ ξ ➔ ✽

In the regions where ξ ↕ 1
s✁t , we use

⑤ sin♣♣t✁ sqξq⑤ ↕ C♣s✁ tqξ

On the other hand, when ξ → 1
s✁t , we integrate by parts in the ξ variable. To be clear, we show how the s

integral over the region c is treated.

✁
➺ ✽
t�r

ds

➺ ✽
0

dξ
sin♣♣t✁ sqξq

ξ2
J1♣rξq❇2s④RHS♣s, ξq

✏ ✁
➺ ✽
t�r

ds

➺ 1

s✁t

0

dξ
sin♣♣t✁ sqξq

ξ2
J1♣rξq❇2s④RHS♣s, ξq ✁ ➺ ✽

t�r

ds

➺ ✽
1

s✁t

dξ
sin♣♣t✁ sqξq

ξ2
J1♣rξq❇2s④RHS♣s, ξq

The integral over the region ξ ➙ 1
s✁t is then further treated as

✁
➺ ✽
t�r

ds

➺ ✽
1

s✁t

dξ
sin♣♣t✁ sqξq

ξ2
J1♣rξq❇2s④RHS♣s, ξq

✏ ✁
➺ ✽
t�r

dsJ1♣ r

s✁ t
q❇21④RHS♣s, 1

s✁ t
q♣s✁ tq2 cos♣1q♣t✁ sq ✁

➺ ✽
t�r

ds

➺ 1

r

1

s✁t

cos♣♣t✁ sqξq
♣t✁ sq ❇ξ

✄
J1♣rξq❇2s④RHS♣s, ξq

ξ2

☛
dξ

✁
➺ ✽
t�r

ds

➺ 1

λ♣tq

1

r

cos♣♣t✁ sqξq
♣t✁ sq ❇ξ

✄
J1♣rξq❇2s④RHS♣s, ξq

ξ2

☛
dξ ✁

➺ ✽
t�r

ds

➺ ✽
1

λ♣tq

cos♣♣t✁ sqξq
♣t✁ sq ❇ξ

✄
J1♣rξq❇2s④RHS♣s, ξq

ξ2

☛
dξ

Finally, we use the formula for ④RHS♣s, ξq, namely (4.33), to get, for 0 ↕ k ↕ 5

ξs
k⑤❇ξ❇ks④RHS♣s, ξq⑤ � s

k⑤❇ks④RHS♣s, ξq⑤ ↕
✩✫✪

Cξλ♣sq3♣1�⑤ log♣ξλ♣sqq⑤q
s2

, ξλ♣sq ➔ 1
2

Cλ♣sq2
s2ξλ♣sq , ξλ♣sq → 1

2

(4.150)

Then, we use

⑤J1♣xq⑤ ↕ C

★
x, x ↕ 1
1❄
x
, x → 1

as appropriate to estimate each integral above. We get (4.146) by using the same procedure as above, except
that we don’t integrate by parts when ξ ➙ 1

s✁t and s ↕ t� r, combined with (4.36). For (4.147), we use

❇kt vex,sub♣t, rq ✏ ✁
➺ ✽
0

dξJ1♣rξq
➺ ✽
t

ds
sin♣♣t✁ sqξq

ξ2
❇2�k
s
④RHS♣s, ξq, k ✏ 1, 2

and the same procedure used for k ✏ 0. Finally, to estimate ❇rvex,sub♣t, rq, we start with

❇rvex,sub♣t, rq ✏ ✁
➺ ✽
0

dξJ
✶
1♣rξqξ

➺ ✽
t

ds
sin♣♣t✁ sqξq

ξ2
❇2s④RHS♣s, ξq
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We make the same decomposition as described in (4.149). This time, we integrate by parts in ξ (integrating
J ✶1♣rξq) when t ↕ s ↕ t � λ♣tq, and 1

r ↕ ξ ↕ 1
s✁t . We also integrate by parts in s (integrating sin♣♣t ✁ sqξq)

when ξ ➙ 1
s✁t and t� λ♣tq ↕ s. Next, using

❇trvex,sub♣t, rq ✏ ✁
➺ ✽
0

dξJ
✶
1♣rξqξ

➺ ✽
t

ds
sin♣♣t✁ sqξq

ξ2
❇3s④RHS♣s, ξq

and the same argument above, we obtain the estimates on ❇trvex,sub♣t, rq in the lemma statement. Finally,
we use the fact that vex,sub satisfies

✁❇ttvex,sub � ❇rrvex,sub � 1

r
❇rvex,sub ✁

vex,sub

r2
✏ ❇2t vex,ell♣t, rq

to estimate ❇2rvex,sub♣t, rq. To obtain the estimate (4.148), we start with

❇rvex,sub♣t, rq ✏ ✁
➺ ✽
0

dξm↕1♣rξqJ ✶1♣rξq
➺ ✽
t

ds
sin♣♣t✁ sqξq

ξ
❇2s④RHS♣s, ξq

✁
➺ ✽
0

dξ♣1✁m↕1♣rξqqJ ✶1♣rξq
➺ ✽
t

ds
sin♣♣t✁ sqξq

ξ
❇2s④RHS♣s, ξq (4.151)

where m↕1 is defined in (2.1). For the first term on the right-hand side of (4.151), we simply directly insert
(4.150) into the integral, and estimate. For the second term, we integrate by parts, to get

✁
➺ ✽
0

dξ♣1✁m↕1♣rξqqJ ✶1♣rξq
➺ ✽
t

ds
sin♣♣t✁ sqξq

ξ
❇2s④RHS♣s, ξq

✏ 1

r

➺ ✽
t

ds

➺ ✽
0

dξJ1♣rξq❇ξ
✂
♣1✁m↕1♣rξqq sin♣♣t✁ sqξq

ξ
❇2s④RHS♣s, ξq✡ dξ

and then, we directly estimate using (4.150). Next, using (4.36) and vex♣t, rq ✏ vex,ell♣t, rq� vex,sub♣t, rq, we
get

⑤❇rvex♣t, rq⑤ ↕ Cλ♣tq 5

2

r
3

2 t2
, r ➙ g♣tqλ♣tq

Finally, the dominated convergence theorem and the formula for vex, namely (4.34), give

❇tvex♣t, rq ✏ ✁
➺ ✽
0

dw

➺ ✽
0

dξJ1♣rξq sin♣wξq❇1④RHS♣w � t, ξq

Then, we use the same procedure used in (4.151) to finish the proof of (4.148). ❬❭

Finally, we let

♣ue ✁ uwaveq0♣t, rq ✏ ue ✁ uwave � r5
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✂
6

✂
❇4t
✁
λ
✷♣tq log♣λ♣tqq

✠
� ❇4t

✂
λ✶♣tq2
2λ♣tq

✡✡
� ♣13✁ 6 log♣rqqλ♣6q♣tq

✡
and we note the following lemma.

Lemma 30 We have the following estimate, for 0 ↕ j, k ↕ 1 or k ✏ 2, j ✏ 0, and g♣tqλ♣tq ↕ r ↕ 2g♣tqλ♣tq

⑤❇jt ❇kr
�♣ue ✁ uwaveq0 � q4,2

✟ ⑤
↕ Cλ♣tq2✁k log2♣tq

t2�jg♣tq3�k
� Cg♣tq2✁kλ♣tq4✁k log4♣tq supxPr100,ts ♣λ♣xq log♣xqq

t5�j
� Cλ♣tq8✁kg♣tq7✁k log♣tq

t8�j

Proof We directly combine the results of Proposition 2, Lemma 1, Lemma 6, and Lemma 29 ❬❭

We now can estimate the ♣ue ✁ uwaveq0 contribution to the error terms of our ansatz (4.141) which involve
at least one derivative of χ↕1. Let

ematch,0♣t, rq

✏ ✁ ♣ue ✁ uwaveq0
✄
✁χ✷↕1♣ r

h♣tq q
r2h✶♣tq2
h♣tq4 ✁ χ

✶↕1♣ r

h♣tq q
✂
✁ rh✷♣tq
♣h♣tqq2 �

2rh✶♣tq2
h♣tq3

✡
� 1

r

χ✶↕1♣ r
h♣tq q

h♣tq �
χ✷↕1♣ r

h♣tq q
h♣tq2

☛

✁ 2χ✶↕1♣ r

h♣tq q
rh✶♣tq
h♣tq2 ❇t ♣ue ✁ uwaveq0 ✁

2

h♣tqχ
✶↕1♣ r

h♣tq q❇r♣ue ✁ uwaveq0

Then, we have the following estimates.
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Lemma 31 [Estimates on the matching-induced error terms] For 0 ↕ k ↕ 1,

⑤⑤Lk
1

λ♣tq
♣ematch,0q♣t, rq⑤⑤L2♣rdrq ↕

Cλ♣tq5 log2♣tq
t2h♣tq4�k

� Ch♣tq1✁kλ♣tq2 log4♣tq supxPr100,ts ♣λ♣xq log♣xqq
t5

� Cλ♣tqh♣tq6✁k log♣tq
t8

Proof We directly use Lemma 30 and the estimates on q4,2 from Proposition 2. ❬❭

Next, we consider the error terms of uc which involve derivatives of χ↕1, and which result from replacing
ue ✁ uwave with ♣ue ✁ uwaveq0. In particular, let

e5♣t, rq ✏ ✁f5♣t, rq
✄
✁χ✷↕1♣ r

h♣tq q
r2h✶♣tq2
h♣tq4 ✁ χ

✶↕1♣ r

h♣tq q
✂
✁ rh✷♣tq
♣h♣tqq2 � 2rh✶♣tq2

h♣tq3
✡
� 1

r

χ✶↕1♣ r
h♣tq q

h♣tq �
χ✷↕1♣ r

h♣tq q
h♣tq2

☛

✁ 2χ✶↕1♣ r

h♣tq q
rh✶♣tq
h♣tq2 ❇tf5♣t, rq ✁

2

h♣tqχ
✶↕1♣ r

h♣tq q❇rf5♣t, rq

where

f5♣t, rq ✏ ✁ r5

1152

✂
6

✂
❇4t
✁
λ
✷♣tq log♣λ♣tqq

✠
� ❇4t

✂
λ✶♣tq2
2λ♣tq

✡✡
� ♣13✁ 6 log♣rqqλ♣6q♣tq

✡
The following piece of e5 turns out to be perturbative. Let

e5,1♣t, rq ✏ ✁f5♣t, rq
✂
✁χ✷↕1♣ r

h♣tq q
r2h✶♣tq2
h♣tq4 ✁ χ

✶↕1♣ r

h♣tq q
✂
✁ rh✷♣tq
♣h♣tqq2 � 2rh✶♣tq2

h♣tq3
✡✡

✁ 2χ✶↕1♣ r

h♣tq q
rh✶♣tq
h♣tq2 ❇tf5♣t, rq

Lemma 32 We have the following estimates for k ✏ 0, 1.

⑤⑤Lk
1

λ♣tq
♣e5,1q♣t, rq⑤⑤L2♣rdrq ↕

Ch♣tq6✁kλ♣tq log♣tq
t8

Proof This follows from a straightforward and direct computation ❬❭

Next, we need to consider e5,0, which is given by

e5,0♣t, rq :✏ e5♣t, rq ✁ e5,1♣t, rq ✏ ✁f5♣t, rq
✄
1

r

χ✶↕1♣ r
h♣tq q

h♣tq �
χ✷↕1♣ r

h♣tq q
h♣tq2

☛
✁ 2

h♣tqχ
✶↕1♣ r

h♣tq q❇rf5♣t, rq (4.152)

The point is that, although e5,0♣t, rq does not decay fast enough (in L2, for example) to be perturbative, it
is orthogonal to φ0♣ r

λ♣tq q to leading order. This is because e5,0♣t, rq is supported in the region λ♣tq ✦ h♣tq ↕
r ↕ 2h♣tq. So, the leading order behavior of ♣2λ♣tqq✁1①φ0♣ ☎

λ♣tq q, e5,0♣t, ☎q②L2♣rdrq is➺ ✽

0

e5,0♣t, rqdr ✏
➺ ✽

0

χ↕1♣xq
✁
♣24p0♣tq � 10p1♣tqqh♣tq3x3 � 24p1♣tqh♣tq3x3 ♣log♣h♣tqq � log♣xqq

✠
h♣tqdx ✏ 0

(4.153)

where we integrated by parts, defined pj♣tq by

f5♣t, rq ✏ ♣p0♣tq � p1♣tq log♣rqqr5

and used Lemma 27. Therefore, we will add a term to uc which will be an appropriate truncation of a
solution to the ODE

❇RRw♣t, Rq � 1

R
❇Rw♣t, Rq ✁ cos♣2Q1♣Rqq

R2
w♣t, Rq ✏ F ♣t, Rq (4.154)

for an appropriate choice of F . (We leave F general here, since we will use a correction of this form to
eliminate error terms of uc other than just e5,0). For the class of F which we will need to consider, we will
use the following particular solution to (4.154) (recall the notation (2.3))

w♣t, Rq ✏ ✁ R

1�R2

➺ R

0

F ♣t, sqse2♣sqds� e2♣Rq
➺ R

0

F ♣t, sqs2
1� s2

ds (4.155)

Returning to the correction associated to e5,0, we establish the following lemma
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Lemma 33 Let w5,0 denote the function defined in (4.155) where

F ♣t, Rq ✏ λ♣tq2e5,0♣t, Rλ♣tqq

Then, we have the following estimate, for 0 ↕ j � k ↕ 2, j ✏ 2, k ✏ 1, j ✏ 0, k ✏ 3, and j ✏ 1, k ✏ 2.

⑤Rk
t
j❇jt ❇kRw5,0♣t, Rq⑤ ↕

✩✬✬✫✬✬✪
0, R ↕ h♣tq

λ♣tq
C

λ♣tqh♣tq5 log♣tq
t6

,
h♣tq
λ♣tq ↕ R ↕ 2h♣tq

λ♣tq
C
R

h♣tq6 log♣tq
t6

� CRh♣tq2λ♣tq4 log♣tq
t6

, R ➙ 2h♣tq
λ♣tq

Proof By a straightforward insertion of the definition of e5,0, (4.152), into the following integral, we have

⑤
➺ R

0

λ♣tq2e5,0♣t, sλ♣tqqse2♣sqds⑤ ↕
✩✫✪0, R ↕ h♣tq

λ♣tq
Ch♣tq6 log♣tq

t6
, R ➙ h♣tq

λ♣tq

On the other hand, we use (4.153) to get

λ♣tq2
➺ R

0

e5,0♣t, sλ♣tqq s
2ds

1� s2
✏ ✁λ♣tq2

➺ ✽
R

e5,0♣t, sλ♣tqqds� λ♣tq2
➺ R

0

e5,0♣t, sλ♣tqq
✂ ✁1
1� s2

✡
ds

(Note that the support properties of χ↕1 imply that the left-hand side of the above equation vanishes when

R ↕ h♣tq
λ♣tq ). Then, we get

⑤λ♣tq2
➺ R

0

e5,0♣t, sλ♣tqq s
2ds

1� s2
⑤ ↕

✩✬✬✫✬✬✪
0, R ↕ h♣tq

λ♣tq
Ch♣tq4λ♣tq2 log♣tq

t6
,

h♣tq
λ♣tq ↕ R ↕ 2h♣tq

λ♣tq
Ch♣tq2λ♣tq4 log♣tq

t6
, R ➙ 2h♣tq

λ♣tq

This gives the estimate of the lemma statement for j ✏ k ✏ 0. Next, we have

❇Rw5,0♣t, Rq ✏ ✁❇R
✂

R

1�R2

✡➺ R

0

λ♣tq2e5,0♣t, sλ♣tqqse2♣sqds� e
✶
2♣Rq

➺ R

0

λ♣tq2e5,0♣t, sλ♣tqqs2
1� s2

ds

So, ❇Rw5,0♣t, Rq is the same expression as w5,0♣t, Rq, except with an extra derivative on the coefficients
of each integral term. Our proof of the lemma for j ✏ 0, k ✏ 0 therefore immediately implies the lemma
statement is true for j ✏ 0, k ✏ 1. We prove the j ✏ 0, k ✏ 2 case of the lemma statement by noting that

❇2Rw5,0♣t, Rq ✏ λ♣tq2e5,0♣t, Rλ♣tqq ✁ 1

R
❇Rw5,0♣t, Rq � cos♣2Q1♣Rqq

R2
w5,0♣t, Rq

Finally, the symbol-type estimates on λ♣tq, definition of e5,0, and the fact that➺ ✽
0

λ♣tq2e5,0♣t, sλ♣tqqds ✏ 0 for all t implies ❇jt
✂➺ ✽

0

λ♣tq2e5,0♣t, sλ♣tqqds
✡
✏ 0

finishes the proof of the lemma. ❬❭

We define f5,0♣t, rq, the function to be added to our ansatz, by

f5,0♣t, rq ✏ m↕1♣r
t
qw5,0♣t, r

λ♣tq q (4.156)

where we recall the definition of m↕1 in (2.1). Then, we define the error term of f5,0 by

ef5,0
♣t, rq :✏ ✁

✄
✁❇ttf5,0 � ❇rrf5,0 � 1

r
❇rf5,0 ✁

cos♣2Q1♣ r
λ♣tq qq

r2
f5,0

☛
� e5,0♣t, rq

✏ ✁m✷↕1♣r
t
q
✂✁r2
t4

� 1

t2

✡
w5,0♣t, r

λ♣tq q

✁m
✶↕1♣r

t
q
✂✂✁2r

t3
� 1

rt

✡
w5,0♣t, r

λ♣tq q �
2r

t2
❇t
✂
w5,0♣t, r

λ♣tq q
✡
� 2

t
❇r
✂
w5,0♣t, r

λ♣tq q
✡✡

�m↕1♣r
t
q❇2t

✂
w5,0♣t, r

λ♣tq q
✡
� e5,0♣t, rq

✁
1✁m↕1♣r

t
q
✠

Then, an insertion of our estimates from Lemma 33 into the above expression for ef5,0
gives the following

lemma.
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Lemma 34 For k ✏ 0, 1,

⑤⑤Lk
1

λ♣tq
♣ef5,0

q♣t, rq⑤⑤L2♣rdrq ↕
Cλ♣tq
t2

✄
h♣tq6✁k log2♣tq

t6
� h♣tq2✁kλ♣tq2 log2♣tq

t4

☛

Now, we will consider the error term in (4.142) involving

✂
cos♣2Q1♣ r

λ♣tq qq✁1

r2

✡
vex,sub♣t, rq.

Lemma 35 Let wex,sub♣t, Rq be defined by the expression (4.155) for

F ♣t, sq ✏
✂
cos♣2Q1♣sqq ✁ 1

s2

✡
vex,sub♣t, sλ♣tqqχ➙1♣ s

g♣tq q

Then, we have

wex,sub♣t, r

λ♣tq q ✏ 0, r ↕ λ♣tqg♣tq

For 0 ↕ k � j ↕ 2, j ✏ 1, k ✏ 2, and j ✏ 2, k ✏ 1,

⑤❇kt ❇jr
✂
wex,sub♣t, r

λ♣tq q
✡
⑤ ↕ Cλ♣tq5 log3♣tq

r1�jt4�k
� Cr1✁jλ♣tq3 log2♣tq

t4�kg♣tq2 , g♣tqλ♣tq ↕ r ↕ t

Proof We define intex,sub by the integral

intex,sub♣t, Rq ✏
➺ R

0

F ♣t, sqs2
1� s2

ds ✏ ✁
➺ ✽
0

dξ

➺ ✽
t

dx
sin♣♣t✁ xqξq

ξ2
❇2x④RHS♣x, ξqI1♣R, ξ, tq

where

I1♣R, ξ, tq ✏
➺ R

0

✂
cos♣2Q1♣sqq ✁ 1

s2

✡
J1♣sλ♣tqξq

χ➙1♣ s
g♣tq qs2

1� s2
ds

and we used Fubini’s theorem. Note that I1♣R, ξ, tq ✏ 0 for R ↕ g♣tq. For R ➙ g♣tq, we decompose I1 as

I1♣R, ξ, tq ✏ I100♣ξ, tq � I101♣ξ, tq � I11♣R, ξ, tq

where

I100♣ξ, tq ✏ ✁8
g♣tq3

④χ➙1♣☎q
♣☎q5 ♣ξg♣tqλ♣tqq

I101♣ξ, tq ✏
➺ ✽
0

✂ ♣cos♣2Q1♣sqq ✁ 1q
s2

s2

1� s2
� 8

s4

✡
J1♣sλ♣tqξqχ➙1♣ s

g♣tq qds

and

I11♣R, ξ, tq ✏ ✁
➺ ✽
R

✂
cos♣2Q1♣sqq ✁ 1

s2

✡
J1♣sλ♣tqξqχ➙1♣ s

g♣tq q
s2ds

1� s2

We claim that, for 0 ↕ j ↕ 2,

⑤❇jt I100♣ξ, tq⑤ ↕
C

g♣tq3tj

✩✫✪ξ
3g♣tq3λ♣tq3①log♣ξg♣tqλ♣tqq②, ξ ↕ 1

g♣tqλ♣tq
Ck

♣ξg♣tqλ♣tqqk , ξ ➙ 1
g♣tqλ♣tq

⑤❇jt I101♣ξ, tq⑤ ↕
C

tj

✩✫✪
ξλ♣tq
g♣tq4 , ξλ♣tq ↕ 1

g♣tq
Ck

g♣tq5♣ξλ♣tqg♣tqq2k , k ➙ 5, ξλ♣tq ➙ 1
g♣tq

⑤❇jt
✂
I11♣ r

λ♣tq , ξ, tq
✡
⑤ ↕ C

tj

✩✬✬✫✬✬✪
λ♣tq3

ξ3④2r9④2 , ξ ➙ 1
λ♣tqg♣tq

ξλ♣tq3
r2 , ξ ↕ 1

r
λ♣tq3
r7④2❄ξ

, 1
r ↕ ξ ↕ 1

g♣tqλ♣tq

For j ✏ 0, I100 is estimated by using Lemma 27, while, for all 0 ↕ j ↕ 2, I101 and I11 are estimated by
integrating by parts when ξλ♣tq ➙ 1

g♣tq , and directly estimating otherwise (as in Lemma 27). For j → 0, the

most delicate estimate is on ❇jt I100♣ξ, tq in the region ξ ↕ 1
λ♣tqg♣tq . We write

I100♣ξ, tq ✏ ✁8
➺ ✽
0

J1♣g♣tqλ♣tqyξq
g♣tq3y4 χ➙1♣yqdy
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which gives

❇tI100♣ξ, tq ✏ ✁3g✶♣tq
g♣tq I100♣ξ, tq ✁ 8

➺ ✽
0

J ✶1♣g♣tqλ♣tqyξq
g♣tq3y4 ♣g♣tqλ♣tqq✶yξχ➙1♣yqdy

Then,

✁ 8

➺ ✽
0

J ✶1♣g♣tqλ♣tqyξq
g♣tq3y4 ♣g♣tqλ♣tqq✶yξχ➙1♣yqdy

✏ ✁8
➺ 1

g♣tqλ♣tqξ

0

1

2

♣g♣tqλ♣tqq✶
g♣tq3y4 yξχ➙1♣yqdy ✁ 8

➺ 1

g♣tqλ♣tqξ

0

�
J ✶1♣g♣tqλ♣tqyξq ✁ 1

2

✟ ♣g♣tqλ♣tqq✶
g♣tq3y4 yξχ➙1♣yqdy

✁ 8

➺ ✽
1

g♣tqλ♣tqξ

J ✶1♣g♣tqλ♣tqyξq
g♣tq3y4 ♣g♣tqλ♣tqq✶yξχ➙1♣yqdy

and to estimate the first term on the right hand side of the above expression, we use Lemma 27. We use a
similar procedure for ❇2t I100♣ξ, tq.

❇2t
✂
✁intex,sub♣t, r

λ♣tq q
✡
✏ ❇2t

✂➺ ✽
0

dξ

➺ ✽
t

dx
sin♣♣t✁ xqξq

ξ2
❇2x④RHS♣x, ξqI1♣ r

λ♣tq , ξ, tq
✡

✏ ❇2t
✂
✁
➺ ✽
0

dξ

➺ ✽
0

dw
sin♣wξq
ξ2

❇21④RHS♣t� w, ξq
✂
I100♣ξ, tq � I101♣ξ, tq � I11♣ r

λ♣tq , ξ, tq
✡✡

After differentiating under the integral sign in the last integral, we let x ✏ w� t, and split the x integration
into two regions: t ↕ x ↕ t� 1

ξ and x → t� 1
ξ . In the latter region, we integrate by parts in the x variable,

integrating sin♣♣t✁xqξq. Then, we make a similar decomposition of the ξ integral as was made while proving
Lemma 29. This gives, for k ✏ 0, 1, 2,

⑤❇kt
✂
intex,sub♣t, r

λ♣tq q
✡
⑤ ↕ Cλ♣tq4 log2♣tq

t4�kg♣tq2 , t ➙ r ➙ g♣tqλ♣tq

We recall the definition of e2 in (2.3). The next integral to consider is

intex,sub,2♣t, Rq ✏
➺ R

0

✂
cos♣2Q1♣sqq ✁ 1

s2

✡
vex,sub♣t, sλ♣tqqχ➙1♣ s

g♣tq qse2♣sqds

✏ ✁
➺ ✽
0

dξ

➺ ✽
t

dx
sin♣♣t✁ xqξq

ξ2
❇2x④RHS♣x, ξqI2♣R, ξ, tq

where

I2♣R, ξ, tq ✏
➺ R

0

✂
cos♣2Q1♣sqq ✁ 1

s2

✡
J1♣sλ♣tqξqχ➙1♣ s

g♣tq qse2♣sqds

As with I1 above, I2♣R, ξ, tq ✏ 0 for R ↕ g♣tq. A direct estimation gives, for 0 ↕ k ↕ 2,

⑤❇kt
✂
I2♣ r

λ♣tq , ξ, tq
✡
⑤ ↕ C

tk

✩✬✬✫✬✬✪
log♣ r

λ♣tqg♣tq qλ♣tqξ, ξ ↕ 1
r

ξλ♣tq①log♣ξλ♣tqg♣tqq②, 1
r ↕ ξ ↕ 1

λ♣tqg♣tq
C

g♣tq3④2
❄

λ♣tqξ , ξ ➙ 1
λ♣tqg♣tq

Then, as above, we get, for k ✏ 0, 1, 2,

⑤❇kt
✂
intex,sub,2♣t, r

λ♣tq q
✡
⑤ ↕ Cλ♣tq4 log3♣tq

t4�k
, g♣tq ↕ r

λ♣tq ↕
t

λ♣tq
Recalling (4.155), we have

wex,sub♣t, r

λ♣tq q ✏ ✁
φ0♣ r

λ♣tq q
2

intex,sub,2♣t, r

λ♣tq q � e2♣ r

λ♣tq qintex,sub♣t,
r

λ♣tq q

which gives, for 0 ↕ k ↕ 2,

⑤❇kt
✂
wex,sub♣t, r

λ♣tq q
✡
⑤ ↕ Cλ♣tq5 log3♣tq

rt4�k
� Crλ♣tq3 log2♣tq

t4�kg♣tq2 , g♣tqλ♣tq ↕ r ↕ t

Next, we note that

❇r
✂
wex,sub♣t, r

λ♣tq q
✡
✏
✁φ✶0♣ r

λ♣tq q
2λ♣tq intex,sub,2♣t, r

λ♣tq q � e
✶
2♣ r

λ♣tq q
1

λ♣tq intex,sub♣t,
r

λ♣tq q

Finally, we estimate ❇2r
✁
wex,sub♣t, r

λ♣tq q
✠
using the equation solved by wex,sub, Lemma 29, and our previous

estimates from the proof of this lemma. ❬❭
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The truncation of wex,sub which we will add to our ansatz is

fex,sub♣t, rq ✏ m↕1♣r
t
qwex,sub♣t, r

λ♣tq q (4.157)

where we recall that m↕1 was defined in (2.1). We define the error term of fex,sub♣t, rq as

eex,sub♣t, rq ✏ ✁
✄
✁❇ttfex,sub � ❇rrfex,sub � 1

r
❇rfex,sub ✁

cos♣2Q1♣ r
λ♣tq qq

r2
fex,sub

☛

�
✄
cos♣2Q1♣ r

λ♣tq qq ✁ 1

r2

☛
vex,sub♣t, rqχ➙1♣ r

λ♣tqg♣tq q

We get

eex,sub♣t, rq ✏ ✁m✷↕1♣r
t
q
✂✁r2
t4

� 1

t2

✡
wex,sub♣t, r

λ♣tq q

✁m
✶↕1♣r

t
q
✂✂✁2r

t3
� 1

rt

✡
wex,sub♣t, r

λ♣tq q �
2r

t2
❇t
✂
wex,sub♣t, r

λ♣tq q
✡
� 2

t
❇r
✂
wex,sub♣t, r

λ♣tq q
✡✡

�m↕1♣r
t
q❇2t

✂
wex,sub♣t, r

λ♣tq q
✡

�
✄
cos♣2Q1♣ r

λ♣tq qq ✁ 1

r2

☛
vex,sub♣t, rqχ➙1♣ r

λ♣tqg♣tq q
✁
1✁m↕1♣r

t
q
✠

Lemma 35 directly gives

Lemma 36 For k ✏ 0, 1,

⑤⑤Lk
1

λ♣tq
♣eex,subq♣t, rq⑤⑤L2♣rdrq ↕

Cλ♣tq3✁k log2♣tq
t4g♣tq2�k

Lemma 37 Let gell,2♣t, Rq be defined by the expression (4.155) for the choice

F ♣t, sq ✏ λ♣tq2χ↕1♣ s

g♣tq q❇
2
1uell,2♣t, sλ♣tqq

and let

fell,2♣t, rq ✏ gell,2♣t, r

λ♣tq qm↕1♣r
t
q

Then, for 0 ↕ j ↕ 2, 0 ↕ k ↕ 3,

⑤Rk
t
j❇jt ❇kRgell,2♣t, Rq⑤ ↕

Cλ♣tq6
t6

✩✬✬✫✬✬✪
R5

✁
1� log2♣Rq

✠
, R ↕ 1

R5 log♣tq, 1 ↕ R ↕ 2g♣tq
Rg♣tq2 log3♣tq � g♣tq6 log♣tq

R , R → 2g♣tq

Also, letting eell,2 denote the error term of fell,2:

eell,2♣t, rq ✏ ✁
✄
✁❇ttfell,2 � ❇rrfell,2 � 1

r
❇rfell,2 ✁

cos♣2Q1♣ r
λ♣tq qq

r2
fell,2

☛
� χ↕1♣ r

g♣tqλ♣tq q❇
2
1uell,2♣t, rq

we have, for k ✏ 0, 1,

⑤⑤Lk
1

λ♣tq
♣eell,2q♣t, rq⑤⑤L2♣rdrq ↕

Cλ♣tq7✁k log3♣tqg♣tq6✁k

t8

Proof We will take advantage of two of the orthogonality conditions in Lemma 27 when studying gell,2. We
recall that uell,2 is defined in (4.9), and we use (4.13) to get

gell,2♣t, Rq ✏ e2♣Rq
2

λ♣tq2
➺ R

0

χ↕1♣ s

g♣tq q
✂
❇2t
✂
vell,2,0,main♣t, r

λ♣tq q
✡✞✞✞

r✏sλ♣tq
� ❇2t

✂
soln1♣t, r

λ♣tq q
✡✞✞✞

r✏sλ♣tq

� ❇2t
✂
soln2♣t, r

λ♣tq q
✡✞✞✞

r✏sλ♣tq

✡
sφ0♣sqds

✁ φ0♣Rq
2

λ♣tq2
➺ R

0

χ↕1♣ s

g♣tq q❇
2
1uell,2♣t, sλ♣tqqse2♣sqds



Global, Non-scattering solutions to the energy critical wave maps equation 69

where, for the reader’s convenience, we recall that

vell,2,0,main♣t, sq ✏ s3λ♣tq3
8

✂
❇2t
✂
λ✶♣tq2
2λ♣tq � λ

✷♣tq � λ
✷♣tq log♣λ♣tqq

✡
✁ λ

✹♣tq log♣sλ♣tqq � 3

4
λ
✹♣tq

✡
We then estimate gell,2 by using the orthogonality conditions of Lemma 27 to treat the term in the above
expression for gell,2 which involves vell,2,0,main, and estimate the rest of gell,2 directly. We have the following
two estimates for 0 ↕ k ↕ 1 and 0 ↕ j ↕ 2,

⑤❇jt ❇ks
✂
❇2t
✂
soln1♣t, r

λ♣tq q
✡✞✞✞

r✏sλ♣tq

✡
⑤ ↕ Cλ♣tq4

t6�j

★
s5✁k♣1� ⑤ log♣sq⑤q, s ↕ 1

s1✁k♣1� log2♣sqq, s ➙ 1
(4.158)

⑤❇jt ❇ks
✂
❇2t
✂
soln2♣t, r

λ♣tq q
✡✞✞✞

r✏sλ♣tq

✡
⑤ ↕ Cλ♣tq4

t6�j

★
s3✁k♣1� log2♣sqq, s ↕ 1

s1✁k♣1� log3♣sqq, s ➙ 1
(4.159)

This results in the estimates on gell,2 and eell,2 in the lemma statement. ❬❭

Finally, we treat the linear error term associated to v2,2 which we recall is a free wave added to uw,2, and
is chosen so as to allow for the third order matching. This error term is

e2,2♣t, rq ✏
✄
cos♣2Q1♣ r

λ♣tq qq ✁ 1

r2

☛
v2,2♣t, rq

✂
1✁ χ↕1♣ r

h♣tq q
✡

We define u2,2 to be the solution to the following equation, with 0 Cauchy data at infinity.

✁❇2t u2,2 � ❇2ru2,2 � 1

r
❇ru2,2 ✁ u2,2

r2
✏ e2,2♣t, rq

Then, we have the following lemma.

Lemma 38 For
h♣tq
2 ↕ r ↕ t

2 , and 0 ↕ k ↕ 1, 0 ↕ j ↕ 2,

t
j
r
k⑤❇jt ❇kru2,2♣t, rq⑤ ↕

Crλ♣tq4 supxPr100,ts ♣λ♣xq log♣xqq log5♣tq
t4h♣tq2

� Crλ♣tq2 supxPr100,ts ♣λ♣xq log♣xqq supxPr100,ts
�
λ♣xq2✟ log4♣tq

t6

(4.160)

Also, for
h♣tq
2 ↕ r ↕ t

2 ,

⑤❇2ru2,2♣t, rq⑤ ↕
Cλ♣tq4 supxPr100,ts ♣λ♣xq log♣xqq log5♣tq

t4rh♣tq2

� Cλ♣tq2 supxPr100,ts ♣λ♣xq log♣xqq supxPr100,ts
�
λ♣xq2✟ log4♣tq

rt6

In addition, for all r → 0,

❜
E♣u2,2, ❇tu2,2q � ⑤u2,2♣t, rq⑤ ↕

Cλ♣tq2 supxPr100,ts ♣λ♣xq log♣xqq supxPr100,ts
�
λ♣xq2✟ log3♣tq

t3
(4.161)

Finally, for 0 ↕ j ↕ 2,

⑤❇jt ❇ru2,2♣t, rq⑤ ↕
Cλ♣tq4 supxPr100,ts ♣λ♣xq log♣xqq log3♣tq

①t✁ r②1�jh♣tq2t3

� Cλ♣tq2 supxPr100,ts ♣λ♣xq log♣xqq supxPr100,ts
�
λ♣xq2✟ log3♣tq

t5④2①t✁ r②7④2�j
,

t

2
➔ r ➔ t

(4.162)

⑤❇ru2,2♣t, rq⑤ ↕ C log4♣tq
t
5

2
✁5Cu

, r → 0 (4.163)
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Proof As in (4.122), we have

u2,2♣t, rq ✏ ✁r
2π

➺ ✽

t

ds

➺ s✁t

0

ρdρ❛
♣s✁ tq2 ✁ ρ2

➺ 1

0

dβ

➺ 2π

0

dθIe2,2♣s, rβ, ρ, θq

where we recall the notation (2.2). We start with the estimate of the lemma statement in the region
h♣tq ↕ r ↕ 2h♣tq ↕ t

2 . For all ρ ↕ s✁ t, r ↕ t
2 , and 0 ↕ β ↕ 1, we have

❛
β2r2 � ρ2 � 2βrρ cos♣θq ↕ βr � ρ ↕ s✁ t� t

2
➔ s

From Lemma 26, we get

⑤Ie2,2♣s, rβ, ρ, θq⑤ ↕ C

✄
λ♣sq2
s4

sup
xPr100,ss

♣λ♣xq log♣xqq log3♣sqλ♣sq2
♣h♣sq2 � β2r2 � ρ2 � 2βrρ cos♣θqq2

�λ♣sq
2 supxPr100,ss ♣λ♣xq log♣xqq supxPr100,ss

�
λ♣xq2✟ log3♣sq

①s✁
❛
r2β2 � ρ2 � 2βrρ cos♣θq②7④2s9④2

☛

We then make the analogous decomposition as in (4.123), and use

s✁
❛
β2r2 � ρ2 � 2βrρ cos♣θq ➙ s✁ ♣r � ρq ➙ t✁ r ➙ Ct

which is true for ρ ↕ s ✁ t and all r ↕ t
2 . This gives (4.160) for k ✏ 0, j ✏ 0, and h♣tq

2 ↕ r ↕ 2h♣tq. For
k ✏ 1, j ✏ 0, we note that

❇ru2,2♣t, rq ✏ ✁1
2π

➺ ✽

t

ds

➺ s✁t

0

ρdρ❛
♣s✁ tq2 ✁ ρ2

➺ 2π

0

dθIe2,2♣s, r, ρ, θq

which, when combined with the same procedure used for u2,2, completes the proof of (4.160) for j ✏ 0 and

0 ↕ k ↕ 1, in the region h♣tq
2 ↕ r ↕ 2h♣tq. To treat higher j, we simply note that

❇jtu2,2♣t, rq ✏
✁r
2π

➺ ✽

t

ds

➺ s✁t

0

ρdρ❛
♣s✁ tq2 ✁ ρ2

➺ 1

0

dβ

➺ 2π

0

dθ❇j1Ie2,2♣s, rβ, ρ, θq

and use the same procedure used for j ✏ 0.

In the region 2h♣tq ↕ r ↕ t
2 , a slightly more complicated argument is needed because factors of r

h♣tq
are no longer controlled by a constant in this region. We have

⑤u2,2♣t, rq⑤

↕ Cr

➺ ✽

t

ds

➺ s✁t

0

ρdρ❛
♣s✁ tq2 ✁ ρ2

➺ 1

0

dβ

➺ 2π

0

dθ

✄
λ♣sq4 supxPr100,ss ♣λ♣xq log♣xqq log3♣sq
s4♣r2β2 � ρ2 � 2rβρ cos♣θq � h♣sq2q2

�λ♣sq
2 supxPr100,ss ♣λ♣xq log♣xqq supxPr100,ss

�
λ♣xq2✟ log3♣sq

s9④2t7④2

☛
(4.164)

The second term of the integrand of the expression (4.164) is estimated with the following simple procedure.

⑤r
➺ ✽

t

ds

➺ s✁t

0

ρdρ❛
♣s✁ tq2 ✁ ρ2

➺ 1

0

dβ

➺ 2π

0

dθ
λ♣sq2 supxPr100,ss ♣λ♣xq log♣xqq supxPr100,ss

�
λ♣xq2✟ log3♣sq

s9④2t7④2
⑤

↕ Cr

➺ ✽

t

ds
λ♣sq2 supxPr100,ss ♣λ♣xq log♣xqq supxPr100,ss

�
λ♣xq2✟ log3♣sq

s7④2t7④2

↕ Crλ♣tq2 supxPr100,ts ♣λ♣xq log♣xqq supxPr100,ts
�
λ♣xq2✟ log3♣tq

t6
, r ↕ t

2

Using Cauchy’s residue theorem appropriately, we get the following, for a, ρ, y → 0.➺ 2π

0

dθ

♣y2 � ρ2 � 2ρy cos♣θq � a2q2 ✏ 2π♣a2 � ρ2 � y2q
♣♣a2 � ♣ρ✁ yq2q♣a2 � ♣ρ� yq2qq3④2 (4.165)
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So, for the first term of the integrand in (4.164), we get

⑤r
➺ ✽
t

ds

➺ s✁t

0

ρdρ❛
♣s✁ tq2 ✁ ρ2

➺ 1

0

dβ

➺ 2π

0

dθ
λ♣sq4 supxPr100,ss ♣λ♣xq log♣xqq log3♣sq
s4♣r2β2 � ρ2 � 2rβρ cos♣θq � h♣sq2q2 ⑤

↕ Cr

➺ ✽
t

ds

➺ s✁t

0

ρdρ❛
♣s✁ tq2 ✁ ρ2

➺ 1

0

dβ
λ♣sq4 supxPr100,ss ♣λ♣xq log♣xqq log3♣sq

s4
❛
h♣sq2 � ρ2 � r2β2♣h♣sq2 � ♣ρ✁ rβq2q3④2

↕ Cr

➺ t�3h♣tq

t

ds

➺ s✁t

0

ρdρ❛
♣s✁ tq2 ✁ ρ2

λ♣sq4 supxPr100,ss ♣λ♣xq log♣xqq log3♣sq
s4h♣sq4

� Cr

➺ t�3r

t�3h♣tq
ds

➺ 3h♣tq

0

ρdρ❛
♣s✁ tq2 ✁ ρ2

λ♣sq4 supxPr100,ss ♣λ♣xq log♣xqq log3♣sq
s4h♣sq4

� Cr

➺ t�3r

t�3h♣tq
ds

➺ s✁t

3h♣tq
dρ❛

♣s✁ tq2 ✁ ρ2

λ♣sq4 supxPr100,ss ♣λ♣xq log♣xqq log3♣sq
s4

➺ 1

0

dβ

♣h♣sq2 � ♣ρ✁ rβq2q3④2

� Cr

➺ ✽
t�3r

ds

➺ 3h♣tq

0

ρdρ❛
♣s✁ tq2 ✁ ρ2

λ♣sq4 supxPr100,ss ♣λ♣xq log♣xqq log3♣sq
s4h♣sq4

� Cr

➺ ✽
t�3r

ds

➺ 3r

3h♣tq
dρ❛

♣s✁ tq2 ✁ ρ2

λ♣sq4 supxPr100,ss ♣λ♣xq log♣xqq log3♣sq
s4

➺ 1

0

dβ

♣h♣sq2 � ♣ρ✁ rβq2q3④2

� Cr

➺ ✽
t�3r

ds

➺ s✁t

3r

dρ❛
♣s✁ tq2 ✁ ρ2

λ♣sq4 supxPr100,ss ♣λ♣xq log♣xqq log3♣sq
s4♣r � ρq3

↕ Crλ♣tq4 supxPr100,ts ♣λ♣xq log♣xqq log5♣tq
t4h♣tq2 , 2h♣tq ↕ r ↕ t

2

The derivatives of u2,2 in the region 2h♣tq ↕ r ↕ t
2 are treated in a similar way. A similar procedure

establishes (4.162). Finally, the estimate on ❇2ru2,2 is obtained by noting that

❇2ru2,2♣t, rq ✏ e2,2♣t, rq � u2,2♣t, rq
r2

✁ 1

r
❇ru2,2♣t, rq � ❇2t u2,2♣t, rq

For (4.161), we again use Lemma 26 to get that

⑤e2,2♣t, rq⑤ ↕ ✶tr➙h♣tq✉

✩✬✬✬✫✬✬✬✪
Cλ♣tq2

r4

rλ♣tq2
t4

supxPr100,ts ♣λ♣xq log♣xqq log3♣tq, h♣tq ↕ r ↕ t
2

Cλ♣tq2
r4

supxPr100,ts♣λ♣xq log♣xqq supxPr100,ts♣λ♣xq2q log3♣tq
①t✁r②5④2❄t

, t
2 ↕ r ↕ t

Cλ♣tq2
r9④2

❄
①t✁r② , r ➙ t

which gives

⑤⑤e2,2♣t, rq⑤⑤L2♣rdrq ↕
Cλ♣tq2 supxPr100,ts ♣λ♣xq log♣xqq supxPr100,ts

�
λ♣xq2✟ log3♣tq

t4

Then, the same procedure used in (4.69) (energy estimate) finishes the proof of (4.161). Finally, we prove
(4.163) by using Lemma 26 to get

⑤Ie2,2♣s, r, ρ, θq⑤ ↕
C log4♣sq
s

9

2
✁5Cu

which implies

⑤❇ru2,2♣t, rq⑤ ↕ C

➺ ✽
t

ds
♣s✁ tq log4♣sq

s
9

2
✁5Cu

↕ C log4♣tq
t
5

2
✁5Cu

❬❭

Note that

♣1✁ χ↕1♣ 2r

h♣tq qq♣1✁ χ↕1♣ r

h♣tq qq ✏ ♣1✁ χ↕1♣ r

h♣tq qq

So, we will add the following truncation of u2,2 into our ansatz:

f2,2♣t, rq :✏ u2,2♣t, rq
✂
1✁ χ↕1♣ 2r

h♣tq q
✡

(4.166)
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We define the error term associated to f2,2 by

ef2,2
♣t, rq : ✏

✄
cos♣2Q1♣ r

λ♣tq qq ✁ 1

r2

☛
v2,2♣t, rq

✂
1✁ χ↕1♣ r

h♣tq q
✡
✁
✂
✁❇2t � ❇2r � 1

r
❇r ✁ 1

r2

✡
f2,2♣t, rq

�
✄
cos♣2Q1♣ r

λ♣tq qq ✁ 1

r2

☛
f2,2

✏ u2,2♣t, rq
✂

2

rh♣tqχ
✶↕1♣ 2r

h♣tq q ✁
4r

h♣tq3χ
✶↕1♣ 2r

h♣tq qh
✶♣tq2 ✁ 4r2h✶♣tq2

h♣tq4 χ
✷↕1♣ 2r

h♣tq q

�
4χ✷↕1♣ 2r

h♣tq q
h♣tq2 � 2rh✷♣tq

h♣tq2 χ
✶↕1♣ 2r

h♣tq q
☛

�
4χ✶↕1♣ 2r

h♣tq q
h♣tq2

✁
h♣tq❇ru2,2 � rh

✶♣tq❇tu2,2
✠
�
✄
cos♣2Q1♣ r

λ♣tq qq ✁ 1

r2

☛
u2,2♣t, rq

✂
1✁ χ↕1♣ 2r

h♣tq q
✡

Then, a direct estimation gives the following lemma.

Lemma 39 For k ✏ 0, 1,

⑤⑤Lk
1

λ♣tq
♣ef2,2

q♣t, rq⑤⑤L2♣rdrq ↕
Cλ♣tq4 supxPr100,ts ♣λ♣xq log♣xqq log5♣tq

t4h♣tq2�k

Now, we let

ua♣t, rq ✏ uc♣t, rq � f5,0♣t, rq � fex,sub♣t, rq � fell,2♣t, rq � f2,2♣t, rq (4.167)

ucorr♣t, rq ✏ ua♣t, rq � u1♣t, rq
where we recall that uc is defined by (4.141). The equation for u1 which results from substituting Q 1

λ♣tq
♣rq�

ucorr into (1.1) is

✁ ❇2t u1 � ❇2ru1 � 1

r
❇ru1 ✁

cos♣2Q1♣ r
λ♣tq qq

r2
u1

✏ ea♣t, rq �
✂
cos♣2ucorrq ✁ 1

2r2

✡
sin♣2Q1♣ r

λ♣tq qq �
cos♣2Q1♣ r

λ♣tq qq
2r2

♣sin♣2ucorrq ✁ 2ucorrq

where

ea♣t, rq ✏
�
eex,ell � ew,2 � ematch,0 � e5,1 � ef5,0

� eex,sub � eell,2 � ef2,2

✟ ♣t, rq
Combining Lemmas 39, 37, 36, 34, 32, 31, 28 and using (1.7) and (4.2) gives the following lemma.

Lemma 40 ⑤⑤ea⑤⑤L2♣rdrq
λ♣tq2 ↕ C log6♣tq

t4�mint4α✁Cl✁2,1✁α✁2Cu,4✁5Cu✁6α✉

⑤⑤L 1

λ♣tq
♣eaq ⑤⑤L2♣rdrq ↕

C log6♣tq
t4�2α✁3Cu

� C log2♣tq
t2�5α

� C log5♣tq
t5✁3Cu

� C log3♣tq
t8✁6Cu✁5α

4.9 First set of nonlinear interactions

It only remains to treat the terms which are nonlinear in ucorr ✏ ua � u1. For this, we define

NL♣t, rq ✏
✂
cos♣2ucorrq ✁ 1

2r2

✡
sin♣2Q1♣ r

λ♣tq qq �
cos♣2Q1♣ r

λ♣tq qq
2r2

♣sin♣2ucorrq ✁ 2ucorrq

✏
✂
cos♣2u1q ✁ 1

2r2

✡
sin♣2Q1♣ r

λ♣tq q � 2uaq

�
✂
sin♣2u1q ✁ 2u1

2r2

✡
cos♣2Q1♣ r

λ♣tq q � 2uaq �
cos♣2Q1♣ r

λ♣tq qq
2r2

♣sin♣2uaq ✁ 2uaq

� u1

✄
cos♣2Q1♣ r

λ♣tq q � 2uaq ✁ cos♣2Q1♣ r
λ♣tq qq

r2

☛
�

sin♣2Q1♣ r
λ♣tq qq

2r2
♣cos♣2uaq ✁ 1q
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We focus on the u1-independent terms of the expression above. In particular, we define

Na♣t, rq ✏
cos♣2Q1♣ r

λ♣tq qq
2r2

♣sin♣2uaq ✁ 2uaq �
sin♣2Q1♣ r

λ♣tq qq
2r2

♣cos♣2uaq ✁ 1q

We recall that

ua ✏ χ↕1♣ r

h♣tq que �
✂
1✁ χ↕1♣ r

h♣tq q
✡
uwave � f5,0 � fex,sub � fell,2 � f2,2

We write

ua ✏ ua,0 � ua,1 (4.168)

with

ua,0♣t, rq ✏ χ↕1♣ r

h♣tq quell♣t, rq �
✂
1✁ χ↕1♣ r

h♣tq q
✡
♣w1♣t, rq � v2♣t, rq � v2,2♣t, rqq

ua,1 ✏ χ↕1♣ r

h♣tq q ♣ue ✁ uellq �
✂
1✁ χ↕1♣ r

h♣tq q
✡
♣vex � uw,2q � f5,0 � fex,sub � fell,2 � f2,2

Then, we get

Na♣t, rq ✏
cos♣2Q1♣ r

λ♣tq qq
2r2

♣sin♣2ua,0q ✁ 2ua,0q �
sin♣2Q1♣ r

λ♣tq qq
2r2

♣cos♣2ua,0q ✁ 1q

�
cos♣2Q1♣ r

λ♣tq qq
2r2

♣sin♣2ua,0q ♣cos♣2ua,1q ✁ 1q � ♣sin♣2ua,1q ✁ 2ua,1q cos♣2ua,0q � ♣cos♣2ua,0q ✁ 1q 2ua,1q

�
sin♣2Q1♣ r

λ♣tq qq
2r2

♣♣cos♣2ua,1q ✁ 1q cos♣2ua,0q ✁ 2 sin♣2ua,0qua,1 ✁ sin♣2ua,0q ♣sin♣2ua,1q ✁ 2ua,1qq
:✏ N0 �N1

where

N1♣t, rq

✏
cos♣2Q1♣ r

λ♣tq qq
2r2

♣sin♣2ua,0q ♣cos♣2ua,1q ✁ 1q � ♣sin♣2ua,1q ✁ 2ua,1q cos♣2ua,0q � ♣cos♣2ua,0q ✁ 1q 2ua,1q

�
sin♣2Q1♣ r

λ♣tq qq
2r2

♣♣cos♣2ua,1q ✁ 1q cos♣2ua,0q ✁ 2 sin♣2ua,0qua,1 ✁ sin♣2ua,0q ♣sin♣2ua,1q ✁ 2ua,1qq
(4.169)

We proceed to estimate the term N1, which turns out to be perturbative.

Lemma 41 We have the following estimates on N1.

⑤⑤N1♣t, rq⑤⑤L2♣rdrq
λ♣tq2 ↕ C log3♣tq

t6✁3Cu✁2α
� C log13♣tq
t5✁

3

2
Cl✁9Cu

, ⑤⑤L 1

λ♣tq
♣N1q♣t, rq⑤⑤L2♣rdrq ↕

C log3♣tq
t6✁5Cu✁2α✁Cl

� C log13♣tq
t5✁

19

2
Cu✁Cl

Proof We estimate N1 by combining the following estimates on various terms of ua,0 and ua,1. We use
the explicit formulae following (4.7) and (4.81) to estimate uell. We use the decomposition (4.13), along
with (4.14) and the analogous estimates to (4.158) and (4.159) to estimate uell,2. We use (4.146) in the
region r ➙ t

2 , and (4.147) and the expression for vex,ell, namely (4.36) in the region g♣tqλ♣tq ↕ r ↕ t
2 , to

estimate vex. We use Lemma 10 to estimate uw,2. (In particular, we use (4.63) and (4.67) in the region
g♣tqλ♣tq ↕ r ↕ t

2 , and (4.64) in the region r ➙ t
2 ). Next, we use Lemma (2), Lemma (5), and Lemma 26 to

estimate w1, v2, and v2,2, respectively. Finally, we use Lemma 38, and (4.166) (for f2,2), Lemma 37 (for
fell,2), Lemma 33 and (4.156) (for f5,0), and Lemma 35 and (4.157) (for fex,sub). This gives rise to

⑤ua,0♣t, rq⑤

↕ C

✩✫✪
rλ♣tq log♣tq

t2
, r ↕ t

2

supxPr100,rs♣λ♣xq log♣xqq log♣rq❄
r
❄
①t✁r② �

supxPr100,ts♣λ♣xq log♣xqq supxPr100,ts♣λ♣xq2q log3♣tq✶tt→r→ t
2
✉

①t✁r②5④2❄t
, r → t

2

(4.170)

and

⑤ua,1♣t, rq⑤ ↕ C

✩✬✬✬✫✬✬✬✪
r3♣log2♣rq�log2♣tqq

t4✁Cu
, r ↕ 2h♣tq

λ♣tq log3♣tq
t2✁2Cur

� Crλ♣tq log6♣tq
t4✁3Cu

, 2h♣tq ↕ r ↕ t
2

log5♣tq
t
5

2
✁ 7

2
Cu

☎mint1, λ♣tq
t
Cu✁Cl

2

✉, r ➙ t
2

(4.171)
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Then, a straightforward, but slightly long computation gives the estimate on ⑤⑤N1♣t, rq⑤⑤L2♣rdrq from the
lemma statement. Recall that

L 1

λ♣tq
N1♣t, rq ✏ ❇rN1♣t, rq ✁

cos♣Q1♣ r
λ♣tq qq

r
N1♣t, rq

To estimate ⑤⑤L 1

λ♣tq
N1♣t, rq⑤⑤L2♣rdrq, we use the procedure outlined at the beginning of the proof to estimate

❇rua,0 and ❇rua,1. The only difference here is the following. After differentiating N1♣t, rq with respect to
r, we use the pointwise estimates on ❇ru2,2♣t, rq given in (4.160) for the region r ↕ t

2 . We use Holder’s
inequality and (4.161) to estimate the terms involving ❇ru2,2♣t, rq in the region r ➙ t

2 . ❬❭

It remains to treat N0, which we recall is defined by

N0♣t, rq ✏
cos♣2Q1♣ r

λ♣tq qq
2r2

♣sin♣2ua,0q ✁ 2ua,0q �
sin♣2Q1♣ r

λ♣tq qq
2r2

♣cos♣2ua,0q ✁ 1q (4.172)

where

ua,0♣t, rq ✏ χ↕1♣ r

h♣tq quell♣t, rq �
✂
1✁ χ↕1♣ r

h♣tq q
✡
♣w1♣t, rq � v2♣t, rq � v2,2♣t, rqq

We define uN0
to be the solution to the following equation with 0 Cauchy data at infinity.

✁❇2t uN0
� ❇2ruN0

� 1

r
❇ruN0

✁ uN0

r2
✏ N0♣t, rq (4.173)

Then, we have

Lemma 42 We have the following estimates. For 0 ↕ k ↕ 2 and 0 ↕ j ↕ 1,

⑤❇kt ❇jruN0
♣t, rq⑤ ↕

Cr1✁j
✁
supxPr100,ts ♣λ♣xq log♣xqq

✠3
log3♣tq

t4�k
, r ↕ t

2
(4.174)

⑤uN0
♣t, rq⑤ �

❜
E♣uN0

, ❇tuN0
q ↕

C
✁
supxPr100,ts ♣λ♣xq log♣xqq

✠3 ✁
supxPr100,ts

�
λ♣xq2✟✠3 log9♣tq

t2
(4.175)

Finally,

⑤❇ruN0
♣t, rq⑤

↕
C
✁
supxPr100,ts ♣λ♣xq log♣xqq

✠3
log3♣tq

t3④2①t✁ r②5④2 �
C
✁
supxPr100,ts ♣λ♣xq log♣xqq

✠3 ✁
supxPr100,ts

�
λ♣xq2✟✠3 log9♣tq

t3④2①t✁ r②17④2

�
Cλ♣tq

✁
supxPr100,ts ♣λ♣xq log♣xqq

✠2 ✁
supxPr100,ts

�
λ♣xq2✟✠2 log6♣tq

t2①t✁ r②6 ,
t

2
➔ r ➔ t

(4.176)

⑤⑤❇ruN0
♣t, rq⑤⑤L✽

r
↕ C log12♣tq

t
3

2
✁9Cu

(4.177)

Proof As in (4.121), we have

uN0
♣t, rq ✏ ✁ r

2π

➺ ✽
t

ds

➺ s✁t

0

ρdρ❛
♣s✁ tq2 ✁ ρ2

➺ 1

0

dβ

➺ 2π

0

dθIN0
♣s, rβ, ρ, θq

where we use the notation defined in (2.2). We then estimate ua,0 and its derivatives using the procedure
described in the proof of Lemma 41. This results in the following estimate for j ✏ 0, 1, 2 and k ✏ 0, 1.

⑤❇jt ❇krN0♣t, rq⑤

↕ C

✂
1

r
� 1

①t✁ r②
✡k ✂

1

t
� 1

①t✁ r②
✡j

✩✬✬✬✬✬✬✬✫✬✬✬✬✬✬✬✪

rλ♣tq3 log3♣tq
t4♣r2�λ♣tq2q , r ↕ t

2

λ♣tq
t4

♣supxPr100,ts♣λ♣xq log♣xqqq2
①t✁r②5

✁
supxPr100,ts

�
λ♣xq2✟✠2 log6♣tq

�♣supxPr100,ts♣λ♣xq log♣xqqq3 log3♣tq
r7④2①t✁r②3④2

�♣supxPr100,ts♣λ♣xq log♣xqqq3♣supxPr100,ts♣λ♣xq2qq3 log9♣tq
①t✁r②15④2t7④2 , t

2 ➔ r ➔ t

(4.178)
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We start with the region r ↕ t
2 . Using an analog of (4.165), we get

⑤uN0
♣t, rq⑤

↕ Cr

➺ ✽
t

ds

➺ s✁t

0

ρdρ❛
♣s✁ tq2 ✁ ρ2

➺ 1

0

dβ

✄
λ♣sq3 log3♣sq

s4
❛
♣λ♣sq2 � ♣ρ� rβq2q♣λ♣sq2 � ♣ρ✁ rβq2q

�
λ♣sq

✁
supxPr100,ss ♣λ♣xq log♣xqq

✠2 ✁
supxPr100,ss

�
λ♣xq2✟✠2 log6♣sq

s4♣s✁ ♣ρ� rqq6

�

✁
supxPr100,ss ♣λ♣xq log♣xqq

✠3
log3♣sq

s7④2♣s✁ ♣ρ� rqq5④2

�

✁
supxPr100,ss ♣λ♣xq log♣xqq

✠3 ✁
supxPr100,ss

�
λ♣xq2✟✠3 log9♣sq

s7④2♣s✁ ♣ρ� rqq17④2

☞✍✌
(4.179)

where we used the fact that, if 0 ↕ β ↕ 1, then,

①s✁
❛
ρ2 � r2β2 � 2rβρ cos♣θq② ➙ C ♣s✁ ♣ρ� rqq .

By a direct estimation, we get

⑤
➺ 1

0

dβ❛
λ♣sq2 � ♣rβ ✁ ρq2

1

♣λ♣sq � rβ � ρq ⑤ ↕
C log♣sq

♣r � ρq♣λ♣sq � ρq
and therefore,

r

➺ ✽
t

ds

➺ s✁t

0

ρdρ❛
♣s✁ tq2 ✁ ρ2

➺ 1

0

dβ
λ♣sq3 log3♣sq

s4 log2b♣sq
❛
♣λ♣sq2 � ♣ρ� rβq2q♣λ♣sq2 � ♣ρ✁ rβq2q

↕ Crλ♣tq3 log6♣tq
t4

The other terms of (4.179) are treated with a similar argument, using s✁♣r�ρq ➙ s✁ r✁♣s✁ tq ➙ Ct (since
r ↕ t

2 ). This gives (4.174), for k ✏ 0, j ✏ 0. To obtain (4.174) for k ✏ 1, 2 and j ✏ 0, we first note that

❇kt uN0
♣t, rq ✏ ✁ r

2π

➺ ✽
t

ds

➺ s✁t

0

ρdρ❛
♣s✁ tq2 ✁ ρ2

➺ 1

0

dβ

➺ 2π

0

dθ❇k1IN0
♣s, rβ, ρ, θq

Then, after applying (4.178), we obtain an extra factor of✄
1

s
� 1

①s✁
❛
r2β2 � ρ2 � 2rβρ cos♣θq②

☛k

↕
✂
C

s
� C

s✁ ♣r � s✁ tq
✡k

↕ C

tk

in the integrand of the expression for ❇kt uN0
♣t, rq, relative to that for uN0

, which we just estimated. This
immediately gives (4.174) for k ✏ 1, 2. Next, we use the same procedure as in (4.77), to get (4.175). Finally,
we use

❇ruN0
♣t, rq ✏ ✁1

2π

➺ ✽
t

ds

➺ s✁t

0

ρdρ❛
♣s✁ tq2 ✁ ρ2

➺ 2π

0

dθIN0
♣s, r, ρ, θq

and a similar argument used to estimate uN0
, to get (4.174) for j ✏ 1, k ✏ 0. For completeness, we show

how to estimate the most delicate integral, which is➺ ✽
t

ds

➺ s✁t

0

ρdρ❛
♣s✁ tq2 ✁ ρ2

λ♣sq3 log3♣sq
s4
❛
λ♣sq2 � ♣ρ� rq2

❛
λ♣sq2 � ♣ρ✁ rq2

Here, we use

d

dρ

✄
arctanh♣ ρ✁ r❛

a2 � ♣ρ✁ rq2 q
☛
✏ 1❛

a2 � ♣r ✁ ρq2
and estimate the integral directly. A similar argument establishes (4.176). Finally, to obtain (4.177), we
again estimate ua,0 and ❇rua,0 using the procedure described in the proof of Lemma 41 to get, for all
r → 0, θ P r0, 2πs, ρ ↕ s✁ t,

⑤IN0
♣s, r, ρ, θq⑤ ↕ C log12♣sq

s
7

2
✁9Cu

This gives

⑤❇ruN0
♣t, rq⑤ ↕ C

➺ ✽
t

ds♣s✁ tqC log12♣sq
s

7

2
✁9Cu

↕ C log12♣tq
t
3

2
✁9Cu

❬❭
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The linear error term of uN0
is eN0

defined by

eN0
♣t, rq :✏

✄
cos♣2Q1♣ r

λ♣tq qq ✁ 1

r2

☛
uN0

♣t, rq (4.180)

Then, a straightforward estimation, using Lemma 42 gives the following (recall (2.1)).

Lemma 43 We have the following estimates for k ✏ 0, 1.

⑤⑤Lk
1

λ♣tq
♣eN0

♣t, rq♣1✁m↕1♣ r

2h♣tq qqq⑤⑤L2♣rdrq

↕
Cλ♣tq2

✁
supxPr100,ts ♣λ♣xq log♣xqq

✠3
log3♣tq

t4

☎✝✆ 1

h♣tq2�k
�

✁
supxPr100,ts

�
λ♣xq2✟✠3 log6♣tq
t1�k

☞✍✌
It remains to treat m↕1♣ r

2h♣tq qeN0
♣t, rq. For the reader’s convenience, we repeat the outline (that was given

in Section 3, just below (3.5)) of the procedure to be used. We start with solving the equation

❇rruN0,ell �
1

r
❇ruN0,ell ✁

cos♣2Q 1

λ♣tq
♣rqq

r2
uN0,ell ✏ m↕1♣ r

2h♣tq qeN0
♣t, rq (4.181)

and then inserting the following function into the ansatz

uN0,corr♣t, rq :✏
✂
uN0,ell♣t, rq ✁

rλ♣tq
4

①m↕1♣Rλ♣tq
2h♣tq qeN0

♣t, Rλ♣tqq, φ0♣Rq②L2♣RdRq
✡
m↕1♣2r

t
q � v2,4♣t, rq

(4.182)
where v2,4 solves

✁❇ttv2,4 � ❇rrv2,4 � 1

r
❇rv2,4 ✁ v2,4

r2
✏ 0 (4.183)

and v2,4♣t, rqmatches rλ♣tq
4 ①m↕1♣Rλ♣tq

2h♣tq qeN0
♣t, Rλ♣tqq, φ0♣Rq②L2♣RdRq for small r. (Recall thatm↕1 was defined

in (2.1)). In particular, we choose the initial velocity, say v2,5 of v2,4 by requiring, for all t sufficiently large,

✁r
4

☎ ✁2
➺ ✽
0

ξ sin♣tξq②v2,5♣ξqdξ ✏ rλ♣tq
4

①m↕1♣Rλ♣tq
2h♣tq qeN0

♣t, Rλ♣tqq, φ0♣Rq②L2♣RdRq

We refer the reader to the discussion in Section 3, just below (3.5), for some intuition regarding this pro-
cedure.

We start by estimating uN0,ell♣t, rq ✁ rλ♣tq
4 ①m↕1♣Rλ♣tq

2h♣tq qeN0
♣t, Rλ♣tqq, φ0♣Rq②.

Lemma 44 We have the following estimates. For 0 ↕ k ↕ 1 and 0 ↕ j ↕ 2,

t
j
r
k⑤❇jt ❇kr

✂
uN0,ell♣t, rq ✁

rλ♣tq
4

①m↕1♣Rλ♣tq
2h♣tq qeN0

♣t, Rλ♣tqq, φ0♣Rq②
✡
⑤

↕
✩✫✪

Cr log3♣tq♣supxPr100,ts♣λ♣xq log♣xqqq3
t4

, r ↕ λ♣tq
C♣log♣tq�log♣ r

λ♣tq qqλ♣tq2♣supxPr100,ts♣λ♣xq log♣xqqq3 log3♣tq
rt4

, λ♣tq ➔ r

(4.184)

In addition, we have

⑤❇2r
✂
uN0,ell♣t, rq ✁

rλ♣tq
4

①m↕1♣Rλ♣tq
2h♣tq qeN0

♣t, Rλ♣tqq, φ0♣Rq②
✡
⑤

↕ C

✩✫✪ r
λ♣tq2

♣supxPr100,ts♣λ♣xq log♣xqqq3 log3♣tq
t4

, r ↕ λ♣tq
λ♣tq2♣log♣tq�log♣ r

λ♣tq qq♣supxPr100,ts♣λ♣xq log♣xqqq3 log3♣tq
r3t4

, r ➙ λ♣tq

(4.185)

Finally, for 0 ↕ k ↕ 2,

⑤❇kt ①eN0
♣t, Rλ♣tqqm↕1♣Rλ♣tq

2h♣tq q, φ0♣Rq②⑤ ↕
C log3♣tq

✁
supxPr100,ts ♣λ♣xq log♣xqq

✠3
t4�kλ♣tq

(4.186)
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Proof We consider the particular solution given by

uN0,ell♣t, rq ✏ vN0,ell♣t,
r

λ♣tq q

where

vN0,ell♣t, Rq ✏ e2♣Rq
➺ R

0

λ♣tq2m↕1♣ s

2g♣tq qeN0
♣t, sλ♣tqqφ0♣sqsds

2
✁ φ0♣Rq

➺ R

0

λ♣tq2m↕1♣ s

2g♣tq qeN0
♣t, sλ♣tqqe2♣sqsds

2

We remind the reader that eN0
is defined in (4.180). Let intN0,i♣t, rq denote the ith term on the right-

hand side of the above equation, evaluated at R ✏ r
λ♣tq . In the region r ↕ λ♣tq, we separately estimate

intN0,1, intN0,2, and rλ♣tq
4 ①m↕1♣Rλ♣tq

2h♣tq qeN0
♣t, Rλ♣tqq, φ0♣Rq②, using Lemma 42. This gives (4.184), in the

region r ↕ λ♣tq, and for k ✏ j ✏ 0. When r ➙ λ♣tq, we take advantage of the fact that

⑤e2♣Rq ✁ R

2
⑤ ↕ C

♣1� log♣Rqq
R

, R ➙ 1

In particular, we estimate intN0,2♣t, rq directly, using Lemma 42 and write

intN0,1♣t, rq ✁
rλ♣tq
4

①m↕1♣Rλ♣tq
2h♣tq qeN0

♣t, Rλ♣tqq, φ0♣Rq②

✏
✄
e2♣ r

λ♣tq q
2

✁ r

4λ♣tq

☛➺ r
λ♣tq

0

λ♣tq2m↕1♣ s

2g♣tq qeN0
♣t, sλ♣tqqφ0♣sqsds

✁ rλ♣tq
4

➺ ✽
r

λ♣tq

m↕1♣ s

2g♣tq qeN0
♣t, sλ♣tqqφ0♣sqsds

Directly estimating the integrals using Lemma 42, we obtain (4.184), in the region r ➙ λ♣tq, and k ✏ j ✏ 0.
To obtain (4.184) for k ✏ 1, we use

❇ruN0,ell♣t, rq ✏
✁φ✶0♣ r

λ♣tq q
λ♣tq

➺ r
λ♣tq

0

λ♣tq2m↕1♣ s

2g♣tq qeN0
♣t, sλ♣tqqe2♣sqsds

2

�
e✶2♣ r

λ♣tq q
λ♣tq

➺ r
λ♣tq

0

λ♣tq2m↕1♣ s

2g♣tq qeN0
♣t, sλ♣tqqφ0♣sqsds

2

and then repeat the same procedure used to obtain (4.184) for k ✏ 0. For the estimate (4.184) for j → 0,
we first re-write uN0,ell as follows, and then differentiate in t directly.

uN0,ell♣t, rq ✏ ✁φ0♣ r

λ♣tq q
➺ r

0

m↕1♣ x

2h♣tq qeN0
♣t, xqe2♣ x

λ♣tq q
xdx

2
� e2♣ r

λ♣tq q
➺ r

0

m↕1♣ x

2h♣tq qeN0
♣t, xqφ0♣ x

λ♣tq q
xdx

2

Using the same procedure as for (4.184) with j ✏ 0, and noting the symbol-type nature of the estimates in
Lemma 42, we finish the proof of (4.184) for j → 0. Finally, to get (4.185), we use the equation solved by
uN0,ell. The estimates in (4.186) follow directly from Lemma 42. ❬❭
Just after (4.135), we restricted T0 to satisfy T0 ➙ 2T2, and all of our computations and estimates are valid
for all t ➙ T0 for any T0 ➙ 2T2. At this stage, we restrict T0 so that T0 ➙ 4T2 but is otherwise arbitrary.
Then, recalling the cutoff ψ2 defined in (4.134), we define a function v2,5 by

②v2,5♣ξq ✏ 1

πξ

➺ ✽
0

λ♣tq①m↕1♣ R

2g♣tq qeN0
♣t, Rλ♣tqq, φ0♣Rq②L2♣RdRqψ2♣ t

2
q sin♣tξqdt (4.187)

Letting

F2,4♣tq ✏ ✁2
➺ ✽
0

ξ sin♣tξq②v2,5♣ξqdξ
the inversion of the sine transform gives

F2,4♣tq ✏ ✁λ♣tqψ2♣ t
2
q①m↕1♣ R

2g♣tq qeN0
♣t, Rλ♣tqq, φ0♣Rq②L2♣RdRq, t → 0

Therefore, (4.186) gives the following estimate for 0 ↕ k ↕ 2 and t → 0:

⑤❇kt F2,4♣tq⑤ ↕ C✶tt→2T2✉

✁
supxPr100,ts ♣λ♣xq log♣xqq

✠3
log3♣tq

t4�k

We have the following estimates on ②v2,5.
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Lemma 45 For 0 ↕ k ↕ 2,

⑤ξk❇kξ ②v2,5♣ξq⑤ ↕
★
C, ξ ↕ 1

100
C

ξ3✁k , ξ → 1
100

(4.188)

Proof We recall

②v2,5♣ξq ✏ ✁1
πξ

➺ ✽
0

F2,4♣tq sin♣tξqdt

In the region ξ ↕ 1
100 , we simply directly estimate as follows

⑤②v2,5♣ξq⑤ ↕ C

ξ

➺ 1

ξ

0

⑤F2,4♣tq⑤tξdt� C

ξ

➺ ✽
1

ξ

⑤F2,4♣tq⑤dt

If ξ → 1
100 , then, we have

②v2,5♣ξq ✏ 1

πξ3

➺ ✽
0

sin♣tξqF ✷
2,4♣tqdt

where we note that we can integrate by parts only twice (simply because of the estimates we have on uN0
,

which gave rise to estimates on up to two derivatives of F2,4) which is why the decay for large ξ in the
estimate (4.188) is not as strong as the analogous estimate for ②v2,0 in Lemma 4. To estimate the derivatives
of ②v2,5♣ξq, we first re-write its formula as

②v2,5♣ξq ✏ ✁1
πξ2

➺ ✽
0

F2,4♣σ
ξ
q sin♣σqdσ

and then differentiate in ξ. Then, we estimate as above. ❬❭

We define v2,4 to be the solution to the following Cauchy problem.✩✬✫✬✪
✁❇2t v2,4 � ❇2rv2,4 � 1

r ❇rv2,4 ✁
v2,4

r2 ✏ 0

v2,4♣0, rq ✏ 0

❇tv2,4♣0, rq ✏ v2,5♣rq
(4.189)

Now, we obtain estimates on v2,4♣t, rq ✁
�✁r

4 F2,4♣tq
✟

Lemma 46 For 0 ↕ k ↕ 2,

⑤❇kr
✁
v2,4♣t, rq � r

4
F2,4♣tq

✠
⑤ ↕

Cr3✁k log3♣tq
✁
supxPr100,ts ♣λ♣xq log♣xqq

✠3
t6

, r ↕ t

2
(4.190)

For 0 ↕ k ↕ 2, 0 ↕ j ↕ 1 and j � k ↕ 2.

⑤❇kt ❇jrv2,4♣t, rq⑤ ↕
Cr1✁j log3♣tq

✁
supxPr100,ts ♣λ♣xq log♣xqq

✠3
t4�k

, r ↕ t

2

For 0 ↕ k � j ↕ 2, we have the following estimate.

⑤❇kr ❇jt v2,4♣t, rq⑤ ↕
C log3♣tq

✁
supxPr100,ts ♣λ♣xq log♣xqq

✠3
❄
t①t✁ r②5④2�k�j

,
t

2
↕ r ➔ t (4.191)

Finally, for 0 ↕ k ↕ 1,

⑤❇kr v2,4♣t, rq⑤ ↕ C❄
r①t✁ r② 1

2
�k

, r → t (4.192)

Proof The proof of this lemma uses the same procedure as the proof of Lemma 26. In particular, we have

v2,4♣t, rq ✏ ✁r
2π

➺ π

0

sin2♣θqF2,4♣t� r cos♣θqqdθ (4.193)

In the region r ↕ t
2 , we have

v2,4♣t, rq � r

4
F2,4♣tq ✏ ✁r

2π

➺ π

0

sin2♣θq ♣F2,4♣t� r cos♣θqq ✁ F2,4♣tqq dθ



Global, Non-scattering solutions to the energy critical wave maps equation 79

and this immediately gives rise to (4.190).

Next, we note that

v2,4♣t, rq ✏
➺ ✽

0

dξJ1♣rξq sin♣tξq②v2,5♣ξq
which leads to the following estimate, for all r ➙ t

2 .

⑤v2,4♣t, rq⑤ ↕ C

➺ 2

r

0

dξrξ � C

➺ 1

100

1

r

dξ❄
rξ

� C

➺ ✽

1

100

dξ❄
rξ

1

ξ3
↕ C❄

r
(4.194)

The same computation leads to

⑤❇kr ❇jt v2,4♣t, rq⑤ ↕
C❄
r
, r ➙ t

2
, 0 ↕ j � k ↕ 2

On the other hand, if t → r → t
2 , we have (using (4.193))

⑤v2,4♣t, rq⑤ ↕ Cr log3♣tq
✄

sup
xPr100,ts

♣λ♣xq log♣xqq
☛3 ➺ π

0

sin2♣θqdθ
♣t� r cos♣θqq4

Recalling (4.138), the above estimate, combined with (4.194), gives (4.191). (The same procedure is used to
estimate derivatives of v2,4♣t, rq in the region t

2 ➔ r ➔ t). Finally, to establish (4.192), we use the identical
procedure used to establish the analogous estimates in Lemma 5. In particular, we do the same procedure
which starts with (4.47). (The amount of high frequency decay in the estimate (4.188) is sufficient for this).
❬❭
We can now define and estimate the linear error term associated to uN0,corr. For ease of notation, let

h2♣tq :✏ λ♣tq①m↕1♣Rλ♣tq
2h♣tq qeN0

♣t, Rλ♣tqq, φ0♣Rq②L2♣RdRq

We first recall the definition of uN0,corr in (4.182):

uN0,corr♣t, rq ✏
✂
uN0,ell♣t, rq ✁

rh2♣tq
4

✡
m↕1♣2r

t
q � v2,4♣t, rq

Then, we define the linear error term associated to uN0,corr by

eN0,corr♣t, rq ✏ ✁
✄
✁❇2t � ❇2r � 1

r
❇r ✁

cos♣2Q1♣ r
λ♣tq qq

r2

☛
uN0,corr♣t, rq �m↕1♣ r

2h♣tq qeN0
♣t, rq

We therefore get

eN0,corr♣t, rq ✏ ❇2t
✁
uN0,ell♣t, rq ✁

r

4
h2♣tq

✠
m↕1♣2r

t
q ✁ 2❇t

✁
uN0,ell

♣t, rq ✁ r

4
h2♣tq

✠
m

✶↕1♣2r
t
q ☎ 2r

t2

�
✁
uN0,ell♣t, rq ✁

r

4
h2♣tq

✠✄
m

✷↕1♣2r
t
q4r

2

t4
� 4r

t3
m

✶↕1♣2r
t
q ✁ 4m✷↕1♣2rt q

t2

☛

✁ 4❇r
✁
uN0,ell♣t, rq ✁

r

4
h2♣tq

✠ m✶↕1♣2rt q
t

✁ 1

r
m

✶↕1♣2r
t
q2
t

✁
uN0,ell ✁

r

4
h2♣tq

✠
�
✄
cos♣2Q1♣ r

λ♣tq qq ✁ 1

r2

☛✁
v2,4♣t, rq ✁ r

4
h2♣tq

✠
m↕1♣2r

t
q

�
✄
cos♣2Q1♣ r

λ♣tq qq ✁ 1

r2

☛
v2,4♣t, rq

✂
1✁m↕1♣2r

t
q
✡

where we used the fact that

♣m↕1♣2r
t
q ✁ 1q ☎m↕1♣ r

2h♣tq q ✏ 0

We write
eN0,corr♣t, rq ✏ eN0,corr,1♣t, rq � eN0,corr,2♣t, rq

where

eN0,corr,2♣t, rq ✏
✄
cos♣2Q1♣ r

λ♣tq qq ✁ 1

r2

☛
v2,4♣t, rq

✂
1✁m↕1♣2r

t
q
✡

(4.195)

Then, it turns out that eN0,corr,1 is perturbative, as per the following lemma.
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Lemma 47 For k ✏ 0, 1,

⑤⑤Lk
1

λ♣tq
♣eN0,corr,1q♣t, rq⑤⑤L2♣rdrq ↕

Cλ♣tq2✁k log9④2♣tq
t6

✄
sup

xPr100,ts
♣λ♣xq log♣xqq

☛3

Proof This is a direct consequence of Lemma 44 and 46 ❬❭

We need to add one more term to our ansatz in order to eliminate eN0,corr,2, given in (4.195). In particular,
we define uN0,corr,2 to be the solution to the following equation with 0 Cauchy data at infinity.

✁❇2t uN0,corr,2 � ❇2ruN0,corr,2 �
1

r
❇ruN0,corr,2 ✁

1

r2
uN0,corr,2 ✏ eN0,corr,2♣t, rq (4.196)

Then, we prove the following lemma.

Lemma 48 We have the following estimates on uN0,corr,2. For 0 ↕ k ↕ 1 and 0 ↕ j ↕ 1,

⑤❇jt ❇kruN0,corr,2♣t, rq⑤ ↕
Cr1✁kλ♣tq2 log3♣tq

✁
supxPr100,ts ♣λ♣xq log♣xqq

✠3
t5④2①t✁ r②7④2�j

, r ↕ t (4.197)

In addition,

⑤❇2t uN0,corr,2♣t, rq⑤ � ⑤❇2ruN0,corr,2♣t, rq⑤ ↕
Cλ♣tq2 log3♣tq

✁
supxPr100,ts ♣λ♣xq log♣xqq

✠3
①t✁ r②9④2t5④2 , r ↕ t (4.198)

For all r → 0,

⑤uN0,corr,2♣t, rq⑤ �
❜
E♣uN0,corr,2, ❇tuN0,corr,2q ↕

Cλ♣tq2 log3♣tq
✁
supxPr100,ts ♣λ♣xq log♣xqq

✠3
t3

(4.199)

Finally,

⑤⑤❇ruN0,corr,2♣t, rq⑤⑤L✽r ↕ C log6♣tq
t
5

2
✁5Cu

(4.200)

Proof As in Lemma 42, we have

uN0,corr,2♣t, rq ✏
✁r
2π

➺ ✽
t

ds

➺ s✁t

0

ρdρ❛
♣s✁ tq2 ✁ ρ2

➺ 1

0

dβ

➺ 2π

0

IeN0,corr,2♣s, rβ, ρ, θqdθ

where we recall the notation (2.2). From Lemma 46, we get the following estimate.

⑤IeN0,corr,2♣s, rβ, ρ, θq⑤ ↕ C
λ♣sq2 log3♣sq

✁
supxPr100,ss ♣λ♣xq log♣xqq

✠3
s9④2①t✁ r②7④2 , s ➙ t ➙ r, ρ ↕ s✁ t, 0 ↕ β ↕ 1

Using (4.3), we get (4.197) for k ✏ j ✏ 0. The formulae

❇ruN0,corr,2♣t, rq ✏
✁1
2π

➺ ✽
t

ds

➺ s✁t

0

ρdρ❛
♣s✁ tq2 ✁ ρ2

➺ 2π

0

dθIeN0,corr,2♣s, r, ρ, θq (4.201)

and

❇tuN0,corr,2♣t, rq ✏
✁r
2π

➺ ✽
t

ds

➺ s✁t

0

ρdρ❛
♣s✁ tq2 ✁ ρ2

➺ 1

0

dβ

➺ 2π

0

❇1IeN0,corr,2♣s, rβ, ρ, θqdθ,

along with the same procedure used to establish (4.197) for k ✏ j ✏ 0, implies (4.197) for all larger k, j in
the lemma statement. Next, we note that

uN0,corr,2♣t, rq ✏
✁1
2π

➺ ✽
0

dw

➺ w

0

ρdρ❛
w2 ✁ ρ2

➺ 2π

0

eN0,corr,2♣t� w,
❛
r2 � ρ2 � 2rρ cos♣θqq❛

r2 � ρ2 � 2rρ cos♣θq ♣r � ρ cos♣θqq dθ.

Differentiation under the integral sign, combined with the procedure used to prove (4.197) gives the estimate
on ❇2t uN0,corr,2 in (4.198). We estimate ❇2ruN0,corr,2 by directly differentiating (4.201). Next,

⑤⑤eN0,corr,2♣t, rq⑤⑤L2♣rdrq ↕
Cλ♣tq2 log3♣tq

✁
supxPr100,ts ♣λ♣xq log♣xqq

✠3
t4
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and this implies (4.199). Finally, using Lemma 46, we get

⑤IeN0,corr,2♣s, r, ρ, θq⑤ ↕
Cλ♣sq2 log6♣sq

s
9

2
✁3Cu

, s ➙ t, r → 0, ρ ↕ s✁ t, θ P r0, 2πs

and this gives

⑤❇ruN0,corr,2♣t, rq⑤ ↕ C

➺ ✽
t

ds♣s✁ tq log
6♣sq

s
9

2
✁5Cu

↕ C log6♣tq
t
5

2
✁5Cu

❬❭

Let m➙1 : RÑ R be any function satisfying

m➙1♣xq ✏
★
1, x ➙ 1

4

0, x ↕ 1
8

, m➙1 P C✽♣Rq (4.202)

Then, we will add m➙1♣ rt quN0,corr,2♣t, rq to our ansatz in order to eliminate the error term eN0,corr,2.
Accordingly, we define the error term, errN0,corr,2, associated to m➙1♣ rt quN0,corr,2♣t, rq, by

errN0,corr,2♣t, rq ✏ ✁
✄
✁❇2t � ❇2r � 1

r
❇r ✁

cos♣2Q1♣ r
λ♣tq qq

r2

☛✁
m➙1♣r

t
quN0,corr,2♣t, rq

✠
� eN0,corr,2♣t, rq

✏ ✁
✄
m✷➙1♣ rt q

t2

✂
1✁ r2

t2

✡
� m✶➙1♣ rt q

rt

✂
1✁ 2r2

t2

✡☛
uN0,corr,2♣t, rq

✁ 2m✶➙1♣ rt q
t

✁
❇ruN0,corr,2♣t, rq �

r

t
❇tuN0,corr,2♣t, rq

✠
✁
✄
1✁ cos♣2Q1♣ r

λ♣tq qq
r2

☛
m➙1♣r

t
quN0,corr,2♣t, rq

where we used the fact that

♣1✁m➙1♣r
t
qqeN0,corr,2♣t, rq ✏ 0

which follows from the definition of m➙1, and eN0,corr,2, which we recall is given in (4.195). The following
lemma shows that errN0,corr,2 is small enough to be treated with our final, perturbative argument.

Lemma 49 We have the following estimates for k ✏ 0, 1.

⑤⑤Lk
1

λ♣tq
♣errN0,corr,2q♣t, rq⑤⑤L2♣rdrq ↕

Cλ♣tq2♣1� λ♣tq2q log3♣tq
✁
supxPr100,ts ♣λ♣xq log♣xqq

✠3
t6�k

Proof We directly apply Lemma 48. The only point to note is that, to estimate

✂
1✁cos♣2Q1♣ r

λ♣tq qq
r2

✡
m➙1♣ rt quN0,corr,2♣t, rq,

we use (4.197) in the region r ↕ t✁ t3④7 and (4.199) for the region r ➙ t✁ t3④7. ❬❭

4.10 Second set of nonlinear interactions

The next step is to treat the nonlinear interactions between the newest addition to our ansatz, namely

un♣t, rq :✏ uN0
♣t, rq � uN0,corr♣t, rq �m➙1♣r

t
quN0,corr,2♣t, rq, (4.203)

and ua. The interactions between v2,4 (part of uN0,corr) and itself, along with the interactions between v2,4
and ua,0 are not quite perturbative, but the rest of the nonlinear interactions are. In order to show this,
we note that

sin♣2Q1♣ r

λ♣tq q � 2ua � 2unq ✏ 2r2 ♣N0 �N1 �N2 �N3q � cos♣2Q1♣ r

λ♣tq qq ☎ 2♣ua � unq � sin♣2Q1♣ r

λ♣tq qq

where N0 is defined in (4.172), N1 is defined in (4.169), and we define

N2♣t, rq : ✏
cos♣2Q1♣ r

λ♣tq qq
2r2

♣✁2♣ua0 � v2,4q � sin♣2♣ua,0 � v2,4qq ✁ ♣sin♣2ua,0q ✁ 2ua,0qq

�
sin♣2Q1♣ r

λ♣tq qq
2r2

♣cos♣2ua,0 � 2v2,4q ✁ cos♣2ua,0qq
(4.204)
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We therefore have

N3♣t, rq ✏
sin♣2Q1♣ r

λ♣tq qq
2r2

♣cos♣2ua � 2unq ✁ cos♣2uaq ✁ ♣cos♣2ua,0 � 2v2,4q ✁ cos♣2ua,0qqq

�
cos♣2Q1♣ r

λ♣tq qq
2r2

♣sin♣2ua � 2unq ✁ 2♣ua � unq ✁ ♣sin♣2uaq ✁ 2uaq
✁♣sin♣2ua,0 � 2v2,4q ✁ 2♣ua,0 � v2,4qq � sin♣2ua,0q ✁ 2ua,0q

where we recall the definition of ua, from (4.168). We define unew by

unew♣t, rq : ✏ un♣t, rq ✁ v2,4♣t, rq

We remark that N2 contains the interactions between v2,4 and ua,0, except for the ua,0 self-interactions,
which were already contained in N0. To give the reader an idea of how we estimate N3, we re-write its
expression as follows.

N3♣t, rq

✏
cos♣2Q1♣ r

λ♣tq qq
2r2

♣♣cos♣2uaq ✁ 1q♣♣cos♣2unewq ✁ 1q sin♣2v2,4qq
�♣cos♣2unew � 2v2,4q ✁ 1q♣sin♣2ua,0q♣cos♣2ua,1q ✁ 1qq
� sin♣2v2,4q♣cos♣2ua,0q♣cos♣2ua,1q ✁ 1qq � sin♣2ua,0q♣♣cos♣2unewq ✁ 1q cos♣2v2,4qq
�♣cos♣2unewq ✁ 1q sin♣2v2,4q ✁ 2unew � sin♣2unewqq

�
sin♣2Q1♣ r

λ♣tq qq
2r2

♣cos♣2♣ua � unqq ✁ cos♣2uaq ✁ cos♣2ua,0 � 2v2,4q � cos♣2ua,0qq

�
cos♣2Q1♣ r

λ♣tq qq
2r2

♣♣cos♣2uaq ✁ 1q sin♣2unewq cos♣2v2,4q � ♣cos♣2♣unew � v2,4qq ✁ 1q cos♣2ua,0q sin♣2ua,1q
✁ sin♣2v2,4q sin♣2ua,0q sin♣2ua,1q ✁ sin♣2ua,0q sin♣2unewq sin♣2v2,4q
� sin♣2unewq♣cos♣2v2,4q ✁ 1qq

(4.205)

Lemma 50 We have the following estimates.

⑤⑤N3♣t, rq
λ♣tq2 ⑤⑤L2♣rdrq ↕

C log24♣tq
t9④2✁15Cu✁2Cl

, ⑤⑤L 1

λ♣tq
♣N3♣t, rqq⑤⑤L2♣rdrq ↕

C log24♣tq
t9④2✁15Cu✁Cl

Proof We note that, as per (4.202),

1✁m➙1♣ r
2t
q ✏ 0, r ➙ t

2

Using Lemma 42, Lemma 44, and Lemma 48, we get

⑤unew♣t, rq⑤ ↕
✩✫✪

Cr log4♣tq♣supxPr100,ts♣λ♣xq log♣xqqq3
t4

, r ↕ t
2

♣supxPr100,ts♣λ♣xq log♣xqqq3♣supxPr100,ts♣λ♣xq2qq3 log9♣tq
t2

, t
2 ↕ r

(4.206)

We then straightforwardly estimate the expression (4.205), for N3 (as well as its r derivative), using (4.171),
(4.170), and Lemma 46 (to estimate ua,1, ua,0, and v2,4, respectively). ❬❭

Next, we add a correction, uN2
to improve the error term N2, defined in (4.204). In particular, we define

uN2
to be the solution to the following equation with 0 Cauchy data at infinity.

✁❇2t uN2
� ❇2ruN2

� 1

r
❇ruN2

✁ uN2

r2
✏ N2♣t, rq (4.207)

Then, we have the following lemma.

Lemma 51 For 0 ↕ k ↕ 1, and r ↕ t

r
k⑤❇kruN2

♣t, rq⑤

↕ Cr♣r � λ♣tqq
✂
log7♣tq
t5✁3Cu

✡
� Crλ♣tq
t2①t✁ r②4

✄
t
4Cu log8♣tq � t6Cu log12♣tq

①t✁ r②2
☛
� Cr log10♣tqt5Cu

①t✁ r②9④2t3④2

✄
1� t4Cu log8♣tq

①t✁ r②4
☛
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In addition, for all r → 0,

⑤uN2
♣t, rq⑤ �

❜
E♣uN2

, ❇tuN2
q ↕ C log18♣tq

t2✁9Cu

Finally,

⑤⑤❇ruN2
♣t, rq⑤⑤L✽r ↕ C log18♣tq

t
3

2
✁9Cu

(4.208)

Proof The lemma is proven with the same procedure as in Lemma 42, using the estimates from Lemma 46
and (4.170). ❬❭

It only remains to estimate the linear error term associated to uN2
♣t, rq as well as its nonlinear interactions

with all of the previous terms added into our ansatz. We start with the linear error term, which we denote
by eN2

:

eN2
♣t, rq :✏

✄
cos♣2Q1♣ r

λ♣tq qq ✁ 1

r2

☛
uN2

♣t, rq

By directly estimating eN2
using the estimates from Lemmas 51, we get the following lemma.

Lemma 52 For k ✏ 0, 1,

⑤⑤Lk
1

λ♣tq
♣eN2

q♣t, rq⑤⑤L2♣rdrq ↕
C log18♣tq
t5✁11Cu✁kCl

4.11 Third set of nonlinear interactions

Finally, it remains to treat the nonlinear interactions between uN2
and all of the previous terms of our

ansatz (the sum of which is equal to ua � un). I.e., it suffices to estimate N4 given by

sin♣2Q1♣ r

λ♣tq q � 2ua � 2un � 2uN2
q

✏ 2r2 ♣N0 �N1 �N2 �N3q � cos♣2Q1♣ r

λ♣tq qq ☎ 2♣ua � un � uN2
q � sin♣2Q1♣ r

λ♣tq qq � 2r2N4♣t, rq

So,

N4♣t, rq ✏ 1

2r2

✂
sin♣2Q1♣ r

λ♣tq q � 2ua � 2unq♣cos♣2uN2
q ✁ 1q � cos♣2Q1♣ r

λ♣tq qq♣sin♣2uN2
q ✁ 2uN2

q

�
✂
cos♣2Q1♣ r

λ♣tq q � 2ua � 2unq ✁ cos♣2Q1♣ r

λ♣tq qq
✡
sin♣2uN2

q
✡

Lemma 53

λ♣tq✁2⑤⑤N4♣t, rq⑤⑤L2♣rdrq ↕
C log30♣tq

t
9

2
✁2Cl✁15Cu

, ⑤⑤L 1

λ♣tq
♣N4q♣t, rq⑤⑤L2♣rdrq ↕

C log30♣tq
t
9

2
✁15Cu✁Cl

Proof We have

⑤N4♣t, rq⑤ ↕ C

r2

✂✂
rλ♣tq

♣r2 � λ♣tq2q ⑤uN2
⑤ � u

2
N2

✡
♣⑤uN2

⑤ � ⑤ua⑤ � ⑤un⑤q � ♣u2a � u
2
nq⑤uN2

⑤
✡

where we recall the definitions of ua and un in (4.168), and (4.203), respectively. We then use Lemmas 51
and 46, and estimates (4.170), (4.171), and (4.206), to estimate uN2

and the various terms in ua and un,
and then straightforwardly estimate N4, and L 1

λ♣tq
N4. ❬❭

We recall that ua is defined in (4.167), un is defined in (4.203), and uN2
is defined in (4.207), and define

our final ansatz by the following.

uansatz♣t, rq :✏ ua♣t, rq � un♣t, rq � uN2
♣t, rq (4.209)

The error term of uansatz, denoted by F5, is equal to the following.

F5♣t, rq ✏ eN0

✂
1✁m↕1♣ r

2h♣tq q
✡
� eN0,corr,1 � errN0,corr,2 �N1 �N3 � eN2

�N4 � ea (4.210)
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Lemma 54 [Estimates on the error of uansatz] There exists C5 → 0 such that, if

δ :✏ 1

2
mint4α✁ Cl ✁ 2, 1✁ 2Cu ✁ α, 4✁ 5Cu ✁ 6α,

1

2
✁ 2Cl ✁ 15Cu✉

then, 2δ → Cl, and

⑤⑤F5♣t, rq⑤⑤L2♣rdrq
λ♣tq2 ↕ C5 log

30♣tq
t4�2δ

, ⑤⑤L 1

λ♣tq
F5♣t, rq⑤⑤L2♣rdrq ↕

C log2♣tq
t2�5α

� C log6♣tq
t4�2α✁3Cu

� C log30♣tq
t9④2✁Cl✁15Cu

Proof The inequality 2δ → Cl follows from (1.7) and (4.2). The ith term in (4.210) is estimated in the ith
Lemma in the following list: Lemma 43, 47, 49, 41, 50, 52, 53, 40. ❬❭

We finish this section with some estimates on various quantities involving uansatz.

Lemma 55 We have the following estimates.

⑤⑤8λ♣tquansatz♣t, rq
r♣r2 � λ♣tq2q ⑤⑤L✽r ↕ 4

t2

✂
M

2 � C2

3

✁
3� 2π2

✠✡
� C log♣tq

t2�2α
� C log6♣tq

t
7

2
✁4Cu

(4.211)

⑤⑤uansatz♣t, rq
r

⑤⑤L✽r ↕ C log6♣tq
t
3

2
✁3Cu

⑤⑤❇ruansatz♣t, rq⑤⑤L✽r ↕ C log6♣tq
t
1

2
✁3Cu

(4.212)

⑤⑤uansatz♣t, rq❇ruansatz♣t, rq
r

⑤⑤L✽r ♣tr↕λ♣tq✉q ↕
C log7♣tq
t
5

2
✁4Cu

(4.213)

⑤⑤uansatz♣t, rq❇ruansatz♣t, rq
r2

⑤⑤L✽r ♣tr➙λ♣tq✉q ↕
C log7♣tq
t
5

2
✁3Cu

(4.214)

λ♣tq⑤⑤ ❇ruansatz♣t, rq
r2 � λ♣tq2 ⑤⑤L✽r ↕ 1

2t2

✂
M

2 � C2

3
♣3� 2π2q

✡
� C log6♣tq

t
5

2
✁4Cu

Proof We recall (4.7), and note that

8λ♣tquell♣t, Rλ♣tqq
Rλ♣tq3♣R2 � 1q ✏ 4

♣1�R2q
✂
λ✶♣tq
λ♣tq

✡2

� λ✷♣tq
λ♣tq m1♣Rq

where

m1♣Rq ✏
8Li2

�✁R2
✟� 8

3

�
3R2 � π2

✟✁ 4♣R4✁1q log♣R2�1q
R2

♣1�R2q2 :✏ num1♣Rq
♣1�R2q2

We start with

num
✶
1♣Rq ✏ 8♣1�R2q♣R2 ✁ ♣1�R2q log♣1�R2qq

R3

Then, since

❇R
✁
R

2 ✁ ♣1�R
2q log♣1�R

2q
✠
✏ ✁2R log♣1�R

2q ↕ 0

and ✁
R

2 ✁ ♣1�R
2q log♣1�R

2q
✠✞✞✞

R✏0
✏ 0

we have
R

2 ✁ ♣1�R
2q log♣1�R

2q ↕ 0, R ➙ 0

Therefore,
num

✶
1♣Rq ↕ 0, R → 0

So,
num1♣Rq ➙ num1♣1q ✏ 2π2 � 8 → 0, 0 ➔ R ↕ 1

Therefore,

R ÞÑ num1♣Rq
♣1�R2q2 ✏ m1♣Rq is non-increasing on ♣0, 1s

Hence, for 0 ↕ R ↕ 1,

⑤m1♣Rq⑤ ↕ lim
RÑ0�

m1♣Rq ✏ 4♣3� 2π2q
3
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If R ➙ 1, then,

⑤num1♣Rq⑤ ↕ ⑤num1♣1q⑤ � 8

➺ R

1

♣1� s2q♣s2 � ♣1� s2q log♣1� s2qq
s3

ds

↕ 2
✁
2� π

2 � 2R2 � 2 log♣1�R
2q � 2♣R2 � 2 log♣1�R

2qq log♣1�R
2q
✠
:✏ m2♣Rq

If 1 ↕ R ↕ 2, then,

d

dR

✂
m2♣Rq

♣1�R2q2
✡
✏ ✁8R♣π2 � log♣1�R2q♣✁3�R2 � 4 log♣1�R2qqq

♣1�R2q3 ↕ R

♣1�R2q3
✁
✁8π2 � 24 log♣5q

✠
➔ 0

Therefore, for 1 ↕ R ↕ 2,

⑤m1♣Rq⑤ ↕ ⑤num1♣Rq⑤
♣1�R2q2 ↕ m2♣Rq

♣1�R2q2 ↕ m2♣1q
22

✏ 2� π2

2
� 2 log2♣2q � log♣4q

Finally, if R ➙ 2, then,

⑤m1♣Rq⑤ ↕ m2♣Rq
♣1�R2q2 ↕ 4

5
� 2

25

✁
2� π

2
✠
� 8 log2♣5q

25
� 4 log♣5q

5
� 4 log♣5q

25
(4.215)

This gives (4.211). To prove (4.212), we estimate ❇rua♣t, rq using the procedure detailed in the proof of
Lemma 41. We then estimate ❇run♣t, rq using (4.177), (4.200), (4.206) and Lemma 46. Finally, we estimate
❇ruN2

using (4.208). With the same procedure, we also get (4.213) and (4.214). Next,

❇ruell♣t, rq
r2 � λ♣tq2

✞✞✞
r✏Rλ♣tq

✏ λ✶♣tq2
2♣1�R2qλ♣tq3 �

λ✷♣tq
λ♣tq2m3♣Rq

for

m3♣Rq ✏ 1

♣1�R2q3
✂
1� 3R2 � π2

3
♣1✁R

2q ✁ ♣1� 7R2 � 7R4 �R6q log♣1�R2q
2R2

� ♣1✁R
2qLi2♣✁R2q

✡
With a similar procedure as that used to obtain (4.215), and its analogs for other regions of R, we get

⑤m3♣Rq⑤ ↕ 3� 2π2

6
, R → 0

❬❭

The proof of our main proposition of this section, Proposition 1, is finished, once we establish (4.4). Let

vrad♣t, rq ✏ v2♣t, rq � v2,2♣t, rq � v2,4♣t, rq (4.216)

We first note that

uansatz♣t, rq ✁ vrad ✏ χ↕1♣ r

λ♣tqg♣tq q♣uell � uell,2q � ♣1✁ χ↕1♣ r

λ♣tqg♣tq qq♣w1 � vex � uw,2q

✁ χ↕1♣ r

λ♣tqg♣tq q♣v2 � v2,2q � f5,0 � fex,sub � fell,2 � f2,2 � uN0

� ♣uN0,ell ✁
rλ♣tq
4

①m↕1♣Rλ♣tq
2h♣tq qeN0

♣t, Rλ♣tqq, φ0♣Rq②L2♣RdRqqm↕1♣2r
t
q

�m➙1♣r
t
quN0,corr,2 � uN2

Since, for non-constant λ, ❇tQ 1

λ♣tq
♣rq, ❇t

✁
χ➙1♣ r

g♣tqλ♣tq qw1♣t, rq
✠
❘ L2♣rdrq, the most delicate term to estimate

will be the following, which is finite.

⑤⑤❇t
✂
Q 1

λ♣tq
♣rq � χ➙1♣ r

g♣tqλ♣tq qw1♣t, rq
✡
⑤⑤L2♣rdrq (4.217)

We note that
χ➙1♣ r

λ♣tqg♣tq q ✏ 1✁ χ↕1♣ r

λ♣tqg♣tq q ✏ 1, r ➙ 2λ♣tqg♣tq

Therefore, we will show in detail how to estimate (4.217), when the L2 norm is taken over the region
r ➙ 2g♣tqλ♣tq, since the norm in the region r ↕ 2g♣tqλ♣tq is a direct estimation, using Lemma 2. From (4.24),

w1♣t, rq ✏ ✁2

r

✁
λ♣t� rq ✁ λ♣tq ✁ rλ

✶♣t� rq
✠
� 2r

➺ ✽
1

λ
✷♣t� ryq♣y ✁

❛
y2 ✁ 1qdy (4.218)



86 Mohandas Pillai

and

Q1♣ r

λ♣tq q ✏ π ✁ 2 arctan♣λ♣tq
r

q

Therefore,

Q1♣ r

λ♣tq q � w1♣t, rq ✏ π ✁ 2 arctan♣λ♣tq
r

q � 2
λ♣tq
r

✁ 2

r

✁
λ♣t� rq ✁ rλ

✶♣t� rq
✠
� 2r

➺ ✽
1

λ
✷♣t� ryq♣y ✁

❛
y2 ✁ 1qdy

Therefore,

❇t
✂
Q1♣ r

λ♣tq q � w1♣t, rq
✡
✏ 2λ✶♣tq

r

✂
λ♣tq2

r2 � λ♣tq2
✡
✁ 2

r

✁
λ
✶♣t� rq ✁ rλ

✷♣t� rq
✠

� 2r

➺ ✽
1

λ
✸♣t� ryq♣y ✁

❛
y2 ✁ 1qdy

and this gives

⑤⑤❇t
✂
Q1♣ r

λ♣tq q � χ➙1♣ r

λ♣tqg♣tq qw1♣t, rq
✡
⑤⑤2L2♣r➙2λ♣tqg♣tq,rdrq ↕

C log2♣tq
t2✁2Cu

We complete the proof of (4.4) by using (4.7) and (4.81) (for uell), (4.9), and the formulae following it,
for uell,2, Lemma 2 (for w1), Lemma 29, for vex, Lemma 10, for uw,2, Lemma 5 for v2, Lemma 26 for v2,2,
Lemma 33, for f5,0, Lemma 35, for fex,sub, Lemma 37, for fell,2, Lemma 38, for f2,2, Lemma 42, for uN0

,
Lemma 44, Lemma 48 for uN0,corr,2, Lemma 51 for uN2

.

5 Constructing the exact solution

If we substitute

u♣t, rq ✏ Q1♣ r

λ♣tq q � uansatz♣t, rq � v6♣t, rq

into (1.1), we get

✁ ❇2t v6 � ❇2rv6 � 1

r
❇rv6 ✁

cos♣2Q1♣ r
λ♣tq qq

r2
v6 ✏ F5 � F3♣v6q (5.1)

where (note that the following expressions are essentially the same as F3 on pg. 144 of [25])

F3♣fq ✏ N♣fq � L1♣fq (5.2)

N♣fq ✏
sin

✁
2Q1♣ r

λ♣tq q � 2uansatz
✠

2r2
♣cos♣2fq ✁ 1q �

cos
✁
2Q1♣ r

λ♣tq q
✠

2r2
♣sin♣2fq ✁ 2fq

L1♣fq ✏ ✁
sin

✁
2Q1♣ r

λ♣tq q
✠

2r2
sin♣2uansatzq sin♣2fq �

cos
✁
2Q1♣ r

λ♣tq q
✠

2r2
♣cos♣2uansatzq ✁ 1q sin♣2fq (5.3)

and F5 is as in Proposition 1. We will solve (5.1) by first formally deriving the equation for y (namely (5.5))
given by

y♣t, ξq ✏ F♣❄☎v6♣t, ☎λ♣tqqq♣ξλ♣tq2q
where F denotes the distorted Fourier transform of [16] (which is defined in section 5 of [16]). Then, we
will prove that (5.5) admits a solution, say y0 (with 0 Cauchy data at infinity) which has enough regularity
to rigorously justify the statement that if v6 given by the following expression, with y ✏ y0

v6♣t, rq ✏
❝
λ♣tq
r

F
✁1

✂
y♣t, ☎

λ♣tq2 q
✡✂

r

λ♣tq
✡
, (5.4)

then, v6 is a solution to (5.1). We have (see also (5.4), (5.5), pg. 145 of [25])

❇tty � ωy ✏ ✁F♣❄☎F5♣t, ☎λ♣tqqq♣ωλ♣tq2q � F2♣yq♣t, ωq ✁ F♣❄☎F3♣v6♣yqq♣t, ☎λ♣tqqq♣ωλ♣tq2q (5.5)



Global, Non-scattering solutions to the energy critical wave maps equation 87

where v6♣yq, which appears in the argument of F3, is the expression given in (5.4), and

F2♣yq♣t, ωq ✏ ✁λ
✶♣tq
λ♣tq ❇ty♣t, ωq �

2λ✶♣tq
λ♣tq K

✂
❇1y♣t, ☎

λ♣tq2 q
✡
♣ωλ♣tq2q �

✂✁λ✷♣tq
2λ♣tq � λ✶♣tq2

4λ♣tq2
✡
y♣t, ωq

� λ✷♣tq
λ♣tq K

✂
y♣t, ☎

λ♣tq2 q
✡
♣ωλ♣tq2q � 2

λ✶♣tq2
λ♣tq2

✂
rξ❇ξ,Ks♣y♣t, ☎

λ♣tq2 qq
✡
♣ωλ♣tq2q

✁ λ✶♣tq2
λ♣tq2 K

✂
K♣y♣t, ☎

λ♣tq2 qq
✡
♣ωλ♣tq2q

(5.6)

where K is the transference operator of [16] (which is defined in section 6 of [16]). Next, we note that, by
Proposition 5.7 b of [16], there exists Cρ → 0 such that

ρ♣ωλ♣tq2q
ρ♣ωλ♣xq2q ↕ Cρ

✂
λ♣xq2
λ♣tq2 � λ♣tq2

λ♣xq2
✡

(5.7)

Recall Proposition 1, and let C✶
5 ✏ C5

❛
Cρ. Now, we define the space Z in which we will solve (5.5). Let Z

be the set of (equivalence classes) of measurable functions y : rT0,✽q ✂ ♣0,✽q Ñ R such that

y♣t, ωqt2�2δ
❛
ρ♣ωλ♣tq2q①ωλ♣tq2② P C0

t ♣rT0,✽q, L2♣dωqq
❇ty♣t, ωqt3�2δ �1�❄

ωλ♣tq✟❛ρ♣ωλ♣tq2q P C0
t ♣rT0,✽q, L2♣dωqq

and ⑤⑤y⑤⑤Z ➔ ✽ where

⑤⑤y⑤⑤Z :✏ supt➙T0

✁
t
2�2δ

✁
C
✶✁1
5 β

✁1 log✁30♣tq⑤⑤y♣t, ωq⑤⑤L2♣ρ♣ωλ♣tq2qdωq � ⑤⑤
❛
ωλ♣tq2

❛
①ωλ♣tq2②y♣t, ωq⑤⑤L2♣ρ♣ωλ♣tq2qq

✠
�t3�2δ log✁30♣tq

✁
C
✶✁1
5 β

✁1⑤⑤❇ty♣t, ωq⑤⑤L2♣ρ♣ωλ♣tq2qdωq � C
✁1
Z ⑤⑤

❛
ωλ♣tq2❇ty♣t, ωq⑤⑤L2♣ρ♣ωλ♣tq2qdωq

✠✠
(5.8)

and β and CZ are positive, but otherwise arbitrary, and will be further constrained later on. We start with
the following estimates on F2.

Lemma 56 For all y P Z, and k ✏ 0, 1, we have

⑤⑤♣ωλ♣tq2q k
2 F2♣t, ωq⑤⑤L2♣ρ♣ωλ♣tq2qdωq

↕ ⑤⑤①ωλ♣tq2②k④2❇1y♣t, ωq⑤⑤L2♣ρ♣ωλ♣tq2qdωq
⑤λ✶♣tq⑤
λ♣tq

✂
1� 2⑤⑤K⑤⑤

L♣L2, k
2

ρ q

✡
� ⑤⑤①ωλ♣tq2②k④2y♣t, ωq⑤⑤L2♣ρ♣ωλ♣tq2qdωq

✄✂
λ✶♣tq
λ♣tq

✡2 ✂
1

4
� 2⑤⑤rξ❇ξ,Ks⑤⑤

L♣L2, k
2

ρ q
� ⑤⑤K⑤⑤2

L♣L2, k
2

ρ q

✡
� ⑤λ✷♣tq⑤

λ♣tq
✂
1

2
� ⑤⑤K⑤⑤

L♣L2, k
2

ρ q

✡☛

Proof This follows directly from (5.6), and Theorem 6.1, Proposition 6.2, and Proposition 5.7 of [16]. ❬❭

For i ✏ 1, 2, let yi P Z, and define fi by

fi♣t, rq ✏
❝
λ♣tq
r

F
✁1

✂
yi♣t, ☎

λ♣tq2 q
✡✂

r

λ♣tq
✡
.

We now estimate F3♣f2q ✁ F3♣f1q.
Lemma 57 There exists C → 0 such that, for all y1, y2 P Z,
⑤⑤F �❄☎ ♣L1♣f2q ✁ L1♣f1qq ♣t, ☎λ♣tqq

✟ ♣ωλ♣tq2q⑤⑤L2♣ρ♣ωλ♣tq2qdωq

↕ ⑤⑤ ♣y2 ✁ y1q ♣t, ωq⑤⑤L2♣ρ♣ωλ♣tq2qdωq
✂
8λ♣tq⑤⑤ uansatz♣t, rq

r♣r2 � λ♣tq2q ⑤⑤L✽r � 2⑤⑤uansatz♣t, rq
r

⑤⑤2L✽r
✡

⑤⑤
❛
ωλ♣tq2F �❄☎ ♣L1♣f2q ✁ L1♣f1qq ♣t, ☎λ♣tqq

✟ ♣ωλ♣tq2q⑤⑤L2♣ρ♣ωλ♣tq2qdωq
↕ C⑤⑤

❛
①ωλ♣tq2②♣y2 ✁ y1q♣t, ωq⑤⑤L2♣ρ♣ωλ♣tq2qdωq

☎
✂
λ♣tq⑤⑤ ❇ruansatz♣t, rq

r2 � λ♣tq2 ⑤⑤L✽r � ⑤⑤uansatz♣t, rq❇ruansatz♣t, rq
r

⑤⑤L✽r ♣r↕λ♣tqq � λ♣tq⑤⑤uansatz♣t, rq❇ruansatz♣t, rq
r2

⑤⑤L✽r ♣r➙λ♣tqq

�
✂
λ♣tq⑤⑤ uansatz♣t, rq

r♣r2 � λ♣tq2q ⑤⑤L✽r � ⑤⑤uansatz♣t, rq
r

⑤⑤2L✽r
✡

☎
✁
λ♣tq2♣⑤⑤y2♣t, ωq

❛
①ωλ♣tq2②⑤⑤2L2♣ρ♣ωλ♣tq2qdωq � ⑤⑤y1♣t, ωq

❛
①ωλ♣tq2②⑤⑤2L2♣ρ♣ωλ♣tq2qdωqq � 1

✠✠
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⑤⑤F �❄☎ ♣N♣f1q ✁N♣f2qq ♣t, ☎λ♣tqq
✟ ♣ωλ♣tq2q⑤⑤L2♣ρ♣ωλ♣tq2qdωq

↕ C⑤⑤
❛
①ωλ♣tq2②♣y1 ✁ y2q♣t, ωq⑤⑤L2♣ρ♣ωλ♣tq2qdωq

☎
✁
⑤⑤①ωλ♣tq2②y1♣t, ωq⑤⑤2L2♣ρ♣ωλ♣tq2qdωq � ⑤⑤①ωλ♣tq2②y2♣t, ωq⑤⑤2L2♣ρ♣ωλ♣tq2qdωq

�
✂
⑤⑤uansatz♣t, rq

r
⑤⑤L✽r � 1

λ♣tq
✡✁

⑤⑤
❛
①ωλ♣tq2②y1♣t, ωq⑤⑤L2♣ρ♣ωλ♣tq2qdωq � ⑤⑤

❛
①ωλ♣tq2②y2♣t, ωq⑤⑤L2♣ρ♣ωλ♣tq2qdωq

✠✡

⑤⑤
❛
ωλ♣tq2F �❄☎ ♣N♣f2q ✁N♣f1qq ♣t, ☎λ♣tqq

✟ ♣ωλ♣tq2q⑤⑤L2♣ρ♣ωλ♣tq2qdωq

↕ C⑤⑤①ωλ♣tq2②♣y2 ✁ y1q♣t, ωq⑤⑤L2♣ρ♣ωλ♣tq2qdωq
✁
⑤⑤①ωλ♣tq2②y2♣t, ωq⑤⑤L2♣ρ♣ωλ♣tq2qdωq � ⑤⑤①ωλ♣tq2②y1♣t, ωq⑤⑤L2♣ρ♣ωλ♣tq2qdωq

✠
☎
✂

1

λ♣tq � ⑤⑤❇ruansatz♣t, rq⑤⑤L✽r � ⑤⑤uansatz♣t, rq
r

⑤⑤L✽r
✡

� C⑤⑤①ωλ♣tq2②♣y2 ✁ y1q♣t, ωq⑤⑤L2♣ρ♣ωλ♣tq2qdωq
✁
⑤⑤①ωλ♣tq2②y2♣t, ωq⑤⑤2L2♣ρ♣ωλ♣tq2qdωq � ⑤⑤①ωλ♣tq2②y1♣t, ωq⑤⑤2L2♣ρ♣ωλ♣tq2qdωq

✠
Proof We can read off most of the required estimates on L1 and N from (5.83), (5.84), pg. 155 of [25], along
with pgs. 180-187 of [25]. The only extra information we need is an estimate on

⑤⑤F �❄☎ ♣L1♣f2q ✁ L1♣f1qq ♣t, ☎λ♣tqq
✟ ♣ωλ♣tq2q⑤⑤L2♣ρ♣ωλ♣tq2qdωq

with quantitative constants, which is obtained by direct estimation of (5.3). ❬❭

Now, we are ready to solve (5.5). For y P Z, define T ♣yq by

T ♣yq♣t, ωq :✏
➺ ✽
t

sin♣♣x✁ tq❄ωq❄
ω

✁
✁F♣❄☎ ♣F5 � F3♣v6♣yqqq ♣x, ☎λ♣xqqq♣ωλ♣xq2q � F2♣yq♣x, ωq

✠
dx, t ➙ T0

(5.9)
Then, we have

Proposition 3 There exists β0 → 0 such that, for all β → β0, there exists C9 → 0 such that, for all CZ → C9,

there exists T1 → 0 such that, if T0 → T1, then, T is a strict contraction on B1♣0q ⑨ Z.

Proof Let y P B1♣0q ⑨ Z. Any constant C appearing in this proof is independent of y and T0. First,

⑤⑤❇kt T ♣yq♣t, ωq⑤⑤L2♣ρ♣ωλ♣tq2qdωq

↕
❛
Cρ

➺ ✽
t

♣x✁ tq1✁k

✂✁
x

t

✠Cu �
✁
x

t

✠Cl

✡ ✂ ⑤⑤F5♣x, rq⑤⑤L2♣rdrq
λ♣xq2 � ⑤⑤F♣❄☎F3♣x, ☎λ♣xqqq♣ωλ♣xq2q⑤⑤L2♣ρ♣ωλ♣xq2qdωq

�⑤⑤F2♣x, ωq⑤⑤L2♣ρ♣ωλ♣xq2qdωq
✠
dx, k ✏ 0, 1

where we used (5.7) and

⑤❇kt ♣sin♣♣x✁ tq❄ωqq ⑤❄
ω

↕ ♣x✁ tq1✁k

Since the inequality in (1.8) is strict, there exists a positive constant ǫ4 ➔ 1
100 such that (1.8) is true with

179
267 replaced by 179

267 � 4ǫ4 on the left-hand side. Then, we directly apply Proposition 1 and Lemmas 57 and
56, to get

⑤⑤❇kt T ♣yq♣t, ωq⑤⑤L2♣ρ♣ωλ♣tq2qdωq

↕ C✶5 log
30♣tq

t2�2δ�k

✄
1

5
2 ✁ Cu

� 1
5
2

☛
� βC✶5

❛
Cρ log

30♣tq
t2�k�2δ

✂
M♣1� 2⑤⑤K⑤⑤L♣L2

ρqq �M
2

✂
1

4
� 2⑤⑤rξ❇ξ,Ks⑤⑤L♣L2

ρq � ⑤⑤K⑤⑤2L♣L2
ρq

✡
�C2

✂
1

2
� ⑤⑤K⑤⑤L♣L2

ρq
✡
� 4

✂
M

2 � C2

3
♣3� 2π2q

✡✡
☎
✂

1

♣3✁ Cu � 2δ ✁ 4ǫ4q �
1

♣3✁ Cl � 2δ ✁ 4ǫ4q
✡
� C♣1� β3q log60♣tq

t2�k�2δ�δ3

↕ βC✶5 log
30♣tq

t2�k�2δ

✂
1

3
✁ ǫ3

✡
� C♣1� β3q log60♣tq

t2�k�2δ�δ3

(5.10)
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for some ǫ3 → 0, β sufficiently large, depending on ǫ3, and if T0 is further constrained to satisfy T0 → e
15

2ǫ4 .
Here, δ3 → 0 is given by

δ3 ✏ mint2α, 1✁ 6Cu, 2δ ✁ Cl✉
The ǫ4 terms in (5.10) arise from noting that x ÞÑ log30♣xq

x4ǫ4
is decreasing on ♣e 15

2ǫ4 ,✽q. The last inequality in
(5.10) is true by (1.8) and 1

♣3✁Cu�2δ✁4ǫ4q �
1

♣3✁Cl�2δ✁4ǫ4q ➔
179
267 � 2ǫ4. Next,

⑤⑤ωλ♣tq2T ♣yq♣t, ωq⑤⑤L2♣ρ♣ωλ♣tq2qdωq

↕ Cλ♣tq
➺ ✽
t

✁
x

t

✠M�Cl

✄ ⑤⑤L 1

λ♣xq
F5♣x, rq⑤⑤L2♣rdrq
λ♣xq � ⑤⑤

❛
ωλ♣xq2F♣❄☎F3♣x, ☎λ♣xqqq♣ωλ♣xq2q⑤⑤L2♣ρ♣ωλ♣xq2qdωq

�⑤⑤
❛
ωλ♣xq2F2♣x, ωq⑤⑤L2♣ρ♣ωλ♣xq2qdωq

✠
dx

↕ C

t2�2δ

✂
log2♣tq

t✁1✁2δ�5α
� log6♣tq
t1✁2δ�2α✁3Cu

� log30♣tq
t
3

2
✁2δ✁Cl✁15Cu

� ♣β3 � 1� CZq log30♣tq
t1✁Cu

✡
(5.11)

where we used ⑤ sin♣♣x✁ tq❄ωq⑤ ↕ 1. Similarly, there exist C7 → 0 and 0 ➔ ǫ1 ➔ 1
3 , both independent of CZ , y

and T0, such that

⑤⑤
❛
ωλ♣tq2❇tT ♣yq♣t, ωq⑤⑤L2♣ρ♣ωλ♣tq2qdωq

↕ C

➺ ✽
t

✁
x

t

✠M�Cl ⑤⑤
❛
ωλ♣xq2F♣❄☎F5♣x, ☎λ♣xqqq♣ωλ♣xq2q⑤⑤L2♣ρ♣ωλ♣xq2qdωqdx

�
❛
Cρ

➺ ✽
t

✂✁
x

t

✠2Cl �
✁
x

t

✠Cu�Cl

✡
⑤⑤
❛
ωλ♣xq2F2♣yq♣x, ωq⑤⑤L2♣ρ♣ωλ♣xq2qdωqdx

�
❛
Cρ

➺ ✽
t

✂✁
x

t

✠2Cl �
✁
x

t

✠Cu�Cl

✡
⑤⑤
❛
ωλ♣xq2F♣❄☎L1♣v6♣yqq♣x, ☎λ♣xqqq♣ωλ♣xq2q⑤⑤L2♣ρ♣ωλ♣xq2qdωqdx

� C

➺ ✽
t

✁
x

t

✠M�Cl ⑤⑤
❛
ωλ♣xq2F♣❄☎N♣v6♣yqq♣x, ☎λ♣xqqq♣ωλ♣xq2q⑤⑤L2♣ρ♣ωλ♣xq2qdωqdx

↕ C7♣β3 � 1q log30♣tq
t3�2δ

� CZ♣13 ✁ ǫ1q log30♣tq
t3�2δ

↕ CZ log30♣tq
t3�2δ

✂
1

3
✁ ǫ1

2

✡

(5.12)

where the second to last inequality in (5.12) follows from the strictness of the inequality in (1.9) and is
true for T0 sufficiently large, depending on absolute constants (not CZ), with a similar argument used in

(5.10). The last inequality in (5.12) is true, as long as CZ → 2C7♣β3�1q
ǫ1

, which we can enforce, recalling that
C7 and ǫ1 are independent of CZ . With the same argument used in (5.10), we get

⑤⑤
❛
ωλ♣tq2T ♣yq♣t, ωq⑤⑤L2♣ρ♣ωλ♣tq2qdωq ↕

C♣1� β3q log30♣tq
t3�2δ✁Cu

Thus, by (5.10), (5.11), and (5.12), there exists β✶ → 0 such that, for all β → β✶, there exists C6 → 0 such
that, for all CZ → C6, there exists T2 → 0 such that if T0 → T2 then, for all y P B1♣0q ⑨ Z, ⑤⑤Ty⑤⑤Z ➔ 1. So,
T maps B1♣0q into itself, and it remains to show that T is a strict contraction. If y2, y1 P B1♣0q, then, since
the expression for F2 ((5.6)) depends linearly on y, we have

T ♣y2q ✁ T ♣y1q ✏
➺ ✽
t

sin♣♣x✁ tq❄ωq❄
ω

✁
F2♣y2 ✁ y1q♣x, ωq ✁ F♣❄☎♣N♣v6♣y2qq ✁N♣v6♣y1qqq♣x, ☎λ♣xqqq♣ωλ♣xq2q

✁F♣❄☎♣L1♣v6♣y2qq ✁ L1♣v6♣y1qqq♣x, ☎λ♣xqqq♣ωλ♣xq2q
✠
dx

Then, by the same procedure used in (5.10), (5.11), and (5.12), we get, for β and CZ sufficiently large, and
some ǫ2 → 0,

⑤⑤❇kt ♣T ♣y2q ✁ T ♣y1qq ⑤⑤L2♣ρ♣ωλ♣tq2qdωq ↕ ⑤⑤y1 ✁ y2⑤⑤Z
✂
βC✶5 log

30♣tq
t2�k�2δ

✂
1

3
✁ ǫ2

✡
� C♣1� β3q log60♣tq

t2�k�2δ�δ3

✡
, k ✏ 0, 1

⑤⑤
❛
ωλ♣tq2♣T ♣y2q ✁ T ♣y1qq⑤⑤L2♣ρ♣ωλ♣tq2qdωq ↕

C♣1� β3q⑤⑤y2 ✁ y1⑤⑤Z log30♣tq
t3�2δ✁Cu

⑤⑤ωλ♣tq2♣T ♣y2q ✁ T ♣y1qq⑤⑤L2♣ρ♣ωλ♣tq2qdωq ↕
C⑤⑤y1 ✁ y2⑤⑤ZCZ log30♣tq

t3�2δ✁Cu

⑤⑤
❛
ωλ♣tq2❇t ♣T ♣y2q ✁ T ♣y1qq ⑤⑤L2♣ρ♣ωλ♣tq2qdωq ↕

CZ log30♣tq⑤⑤y1 ✁ y2⑤⑤Z
t3�2δ

✂
1

3
✁ ǫ2

✡
This completes the proof of the Proposition. ❬❭
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By Proposition 3, completeness of ♣B1♣0q, ⑤⑤☎⑤⑤Zq, and the Banach fixed point theorem, there exists β → 0 and
CZ → 0 such that, for all T0 sufficiently large, there exists y0 P B1♣0q such that T ♣y0q ✏ y0. By inspection of
(5.9), and (5.5), y0 is a solution to (5.5). By the derivation of (5.5) from (5.1), the function v6,0, defined by
(5.4) with y ✏ y0, for r → 0, is a solution to (5.1). We also note that, v6,0♣t, ☎q admits a continuous extension
to r0,✽q, by defining v6,0♣t, 0q :✏ 0, by Lemma 5.1 of [25].

6 Decomposition of the solution as in 1.11

Let
u♣t, rq :✏ Q1♣ r

λ♣tq q � uansatz♣t, rq � v6,0♣t, rq

In this section, we prove the following lemma, which finishes the proof of Theorem 1.

Lemma 58

E♣u✁Q 1

λ♣tq
✁ vrad, ❇t ♣u✁ vradqq ↕ C log2♣tq

t2✁2Cu

Proof By Lemma 5.1 of [25],

⑤⑤v6,0♣t, rq⑤⑤
✾H1
e
✏ ⑤⑤v6,0♣t, rλ♣tqq⑤⑤

✾H1
e
↕ C

✁
⑤⑤L♣v6,0♣t, rλ♣tqqq⑤⑤L2♣rdrq � ⑤⑤v6,0♣t, rλ♣tqq⑤⑤L2♣rdrq

✠
↕ Cλ♣tq⑤⑤①ωλ♣tq2②y0♣t, ωq⑤⑤L2♣ρ♣ωλ♣tq2qdωq ↕

C log30♣tq
t2�2δ✁Cu

By the transference identity,

⑤⑤❇tv6,0♣t, rq⑤⑤L2♣rdrq ↕ C
⑤λ✶♣tq⑤
λ♣tq ⑤⑤

❝
λ♣tq
r

F
✁1♣y0♣t, ☎

λ♣tq2 qq♣
r

λ♣tq q⑤⑤L2♣rdrq � C⑤⑤
❝
λ♣tq
r

F
✁1♣❇1y0♣t, ☎

λ♣tq2 qq♣
r

λ♣tq q⑤⑤L2♣rdrq

� C
⑤λ✶♣tq⑤
λ♣tq ⑤⑤

❝
λ♣tq
r

F
✁1♣K♣y0♣t, ☎

λ♣tq2 qqq♣
r

λ♣tq q⑤⑤L2♣rdrq

↕ C log30♣tq
t3�2δ✁2Cu

The lemma now follows from (4.4). ❬❭
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