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Global, Non-scattering solutions to the energy critical wave maps equation

Mohandas Pillai

Abstract

We consider the 1-equivariant energy critical wave maps problem with two-sphere target. Using a method based on
matched asymptotic expansions, we construct infinite time relaxation, blow-up, and intermediate types of solutions
that have topological degree one. More precisely, for a symbol class of admissible, time-dependent length scales, we
construct solutions which can be decomposed as a ground state harmonic map (soliton) re-scaled by an admissible
length scale, plus radiation, and small corrections which vanish (in a suitable sense) as time approaches infinity.
Our class of admissible length scales includes positive and negative powers of t, with exponents sufficiently small
in absolute value. In addition, we obtain solutions with soliton length scale undergoing damped or undamped
oscillations in a bounded set, or undergoing unbounded oscillations, for all sufficiently large t.
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1 Introduction

We consider the wave maps equation for maps @ : R'*2 — S2. This wave maps equation is the Euler-
Lagrange equation associated to

S(@) = JR2+1<6‘X¢(15, 2),00®(t, 7))y (0(1.00) i

where g denotes the round metric on S?, and the « indices are contracted using the Minkowski metric. We
consider the 1-equivariant symmetry reduction of this wave maps equation, which corresponds to writing

@y (t,x) = (sin(u(t,r)) cos(@), sin(u(t,r)) sin(¢), cos(u(t,r)))
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where (r, ¢) are polar coordinates on R2. The resulting equation for u is the following.

sin(2u)
2r2

— 04t + Orprus + %&nu — = 07 r>0 (1.1)

Sufficiently regular solutions to (1.1) satisfy the condition that the energy Eyas(u, dru) is independent of

time, where
.2
<v2 + (Oru)? + SIHTQ(U)) rdr

We note that the family of solitons, @, (r) = 2arctan(r)), for A > 0, are solutions to (1.1), which minimize
Ew n(u,0) within a class of functions u such that @, has topological degree one.

The work of Shatah and Tahvildar-Zadeh, [29], studied the Cauchy problem associated to (1.1), with
data (uo,u1) such that

oL

Ew i (u,v) = WL

(1,22) o (100 22000)y ¢ gl (82), (g1, 2z o () P200), ¢ (2

As in the previous work of the author, [25], we will say that u is a finite energy solution to (1.1) if u is a
solution to (1.1) in the sense of distributions, with &, € CP H*(R?) and 0;®,, € CP L?(R?). Throughout this
work, we will consider the following wave equation with various right-hand sides.

—6?u+63u+laru—% =0 (1.2)
T T

The quantity F(u, dru) is formally conserved for solutions to (1.2), where

oL

B(u,v) = wf (v2 +(O)® + :fé) rr (1.3)

0
The work [5] of Cote, Kenig, Lawrie, and Schlag classified all solutions, u, to (1.1), which satisfy the condition
that @, has topological degree one, and Ew(Q1,0) < Ewar(u, 0tu) < 3Ewa(Q1,0). In particular, the
result of [5] implies that any such solution which also exists globally in time can be decomposed as

Q1 (r)+op(t,r) +e(t,r) (1.4)

(D)

where ¢, solves (1.2), A(t) = o(t), t— o0, and € — 0 in an appropriate sense, as t — 0. According to [5],
at the time of its writing, there were no known constructions of solutions to (1.1) which can be decomposed
as above, for A(t) — 0 or A(t) — o as t — . To the knowledge of the author, the only currently known
examples of such solutions with A(t) — 0, are those constructed in the previous work of the author, [25].
More precisely, for all b > 0, and all functions Ao € C”([100,o0)) which satisfy the following conditions for
some constants Cj, Cm, Cp, i, > 0,

C
log”(t)

the work [25] constructs finite energy solutions to (1.1), for ¢ sufficiently large, of the form

B ) < Cmek

Cm
< Ao(t) < < —F
o(®) tklog?*1 ()

" log”(1)

k=1, t=100

u(t,r) =Q 1 (r) + vpgq(t, ) + ue(t,r)

ING)
where v,.qq solves (1.2), with E(v,qq, Otvraqq) < 0,

C

E(Umat (QL(T‘) +ue>) < m

NG

and
C

s —5

log”()v/log(log (1))
The main result of this work can be summarized as follows. For each positive A € C™((50, 00)) satisfying the
following for all ¢ sufficiently large and Cj, Cy,, C2 > 0 sufficiently small (see (1.6) for the precise conditions)

At) = Xo(t) +e(t), e

— ! (k)

t A(t) t A(t) th
this work constructs a solution to (1.1) which can be decomposed as in (1.4) (see Theorem 1 for the precise
sense in which ¢ — 0). This class of X includes positive and negative powers of t, as well as oscillatory
functions which satisfy any combination of the following (see the Remarks after Theorem 1)

liminf A(¢) = 0 or litm infA(t) = Ao >0 and limsupA(t) = A1 > 0 or limsup A(t) =00, where Ao <\

tow —%L t—o0 t—0
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(in addition to oscillatory A such that liminf; . A(t) = limsup,_,, A({) = 0 or o). The method of con-
struction of the ansatz of this work is quite different than that used in [25], see Remark 7 after Theorem 1
(as well as Section 3) for a comparison.

To the knowledge of the author, the solutions constructed in this work are the first examples of solutions
to (1.1) of the form (1.4), with A(t) — o0. Our class of solutions also enlarges the symbol class of known
infinite time blow-up rates for (1.1), and also includes solutions for which A(¢) is a power of ¢, or oscillates
as described above, see also Remarks 4, 5, 6 after Theorem 1.

Before we state our main theorem, we will have to precisely describe the set of admissible A(t), and this
will require a short discussion of the work [16] of Krieger, Schlag, and Tataru. The work [16] constructed
a continuum of finite time blow-up solutions to (1.1), with blow-up rates given by A(t) = t'*¥, for v > 3.
(Here, A(t) is the length scale of the soliton).

When completing our approximate solution to (1.1) to an exact one, we use two important notions from
[16] in this present work. First, we will use the distorted Fourier transform, F, associated to (a conjugation
of) the elliptic part of the wave equation obtained by linearizing (1.1) around @. This distorted Fourier
transform is defined in Section 5 of [16]. Second, we will use the “transference operator”,K, defined in
Section 6 of [16] by

F(roru) = —2£0¢ F (u) + K(F(u))

In order to precisely describe the set of A(t) to which our main theorem applies, we will have to define a few
absolute constants. First, we let p denote the density of the spectral measure of F, as defined in Theorem
5.3 of [16]. From Proposition 5.7b of [16], there exists C, > 0, such that, for all y,z > 0,

Second, by Theorem 6.1, and Proposition 6.2 of [16], the operators K and [£0g, K] are bounded on Lg’o‘, for

example, for a = 0, %, where

If 120 = HFELO N POl L2(ag) (1.5)

Now, we define A to be the set of positive functions A € C*™((50,)) such that there exists Ty > 100,
constants Cj, Cy,C2 = 0 satisfying (1.7), (1.8), and (1.9), and constants C, = 0 for k > 3, such that the
following hold for t > T

G N0 _ G NPl _ G
— < <= <=2 > .
where, for M := max{C}, Cy},
1
< —_— .
0<Cu<gs— (1.7)
179 2 (1 2
VG g ( MA+2IKllzz)) + M™{ 5 +2[[[60, Klll£(z2) + 1Kz (12
1 C 1 (18)
2 2 2
+Co (5 + ||IC||L(L§)> +4 (M + ?(3+ 2w ))) <3
1 1513 1
M < : :
3,/C, 1044 (1+2||’C|| " ) (1.9)
L(L,?)
Remark: Given any positive function f € C*((0,00)) such that there exists Ty > 100 so that
(k) C
20N Cre sy, t=Ty (1.10)

O
if, for d > 0, we define X\ by
1
At) = f(t9),t =50
then, A € A for d chosen sufficiently large so that the smallness constraints (1.7) through (1.9) are satisfied.

The main theorem of this paper is the following.

Theorem 1 For all A € A, there exists To > 0 such that there exists a finite energy solution, u, to (1.1) for
t = To, satisfying the following properties.

u(ty) = Quu (1) + elt,) + vraalt, ) (L.11)
where 1
(¥
_atQ'Urad + agvrad + ;aTUrad - ;;d =0, E(U'rad7 at'Urad) <



4 Mohandas Pillai

and )
Cl t
E(ue,at (QL +Ue)) < %Cg)

X
where Cy, is as in (1.6)
Remark 1. The function u. appearing in (1.11) satisfies
Ue(t, ) = Ue,0(t, ) +v6,0(t,7)
where u. o is fairly explicit, and ve,o is constructed with a fixed point argument, and satisfies

(t,7,0) > evg o(t, ) € CP ([T, ), H*(R?))

(t,7,6) = ¢ dvve o(t, ) € C([To, o0), H' (R?))
where (r,0) are polar coordinates on R2. This follows from the continuity of dilation on L?, and Lemma

10.1 of [16].

Remark 2. Our class of solutions includes infinite time relaxation solutions, in other words, solutions of
the form (1.11), for A(¢t) — oo as t approaches infinity. For example, we can apply the remark before
Theorem 1 to f(t) =t, to get that

is in A, for Cy > 0 sufficiently small.

Remark 3. We also have infinite time blow-up solutions, obtained by applying the remark before Theo-
rem 1 to f(t) = ¢t~!, which shows that

is in A, for 0 < C; sufficiently small.

Remark 4. (Oscillatory X, part 1). If 0 < Ao < A1 are two real numbers, and 0 < ap,a1 with a1 + ag < 1,
define X by

_ Xolog™®(t) + A1 log™ () N ()‘1 log™* (t) — Ao log™ (t))

At) 5 5

sin(log(log(t)))
Then, A(t) = Ao log™*°(¢). Therefore,

MB @) _ Ch
A(t) 7 thlogm 0Tt l(g)’

t=250, k=1
Since ap+ a1 < 1, there exists Ty > 100 so that (1.8),(1.9), and (1.7) are satisfied for ¢ = T (for appropriate
choices of Cy, Cy,C2). So, A € A and, by considering any combination of
ap=0o0rayg>0, anda;=0o0ra; >0
we can satisfy any combination of the following

litm inf A(t) =0 or litm inf A(t) =X and limsup A(¢) = A1 or limsup A(t) = ©
S

% & t—w t—

Remark 5. (Oscillatory A, part 2). We have solutions of the form (1.11), for A(¢) with bounded (damped or
undamped), or unbounded oscillations for all ¢ sufficiently large. To ease notation, let

1 1
v 2) = oL+ 2y + o + 200606 KLy + W) ) + = (5 + IKllecs) ) +4 (v + 53+ 269)

so that the constraint (1.8) is

179 2 1
\/CP' ﬁf(MvM 702) < g
We can, for example, let
0<co< rnin{3 am }
0 73 2m + 9
and
€0

0<a| <

2—co
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where

m = min{ 1513 89 \

31324/C,(1 + 2||1<:||£(L2,%))’ 179/Cpf(1,1,1) "
P
Then, define
_ co _ 2¢co
Cu=lal+ 52 =i Ca= (Jal + 522 ) (L fa)

and

As(t) :=t* (2 + co sin(log(t))), t=50

For instance Co = M > M?. We thus have f(M, M? Cs) < C2f(1,1,1), and this shows that (1.8),(1.9), and
(1.7) are satisfied, and A3 € A. When a = 0, this is an example of A(¢) undergoing undamped oscillations
while staying in a bounded set for all ¢ sufficiently large, if a < 0, A undergoes damped oscillations, and if
a > 0, A(t) oscillates, while staying positive, but is unbounded.

Remark 6. If f; satisfy (1.10) for j = 1,2, then, since f;(t) > 0, we have, for k > 1, and t > Ty, + T},,

(1 + )P @) _ 17
A+ 0 A1)

Therefore, by the remark before Theorem 1, we get

k (k)
O 27O _ Dy
TN fa(t) S

As(t) = (f1 + f2) (t%) e A, d> 0, sufficiently large

In particular, for any co > 0, some sufficiently small ¢;,a > 0, and a sufficiently large d > 0,
_ . log(t
o+t (2 +c1 sm(%())) eA

Remark 7. We provide a quick comparison and contrast of the method used in this work and the previous
work of the author [25]. In [25], the leading order part of A(t), say Ao(t) was chosen from an appropriate
class of functions. Then, the radiation vy was inserted into the ansatz by hand, and its data was chosen so
as to allow A(t) = Ao(¢) to be the leading order solution to an equation resulting from enforcing that the

principal part of an error term is orthogonal to ¢O(W)'

Here, the exact A(t) is prescribed from the beginning of the argument. An accurate approximate solution
is obtained by constructing approximate solutions for small and large r, matching them in an intermediate
region, and then, writing a function which interpolates between these two approximate solutions (see Sec-
tion 3 for more information). This method was inspired by the discussions (in the textbooks of Nayfeh, [23],
and Bender-Orszag, [3]) of matched asymptotic expansions for one-dimensional boundary value problems
with a singular perturbation.

In order to be able to match our approximate solutions in the intermediate region, we need to use gen-
eral solutions to various inhomogeneous wave equations, for example a particular solution which has zero
Cauchy data at infinity, plus a free wave (radiation). The radiation component of our solution in this
work therefore naturally arises from the fact that we need to use general solutions to inhomogeneous wave
equations when doing matching, rather than being inserted into the ansatz by hand. The relation between
the radiation component of our solution and A(¢) is thus determined by a matching condition, rather than
by enforcing an orthogonality condition. Despite the very different approaches to the construction of the
ansatz, and different methods of determining the relation between A(¢) and the radiation, we still have the
same leading order relation in this work between A(t) and the radiation (for example, when we restrict

attention to A(t) = m for b > 0 so that A is in the admissible class of rates from [25]) as we had in [25].

(See the discussion following (3.4)).

Finally, the method of completion of our ansatz to an exact solution to (1.1) uses a simpler version of
the same argument used in the previous work of the author [25]. (As we will describe in the summary of
the proof, there is no orthogonality condition on the error term of our ansatz here, as opposed to [25],
and this is what makes the iteration here simpler, at the expense of requiring a more accurate ansatz). We
remark again that this final step of completing the ansatz to an exact solution uses the distorted Fourier
transform, and the transference identity from [16].

Now, we briefly mention previous results which are related to this work. For the energy critical wave
maps problem with S™ target, the work [32] of Tao proved global regularity at small energies. The works
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[30] and [31], of Sterbenz and Tataru established a threshold theorem for the energy critical wave maps
equation with a general compact Riemannian manifold target. The work [4], of Cote, Kenig, Lawrie, and
Schlag, proved a threshold theorem for the l-equivariant, energy critical wave maps problem with degree
zero data, and a refined threshold, which accounts for the topological degree. The work [22], of Lawrie and
Oh proved an analogous result, but without the equivariance restriction.

The works of Jendrej, and Jendrej, Lawrie [11], [13], constructed and classified, respectively, topological
degree zero, threshold energy solutions to the k-equivariant wave maps equation for k > 2. The subsequent
works of Jendrej and Lawrie, [12] and [14] give a more precise classification of the topological degree 0,
threshold energy solutions to the k-equivariant critical wave map problem with S? target, for k > 4. The
work, [28], of Rodriguez, classifies threshold energy degree 0 solutions to the l-equivariant wave maps
problem, in particular obtaining a finite-time blow-up solution in this setting.

As previously mentioned, the work [16] of Krieger, Schlag, and Tataru constructed finite time blow-up
solutions to (1.1) with a continuum of possible rates. The subsequent work of Gao and Krieger, [8], extended
the set of solutions constructed in [16] to include ones for which A(t) = t!7¥, for v > 0. The stability of
these solutions under equivariant perturbations was studied in the work of Krieger and Miao [18], and under
non-equivariant perturbations, in the recent work of Krieger, Miao, and Schlag, [19]. The works [17] and
[21] of Krieger, Schlag, and Tataru are analogs of [16] for an equivariant reduction of the 4 + 1-dimensional
Yang-Mills equation with gauge group SO(4), and the 3 + 1-dimensional quintic, focusing semilinear wave
equation (for which the work [7] of Donninger, Huang, Krieger, and Schlag also constructed finite time
blow-up solutions with soliton length scale given by A(t) = ¢} ¥ sin(log(t) | with v > 3, leo] « 1). The work
[20] extends the solutions of [21], analogously to [8] for the solutions in [16]. We also remark that the work
of Perelman [24] constructs solutions of a similar form to those of [16], for the 1-equivariant Schrodinger
map problem with domain R'*2 and target S2. In addition, the work of Bahouri, Marachli, and Perelman,
[1], constructs finite time blow-up solutions to the vanishing mean curvature flow in Minkowski space, with
blow-up rate given by a power of ¢, using a matching procedure. In addition, the work of Rodnianski and
Sterbenz, [27], constructed finite time blow-up solutions to the k equivariant wave maps problem, for k > 4.
Finite time blow-up solutions to the critical wave maps equation in all equivariance classes, as well as for
the 4 + 1 dimensional Yang-Mills equation with gauge group SO(4) were constructed in the work [26] of
Raphael and Rodnianski. The work [15] of Jendrej, Lawrie, and Rodriguez also constructed new finite time
blow-up solutions to (1.1). The work of Bejenaru, Krieger, and Tataru, [2] constructed solutions to (1.1)
with energy close to that of @1, and whose modulated soliton component has length scale bounded away
from 0 and infinity, for all time.

The work [6], of Donninger and Krieger, constructed infinite time blow-up and infinite time relaxation
solutions to the quintic, focusing, energy critical semilinear wave equation on R'*3, with rates At) = t#,
where |u| is sufficiently small, but p can be positive or negative. The procedure used in this work is
quite different than that used in [6]. We also note that the work of Gustafson, Nakanishi, and Tsai, [10],
constructs solutions to the 2-equivariant harmonic map heat flow with soliton length scale having several
possible asymptotic behaviors, including approaching zero, a positive constant, infinity, or having various
combinations of finite or infinite lim sup with positive or zero liminf as ¢ approaches infinity.
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2 Notation
2.1 Index of terms in the ansatz

Our final ansatz will involve several functions, which are listed here, along with the references to the
equations they solve.
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Function | Definition Purpose

Ul (4.6) Corrects (?%Qﬁ for small r

Uell,2 (4.8) Corrects linear error term of wu,y;

U (4.19) Corrects (?%Qﬁ for large r

U2 (4.49) Corrects part of the linear error term of u, (and contributes to matching)
V2,2 (4.50) Allows for third order matching

f5,0 (4.156) Eliminates the part of the matching error term given in (4.152)

fex,sub (4.157) Corrects part of the linear error term of u,, (but does not contribute to matching)
fell,2 Lemma 37 Corrects part of linear error term of u.; o

f2,2 (4.166) Corrects linear error term of v 2

UN, (4.173) Corrects principal part (given in (4.172)) of first set of nonlinear interactions
UN,,corr (4.181) — (4.183) | Corrects the linear error term of uy;,

UNg,corr2 | (4.196) Corrects the linear error term of part of upn, corr

UN, (4.207) Corrects the principal part of the second set of nonlinear interactions.

The first five corrections in the list above are combined into ue and wwave, which are defined in (4.139),
and are further combined into wue, which is defined in (4.141). u. is combined with other corrections, to
form wuq, which is defined in (4.167). The sum of the rest of the terms in the listing above are combined
into the sum of u, (defined in (4.203)), and uy;, ).

If f € C*(D), and a € D, we let Py o(f)(z) = X5_o L2 (2 — a)’.
We use the notation

1y = 10 1B ary + 113

We let m<1 denote the following cutoff function.
90 17 T < %
mgi(z) € C7([0,0)), 0<m<i(x) <1, mgi(z) = o1 (2.1)
T =

We will use the notation

2
It (s,y,p,0) = 02.f(s,\/p? + ¥ + 2py cos(0)) 0 Ef;; T;Z;egis(e))

pICh \/P? + y% + 2py cos(0)) (1 _ (y+pcos(9)?
P2 + 42 + 2py cos(0) p? +y? + 2py cos(0)

>, s>M,y,p=0,y#p,0¢€[0,2n]
(2.2)

for various choices of M » 1, and functions f : (M, ©) x [0,0) — R throughout the paper.
We denote, by I, and K, the modified Bessel functions of the first and second kind, respectively. We use

the standard definition of {-), namely
() =1+ 2?2

The wave maps equation, (1.1), linearized around Q1 (r) takes the form

_ cos(Qi(r))

—Opu—L*Lu =0, L(f) = fl(r) r

f(r)
where (-)* denotes the L?(rdr) adjoint. We will also use the notation

os(Q1 (535)
N e

We denote by ez and ¢g the following two linearly independent solutions to L*L(u) = 0:

4 2 _
ea) = TR o) = 20 (2.3

T 14+ R2?
We will use ~ to denote the Hankel transform of order 1:

0

o) = f 1 (r€) f (r)rr

0
Recalling the definition of ||f||L§,a given in the introduction, (1.5), we will use the notation ||A||£(Li,a) to

denote the operator norm of a bounded operator A : L%’O‘ — L%’a‘ We use the standard notation for the

dilogarithm function.
z p—
Lis(z) = J _Mdy
0 Y



8 Mohandas Pillai

3 Summary of the Proof

We start by letting A € A, and considering, for ¢ sufficiently large, the modulated soliton Qﬁ(r). The
error term of the modulated soliton is 6,5262%(7"). We fix g(t) = t*, where a satisfies (4.2). (A priori, one

might not know what constraints a must satisfy, and one could leave « general, until the very end of the
argument, at which point the constraints would be clear. This is what was originally done, but, this results
in many long expressions that can be greatly simplified once the constraints (4.2) are imposed. This is why
we impose the constraints from the beginning of the argument. We will provide some intuition about why
(4.2) has its particular form throughout this section).

Our first step is to obtain an approximate solution whose error term is small for all r, to the following
linear equation

1 cos(ZQl()\L))
—Otur + Orrur + ;@-m - T(t)ul = 3$Q1(ﬁ)
Our plan is to start with a function of the form
T r
U’C(tvr) = Xél(m)usmallr + (1 - Xél(m))ulargera h(t) = g(t))\(t) (31)

where ugmaiir and Ujqrger are good approximate solutions for » < h(t) and h(t) < r, respectively, and whose
asymptotic expansions for large ¢ in the region r ~ h(t) “match”. Here, by “match”, we mean that the
terms at various orders in the aforementioned expansions of our corrections take the form

J
Z le )r* log(r)’

for various choices of j > 0, and the difference between these sums associated to usmairr and ujqrger is equal
to zero (see sections 4.3, 4.5, 4.6, 4.7).

We start with a correction to the soliton error term that we will use for » < h(t). (In other words, we
start with a part of ugmpq,.) More precisely, we consider the general solution (in general, in order to do
the matching process described above, one must keep sufficiently many degrees of freedom in the various
corrections, which will be later fixed when we impose the matching) to the ODE

) 1 cos(2Q 1 .
Ortient + - Ortiens — Tuell =0;Q m( r)

which does not have a singularity near the origin. (This ODE was also considered in the previous works
[16], [26], but we will end up choosing a different solution to this ODE than what was considered in the
aforementioned Works) The general solution that does not have a singularity at the origin depends on one
function of t, say, c1(t), see (4.7). The linear error term associated to uey is d7uey(t, 7). (Even though uey
will appear in our ansatz only after being multiplied by XQ(ﬁ)’ it is still useful for us to consider the
linear error term associated to uey alone, when trying to improve the error term in the region r < h(t)).
Strictly speaking, this error term depends on c; (t), which is not yet chosen, but we can still give the reader
an idea of the size of the error term of u.;; by noting that

)
et e ()25 oL <

|a252uell(tar)| < (J) ’
CA CA(t) Z L 7(])\ e >\( )(1 +10g(>\€t)))7 Y0

Even for r < A(t), the error term of u.; is not quite good enough for our purposes. (The error term, Fs, of
our final ansatz, satisfies the following estimates, for some § > 0 (see Lemma 54)).

15 L2 rary _ Cslog™ (1) . . _ Clog’(t) | Clog®(t) Clog® (t)
A(1)2 = Tav2s 0 I % 522 (rar) < 12+5a t4+20—3C, ' 49/2-C;—15C,

(3.2)

Therefore, we correct the error term dZuey; (¢, 7), with a second term in wgy,q, by considering a particular
solution to the following ODE (see (4.10)).

c0s(2Q1 (515))

1 2
Orruen,2(t,7) + ;aruell,z(t, T) — 2 uer,2(t, ) = O uey (t, )
Defining wsymqii,r = el + telr,2 Will turn out to be sufficient for us. (Strictly speaking, the error terms of u.

depend not only on the quality of the matching between wgp,qur and wugrger (for the terms which involve



Global, Non-scattering solutions to the energy critical wave maps equation 9

derivatives of x<1) but also on ¢1(t), since uey 2 depends on c1(t). Also, c1(t) is chosen during a second
order matching process, and is not specifically chosen to make the error of ue; o small, see section 4.6).

After defining w2, we start defining the various components of u;4yger- In particular, we consider the
solution to

1 u r
_6ttUw + arer + ;a/ru“} — T—;U = a?Ql(m)
given by
ww (t,7) = v1(t,7) + va(t,r)
where v, solves
—0tv1 + Orrv +1an U _ 20 (L)
ttU1 rrU1 Trl 7"2 t 1A(t)

with 0 Cauchy data at infinity, and va solves the following Cauchy problem

—0va + Orrvz + %@1}2 % =0
v2(0) =0
0rv2(0,7) = va,0(r)

where v € L?(rdr) will be chosen later. We remark that, in general, one needs to use general solutions,
rather than particular solutions, to the inhomogeneous equations defining corrections, if one wishes to use
T

the matching procedure described above. We also remark that, if A'(t) # 0, then, (1 —x<1 (m))uw has infi-

nite kinetic energy, as does Qﬁ (r) (because 6%2% (r) ¢ L?(rdr), for X (t) # 0). However, there is sufficient
cancellation in the sum vi (t,)+Q s_(r) for large r, so that o ((1 —x<1 (o () + Qs (1")) € L2(rdr),

see (4.218). (The function w; appearing in (4.218) is such that o ((1 —Xgl(ﬁ)) (vi(t,r) —wr (t,r))) €

L2(rdr)).

Next, we do the “first order matching” as follows. As long as v2,0(€) satisfies, for example, that |v2,0(£)] <
E= 1—(1)0 (so that the integral below in (3.3) converges), the leading contributions of ue; (¢, 7), v1(t,7),

C
€3>
nd v2(¢,7) in the region r ~ h(t) are, respectively:

3
a

Uell, firstorder = ﬁ (%Al(t)Z + )‘(t)A/I(t) _ )\(t))\”(t) log()\Lt))>

2t n A\ s 8} 14 s)ds
o girtonden(t.r) = (log@) + 3 ) Vo) 4 [ E =X D s praroprog(y 4 |7

V2, firstorder = _TT <_2J;) fSlH(tf)@(f)dg) (33)

Note that the rlog(r) terms from ucj, firstorder a0d V1 firstorder already match. Therefore, it is possible to
achieve

Uell, firstorder = V1, firstorder + V2, firstorder

by choosing va o appropriately. In particular, we choose vz o to satisfy the following equation, for all suffi-
ciently large t:

P() = =2 | esin)mn©)de

_4 <<1og(2) - %) M (8) + ft (Lsg = j”(t)> ds + N (t) 1og(ﬁ) + LT X;(f)fs - ;}2)2 )

(3.4)

In particular, we have
__ -1 (* .
02,0(€) = —J H(t)sin(t&)dt
7€ Jo

with

i) =4 ( (1082 - L ¥ + [ N =XMWY gy 4 371y 10g( Loy + [ Xds _NOTY
2 ¢ s—t A(t) 9t S—t 2A(t)

where 1 is a relatively unimportant cutoff defined in (4.42).
The function vz is the leading part of our radiation in the matching region. (The other free waves va 2
and vz 4 which are part of our ansatz and added later on in the argument, have much more decay in ¢ in

the entire region, for instance, r < %, and contribute to higher-order matching). Therefore, the relation
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between the leading part of the radiation in the matching region, and A(¢) is determined by the matching
of leading terms from parts of ugyqu, With corresponding terms from w4 ger--

Note that the integral on the left-hand side of (3.4) is the precise integral which determined the relation
between the radiation and the leading order dynamics of A(t) in the previous work of the author, [25] (see
Section 3, pg. 6 of [25], keeping in mind that Ki(z) = 2 + O (z|log(z)|), =z — 0), though it arose from
very different considerations, namely the inner product of the linear error term of vy with ¢O(W) rather
than the near origin behavior of v2. The fact that there is a connection between these two quantities also
appears in (4.166), pg. 34 of [25].

Despite the very different approaches between the two works, if we consider the example, for b > 0,
A(t) = Ap(t) = m then, ), is in the admissible class of A in the work [25] (as described in the discussion

following (1.4)), and the leading order relation between A, (¢) and the radiation of this work is the same as

that of [25] (see the third equation of pg. 6 of [25]).
We provide some intuition on why the o appearing in g(t) = t* has the constraints (4.2). Note that, if
ueyi (t, 1) and ww(t,r) are roughly of the same size in a region r ~ ¢(t) for some ¢(t) » A(t), then, firstly, the
(t.,r)

linear error term of wy (t,7) is &?uey (t,7), and is roughly on the order of u"”t

W—;T)))_l uw(t,r), is roughly %uw(t, r), for r ~ ¢(t). Since we assume that ue;(¢,7)

. The linear error term of
uw(t,r) is

and ww(t,r) are roughly of the same size for r ~ ¢(t), the linear error terms would be of comparable size if

q(t) ~ EA)

This is not quite exactly what we have, but provides some intuition on why it is natural to expect that
% + % appears as part of (4.2). In addition, we choose to eliminate certain error terms of borderline size
which become large if g(¢) is taken too large In this way, certain other error terms of borderline size can
be made perturbative by having « > 2 + €. On the other hand, some other, less delicate errors become
too large if g(t) is taken to be too large, Wthh is why (4.2) involves an upper bound on « as well.

We then add a second term in w4y ger, Damely, uy,2 + v2,2 (see (4.49)), which corrects the linear error
term associated to wi + v2, where wy is part of vi, and is defined in (4.22). We also remark that w2 is
a particular solution to an inhomogeneous wave equation (and it has zero Cauchy data at infinity), while
v2,2 is a free wave, which we will choose later on, as part of a higher-order matching process.

Next, we consider the terms in an expansion of ujgrger and Ugmqir in the matching region, which
are roughly of size r® logk(r), multiplied by expressions that involve roughly four derivatives of A(¢). In
particular, we note that ue; o, w1, and va, respectively, contribute the following terms when expanded in
the matching region.

3 )\I t 2 3
vtz maintts 575) = 528 (g + V'O =N Olog(55) ) + 5N ()
wrcutiemain(t) = g X0+ 5 (¥7(0) (10g(2) + 5 ) ~og)" (1) + og(t3" 1)
0,

+JQt Allll( ) A”” J”l A””( )dS
+ s—t s—1

U2,cubic,main(t7 T) 32 F ( )

Note that these quantities do not involve any degrees of freedom (like, for instance, integration constants,
or free waves) which can be tuned so as to guarantee matching. In fact, the coefficient of 73 in V2 cubic,main
is precisely one-eighth of two time derivatives of the r coefficient in vy f;rstorder (recall (3.3)). On the other
hand, the r® coefficient of Vell,2,0,main (ts ﬁ) and that of wy cybic,main(t,r) are not precisely one-eighth of
two time derivatives of the r coefficients of ucy, firstorder(t,7) and vy firstorder(t, ), respectively. However,
the 73 coefficient of the difference of these two functions is precisely one-eighth of two time derivatives
of the r coefficient of ey, firstorder (t;7) — V1, firstorder(t,7). Note the important cancellation between the
23N (t) terms when vy 2 0.main (¢, () @nd W1 cubic,main (t,7) are subtracted. Therefore, the matching

of the 73 terms is already accomplished with our above choice of v2 0. In other words, by the choice of vz o,
we have

r
'Uell,270,main(t, m) - (wl,cubic7main (tz T) + U2,cubic,main(t7 T)) =0

Next, we consider the terms arising from expansions of ugmqir and ujgpger in the matching region which

k
are roughly of size M multiplied by roughly two derivatives of A(¢). These terms coming from uey;, vw,
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and u,2, respectively, are

Vell,sub,cont (t7 T)
_a®A®) = 2N ()’

AN (t) (—610g(r)(4 log(A(t)) + 1) + 6log(A())(2log(A(t)) + 1) + 121og? (r) + n2 + 12)
6r

Ve cont (t,7) = % (log(r) (—4ABN ()7 = 201X (1)) + 4A(B) Iog (AN (1)® = A(*N"(8) + 2X(1)°\" (1) log(A(1)))

and

2 et 0.cont (1) = 2 (log(r) (“AON (67 = XO2X" () = 22()° logAE)X" (1))
FAW) og(ADIX (1) + A1) Log(A()A” (1) + A1) log” (A(B)A" (1)
1 1

+ A(0)? log? (r) N (t) + 5)\(1&)2)\"(1‘/) - EWQ)\(t)Q)\”(t)>

Note that the only free parameter we can choose in this expression is ¢1, which multiplies @ On the

log"* (r)
T

other hand, both w5 ¢11.0,cont and Vez, cont involve terms, for k£ > 0. It therefore appears that it is

not possible to enforce
Vell,sub,cont (t,r) = Vex,cont (t,r) + U, 2,ell,0,cont (t, )

2
by choosing c¢1(t) appropriately. However, it turns out that the @ and M terms from veyp sub,cont

happen to exactly match those from vez,cont + w2 ell,0,cont, Which therefore allows us to choose c1(t) as just
discussed. (This “automatic” matching of the logarithmically higher order terms for large r is reminiscent
of what we saw at the first order as well, recall the remark after (3.3)). In other words, we have

A(t) (=6e1(t) + (34 2102) AN () + 9N (1)?
Vell,sub,cont (t7 T) - (uw,2,ell70,cont (t7 T) + Ue.’],‘7(,'07lt(t7 T)) == ( ( or ) )

which vanishes if ” 2
ci(t) := g)\l(t)Z + w + %)\(t))\”(t)

From the point of view of constructing an approximate solution of the form (3.1), the matching conditions
are needed to reduce the size of error terms involving derivatives of x <1 (%) Our three matching conditions
thus far reduce these error terms, but not quite enough, so that we need to do a third order matching. We
remark that the previous two matching conditions are called second order matching, part 1 and 2 in the
paper, since, if g(t) = A/A(t)t (again, we do not quite exactly choose g(t) = g(t), but g is the scale at which
the elliptic and wave corrections are expected to have comparably sized error terms) then, the terms from

the previous two matching conditions are of comparable size:

JOAA®) _A®F MO A0

4 t5/2 7 t2 . g(t) 5/2

The third order matching involves comparing terms from w2, v1, uw,2, and vz 2, which are on the order
of rlogk (r), for 0 < k < 3, multiplied by terms involving roughly four derivatives of A. The computations of
these terms are lengthy, and the terms themselves result in very long expressions, which we will not repro-
duce here. We remark that the u; o contributions are given in (4.129), and the v1 and w2 contributions
are individually computed in Lemmas 12, 13, 15, (4.126) combined with Lemma 22, and (4.119), combined
with Lemma 19. A very careful inspection reveals that, for j = 1,2, 3 the rlog’ (r) terms involved in (4.129)
exactly match those terms from the v; and w2 contributions (which we denote, in (4.130), by ww,3) see
(4.131). We therefore again see the “automatic” matching of logarithmically higher order in r (for large
r) terms involved in the expansions. Precisely because of this “automatic” matching, we can choose the
data for vz 2 in a similar way for va in order to do the third order matching, which is precisely stated in
Proposition 2.

There are a few more corrections needed to be added to our ansatz in order to improve the linear terms,
namely f5,0, fex,sub> feir,2, and f2 2. These corrections are not as delicate as those mentioned up to this
point, so we refer the reader to Section 2.1 and the equation references therein. We also remark that the
cutoff, x<1(z) = 1 — x=1(x), where x>1(z) is chosen in Lemma 27, so as to satisfy certain orthogonality
conditions, for technical reasons.
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At this stage, our ansatz is

Ua (t7 7”) = uC(t, T) + f5-,0(t7 T) + fe:p7sub(t7 7“) + fell,Q(tv T) + f2,2(t7 7”)

with

wet) = X1 (g oet:7) + (1= xa () ) et

and
uC(ta T) = Uell (tv T) + uell,?(t7 T)v uﬂ)CLUe(tv T) = Uw (tv T) + U‘w-,Z(t’ T) + ’U272(t7 T)

The ansatz uq has a linear error term, eq,, which is small enough for our purposes, see Lemma 40.
We also remark that the radiation component of our ansatz thus far, is v2 + v2 2. On the other hand, the
nonlinear error terms of u, are not small enough. For example, the va cubic self-interactions near the cone
are roughly of the size

cos(2Q1(x)) ' c 1
|— 570 (sin(2v2) — 202) | < 5 - 75

More precisely, the set of nonlinear interactions between the terms of uq is decomposed into Ng + N1, where
N7 is perturbative, and

2Q1 (7= in(2Q1 (<L~
No(t,r) = W (Sin(2ua.0) — 2ua,0) + w (cos(2ua0) — 1)
where
00, 7) = <1 g o) + (1 - xa(%)) (wr(t,7) + valt,7) + v2,2(t,7))

First, we define up, to be the solution to the following equation with zero Cauchy data at infinity.

1 U
—6t2uN0 + 63711\/0 + ;&«uNO — TJ\;O = No(t,r) (3.5)

cos(2Q1 ( A(t) ))—1

The linear error term of uy, is ey, = =z

up,, which is small for r such that h(t) < r (see

Lemma 43 for the precise details). Therefore, the addition of uy, reduces us to the task of eliminating an
error term which is localized to the region r < h(t). We carry out this task as follows. We start with solving
the equation

cos(2Q ()

r2

1
OrruN, ell + ;aruzvo,eu - UNyell = m§1(2h(t))€Nn (t, )

and then inserting the following function into the ansatz

N core(ts7) = (uN07ezz(t,r> — e (e, (8 RAW) ¢0<R>>Lz<m>) mes(

2r
t

) + 1)2’4(15, T)

where vg 4 solves

V2,4

1
—04tv2,4 + Orrv2,4 + ;57*02,4 — ré =0

and v2,4(t, ) matches %<m<1(§2\((tt)) Jen, (£, RA(t)), ¢0(R))12(rar) for small r. (where m«, is a cutoff, and

is otherwise unimportant). In particular, we choose the initial velocity, say v2,5 of v2,4 by requiring, for all
t sufficiently large,

T2 [ esin (s = P\ mar (it ew, (1 FAO), 0B sy

This is analogous to how we chose the data for va. The point is that the error term of va 4(¢,r) is worst

for small 7, while that of up, ¢ (t,7) is worst for large 7. On the other hand, the error term of vz 4(¢,7) —

7->\4(t) <m<1(§2((tt)))61\fo (t, RA()), ¢0(R))L2(Rrqr) is much smaller than the error term of vz 4(t,r) alone, for

small r, and the error term of
N et (£7) = r>\4(t) (mei( 12%2‘(%) en, (t, RA(t)), do (R)>L2(RdR) is much smaller than the error term of up, ¢ (t,7)

alone for large r. So, the term T)\4(t)<m<1(12%2((tt)))e]\]o(t7 RA(1)), ¢0(R))12(rRar) cancels the worst behavior of

both vz 4 and up, ¢ in the regions where the associated error terms are largest. This is again reminiscent of
arguments related to matched asymptotic expansions for one-dimensional boundary value problems with a
singular perturbation, see [23]. After adding one more term to our ansatz, namely mz1(§)un,, corr,2(t,7), in
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order to eliminate the linear error term associated to v 4 for large r, we have the improved ansatz uq + un,
where

T
Un (tz 7“) = UN, (ta T) + uNo,corr(t» T) + m?l(;)ul\/'o,corrﬂ(tv T)

At this stage, the linear error terms of uq + un are perturbative, but, some nonlinear interactions are not.
In particular, the correction uy, involves a free wave, vz 4(t, ), which has no more pointwise decay in ¢ near
the cone than ve did. The nonlinear error terms of uq + un are decomposed into Ny + N3, where

cos(2Q1 (7))
Nao(t,r) : = %(—Z(uao +v2,4) +8in(2(ta,0 +v2,4)) — (8in(2ua,0) — 2ta,0))
+ M(COS(ZUG,,O +2v2,4) — c08(2ua,0))

2r2

and the precise formula for N3 is not important for the purposes of summarizing the main points of the
argument. N3 is defined in (4.205), and is perturbative.

We recall that, after adding u, into our ansatz, we had perturbative linear error terms, and some non-
perturbative nonlinear error terms, collected together in Np. After adding the correction to Ny, namely
un, we again have perturbative linear error terms, and some non-perturbative nonlinear error terms, and
the pointwise in ¢ decay of the nonlinear self interactions of va 4(¢,r) near the cone are no better than that
of the nonlinear self interactions of va(¢,7) near the cone. It thus might not be clear why uq + upn is an
improvement over u,. However, the point is that v 4(¢,7) has much more decay in the variable (¢t —r), in
the region % < r £ t, than does v2 (compare Lemma 46, and Lemma 5). This allows us to eliminate Na
with a correction, uy,, which solves the following equation with 0 Cauchy data at infinity.

1 U
—8t2uN2 + 6$uN2 + ;aﬂ% - 7“]\2[2 = Na(t,r)
It is possible to eliminate N2 in this manner because the decay of v 4(¢,7) in the variable (¢t — r) inside
the cone leads to uy, having decay in the variable (¢t — r) inside the light-cone, see Lemma 51. This decay

cos(2Q1(ﬁ))—1

of uy, is important because the linear error term of uy;, is < - ) up, (t,7), which is thus most

delicate in the region, for example, r < %, because

|<CO%2Q1(J5))—1

r2

OX(t)?
)uMUJN< O ), >

DO o+

On the other hand, when r < %, then, ﬁ < %, which means that the aforementioned decay of up, (¢,7)
in the variable (¢t —r), for r < ¢, makes the linear error term associated to u,, much smaller than otherwise.

Without this extra decay in the variable (¢t —r), we might have had to eliminate N2 by using a matching
process involving a free wave, as in un, corr, but then, the nonlinear self interactions of this free wave would
yet again produce nonlinear error terms which are not perturbative from the point of view of our procedure.

The key point here is that uy, has zero Cauchy data at infinity, and much more than L pointwise decay

Vi

near the cone.
The linear error term of uy, is perturbative, see Lemma 52. Our final ansatz is

Uansatz (t7 T) = Uaq (t7 T) + Un (t7 T) + UN, (t7 T)

and its nonlinear error terms are perturbative, see Lemma 53, and recall the importance of uy, eliminating
No, while also not containing a free wave (which leads to improved decay of uy, near the cone).

At this stage, we are ready to complete the ansatz to an exact solution of (1.1). This step is done by
following a simpler version of the analogous step in [25], with one extra detail. For completeness, we pro-
vide a summary of this step here. Substituting

r
u(t,r) = Ql(m) + uansatz(t, ) +ve(t, )
into (1.1), we get
cos(2Q1(xm))
— 6752’1)6 + 67%116 + %arUG — 7)\(””6 = F5 + Fg(’vs) (3'6)

r2

where F3 is defined in (5.2), and contains error terms involving ve both linearly and nonlinearly, and F5 is
the error term of ugnsatz, which we recall satisfies (3.2). We remark that (3.2) is satisfied for § > 0 partly
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due to (1.7) and (4.2). We will solve (3.6) by first formally deriving the equation for y (namely (3.8)) given
by

y(t,€) = F(Vvs(t, A1) (EX(1))
where F denotes the distorted Fourier transform of [16] (which is defined in section 5 of [16]). Then, we

will prove that (3.8) admits a solution, say yo (with 0 Cauchy data at infinity) which has enough regularity
to rigorously justify the statement that if vg given by the following expression, with y = yo

st =27 (e ) () (37

then, vg is a solution to (3.6). We have (see also (5.4), (5.5), pg. 145 of [25])

duy +wy = —F(V-F5(t, A0))@AB)?) + Fa () (t,w) — F(V-Fa(ve()) (¢, - A1) (@A()?) (3.8)

where vg(y), which appears in the argument of F3, is the expression given in (3.7), and

N 22 : -\ N (t)?
R)(t.) == R (ot ) a0 + (S + 407 ) e

)\”(t) . .
St (e ) ) @307 + 23 0 (1606 K100 57520 ) (A@?)
)2

t
=30 (ke 550 ) (A0

where K is the transference operator of [16] (which is defined in section 6 of [16]). We solve (3.8) in the
space Z , defined in (5.8), by showing that the operator

T(y)(t,w) := LI W

is a strict contraction on B1(0) < Z. This process essentially only uses Minkowski’s inequality, as well as the
following simple property of the density of the spectral measure of F: (5.7). The reason why this iteration
is simpler than that of [25] is that here, there is no orthogonality condition on the error which we need
to exploit, unlike in [25]. On the other hand, there is one extra detail which is present here, that is not
present in [25]. One of the estimates we have on F; is the following (see Lemma 56 for the complete set of
estimates).

aty(t, w) +

+

(—F W (Fs + Fa(ws(y)) (@, A@)(@A(@)) + Fa(y)(@,w) ) dz (3.9)

F2(t )l L2 (p(wn(t)?)d)

< |01yt Wl L2 (p(wr(e)?)dw) N (1+2||’C||L(Lg))

*n 2 X' @) (1
+ 1y W)l L2 (pwr)?)dw) (( O > (Z +2/[[€0¢, Kl £(22) + ||’C||c(Lg)> * 30 (5 + ||’C||L(Lg))>
(3.10)

Using the symbol-type estimates on A(t), we see that the terms of (3.10) are of critical size, noting that (3.9)
roughly loses two powers of ¢ decay relative to its integrand. Therefore, we need the constants appearing
in the symbol type estimates on X to be sufficiently small in order to guarantee that (3.9) is a contraction.
All of the terms estimated in Lemmas 57 and 56 with quantitative constants are where (1.7), (4.2), (1.8)

EXRIO e

and (1.9) are used. This detail does not appear in [25] because, there, 3OS Fosm

4 Construction of the Ansatz

Let X € A. By definition of A, there exists Ty > 100 such that (1.6) is true. Let Tz > ¢°°°(1 + Ty) be such

that
t

100’
Let Ty = T> be otherwise arbitrary. For the whole paper, we work in the region ¢t = Tp, and C denotes a
constant, independent of Ty, unless otherwise specified. We define g by

t%/\(t) < t=T, (4.1)

g(t) 1=t
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where «a is any number satisfying

oz>l+9 oz<§—§C’u—9

227 6 6 (42)

(Note that (1.7) implies that 2 — 2Cy — ¢ > 1 + &, s0 such « as above exists. We also remind the reader
that some intuition behind this choice of g is given in Section 3.) We note that the definition of A implies
that, for x >t > T,

z\~Ct _ Azx) _ fx\Cu ) . . SUPye[100,2] (A(¥) log(y)) 2\ Cu log(x)
(?) $W< <?) , tm— —% is decreasing, Y $C’<?) Tog () (4.3)

36 SUPye(100,4 (A(Y) log(y))
All of the properties of our ansatz which will be used in the later sections are listed in the following
proposition, whose proof is completed in this section.

Proposition 1 [Approzimate solution to (1.1)] There exists T3 > 0 so that, for all Ty > T3, there exists
Uansatz € CQ([To,OO) x (0,0)), satisfying Lemma 55 such that, if u(t,7) = Q _1_(r) + uvansatz (¢, 1), then,

(%)
2 2 1 sin(2u)
—0;u + Oru + ;5ru — 52 = —F5(t,7)
where, for
6= %mm{lla —-C;—2,1-2Cy — a,4 —5C,, — 6a, % —2C; — 15Cy}

and Cs,C =0,
I1F5(t )| L2 (rary _ Cslog®0(t) Clog?(t)  Clogb(t) Clog®*(t)

A(1)2 = T av2s 0 HLﬁF"’(t’ Mz (rary < 12+5a t4+2a—3Cy " 49/2-C;—15C,’ t2To
Moreover, there exists vyqq Satisfying

1 U
_atQ'Urad + agvrad + ;a""u’l‘ad - ;;d =0, E(vrad7 atvrad) <
C'log(t C'log(t
120Q g+ amsatz — el L) < B [ltansats — aallgy < AoB) (4.4)

Remark. The function ugnsatz is explicitly given in (4.209), where we refer the reader to section 2.1 for
the definitions of the constituent functions. Fy is explicitly given in (4.210) and v,.qq is given in (4.216), in
terms of va,v2,2, and vz 4, which are defined in (4.37) (with va,o given in (4.43)), (4.50) (with vz 3 given in
(4.134)), and (4.189) (with v 5 given in (4.187)), respectively.

We begin by constructing an approximate solution to

2 _r_
COS( Ql()\(t)))ul _ a%Ql(ﬁ) (45)

starting by matching explicit solutions to certain approximations of the operator on the left-hand side.

1
—0ttu1 + Orru1 + —0Orug — 5
r r

4.1 Small r corrections
4.1.1 First Iteration

We first consider the ODE

cos(2Q1(x77))
Orriteyy + %(%ueu - %Ueu = 5t2Q1()\€t) )y uen(t,0) =0 (4.6)
We get .
Ui (t, 1) = vep (L, m)
h
where 1/02 " C1 (t)R
ven(t, R) = fi(B)A (1) + MON () f2(R) + 7 R (4.7)
and
_ R(-2+ R?) _ R*(—1+2R?) — (-1 + R*) log(1 + R?) + 2R?Li>(—R?)

and c; will be chosen later.
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4.1.2 Second iteration

We define a second order correction, ucj 2(t,r), which is useful in the region of small », by the following
solution to

1 cos(2Q1 (xfp)
Orrtten 2 (t,7) + 0ruen o (t,7) = ——3 O uea(tr) = & <vezz(t: W)> (48)
Ueir,2(t, 1) = veu,2(t, ﬁ) (4.9)

where v o is defined by

_ _$o(R) fR 2 22 T JR 22 T s¢o(s)
Ver,2(t, R) = 2 ()05 | veu(t, )\(t)) r:SA(t)SQ(S)dS + e2(R) . ()07 | veu(t, /\(t)) o) 2 ds
(4.10)
In order to compute explicit terms in an expansion of vy 2(t, R) for large R, we let
1
Veirigr(t, R) = §R/\'(t)2 + RA() (1 —log(R)A" (1) (4.11)

be the leading behavior of v (¢, R) for large R (recall (4.7)), and define

erro(t,r) = A()207 (v (t, —) ) = ra(t)?67 X()* () = N (1) log(——)
o\t = t ell,lgR\!s )\(t) - t 2A(t) g A(t)
To understand vy 2(t, R) for large R, we let
R R
Vell.2.0(t, R) = —M J' erro(t, sA(t))sea(s)ds + e2(R) J erro(t, sA(t)) s¢o(s) ds
o 2 0 O 2

We get

Veut,2,0(t, R) = f3(R) (2)\’(t)4 — TARN ()X (£) + 4NE)2 N (1) + 6A(8)*N ()N (t)) + fA(R)A®)A™ () (4.12)

where
R o2 (R? (—2+6R? + R*) —2(—1 + R*)log(1 + R?) + 4R?Liz(—R?))
f3(R) = 32(R + R3)
— 1 2 2 4 2 4
1B = 335y (R (—12 +44R? + TR —4(—2 +6R*+ R )log(R))

+8 (—1 + R4> (—1 + log(R)) log(1 + R?)
+4 (—1 +4R? + R* — 4R? 1og(R)) Lio(—R?) + 16R2Li3(—R2))
For later convenience, we split

T ' T
Veil,2,0(t; m) = Vel,2,0,main (b @) + soln1 (t, m)

and write
Veil,2(t, R) = Vei1,2,0,main (t, R) + solni(t, R) 4+ solna(t, R) (4.13)
where
3 3 ! 2
vtz maint9) = =240 (8 (G0 + X104 N0 los(0) ) = X () log(eA®) + 54"(0)) (414
solni(t,s) = (f3(s) — f3.0(s)) <2A’(t)4 — TN ()N (1) + 4@V ()2 + 6AE) 2N ()N (t)) w15)
+ (fals) = fa,0(s)) A()* X" (1)
and 5 .
fao(@) = T, fao(e) = g5a°(7 — log(x))
Finally,
solng (t7 W) = uell72(t7 5) - Uell,Q,O,main(tv w) - 30ln1(t7 E)
bo(53) [ e2(555) 30 (4.16)
=~ [ et x@eataaa + —50 [ erni(.axO)avo(@)da
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where

erri(t,r) = A(t)* 67 (Uell(ta ﬁ) — Vet igr(t, ﬁ))

Note in particular, that

3 104\2
vunzolts 50) = 0 (o + X0 = X0 log

r

A

)> " 3%7“3/\””(25) ) (rlogz(T)) , r—oow (4.17)

This observation will be important when we match the small r corrections to the large r corrections. Also,
the leading behavior of errq(¢,r) in the region r > A(t) is err1,0 given by

errio(t,r) = A(t)202 ()\(t) (_—3>\'(t)2 REGLS0) (—(2 + %) +log(~1 ) - 2log2(L)) + @»

2r r A(t) A(t) r
(4.18)
4.2 First Wave Iteration
We consider the PDE
Ot + Orrtty + 2 Orun — 2 = 22Q1 (~) (4.19)
ttUw rrUw rrw 7’2 t 1)\(t) .
We consider the solution u,, that can be written as
uw (t,r) = v1(t,r) + valt,r) (4.20)
where v solves
o1 + Brevr + L aper — U = 02Qu ()
ttV1 rrU1 rrl T2_t1A(t)
with 0 Cauchy data at infinity, and vy solves
—0ttv2 + Orrv2 + %arvz — :—3 =0
v2(0) =0
0tv2(0, 1) = va,0(r)
where v2,0 € L?(rdr) will be chosen later. To describe v1(t,r), we decompose it as
vi(t,r) = wi(t,r) + vex(t,T) (4.21)
where w1y solves
1 -2\ (¢
—nw1 + dprwr + —Opwy — g = ®) (4.22)
r r r

with 0 Cauchy data at infinity. We use the same procedure used in Section 4.2 of [25] to obtain (4.25) of
[25], to derive the following expression which can be directly checked to be the solution to (4.22) with 0
Cauchy data at infinity.

pdp 2 (r + pcos(9))

L s—1
wi(tyr) = =% J'/ dsj I L R— (—2)\”(5))
7 2m )y 0o AJ(s—1t)2—p2Jo r2 + p? + 2rpcos(9)

e " s—t
f ds)\ (s) pdp (1 +sgn(r? — p2))
t

rodo Ns=n2=p? (4.23)
2 (M7 2 (* ”
= ;L dsA (8)(S_t)+74[s+rd5)\ (s) ((s—t)— (s—t)2—r2)

do

r

_2 7 2 *© n
= ()\(t Fr) = () — N (t + 7’)) + 2 LM ds)\"(s) ((s —) =S5 —1)2 = 7"2)

r

For r # p, we can evaluate the following integral using Cauchy’s residue theorem).
P g g g Yy

2 pcos(f) +r ™ (sgn (r* — p?) +1)
. do =
o p%+ 2prcos(d) +r? r

First, we note that wi (t,-) € C*((0,00)). This follows from

wi(t,r) = _72 ()\(t +7r) = At) —rN(t+ 7")) +2r Lf N (t +ry) (y — /Y2 - 1) dy (4.24)
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and the smoothness and symbol type estimates on A. Next, we introduce some notation. Let

2t (A”(S) _ )\”(t)) €L )\”(s)ds

1 " " 14
, = - - 4.25
W1 main(t,r) =7 <log(2) + 2> AN(t) + rﬁ - ds + X" (¢) log(r) + rLt G—1) (4.25)
wl,sub(tv T) = w1 (tv T) - wl,main(tv T) (426)
_ 3 3ym r m 1 " "
Wi cubic;main(t, 1) = gor"AT(E) + o | AT() ( log(2) + 5 | —log(r)AT(t) + log()A™(?)
2t NN N ]
+J A (s) = A" (%) ds—f—f A (s)ds)
t s—t 2t s—1

The following lemma will be useful later on when we match the small r and large r corrections.

Lemma 1l For0<j<8,0<k<3 andr <t,

) 57(6) (¢
‘agaf <w1,sub(t7 T) — W1, cubic,main (ty 7a) - TTm() (5 + 10g(8))

A0 (s) — XO) (1)) ds w0
5 (J'Qt ( (s) (t)) 2O @) log(h) + )\(6)(5)615))
t T

_@ s—t 2t s—t

T—k
< SO (tog(t) + l1og(r)

Proof As a first step, we start with (4.24), and subtract and add the Taylor polynomial centered at 0, of
degree 3, of A(t +7) — A(t) — 7N (t+7) + g)\"(t + r), regarded as a function of r for each fixed t. For the
integral term of (4.24), we first note that

Therefore, we have

© ., — ” Xt +ry) ° i 1
2r Nt +ry)(y — Ny — 1)dy = 2r Tdy + 2r Nt+ry) ly—A/y2—1— 50 dy (4.27)
1 1

1 Y

After integrating by parts twice in the second integral on the right-hand side, we get the following expression
for w1, whose second line is equal to w1 mqin(t,7), and the other terms vanish faster than O(rlog(r)) as r
approaches zero.

2 3
wi(t,r) = _72 </\(t Fr) =A@ — N (E+7) + %)\”(t +r)— %A”’(t))
1\ (W' (s) = N (1)) " t P\ (s)ds
+r (1og(2) + 5) N (8) + TL =) g5 472" (1) 108( 1) + rLt s
+r(log(2) + 5) (Nt +7) = X'(1) — rA"(1))
2 t+r i A\ — (s — m
- (g v rostgn ) (W - ¥) - [T FOZHAZAEOR g (129
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Repeating this process, we make manifest the terms composing w1 cupic,main(t,7), and recall the notation
for Py o(f) given just above (2.2).

wi(t,r) =7 (log(2) + 1) )\”(t) +7r fjt Mds + )’ (¢ )log(;) JI N(s)ds
4

2 s—t 2t s—t

2 (At A — N () + ﬁ)\”(t +r)— fx”(t) — Dy — ix’”’(t)
r 2 6 8 20
3
Ty m 1 i 3\m
+ 3 A7) (log(Z) > + 32" A1)

. (log(2) " %) (N(t+7) = Py oo X'+ 7))

=t (5 +108(2) ) ("(e+ ) = Paolr = X0 4 17)

(4.29)
J-t-&-r ()\/I(s) _ PS,t()\”)(S))
—r ds
i s—t
3 2t //// n
T " r //// A A ( )
- 8 log (r) A" (t) + = S log f . _t ds
f )\/m ﬁ t+r )\m/( )\//// _ (s ) )\/////( )ds
9t S— t 8 s—1
- % (41— 6010g(2)) ()\”” (t+7) = X" (1) = X" (1))
299 —4201log(2)) . 1 [ mn
+ )\I/I/I 7)) — )\///// ¢ 1“4( 4= \ S\K r,s—t ds
(X" @+ = a""(0)) o L) AR s =)

1 5 r2 r? rt 2 3 / r2 r2
K(r,w) 1440<24 <1—< l—ﬁﬁ-wﬁ‘@ + 332r-w 1-— 1—E+ﬁ
4 ?"2 2 3 1 1"2 7"2
—64rw<q/1—wz—1>+240rw <log<2 <1+ 1_w2>>+w2 (4.30)
2
+180r wlog<1 <1+ 1— ;2>>>

Finally, to prove the lemma, we treat (4.29) line by line. We show in detail how we obtain the leading part
of terms of different forms. In the following computations, we work in the region r < ¢. By Taylor’s theorem,
we have

-2 1 r? " r’ m r " r° i _)\(6)(15)7‘5 )\(7) (t)?"6
|7 (/\(t-‘rr)—)\(t)—r)\ (t+r)+§)\ (t+r)—€>\ (t)—g)\ (t)—%/\ (t))— 36 ~ o8 |

r7/\(t)
t8

where we used (4.3), and the fact that r < ¢. Other terms in (4.29) of the same form are treated with the
same argument. Next, we have

T _ds (=" 04, B0 ) = NG YRSAINGS
_TL (s—t)< a1 0+ g A7Ot))__T(4~24A6(’5”@“(&)

and

‘_T JH_,. ()\//(S) _ P37t()\”)(5)) o <_T tt+7- ds (MA(G) (t) + M)\W) (ﬂ))‘

t s—1t

_ | B TJ~t+r ()\”(8) _ P57t()\”)(8)) ds -
t

s—t

where we again used Taylor’s theorem and (4.3). Again, other terms in (4.29) of the same form are treated
with the same argument. Finally, we recall (4.30), and note that

TG 7,,8
K(?”,U))—@:O<$>, w — O
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Therefore, with the same procedure used in (4.27),

1 o’e]
= A6 (s)K(r,s—t)ds
T Jt4r
6) (5) — A(©®) ]
(2 (00 -200) b7 AO )
_ Jt” (X96) =200 — (s -\ ds — T AD gy - 20 (7 (218 = 315108(2))
192 J, (s—1) 192 2880
AD(t+7) = 2D (t))
(7) 06 (2413 — 3465 10g(2)) ( 6 ~
+ X () 100800 + 100800 r> (2413 — 34651og(2))
_((6) 3B (D) 5 (218 — 31510g(2)) _64(7) (218 — 3151o0g(2))
(Xt + 1) =2 1) = AV (1)) r B oA (1) B +Err
where
IErr| < 1J“ W ($)A® (s)|ds
T Jtr
and, for y = 574

7
r 128 1 1 T 1\ 1779 T 1 5
- 1 1)y thylog (aqf1- w42 ) =2 (V1o 4 1
W) 2880( 35( 7 )“ 5y °g<2 213) 7 35 < 2 T2 >y
1518 1 11 5 8 1 111 ;
L O I “Sai- = LN R
35 < U ( 8t 22 " >>y 7 y2+<16y6+8y4+2y2> )y
3 1
2

54 5,0 1 _ L L))
+12 (2 +5y)<32y4+4y2+10g 1= 5+ g

We finish the proof by noting that

W(s)zO(%), §—

and estimating Err. The higher derivatives are treated similarly. o

We remark that wi main(t,7), along with the expression of u.; will end up determining the data for the
free wave va, as w1 main(t,7) Will turn out to be the leading contribution of w; in the matching region.

We also record some pointwise estimates on w; and some of its derivatives.

Lemma 2 We have the following estimates. For 0 < k<8 and 0 < j < 3,

; <
|0F dlwn (¢,7)] < G TS
T

Cr'7IA(t)(log(t)+| log(r)])
(4.31)

C
i+5¢F SUPge[t,t41] (A=),

Proof By Lemma 1, it suffices to consider (4.24) in the region r > t:

|§ ()\’(t Fr)r— (At +7) — /\(t))) | < g ()\(t 1)+ M) + rAf::)) < g (At +7) + A1)

Then, we have

2r Jy N(t+ry) (y =2 = 1) dyl < Crat+r) F ( dy  _ Cr\(t+r)log(1+ ;)
1Y

1 t+r t+ry)  rt+r) t
<M’ r>t
t+r

where we used (4.3). Then, using the symbol type estimates on A, we get (4.31) forr >¢. o
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Next, we study vez ((4.21)) which solves the following equation with 0 Cauchy data at infinity.

_ 72 2 1 _ Vex _ 2 T 2>‘”(t) -
at Vex + aT'Uez + ;ar’l}ex TT = at Q](W) + - = RHS(t,T) (4.32)
From integral identities of [9], we have
BT 20" (¢
RHS(t,6) = 26Ko@NON (0 + 2 (1 - x0 K1 €30) (433)
We have the following representation formula for ves
Lemma 3 Forr > 0, vex is given by
* s} -
vealt, 1) = f dsf deJ1 (rE) sin((t — 5)¢) RIS (s, )
t 0 (4.34)

= [ MO RS gac - [ aence [ a2 A 0
o ¢ 0 t 3

Proof From asymptotics of K1, Ko (see [9]), we get, for k=0, 1,2,

— NOEE?)
RS (5,0)] < 020 ﬁaog(ws)» (4.35)
Using
e < -, r>0
r§

the first integral on the right-hand side of (4.34) converges absolutely, for r > 0. Therefore, by the Fubini
theorem, and (4.35), we get

J; e, dencrne— eI e = [ e[ dsnoan (S ) R

= [ O RS0 gac - [ aence [ a0 2 RmS 0
o & 0 t 3

Moreover, using

[sin((t —s)€)| <1, |[Ji(z)|<C, |Ji(z)|< x>0, and (4.35)

<
Va©
the dominated convergence theorem shows that, for all ro > 0, and k = 1,2,

& o0 ; _ o o o€ ; _ o
o ([ aenoe [ e e RmTs69)| | = [ deob el [ e RS0
0 t 3 r=ro Jo t g
A similar argument shows that we can differentiate (up to) two times under the integral sign in ¢. Then, by
the fact that the first term on the second line of (4.34) is a solution to the following ODE (which follows,
for instance, by direct computation of the integral, see (4.36))

f

r2

O2f + %(%f - RHS(t,r)

we see that ves, the solution to (4.32) with zero Cauchy data at infinity, is given by (4.34). o

Note that we could not have done the integration by parts in the s variable to get from the first to the second
line of (4.34) if RHS was simply equal to ﬁle(ﬁ), because there would be too large of a singularity of
the resulting integrand at low frequencies. Also, we have

= J1(ré)
0 £
- (2)\(15) log(1 + Agf)Q W ()2 + ()\(t)2 log(1 + Agf)Q) +r2log(1 + M)) )\”(t))
- 2r

er,ell(ta T) = RHS(t,ﬁ)df

(4.36)

Finally, we consider vy solving
—04tv2 + Orrv2 + L0rv2 — B =
v2(0) =0
01v2(0) = w20
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-1
with v2,0 not yet chosen. For w20 € C°((0,0)) such that |v2.0(¢)] < C (\/E(l + 5)5/2> , we have

™

va(t,r) = J-% J1(r) sin(t€)va,0(£)dE = —ﬁ sin?(0) (F(t + rcos(0)) + F(t — r cos(0))) df
0 5 . 0 ) (4.37)
= %F(t) - ;—QF”(t) - % L sin?(0) (F(t +rcos(0)) — F(t) — % cosQ(H)F"(t)> 9
where .
P = -2 [ esine)mae)de (4.38)

and we used

Ji(@) =2 J " cos(x cos(6)) sin®(0)do
0

4.3 First order matching

The error of ugy in solving (4.5) is 02uey (t, ), which is large for large values of r, because of the growth

COS(QQl(ﬁ))fl

of uey(t,r) for large r. On the other hand, the error of w, in solving (4.5) is e

Uw (t, 7).

The largest contributions to this error term arise from substituting the second line of (4.28) plus (4.37),
expanded for r « t into uy in the error term. Therefore, we choose the data for v2 in order to match the
largest contributions to the error terms of u.y; and .. In particular, vey 14, defined in (4.11) and recalled
here makes the largest contribution to the error term of wy;:

1

vyt ) = R (508 + MON' (0 = XOX () og(R) (4:30)

Also, as per Lemma 1, the main contribution from w1 (¢,7) is

2t (M o\ LA (s)ds
W1, main (1) =71 (10g(2) + %) N () + rJ; (Os) =N ®) (t))ds + X' (1) log(;) + rf A(s)d

s—t 2 (S_t)

and, by (4.37), the main contribution from vs is

Camaintr) = - (=2 [ " esin i (€)ac) (.40)

Note that the rlog(r) terms from wy pqin and (4.39) (where R = ﬁ) are the same. Therefore, it is possible
to choose v2,0 so that (for example, for all ¢ > 2T))

r

¢ (%'@2 AN () = AOX" () log( 5.5

m 2 )> = V2, main (t7 r) + W1, main (tv T)

In other words, we choose vz to satisfy, for all ¢t > 2T},

g f " esin(1)070 () de
0 (4.41)

—4 <<1og(2) - %) N (8) + ft (M) ds + \'(1) log(ﬁ) + Lj A;(f)fs - 2;(2)2 )

We remind the reader of the discussion following (3.4), which compares (4.41) to the relation between the
radiation and A(¢t) from [25].

Since we will only need (4.41) to be true for all ¢ sufficiently large, and since we only assume A(t) to be
defined for ¢ > 50, we use a (relatively unimportant) cutoff, 1 € C* ([0, 0)), such that

0, z<T)
= , 0< <1 4.42
(z) {1’ o> 27, () ( )

where we recall that Ty > 100 is part of the definition of A, see (1.6), and then get

7@ = o1 [ s (4.43)
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with

=1 ((1los@ - 3) Y0+ [ B (=) v ros )+ [ 21 2;2; )

2t

(4.44)

We can now record some basic estimates on 02,0 and va. We remark that the estimates of Lemma 4 below
imply that the conditions on 92,5 stated just above (4.37) are satisfied.

Lemma 4 For 0 <k, and N > 1, there ewist Cy,, C, N such that

Ci,N
N §> 100

_

0 0)| < {ck Fioo 27125 4 Cz(1)log(d), €< g

Proof We start with (4.44). By the mean value theorem, there exists x € [t, s] such that

2 12

A(t 2 1 (% Xs)ds | At CA(t) log(t
ol < 0 (25 + [ s +tosn @)+ § [ 20"+ A2 ) jwol < COPEO g
where we used (4.3). Using the symbol-type nature of the estimates on A, we get, for k > 0,
A(t) log(t
HO ()] < Cpl oy 2011080 (4.45)

t2+k

Then, for £ > T%o’ we integrate by parts in the formula

02,0(€ f H(o)sin(o¢)do
noting that no boundary terms arise, to get that, for each k € N, there exists C}, > 0 such that
_ C 1
>
|’l)2()( )‘\ Ek’ 5/ 100

For ¢ < , we have

o

() < | OV M + I O < O §jon MDD dr + ONE) log(}), € < min g 75}
2,0 = C S% (o) l?g( ) CS O log(a) do < O)\( )10 ( ) 1 < € < i
5 % o2 100 o2— 02—Cu g T <X =< 7100

where we used Ty > 100 and (4.3) for the first case, and the fact that minge[;00,7,1(A(2)) log(100) > 0 for
the second. In particular, the constants C' depend on (the fixed function) A, but not on €. Finally, Lemma
4 for k > 0 follows from (4.45) and

U2,0(€ 7r§2f H ) sin(w)dw
]
Lemma 5 For0<k<7,j=0,1, we have

1-j
Cr7IA(t) log(t) r< t
12tk ’ 2

|07 lva(t,7)]| <

For all j + k < 7, we have the following two estimates

i C'log(r) t
|oFofwa(t,r)| < — 22— sup (A(@)log(x)), =5
' VAl = )3T efi00,41 2
and o
J Ak o t
Gorutnl < 25
C'log(r) Sup,ef100,,] (A() log(x)) ¢
T ) $ ’ ) a5
| (Or + &r) va(t,r)] 7’3/2\/@—71"} r>2

1020 (t,7)] < M7 r§f

[}
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Proof To estimate va, we start with the region r < %. Here, we use (4.37) and (4.45), to get
g A(t + rcos(6)) log(t + r cos(9)) Cr(t) log(t)
< F < <
s (£,7)| CTL (¢ + rcos(0))[d0 CTL e a0 )

where we used (4.3). For the region r > %, we start with the first term on the right-hand side of (4.37),
namely

vat,r) = fof J1 (r€) sin(t€) 70 (€)dé

One estimate which will be useful in the region r > £ (in particular, it is useful in the region |t — r| < 100)
is the following. Using |J1(z)| < f,x > 0 (though a much better estimate is true for small z > 0) we get

c (w0 1 (log(g) [t log(o)do c (- o log(¢ L c_c
2t < WJO ﬁ < §Cu +J100070 ARG VT 0 55 s \ff £Cu +1/2 \/’7 s W (4.46)

where we also used (4 3). The higher derivatives of ve are treated similarly. To treat the region where
|t —r| > 100 and r > £, we use

a(t,r) = [ R0 s + [ 5100 sine) T (€ (4.47)

We start with

|f J1(rg) sin(t€)v2,0(§)dé| < CJ J ds e 100d J dfé

e fo &EreA) 1og(%)
< CTA(TilOg(r) L\C ZZ% N % ;OO o) ]of(o‘)do’ + CT)\(TT)QIOg(T)
<% sip (Ao)log(0))loa(r)

o€[100,7]

Here, we used (4.3), and Lemma 4 in the region ¢ < 135, since 2 « 145, along with Fubini’s theorem to

switch the order of the £ and o integrals. It remains to treat the following integral.

Jj J1(r§) sin(t€)v2,0(€)dE = — ; ﬁ (cos(r) — sin(r)) sin(t€)vz2,0(£)dE
o . cos(rf)  sin(ré) i 2.0
SO -

We start with

%%mw&mmmmw@m%
QW (sin((t + r)&) + sin((t — r)&) + cos((t + r)&) — cos((t — r)E)) v2,0(£)dE
2\/7? f sin((t + r)w?) + cos((t + r)w?) + sin((t — r)w?) — cos((t — T)Lﬁ)) 720 (w?) - 2dw

We will show in detail how to treat the term involving sin((¢ — r)w?). The other terms can be treated
with a similar argument.

sin((t — r)w?)oz.0(w?)dw =

f\/ﬁ n((t — r)w?)vz0(w? dw+7J' sin((¢ — r)w?)o2,0(w”

\t |

=l v

For the first term, we get

JW n((t — r)w?) 20 (w?)dw| < IJW o0, ()\(x)bg(m))bg(é)dw

€[100, 25
o OsUPrefi00,1) (Ax) log(x)) log(r)

h e

=
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On the other hand, we integrate by parts to get

. __ 5o (L o =102 4 [Tz (w?)]
1 (* ) 9. 12.0(w?) c [ loz 0(\15 )l © o0 (W) + 0
|\/ﬁ L 2wsin((t — r)w )Td |\ NG + L T dw
This gives
1 i . 2 U/Q,\O(UJQ)
|\/ﬂ7f | 2wsin((t - rw?) 20 gy
VIt=r|
¢ lmol)l o w1 sup(A(x) loa(x)) log(—p)de + e
f NI Vrlt =] = w2 1e100,]t—r(] Vit =l J o @™
Clog(|t—r|)
su A(z) lo
DIV e A (A(z) log(z))
Finally
[ (e + (28— D) ) singreyma(erae
<cfl|r(g)|d5<cfé“d§ - (()10())10( +cf 1
h 1 (r&)3/? 0 - 1 (rg)3R me[lOg,%] B0 3/2 €101

<% sup (@) log()log(r)
T ze[100,r]

Combining this with (4.46) finishes the estimation of v2(¢,7) in the region r > L. The derivatives of vy are
treated similarly. The only important difference in the procedure used to estimate diva(t,r) + drva(t,r) is

that we exploit the fact that (0; + or) sin((t — r)€) = 0, and similarly with cos((¢t —r)¢). o

Finally, we define vg 4, by
_ s
v sunltsr) = 5 [ Sin2(0) (F(E 4 c0s(0)) = F(0) 40 = va(t.1) = v2.main(1,7) (1.48)
0
(where we recall that F is defined in (4.38)). We also define
v2,cubic,main(t7 T) 32 F ( )

Then, the v2 analog of Lemma 1 is

Lemma 6 We have the following estimates. For 0 < j <8, 0<k <2 andr < %,

o @) (t)> < Cr7FA(t) log(t)

j Ak
|5§ar <U2,sub(t7r) - vQ,cubic,main(tv’r) + ﬁ 18+

Proof We expand (4.37) and directly estimate, as in Lemma 5 o

4.4 Second Wave Iteration

The second wave correction, uy,2 is defined as the solution to

s (cos(zaglg(t)

1
_attuw,2 + arruw,Q + *aruw,Q - =
r r2 r2

)—1

(w1 +v2) := RHSa(t,7) (4.49)
with 0 Cauchy data at infinity. (We carried out the first order matching before defining w2 so that we
could choose vz 0 before having to consider the equation defining w,,2). Later on, we will add, to uy,2, a
free wave, va 2, solving

—0itv2,2 + Orrv2,2 + L0rva2 — 22 =0
’(}272(0’7”) = O (450)
Orv2,2(0,7) = v2,3(r)
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with v2 3 chosen so as to satisfy a third order matching condition which we will describe later on. We start
by proving estimates on RHS>, which will allow us to justify a representation formula for u., 2. For this,
we start with the following definitions.

2Q1(57=)) —1 20Q1(+=)) =1
RHS»1(t,7) = (cos( Ql(;(t))) )wl, RHSna(t.r) = <COS( Ql(;(t))) )vz (4.51)

T T

Then, we have the following.
Lemma 7 Recalling that w1 is defined in (4.23), we have, for 2< k<4 and 0< j <1,

i o CE/\(t):’Zlogz(t)7 £< 5L
/7000 RHS2,1(t,€)| + € [0] RHS2,1(t,€)| < { C(1og(t)+]10g(6)]) i)<£
VAR)ES2t2 »A(t)

Proof In the regions where ¢ < ﬁ, we use

0 2 —)) —1
RHS31(t,€) =f J1(r) <COS( ) >w1(t,r)rdr

0

and Lemma 2. When & > ﬁ, we use

- o 2Q1(x7)) —1
RHS>1(t,8) = fizfo J1(ré) Hy ((COS( 1()‘(t))) > w1(t,7")> rdr

where 1
Hl(g) = —5?9 - ;arg + 7‘%

and then use the estimates on wi from Lemma 2. We use the same procedure to estimate 6fRﬁS\271(t,§).
To estimate 6565RHSQ’1(1$,§), we start with

d
L0

differentiate under the integral, and use the symbol-type nature of the estimates in Lemma 2. o

o
RHS2,1(t,£) = J RHSQJ(L
0

Note that some of the estimates in the following lemma can be combined into a single estimate with multiple
cases of numbers of derivatives, but is presented as is for convenience.

Lemma 8 Let

fe) = <C0$(2Q;§m)) - 1> . ;i2)2
and .
K. = [ B n)ads
Then,

(4.52)

Ky, 2) = 4- {zIO(Z)K1(y)_yfl(Z)KQ(y), 0<z<y ::4.{Ky>z(y,z), 0<z<y

ylo(y)K1(z) — zI1 (y)K2(2), O<y<z K.>y(y,2z), 0<y<z
and, we have the following estimates, for z#y, 0 <j <1, and 0 < k < 4:

Celv—=l <|Z*y| + Y mam{y’z}> . y,z>1

VzY min{y,z}3/2

. 1 J
B KN < (maall 1) { o gm0 o1 5

I

Cyze %y, z>1>y
Forl>y,z,y# 2, and0< 5,k <1,

. ) . —J i
008 (.2 < Oy 721 + log(maaty 2. |32 K ()| < /ity 2}
zFmaz{y, z}

L SO S S

Czlfk
iR, 1> z>y
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If1<j<2,0<n<1,and0<k<4—7, then, for 0 <w,€ and w # &, we have
—A(B)|E—w] <)\(t)j\€—w\j+1 4 _/maa(Ew) ) L wE> ok

. k n Vwé man{€,w¥3/2A(t)
|a’gafja{ (K(EX),wA@)) | < C)\tgt) (m(m:{)\(t), %}) e~ ME (EX(t ))1/2+] (wA(t))? L((-1)F+1) . > ﬁ > w

MDD @AND)FTT, w> il >

For1<j<2,0<nk<1, and ()>w£,w¢£,wehave

CA(t)?

ST (L log(masf, whA(E) )

|07 01 (K (EA(t), wA(t))) | <

For0<n,k<1,1<j<2, and > w, &, w#E, we have

A(t)

CA®)?  minfw, &}
ti maz{w, Ewken

|0F 92T F o] (K (EA(t),wA(t))) | <

Proof We start with the table of Gradshteyn and Ryzhik, [9], entry 6.541, 1. A special case of this identity
says that, for ¢ > 0,

eri zdr {I1(ZC)K1(yC)v 0<z<y

Ji(zy)J1(xz =
o 1(zy) J1( )Iz_,_cz I (yc)K1(ze), O0<y<z

Upon differentiating in ¢ (it is possible to differentiate under the integral, by the dominated convergence
theorem), and setting ¢ = 1, we get

_ _8f J1(zy)J1(xz)zde 4. zIo(2)K1(y) —yl1(2)K2(y), 0<z<y
RO ylo(y)K1(2) — 2L (y) K2(2), 0<y<z

At this stage, the estimates on K(y,z) and its derivatives follow from a straightforward application of
asymptotics of Bessel functions, which can be found from numerous sources, for example, [9]. To estimate
the time derivatives of K(&A(t),wA(t)), we let V = ydy + 20>, and note that

N(t
o0 (KD, 0) = 3 OV, —ergey
) z2=wA(t)
For 1 < j < 4, we can iterate this to obtain expressions for 67 (K(EA(t),wA(t))) in terms of V"(K) for

1<n<j. Then we note that, for all 1 < j < 4, there exist constants ¢y, ;,,, such that

J J
z):Z Z fjw (U — 2)F08 (0y + 82)" K(y, 2).

This observation (and a decomposition of the above form, except with y and z switched (note that V is
symmetric in y and 2)), combined with the same procedure used above, allows us to estimate the time
derivatives of K(EA(t),wA(t)). o

We can now estimate Rﬁs\gg(t, g).

Lemma 9 With RHS2 2 given in (4.51), and mxz1(z) = 1 — m<1(z), where m<1 is defined in (2.1), we have
0
RHS25(t, &) = J 02,0 (w) sin(tw) K (EA(t), wA(t))dw (4.53)
0

and, for any N > 10, there exists Cny > 0 such that we have the following estimates for 0 < k < 1:

1-k 1
— CA(t) log?(t) A€ " log(t), €< 55
|0f RH S22(t,€)] < =252~ sup  (M(z)log(x))
¢ > £ 2€[100,4] A F RN 4 C’Z%;\f)k, €> ﬁ

— 2 .
ok <6?Rﬁ5\2,2(t, £) — 802,0(£)EA(t) " m=1 (&) Slﬂ(&)) |

t4
CAOI8*®) (3w log(a) {gl_wt“"g(ﬂ’ €< 5tn (4.54)
o 5/2 \ (1)ke—EME) | CnAM®" (14A(1)

] (£>‘(t)) )‘(t) € + &N

z€e[100,%

/N
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Proof Equation (4.53) follows from insertion of (4.37) into (4.51), and Fubini’s theorem. To prove the stated
estimates, we start with the decomposition

0FRHSs 5(t,€) = — LT dwirs o (w)w? sin(tw) K (EA(L), wA(t))

+2 J% dwig o (w)w cos(wt)dr (K (EA(E), wA(t)))

0

+ J: dwiz o (w) sin(wt)d} (K (EA(L), wA(t)))

(Strictly speaking, we first split the integral in (4.53) over the regions w < £ and w > ¢, differentiate under
the integral sign, and then combine the resulting integrals). Define int;(¢, &) to be the ith line on the right-
hand side of the expression above. Starting with int;, we make the following decomposition (where my; is
defined in (2.1))

int1(t,&) = int1,a(t,§) +int1 5(t, ), int1,a(t,§) = f dwvz,0(w Yw? sin(wt)m<1 (wt) K (EX(), wA(t))

For int1,q, we separately treat the cases £ < t , )\(t >£> t ,and & > ( - In each case, we directly estimate

int1 o using Lemmas 4 and 8. To estimate int; j;, we decompose the integral into the regions w < £ and
w = &, and integrate by parts four times in the w variable. We recall (4.52) and note that

4 (aiKy>z(y, 2) = K=y (y, Z)) L:y B S

—=. Within each

which explains the form of (4.54). Then, we consider the two cases )\( y < 100, and ( 3 o
155, we consider

>
of these two cases, we then consider various regions of £. For example, in the case ﬂ <
the regions

1 1 1 1 1

1
<% %< <3 A~ 1000 100

Then, we directly estimate the resulting integrals using Lemmas 4 and 8. After this, we combine the es-
timates in the separate cases ﬁ < Wlo’ and A(lt) > m We then use the same procedure to estimate

<¢

inta,int3 (where we integrate by parts 4 —i + 1 times to treat int; ;) and combine everything to get (4.54)
for kK =0.

To estimate 656?}%?[5\2,2(16, €), we start with
0

07RHS22(t,€) = f
0

725(w) (—w2 Sin(tw) K (EA(t), wA(t)) + 2w cos(wt)dy (K (EA(E), wA(D))
+sin(wt)o? (K (EA(), w)\(t)))) met (wt)dw
4 802,0(§)EA(t)*m=1(£t) sin(Et)

+4

(4.55)

4

sin(wt

23 )38 (02,0(w)wdt (K (EA(), wA(t))) mz1(wt)) dw

_J - sin(w )64 </\( )WQK(g)\(t),wA(t))m>1(wt)) dw
0

e

+2

0
% sin(wt)

- L 0% (70 (@)m=1 (@) (K(EAD),wA D)) ) dw

where mx1(z) = 1 — m<i(z). We split each integral of (4.55) into the regions w < £ and w > &, and
differentiate with respect to £. Finally, we use the estimates of Lemmas 8, 4 to finish the proof of (4.54).
The estimation of 65 RHS2 2(t,€) for k =0,1 is done similarly. o

With the same procedure used to establish Lemma 3, we get that wu.,,2, the solution to (4.49) with zero
Cauchy data at infinity, is given by the following.

wwa(t,r) = ft ds J dé sin((t — $)€)J1 (r€) RH Sa (s, )
(4.56)

__ RHS(t,€) sin((t — 5)§) 2 7r7e .
- foh(&) 208 g - fd&f as 20 52 RES, 5. €)1 (1)
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Using Lemmas 2 and 5, we can use Fubini’s theorem to get that the first integral in (4.56) is

S
et (tyr) = — jo Jl(rf)%d

It will be useful to compute the following function, which will turn out to contain the leading behavior of
Uy 2,11 in the matching region.

T e
= —% GJ s2RHSs(t, s)ds + rf RH Ss(t, s)ds> (4.57)
0 T

U 2.e11,0(t,7) 1= —% (% LT s2RH S5 o(t, s)ds + r f: RHSa0(t, s)ds> (4.58)
with
RHS2(t, s) := (COS@Qli;(S“ U 1) s (£1() = X'(1) log(s)) = (COS@QIEQ(S“ i 1) (w1,main + v2,main) (t, 5)
(4.59)
and
A® =@ + 200 0000 (4.60)

where we recall the definitions of w1 mqin and va main in (4.25) and (4.40), which are the main parts of w;
and vg, respectively, in the matching region. We have

2f1()A(1)? log (W + 1)

uw,2,ell,0(t7 T) =

RCRY0 (Liz (=72 ) + 21og(r) (log (5 + 1) = shee ) +108 (52 + 1)) (a61)
—r\'(t) (% + log <AS;)2 + 1))

The leading behavior of w2 11,0 in the matching region is uy, 2 e11,0,cont, Which is defined by

uw,Z,ell,O,cont(tv r) =

2 (1oa(r) (—AMN (% = AN (1) ~ 2(1)* Tog AW (1))

r

+A() 1og(A(1))N' (1) + A(t)* log (A1) A" (1) + A1) log” (A1) A" (1) (4.62)
+ A(1)* log® (NA" (1) + %)\(t)Q)\”(t) - %WQ)\(t)Q)\"(tO

In the above computation, we have used asymptotics of Liz, for example, from [9]. In the course of proving
Proposition 2, which will occur when we do a third order matching, we will record refined estimates on the
difference between w2 and its leading parts in the matching region. On the other hand, we will also need
estimates which are global in the spatial coordinate, of the difference between the full correction u,,,2, and
the piece w2 ¢11,0,cont- NOW that we have established Lemmas 7 and 9, we can estimate uw,2 — Uy, 2 ¢11,0,cont -

Lemma 10 For 0 < k < 1, the following two estimates are true:

MOZ7F (1 + A(8) log® (t + 1)

OF (a2, 7) = s p.cn) (7] < O - sup (Az)log(x)), 7> g(OA®) (4.63)
z€[100,%]
and
. su Az) log(x
108w 2 (8, )| < CAE) (1 + A()2F) log? (t) log? (1) Pacf100,] (A(x) log( )), r> L (4.64)
’ \/Tt? 2
For0<j <8 and 0 <k <1, the following two estimates are true.
K ~j Cri k)2 log(t) t
|07 07 (tw,2,e11 — W 2,e11,0) (8 7)| < rEy sup (A(z)log(z)), r<g (4.65)
z€[100,t]
and )
CA(t)* log(r t
108 (waw, 2,011 = M 2,011.0) (£,7)] < % sup  (A(z)log(z)), r>3

z€[100,t+7]
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For 0 <j, k<5,

CA(t)® (log?(r) +1og?(t))

j Ak rIF k{247 , TS A1)
t,r) — , 4.
|aia'r (uw,Q,ell,O( »T) uw,Q,ell,O,cont(tv T)) | {C)\(t) (1 ligir)‘_i_log(t)) r> )\(t) ( 66)
For0<k<1,
Cra(t )(10gl(t )+|log(r )|)’ r < A(t)
CA(t)? 1o
Mot 21t + 1510 s e (1, 7)] < § COED sup, 100, (@) log(@), A <r<§  (467)
CA(t)? log(r) Susz[lUO,t-}—r] (A (z) log(z)) r> t
\/;tS/Q ) 2
For0< k<2,
CT’)\(t)(log( )+|10g(7‘)|) r<A®)
i+
CA(t)?1
107wy 0 1 (t,7)| < %snp ef100,¢] A(@)log (), A(t) <7 < g (4.68)
C/\(t)z log(r) SUPze[100,t47] (A(w) log(x)) 1 + 1 r> t
\/77 7‘4<t77“>%+k 19/2+k 9 2
Finally, we have the following estimate, for all v > 0. (Recall the definition of E in (1.3)).
C'log(t
\/E(Uw,Z(t)yatUw,Q) + |uw,2(t, )] < tlfgc(u) (4.69)
Proof We have
uw,Z,ell(t7 T) - uw,Q,ell,O(tv T)
1/1 (" o x (4.70)
-1 <; J 2 (RHSa(t, s) — RHS2.0(t, ) ds +r J (RHSa(t,s) — RHS2.0(t, s))ds)
0 T

where we recall the deﬁnitions of RHS2 ¢ and RHS> from (4.59), and (4.49), respectively. Inside the inte-
grals, in the region s < 5, we use

(2Q1(5H)) —1
cos(2@Q1 ;\(t) ) (v2,5ub(t, 8) + w1 sup(t, s))

S

RHS(t,s) — RHS2,0(t,s) = (
and the estimates on vy g, and wy g, from Lemmas 1 and 6. (Recall the definitions of wy g, and vy g in
(4.26) and (4.48), respectively). On the other hand, in the region s > %, we use

201 (<5-)) — 1
(RHS3 — RHS2.,0) (t,5) = (COS( 1(53(“)) ) (vg(t, s) + wi(t,s) — s ( A =) log(s)>)

where f1 is given by (4.60), and the estimates from Lemmas 2 and 5. The only detail to note is that, when
establishing (4.65) for j > 1, we will have terms of the following form, for 1 < k < j.

o0
~5 |, ats.tokate, s
t
2

For these, since the estimates on dfva(t,s) in the region s > % from Lemma 5 are not a factor of ¢ * better
than the corresponding estimates on v2(t, s), we write the following (iterating as needed if j > 2)

ot = {10t 11
and integrate by parts for the terms involving s derivatives, which is why (4.65) has a factor of ti]
To estimate wuw,2 — Uy 2,11, We first note that
Uw,2(6,7) = Uy 2 et1 (8, 7) = Lf ds ) dgw(?ZRHSQ( ,€)J1(r€) (4.72)
Then, we recall (4.54), and write
02 RSy (s,€) = > R8s 5(s,€) + 802,0()EA(t)*m1 (1) sin(&1) (4.73)

t4
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We split the s integral in (4.72) involving 62]%?[5\2,3(3,5) into the regions s —¢t < r and s —t¢ > r. Then,

when s — ¢ < r, we split the ¢ integral in (4.72) over the three regions £ < %, % <<€ ﬁ and ﬁ < ¢.

We make a similar splitting in the region s — ¢ = r, with the following detail. In the region & > ﬁ, and

s—t = r, we integrate by parts in the £ variable, integrating sin((s —t)¢), and differentiating the rest of the
integrand. Then, we use

x

|J1(z)] < {CC

N

along with (4.3) and Lemmas 7 and 9 to estimate each resulting integral. Recalling (4.73), we now need to

consider the Sm(g)g)‘(t)ngl(Et)Sin(gt) contribution to (4.72). For this, we first use

r<1
r =1

sin((s — t)&) sin(&s) = % (cos(t&) — cos((2s — t)¢))

and then split the ¢ integral in (4.72) over the regions £ < % and £ = %, integrating by parts in £ in the
second integral (where we integrate cos(t£) —cos((2s —t)€) and differentiate the rest of the integrand). This
establishes (4.63) for k = 0. To establish (4.63) for k = 1, we start by differentiating (4.72) in r, and then

use the same procedure as for uw,2 — Uy 2,el-

To estimate wy 2(¢,7) for r > %, we start with

v a(t,7) = Lw ds Lf de sin(( — $)€) BT Sa (s, €)J1 (1€) (4.74)

Then, we use the same procedure as above, except that, whenever |s —t —r| > 1, £ > ﬁ and £ > L, we

T
write

i () = sin(z)  cos(z) + () — (sin(m) cos(x))

T Ve Ve Vi Ve
and use
. sin(z) cos(x)\ _ —sin(y — x) —sin(z + y) 4 cos(y — x) — cos(x + y)
sin) ("~ ) = 2z

with y = (s —t)¢ and x = r£. Then, we integrate by parts in £, and estimate all of the resulting terms
directly. We use the same procedure for 0ruw,2(t,r) in the region r > % This yields an extra factor of
1+ ﬁ relative to the estimates for ., 2(t,7) in the region r > £. (We can differentiate under the integral

sign in (4.74) by the dominated convergence theorem, and the fact that éRH Sa(s, €) € L;,g((t» ) x (0,00))).

Finally, to obtain (4.67), we recall the definition of w,, 5 ¢, in (4.57).

T Is's)
U, 2,ell(t, ) = —% <% Jo SQRHSQ(t, s)ds + rf RHS>(t, s)ds)
s

Ifr < %, we write
k =1 (" 2 L r (%
O Uy 2.e11(t,T) = 5 J- s°0f RHS2(t, s)ds — 5 J 0t RHS2(t, s)ds — 5 J 0r RHS2(t, s)ds (4.75)
0 % T
Ifr > %, we have
~1 (= 1 (" r(”
gy o on(t,r) = =— J s20F RHSo(t, s)ds — — J s20F RHSo(t, s)ds — — f OF RH Sy (t, s)ds (4.76)
o 2r Jo 2r t 2 ),

2Q1 (<55 ))—1
The point of this decomposition is the following. The function w is a symbol in ¢t and r. The

estimates on w1 (t,7) and vz (¢,7) from Lemmas 2 and 5 improve by a factor of $+ with each time derivative
taken (for example, for up to 4 derivatives), in the region r < % On the other hand, v2(t,r) is a free wave,
and our estimates on, for example, d;v2(t,r) from Lemma 5 are not a power of ¢ better than the estimates
on vz(t,7) in the region r > 5. Therefore, when s > £, we rewrite OFuy(t, s) as in (4.71) (iterating these as
needed, to treat k = 3,4). Then, we insert this re-writing into (4.75) and (4.76), and integrate by parts in s
to remove all s derivatives from vs (or (J¢ + 0s) vz, as appropriate). A direct estimation of all of the integral
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and boundary terms then gives rise to (4.67) and (4.68). The form of the estimates (4.67) and (4.68) are
different in the region r > L because, for sufficiently regular f,

1

~o ], ® 21(t, 8)0sva(t, s)ds — *J F(t, 8)0sva(t, s)ds

2 T
= 2711“ <%) f(, %)’02( , 2) + 2l L v2(t, $)0s (szf(t,s)> ds + %L va(t, $)0s f(t, s)ds

In other words, the boundary terms at r arising from one integration by parts exactly cancel. This does not
happen if dsva (¢, s) in the first line is replaced by d¥uvs(t, s), and we integrate by parts k times, for k = 2. The
estimate (4.66) follows from the explicit formulae (4.61) and (4.62). Finally, we prove the energy estimate,
(4.69). By the dominated convergence theorem, and fact that 51?]?92(5,5) e Ll £((t,00) x (0,00)), we can
differentiate once in either ¢ or r under the integral in (4.74). The estimate on ||6tuw72||L2(7.d,.) implied by
(4.69) then follows directly from Minkowski’s inequality, the L? isometry property of the Hankel transform
of order 1, and the estimates from Lemmas 2 and 5. Next, we have

U, 2(L,T)

arurw72(t, 7") + r

s 8} .
_ f dsj de sin((t — $)€)EJo (rE) RS (s, €)

t 0
Using again Minkowski’s inequality, and the L? isometry property of the Hankel transforms of orders 0 and
1, we get

Uw,2(t,7)

o
1Ot 2 (8, ) + 2 (rar) < CL ds|| R S5(5, )| 2 (rary < 0

where the last inequality is true by the estimates from Lemmas 2 and 5. Therefore, by the dominated
convergence theorem,

o0 2 M 2
f <6ruw72(t, r) + M) rdr = lim (aruwg(t,?“) + m) rdr
M

0 M- J 1 ‘s

Then, we note that

w2 (t, 1) Or(u )
3 +
T T

U, 2(t, ) 2
<6ruw,2(t, 7") + WT’) = (6er,2(t7 7"))2 +

For each M > 0,

M o (upy 2)(t,7) 1
J'ﬁ %Td?" = u721),2(t7 M) - u12u,2(t7 M)

Again because of fR/H\Sg(s,f) € Li7€((t, 00) x (0,00)) and the dominated convergence theorem,

lim (f as | " desin((s — )€ RIS (s, €)1 (rs>) -

r—0

Then, by (4.64), we get

M 9. (u2, 5)(t
lim 77«(1%72)( :7) rdr =0
M- J 1 T

Therefore,

o0 2 M 2
0 > f (6ruw72(t, r) + M) rdr = lim ) ((aruw,z(t, r)? + M) rdr
M

0 - J L 7"2

By the monotone convergence theorem, we thus get

v el 2 o
f <(6ruw’2(t, 7‘))2 + M) rdr < C (f ds||RHSQ(S,T)||L2(rdT)>
t

0 72

2

Finally, (4.69) follows from

1/2

© /oL - 1/2 ;o
[ww,2(t, 7)) ff |RH S ( \[”1 T€|d§d J (L |RHSz(s,£)|2£d§> UO %m) ds

<cC j IRHS2(5, 7) |2 (rar) ds
t
(4.77)
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4.5 Second order matching, part 1

The first question is whether the choice of v ¢ allows for matching between the next order ( roughly on
3

the order of = ?4“)) terms in w1 (t,r) and vey 2(t, y777). For clarity, we recall the third, seventh, and eighth

lines of (4.29), and the expression (4.17). The main contribution of vey; 2 (¢, ﬁ) to the matching is

NG

v () = P (X2 () = A(8) log(=me) ) + o pB A (g
ell,2,0,main\l; A(t) = ] t 2)\(15) g )\(t) 32
The 2 contribution of wi (t,7) is (recall (1))
3
W1 cubic,main (b, T) = 3%1"3)\”” (t) + % ()\”” (t) (log(?) + %) —log(r)A™ (t) + log(t)\" (t)
2t m _ m oC m
+J A7 (s) — X (t)ds—f—J A (s)ds)
t s—t 2t s—t
Finally, the v2 contribution at this order is
_7"3 "
U2,cubic,main(tv T) = @F (t)

Recall that we already chose vz, to allow for matching of terms of the form rf(¢) coming from v (¢, ﬁ)

and wi(t,r) + va(t, 7). Note that the coefficient of r3 given in the expression above for Vg, cubic,main 1S
precisely one-eighth of two time derivatives of the r coefficient of va (see (4.37)). Although the 73 coefficient

of Vey1,2,0,main (t, ﬁ) and that of w1 cypic,main(t,) are not precisely one-eighth of two time derivatives of

the main r coefficients in the matching region of v (t, ﬁ) and w1 (¢, 1), respectively, the 73 coefficient of

the difference of these two functions is precisely one-eighth of two time derivatives of the main r coefficient

in the matching region of vey(t, 5577) — wi(t,r). Note the important cancellation between the SN (t)
terms when ve;.2,0,main (t, ﬁ) and w1, cubic,main(t,7) are subtracted. Therefore, the matching of the r3
terms is already accomplished with our previous choice of v . In other words, by the choice of vz o, we

have
r

'Uell72,0,main(t, m) - (wl,cubic7main (tz 7") + U2,cubic,main(t7 T)) =0

4.6 Second order matching, part 2

Next, we choose the coefficient ¢;(t) in (4.7). For convenience, we define v, s, by

a0 1) = vt ) = R X007 + MOX'(0) = A" () o)

(4.78)
= (2610 = 3X(®)?) fa(R) + AON (D) f3(R)
with i
R T &)
fs(R) = R? (=3 +2 (1 + R?)log(R)) — (R* — 1)log(1 + R?) + 2R*Liz(—R?)

T 2R(1 + R2)
The function ¢ (t) appears as part of the coefficient of the % term in a large 7 expansion of uey sy (t,7) =
Vell,sub (t; ﬁ) On the other hand, there are also higher order terms, of size @ and % appearing

in the expansion of e gup(t, ) for large r, and ci(t) does not appear in the coefficients of these terms.
2

However, it turns out that these terms happen to exactly match corresponding @ and M terms
coming from expansions of ver and w,, 2 ¢1,0, Which means that we only need to match terms of size %,
which can be done by choosing an appropriate c1(t). To show this, we note the following.
The main contribution of vej s (t, ﬁ) in the matching region is

Vell,sub,cont (ta T)

_ a®A®) = FAON ()

N r (4.79)

NORY0) (—610g(r)(4 log(A(t)) + 1) + 6log(A(t))(21log(A(t)) + 1) + 121log?(r) + 72 + 12)
6r
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On the other hand, the main contribution of ves(¢,7) in the matching region is (recall (4.36))

Ve cont (t,7) = er (log(r) (—4ABN ()7 = 221X (1)) + 4A(B) log (AN (1) = A()* " (8) + 2X(1)°\" (1) log(A(1)))
(4.80)

Finally, the main contribution of wy, 2 ¢i1,0(¢,r) in the matching region is (recall (4.62))

et 0.comt (6:7) = —2 (108 (r) (“ADN (1) = AN (1) ~ 22()° log (AN (1))
FAM) LogAW)N () + A1) Log(A )N () + A(B) log> )" (1)

+ A(8)? log? (r) N (t) + %)\(t)Q)\"(t) - %#x@)%”@))

These expressions give

A(t) (=6c1(t) + (34 20%) AN (1) + 9N (1)?)

Vell,sub,cont (t>r) - (uw,Q,ell,O,cont (t7 T) + Uex,cont(t7 T)) = - 6r

1 log? .
(As previously mentioned, the Og( ) and %(r) terms from vey, sub,cont> Yw,2,ell,0,cont A1d Vez, cont cancel in
the above expression). We therefore choose c¢1(t) so as to make

Vell,sub,cont (t,r) — (uw,Q,ell,O,cont (t,r) + Vex,cont (, T)) =0
by defining
" 2
er(t) = g)\'(t)2 + w + TN () (4.81)

Note that the matching condition used to determine the initial velocity of vy is precisely
r
Uell (ta T) - Uell,sub(t7 W) = V2 (tz T) - v2,sub(t7 T) +wi (tz T) - wl,sub(t» T) (482)

where we recall that wy g, and vy 4, were defined in (4.26) and (4.48), respectively.

4.7 Third order matching

It will be convenient for us to define
'Uea:,sub(tvr) = er(tvr) Vex, ell t 7" = J’ ngl 7‘5 f ds Sln )g) aQRHS( £) (483)

We will now choose v » (recall (4.50)) so as to match the principal terms (which are of the form r log" (r)g ()
in uell,Q(t, r) — Vell,2,0,main (t7 ﬁ) and Vex,sub (t> r) + uw,Q(t> r) — Uw,2,ell,0,cont (t7 7”). The main proposition of
this section is the following.

Proposition 2 (Third order matching) For vz defined in (4.50), where va 3 is defined by (4.134), and
F3 and G3 are given in (4.131) and (4.133), respectively, we have the following estimate. For 0 < j,k < 1 or
k=2,7=0, and g(t)A\(t) < 7 < 2g9(t)A(t),

ok r
|a§ ar (uell,2(t7 T) - Uell,2707main(t7 E) - (uw,Q(t, T) — Uqw,2,ell,0,cont (t7 7”) + 71272(t, T) + Vex — Vex,cont — q472)> |

< CA(1)> Flog(t) Cg(t)* FA(t)* Flog* (t) SUPze[100, (A(@) log(z))
g Ty

where qa,2 is defined in (4.116) and satisfies the following inequality for k = 0,1, and r > 0.

CA(t)® log®(t)

|0F qa,2(t,7)| + \/E(affm,% 3 qa2) + 1107 qa2 1 L2 ()9 (1) 20 (0) g (1)) rdr) < 5
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Proof We start by computing the leading parts of ue; 2 (¢, 7) =veir, 2,0, main (ts )\(t)) and veg sup (t, 1) Fuw 2(t, r)—
Un,2,¢ll,0,cont (t,7) in the matching region, r ~ g(t)A(t).

We recall our expressions for vey syp a0d Uw 2 — Uy 2 1
Ve wub(ts ) f dET1 (r€) j a5 =90 g2 5775 s )

U2 (8 7) = Uy 3 c11 (1, 7) = f dsf@dfw&QRHSg( L) J1(r€) (4.84)

In particular, these functions solve the following equations with 0 Cauchy data at infinity

2, 42 1 1 2
<_at + a'r‘ + ;67‘ - ﬁ) (uw,Q - uw,Q,ell) = at U, 2,ell

1
( 6t+62+ ar_T >Uemsub_atve:t6ll

In order to compute their leading behavior in the matching region, » ~ g(t)A(t), we define w,, o sup,0(t,7)
and ey sub,0(t, ™) to be the solutions to the following equations with 0 Cauchy data at infinity

1
( at + 62 + 67 - 72 ) Uw,2,5ub,0 = a152uw,2,ell,0,cont (485)

1
( at+62+ ar_r >Uemsub0_atvea:cont

Each of these right-hand sides are of the following form (recall Section 4.6)

2
Z 1og

In particular, the right-hand sides of the equations for ., o syb,0 and veg sub,0 are technically singular at
r = 0, even though the right-hand sides of the equations for ww,2 — Uy 2 e a0d Veg gyp are not. This will not
cause any problems for us, and is done so that the principal parts of wuy 2 sub,0 and Veg sup,0 can be exactly
calculated.

ﬁ\»—

We will first prove the following lemma which will lead to fairly explicit formulae for w., 2 sup,0 and vez sub,o-
After the lemma we will provide some information about how the formulae arise.

Lemma 11 Let f be the functions arising from expressing either 6?vex,cont or 6t2uw72)e”)07cont in the form

300 fi(®) log® (r). If u is given by
- J;  f1(5)Ko (éﬂ“) ds (4.86)

((1 - 1,-2) (log(r) — log(z)) + V/1 — 22 — 1 + /1 — 22 log («/1 — 22 4 1)
Ko(z,r) = % + log <\/l—a:2 + 1) —2\/1—a:210g (2\/1 —122)), O<z<l1
(Va? —1sin ' (L) +1log(r) —1), z>1

where

then, u solves

— 04t + Orprus + &«u ?gzw, r>0
r r

with 0 Cauchy data at infinity. Similarly, if u is defined by

s—1

u(t,r) = Lf Fa(s)Ka(2=L, r)ds (4.87)

with

2
Z a)log® (r)
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where, for a > 1, we have

Fola) = a <L¢2 (%) + Liy (-%) + Liy (1 ~ % (a+ M))

~tia (220 (o VaT=1)) +2) + 5 (4Va2 =100 (2a (0= Va2 1) =1) + Jalog? (1 ;)

+2( a2—1+a)10g2< a2—1+a)+4<—alog(2(a2—1))—\/ﬁ(log(a2—1)—1+1og(4))

+a+alog(a))log (Va? — 1 +a) + é a7~ 1 (1210g (a ~ 1) (log (o> ~ 1) ~ 2 + log(16)

—n” + 24+ 24(log(2) — 1) log(4)) —8a), a>1

Fl(a)=2(—\/a2—1—(\/a2—1+a>10g( 1+a)+\/ﬁlog(4(a2—1))+a), a>1
Fy(a)=+a2—1—a, a>1

and, for 0 < a <1, we have

@) = —2v/1—aZim <L (1 - i)) Fri—a?

2 2V/1-a?
3ra — 1 1 1-2d° —
( —2¢/1—-a )cos 4a (tan (m —V1—a?log (4 4a )sm (a)
_ 2
+ %asinfl(a) tan” ! <Zj\/%7a2> —2a — 37{—; —a(arccos(a))?, 0<a<1

Fi(a) = =27/1 —a?sin”*(a) + 24, O0O<a<1
Fy(a)=—a, O<a<l1
then, u solves
u _ fa(t)log?(r)

1
—Opu+Orpu+ —Oru— 5 = “——=>—> >0
T r r

with 0 Cauchy data at infinity.

Proof To verify that (4.86) is the claimed solution to the Cauchy problem, we start with

= fKo r)f1(t + ry)rdy — J Ko ,7) f1(t + ry)rdy

and note that the explicit formulae for Ko(z,r) in the regions < 1 and « > 1, combined with the definitions
of fr and the Dominated convergence theorem allow us to differentiate up to two times in either ¢ or r
under the integral signs. An integration by parts then establishes the lemma. (The same procedure is used
to verify the stated property of (4.87)). o

Remark. To see how the formulae from the lemma can be formally derived, we could first use the same
procedure used for wy to obtain, for example, for w,, 2 sup,0, that

90
U'w,2,sub,0(t7 r) = f uw,2,sub,0,s(ta r)ds
t

where

Uw,2,5ub,0, s(t 7“)

2
(r + pcos(@ Z (4-88)

27
s)l 2 242 [
J «/s—t —p? J r2+p +2rpcos = ) log (\/T + %+ 2rp cos( ))

The integral of the kK = 0 term in the sum above has been evaluated when computing w;, via Cauchy’s
residue theorem. This same procedure can not directly be applied to the integrals of the k # 0 terms.
We can still explicitly compute these integrals, with a procedure involving introducing a parameter into
the integrals, differentiating in this parameter, and then using Cauchy’s residue theorem. This gives the
following. For r # p, we have

0 r2 + p2 + 2rpcos(6)

. 87 (1 2 + 1 1-— ﬁ , >
4log(r? + p* + 2rpcos(9)) 51 LSO g {_’“Sw(fg(é) Tz())g( >”)) r>p
r og - p72 ; 14 T
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fnogz(rupuzmcos(e))( 4 eos(t) df — 47 (log®(1 — &) + 2log(r) log(r — &) + Lia(%) ), 7> p
0 242+ 2rpcos(@) L a %“log(pQ—TZ)log(l—;—i), p>r

Carrying out the p integral in (4.88) then leads to the formulae in the Lemma statement.

Using the information from Lemma 11, we can calculate the principal parts of w,, 2 sub,0(t;7) and vey sup,0(t, )
in the matching region, r ~ g(t)\(t). We describe in detail how this is done for wu,, 2 sup,0, SINCE Ve sup,0 CAN
be treated in the same way. First, we introduce some notation. Let

_ r(—=12log(s — t) log(4(s — t)) + 72 — 121og?(2)
KQ’O(S t’r) _ ( ) (4.89)
r 24(s — )
We define Fj, o by
2
Kao(a,r) = Y] Fi a)log® (r) (4.90)

0

k=
We also recall the definition of wy, 2 e1,0,cont, (4.62), and write

Pty 2.011.0.0oms (1) = 90 (t) + g1 (t) log(r) + g5 (t) log®(r) (4.91)
for
a0(t) = =2 FAON(0) = Fm AN (@) + AN () 1og AD) + MO () o A(0) + MON (1) (A1)

g1(t) = =2 (=AW (1) = 22(1)° " (1) log (A(1) = AN (1)°)
g2(t) = =2X(1)*X"(¢)

Finally, we let
o
co = ‘[ (Fo(a) — Fo,0(a)) da

1

Note that the exact value of ¢p is not needed for our purposes, though the precise value of many other
constants appearing in the following lemma are needed.

Lemma 12 [Leading part of Uy 2 sub,0/ Let Uy 2 sub,0,cont be defined by

uw,2,sub70,cont(ta T)

2t o N
= — el — Saleoa() - ft(g(()igo“))ds—ff 900) 45— (1) (tog(4) 1)

2 s—1) 2 Jop s—1t
i
— 1ogi(®) (—12 +7* + 8log(r) ) + —g! () <W + 1 (108%() - 10g2(r)>>
r[* gi(s) r (o " log(2(s — 1))
~5 |, Elh st —yis— g [ (sh) - b)) “EE s
+ _"gi(t) (6(10g(4) — 1) log(r) — 272 + 15 + 610g*(2))
Tgfé ) (2 log(r) (4 log(r) + 72 — 12) —28¢(3) + 72 + 28)

+ 95 ()57 log (£ ) (410g(t) log(8rt) + 4log(r) log(8r) — n” + 1210g” (2))
2t
+ | (06— ab0) Koo (5

+ g5 () (co + %2 (2n% - 15— 610g2(2)) log(r) + i (1 —log(4)) logQ(r)>

)ng B(5) Kz o2 r)ds

Then, for0 <j+ k<2

ke aj Cr3(t)3 log® (¢
|7’kt]5fag (uw,2,sub,0(t7 T) - uw727sub,0,cont(t7 T)) | < %7 )‘(t)g(t) SEMES 2g(t))‘(t)
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Proof Using (4.91) and our calculations for w1, along with Lemma 11, we have

_ t+r o8]
tusmnoltr) = T [ 6 0ds = [ abls) (=1 - VG—07 =) ds
t t+r (492)

% o0 _
- J g'll(s)Ko <L,r> ds + f gg(s)Kg (S—t,r> ds
t s—t t T

The first two terms on the right-hand side of the above expression are treated with the identical procedure
used to study w1, simply replacing A in the w; expressions with —J¢. The leading part of the sum of these
two terms in the matching region r ~ g(¢)A(¢) is (note that we Wlll prove concrete estimates on the terms
we claim are subleading)

2o~ Jaboontt) - [ B ZhO) 1 [T B gy iy g(a) - 1)

+ s—t

In fact, by inspecting (4.28), we have

S b —oas= 2 [ g (150 - Vi =) as

+7r
2t Moy M Ee
- (—%gg(t)r— 900 log(~) = 5 t 7(90(2_%0”))615— an ZO—(t)

Cri3x(t)® log?(t) (1 +log(L))
16 ’

t

ds = (0 tog(@) — 1))

r<t
Estimates on the t and r derivatives are done similarly, as in the proof of Lemma 1. The third and fourth

terms of (4.92) are treated with the same argument, which is essentially the same argument we used for
w1, but with a few differences in the details. For clarity, we start with the third term. We have

*© " T A " T * " r
—f g1 (s)Ko ,r ) ds = —J g1 (s)Ko ,T ds—f g1 (s)Ko
t s—1 ¢ s — tr s —

,r) ds (4.93)

trr " T ! / 1
—f gl(s)K()( ) TJ g1 t+ryKo( >dy
t S — 0 y’

rflg' (t+ry) (Ko,o(;)JrKO 1() log(r )>d

0

where we note that, for z > 1,

Va2 —Tsin (1) -1 1
Ko(.’E,T) = K070($) + Ko’l(:I:) IOg(T), Koyo(:l?) = = (I) , Ko’l(x) = ;

Since g(t)A(t) « t, the first term in the following decomposition is lower order relative to the second term,
for r ~ g(t)A(t)

—rfolglll(t—i-ry) <K07o(;)+Ko 1(=) log(r )> dy
= 1ot ) [ (Koad) + Koa(Aytoge)) v [ (ste+ )~ 5t@) (Kool + Ko (2ytostr)) ay

We thus get that the leading contribution from —r & g/ (t + ry) (Ko,o(%) + Ko (d) log(r)) dy is

r

— 19t (—12 rrt 4 810g(r)) (4.94)

We treat the next term in (4.93), namely — S;_r g1 (s)Ko (é, r) ds. For this term, we start by decomposing
Ko(z,r) into the leading piece for small z plus the remainder.

Ko(z,r) = Ko.sm(z,r) + O (x?’ (1 n |10g(£)|>) . 250, Kosm(z,r) = %x(log(r) —log(z) + log(2))
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We therefore get

8] 2t 2t
n" r _ " T _ " _n T
- [ me () ds ==t [ Ko gnis= [ (66 = A©) Ko (s
trr " " % " 495
| (1) = 1) Kowm(— s = | ¥ (s)Kosm(-1,m)ds  (4.95)
t 2t

o
- f G4(5) (Ko — Ko,m) (——,)ds
t+r s—t

This decomposition also appears in the w; expression (4.28). The leading contribution from the first four
terms of the right-hand side of (4.95) is

t
gl <1°g(’");°g(2) + 10?0 - log%)))

r (" gi(s) L v log(2(s — 1))
- 5 Lt (Sl_ t) 1Og(2(8 - t))ds - 5 J; (gl (s) — g1 (t)> 7(8 — t) ds

(4.96)

Moreover, the difference between — Stx g1 (s)Ko (é,r) ds and the leading parts of the terms considered

thus far is equal to

- LHrg'l/(s)Ko(s - -, 7)ds - <_Tlgg(t) (—12 +rl 4 810g(r)>>
- [0 st () as- <—g'{ (r <1°g(”21°g(2) + 1 (10g2(0) - logQ(m))

5 [ 8 ogtats - mas— 5 [ (o) - ot @) EEC=D,)

(1) (=9
_,«Ll (st e+ 7o) = ) Ko( )iy
We have
- rfol (sf e+ r0) = 61(0) Koy + fw (67(9) = H(0)) Ko.om (=, m)ds

t+r r
)y + f (7(5) = g1(®) = (s = 097 (1) Koom (- )ds

= _r Ll (9/1'(t+ry) —gi(t) —Tygllﬁ(t)> KO(I ¢

=r
Y

1 t+r
1
- r2f v (Ko (-, r)dy +f g1 (O)(s = ) Ko sm (= )ds
0 t -

which gives
t+r

| —r fol (g/f(t +ry) — glll(t)) Ko(i,r)dy + L (g'll(s) — g'l’(t)) Ko,sm(s%

2 _m
_ (%18@) (—7 + log(512) + 3log(r))) |

_ Or® (1+[log(r)]) A(®)° log(#)

The higher derivatives are estimated similarly, for example, by writing

ttr T T ! " " "
| (6t =t = s =05 0)) Koo (L rds = 5 [ (o0 r) = o8 (0 = ra! () o2r) 2

and using the symbol-type estimates on A to justify the differentiation under the integral, exactly as in the
proof of Lemma 1. We now turn attention to the fifth term on the right-hand side of (4.95). The point here
is that (Ko — K(),sm)(é,r) decays faster in s —t than does K075m($,r). To exploit this, we integrate by
parts in s in the following integral, and the symbol type estimates on g (s) show that the non-boundary
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terms obtained are subleading relative to the boundary terms (this will be proven once we estimate the
terms that we claim are subleading)

s 8]
—J G4(5) (Ko — Ko sm) (——,)ds
t+4r s—1t

.
=—ﬁa+wf

t+r

(Ko — Ko it = [

oA
f (Ko — Ko.em) (—, r)dy) g1 (s)ds
+r y—t

S

Rec’alliflg; that g(t)A(t) « t, the leading behavior of —S;ﬁrr g1 (s) (Ko — Ko,sm) (5, r)ds in the matching
region is

gl L " (Ko = Ko.um) (%,T)rdq = _Tgi(t) (6(1log(4) — 1)log(r) — 27” + 15 + 610g>(2)) (4.97)

The subleading part of — Xt/:H g1 (s) (Ko — Ko,sm) (55, r)ds is therefore given by

= [ ) (0 = Ko (s = (4D (600(4) ~ 1)log(r) — 26 + 15 + 610g(2))

=— (gi'(t +r) — 9'1'(75)) f

t+r

o 8}

s 8} ve
(Kb-Kbﬁm)(—I—aﬂdy—-f j (Ko — Kosm) (—— , r)dyg" (s)ds
y_t t+r Js y_t

We have

(st + 0 =gt ®) [ (o= Koam) (o0

t+r —t

= —r (g +7) — g (1) g (1)) Lf (Ko = Ko,om) (5, 7)dz — 12! (1) fo (Ko — Ko.om) (5, 7)d

which gives

= (aH ) = gt0) [ (0 = Kou) oy = (=r2a8 @) [ (o = Koo (1)

< Cr¥log(HA®)* (1 + |log(r)])
I t6

and the higher derivatives are estimated similarly. On the other hand, we have

oL v 8] r
—j f(m—Kmmc—aw@ﬁ@w
t+r Js y_t
iv's)

o s s} o o 8}
=-—gTa-+r>J' _[ (Ko — Ko,sm) (—— ,r)dydq — j ‘[ (Ko — Ko.om) (—— r)g\" (s)dydqds
t+r Jg y—t s q y—t

t+r

Therefore, for r ~ g(t)A\(t),

= 0= om) (et s = (<24 [ 1) 00 = Koom) (vt )|

Cr3 log(HA(t)? t
g 2 OBAY Ogté PO (1 4 1og(r)]) <log(1 +0)+ 1)
As with the previous terms, the higher derivatives of —{/, §* S;C (Ko — Ko,sm) (35, 7)91" (s)dydgds can be
estimated by letting 2 = %, then, w = £, and z = *-!, and differentiating under the integral. Finally,
we get

| — (g'f(t +r)— gi’(t)) f; (Ko — Ko,sm) (ﬁ, r)dy — f; J': (Ko — Ko,sm) (ﬁv r)dygt’ (s)ds
_ <—r29’1”(t) LOO z (Ko — Ko,sm) (%ﬂ“)dm) |

_ Crllog(H)A(1)*(1 + | log(r) ) (log(1 + 1) +1)
N tﬁ

Usin,
¢ 2 m * 1 _7’29/1”(t)
2 (t)f 7 (Ko = Koem) (5,r)dz =~ (-7 4 10g(512) + 3log(r))
1
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we finally get the following expression which identifies the leading part of — S;f 91 (s)Ko(555,7)ds.

- fr G () Ko(—— r)ds — (4%(” (1274 81°g(’“))>

s—t’

t
- (—gi’u)r (1‘%”2“‘5(2) + 1 (10g%() - log%)))

ot (s—1) (s—1)
- (%jl(t) (6 (log(4) — 1) log(r) — 272 + 15 + 610g2(2))> |
< Cr3log(H)A()2 (1 + |1;g(r)|) (log(1+ %) +1) A < < 20N

Notice that the r? terms from

~ (st +n-dtw) [

r * w0 r
(Ko — Ko,em) (——, r)dy — j f (Ko — Ko.sm) (—— r)dyg (s)ds
ttr y—t tor Js y—t

and
t+r

—rJ’l (g’l’(t+ ry) —g'l'(t)) Kot r)dy +J

" " r
i ; (A6 ) Kosm(S s

canceled to give the above expression.

The same procedure is carried out for the Ky term in (4.92). The details are as follows. The analog of
(4.94) is

1
rab0) | (Fo(@) + Fy (@) og(r) + Fa(a) log?(r)) da

- _%6@ (2 log() (4 log(r) + 2 — 12) —28¢(3) + 7 + 28)

where ¢ denotes the Riemann zeta function. We remark that one part of this computation involves the
following.
) o .1 .2
Im (Liz (1 _ ia )) :J' (xm;l (x) log(4(1—= ))) iz
2 2y1—a? 0 z2 —1 9v/1 — 22

f E (cos™ (@) — /1 —22) (“Sin_l(“’) _los(d1- x2)>> o = = (~21¢(3) + 72 + log(256)

and

0 2 22 -1 24/1 — x2 32
The analog of (4.96) is
g’g’(t)i log (%) (4 log(t) log(8rt) + 4log(r) log(8r) — 72 + 12log2(2))

+ th (gg(s) - QIQI(t)> K2,0(

s—1
r

s—1t

e
r)ds + j () K0 (C=L, r)ds
2t

r

where we recall that K3 o is defined in (4.89). The analog of (4.97) is

e

gg(t)rf1 (K2 — Ka,0) (a,7)da

We have

ive]
J (Ko — Ka20) (a,7)da = co + di log(r) + da log?(r)
1

The exact value of ¢p is not important for our purposes, but we compute d; and dg explicitly. From direct

integration,
ve
da =J (\/aQ—l—a—i- 21 > da:i(l—log(él))
1 a

To compute dq, we recall that K2 (a,r) satisfies the wave equation:

—Ko + 10, Ko + 1202 Ko + ada Ko — 2ar0ar K2 + (6> —1)02K2 =0, a>1
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and Ko = Zi:o Fy.(a) log” (r). Integrating the equation solved by K3 in the a variable, one relation we get
is (for M > 1)

M M _ 2 M
f Fi(a)da = —f Fs(a)da + (aF1 (a) + wl’é(a) + M)
1 1 2 2 a=1
Recalling the definitions of Fy, o in (4.90), we have
d _ o8] _ . M _ 1 9 9
L= | (Fi@) = Fio@)da= lim | (Fi(a) - Fro(a))da = — (271' —15—6log (2)) (4.98)
1 Moo 1 12

Therefore,

g5 (t)r L/ (Kz — K2,0) (a,7)da = g5 (t)r <co + %2 (2712 —15— 6log2(2)) log(r) + i (1 —log(4)) log2(r)>

For estimating the subleading terms, we use the same procedure used for the Ky integral term previously.
In particular, we have

ive]
| Jt
2t

—ga(t) | Kzo(
t+r

_ 1 el
tw)ds—rgz(t) jo Kﬂym)dy—rgé’(t)fl (K — K2.0)(a,r)da

s —

s = [ (86 = 0) Koo s~ [ 6 Ka0( T as

. . (4.99)
el [ ket )dy+r2gé”<>j YKz, )dy—r2g5’<)f @(K2 = K20) (0, 7)da
0 0 1
Craa(t)® (1+10g2(n) (1 + | log()P°)
t6 ’

< r<t
The higher derivatives are estimated similarly, with the same procedure used for the ¢ () terms just studied.
Finally, we will show that the last three terms on the left-hand side of the above inequality exactly cancel,

just as was the case for the analogous terms arising from the Ko integral previously. By direct computation,
we have

1 2 2
1 1
[ a0ty = ~2 1 —10g(@)1ogr) + log(2r) + 5 — 1 - L 1og(2)
0

1
[ vty = =108 + 280 4 L a61082) — 4) +

Finally, using a similar procedure as in (4.98), we get

108( 972 + 88 — 96 log(2 ))

el M 2
f (Fo(a) — Fo,0(a)) ada = lim <—§ f aFsz(a)da — Fo
1

M—oc 1

3J a*Fi(a)
_L F070(a)ada>

5 ((@® ~ ) Fb(@) — (3a® ~ 1) o)) M:

™ 43 1. o
= §—2—7—§log (2) + log(2)

A straightforward computation then gives

* log? 7 2 43 1
f a(Ka — Ka) (a,7)da = — OgG(T) + <§ - 10g(2)> log(r) + % ~ 53 log?(2) + log(2)
1

In total, we then note that
_log*(r) m

1. o
5~ log(2) log(r) + log(2r) + ﬂ ) log”(2)

- (—%logQ(r)-i- 21°9g( r) +E(1610g( )—4) + 1(1)8( 972 + 88 — 96log(2 )))

) 2
B <_log6(r) N <g _ log(2)) log(r) + % - ;L—:; -3 log?(2) + log(2))
=0

which verifies that the last three terms on the left-hand side of (4.99) exactly cancel. Combining our
computations and estimates above finishes the proof of the lemma. o
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Next, we note that

O ver.cont (t,7) = - (WD) + log(r)1 (1))
where
ho(t) = =2log(A(D)) f1(8) + A()*f2(),  ha(t) = 2/1 (1)
and
A = _71 (2)\(t))\'(t)2 + /\(t)2/\”(t)) ()= _A; ©

Using the same procedure as for wy, o sup0 (in fact, the same computations, except with g; replaced with
hj, for j =0,1) we get the following lemma.

Lemma 13 [Leading part of Veg sub,0/ Let

Vex,sub,0,cont (tv T)

. %Thg(t) - gHbo08() — 5 |

h”( )d
2 s—t

T L T
~ 271 <1°g(2)21°g(” + 7 (1og?(1) ~log? <r>)>
[t sto)
t (s—1)

—r | ) <710g8(_3 . t») ds — 1{/2“) (6 tog(4) — 1) log(r) — 212 + 15 + 610g(2))

2 (ho(s) — ho(t))
(s —1)

— rhi (OB — LA (1) (12 + 77 + 8log(r))

ds

log(2(s — t))ds

Then, for 0 < j+ k < 2,

k,j Ak Aj 14
|7 t! Or ag (vex,sub,O - er,sub,o,cont) [(t,7) <
Next, we consider

Uy, 2, ell(t T) U, 2,ell, O(t T)

e
% (%f s° (RHS2(t,s) — RHS2,0(t,s))ds+r (RHS2(t,s) — RHS20(t, s)) ds)
0 r
=1 /1 (4.100)
(;J s (RHS2(t,s) — RHS20(t,s))ds+r RHSQ t,s) — RHS2,0(t,s))ds
0 0

_r L (RHSa(t, 5) — RHSa.0(t, 5)) ds)

We proceed to study each integral term on the right-hand side. The integral over (0, ) requires the longest
argument:

Lemma 14 We have

i /I/I *© 8 . —
Jo (RHS2(t,s) — RHS2,0(t,8)) ds = J W3 (s)ds +f dg (5)\( 12 + 4EK2(EA()) + 25) sin(t§)v2,0(§)
(4.101)
where

Wsa(x) = % <a: log (64956) + 42° log(2z) + 2 (:r2 + 1)3/2 log (Qx (az —\z? + 1) + 1) + :r)

Proof We first note

© © 2 2N —1
rfo (RHSa(t, s) — RHSa.0(t,5)) ds = TL ((COS( Qlig(t))) ) (v2 + w1) — RHSa.0(t, s)> ds
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Using the representation formula (4.37) for va, and Fubini’s theorem, we have

o0 2Q1(%)) -1 *
L(COS( l(s;“))) )vz(t,s)d5=F(t)+J’ d&(@\(i +4£Kz(€k(t))+2€>Sin(t5)17270(5) (4.102)

where we used

v (cos(2@i(5)) — 1
fo dr <COS 19@) > S (r€) = —ﬁ AR (D) = —26 + 0 (€ 0g(6)), €—0  (4.103)

and we recall that F is defined in (4.38). Notice that the first term on the right-hand side of (4.102) is the
leading part, given the smallness at low frequencies of the O term in (4.103). Next, using

wi (t,r) = % J:-Hn N (8)(s — t)ds + 2r JI

1

N'(t +ry) (y - \/y27—1) dy

we get

o

[ (COS 2 W) V- 1) wi (t, v)dr

= J} e ot (e s (1+27))

o) w> 4.104
+ fo dw)" (t + w) (4) ( NOE ))\(_2 + wlog(16) + 2wlog(1 + NOE ) ( )
A 2 2w2 1 1 2w(w— >‘(2t)2+w2)
+( )"+ ) og(l+ A )

At)? + w?

Using the definitions of vg gyp, w1, sup, and the first order matching (see, e.g. (4.39)), we get

r 206G -1 / " " r
RHS20(6:7) = 35 (COS( 152(“)) ) <%>\ (6)% + MO (1) = AN (1) ]og(rt))>

which gives

vs] B 4 )\/(t)2 "
—fo RHS5.0(t,3)ds = 525 < YN (t)> (4.105)

Given that RHS2 o was the leading part of RHS> in the matching region, the integrals (4.102), (4.105),
and (4.104) have cancellation when added together. We show this in detail now. Recalling the definition of
F(t), we have (for all ¢t = Tp)

F(#)
(- ) e [ (R [ S

s—t

)2 (4.106)
y)

Therefore, the ' (t)? terms from F(t) and (4.105) cancel. Next, we determine the leading terms of the first
term on the right-hand side of (4.104). The integral is

8 (* ., At)? ()2
Wfo AT (t+w)w <m—log(l+ w2 )) dw

Given the decay (for large w) of the part of the integrand multiplying A" (¢t + w), we integrate by parts in
w, differentiating the symbol \”(t +w), and integrating (backwards from infinity) the rest of the integrand.
This gives

2
( (32“) —log(1 + A(t) )> dw

+ w?
0 2
_ —4>\”( £ - %”A( I () + 73;(102 L <w)\(t)2 —2tan! (%) A1) —u log(1 + 1) )) N (t + w)dw
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Notice the cancellation between the A\”(¢) terms in the expression above and (4.105). Next, we treat the
second term on the right-hand side of (4.104). We start with

t
ﬁ JO dwX" (t + w)Ga2(w, A(t))

where
2A(t ) 2
Ga(w, A(t)) = ()\( 02 + 5 +wlog(16) + 2wlog(1 + )\(t) 5)
(@ +2w) 2u(w — AD? +w?) w
o log(1 + NGE )) At)G3 (Tt))

Since there will be some cancellation between the integral under consideration and the second term in
(4.106), we start by writing (¢ + w) = A (¢) + A" (t + w) — X' (¢), we have

ﬁ Lt dw)" (t + w)Ga(w, A(t))
" t
— _o\"(1) (—1 +2log(2) 210g(¥)) + 4;(15)(? A(t)%dﬁ) + Aé)Q JO duw (N(¢ +1w) = N (1)) G w, A(D)
(4.108)

where

1 1 1

Gy(x) = <2x log 22 +1)) +22% /= + 1log (1—2( +1—1> m2> +210g(2x)—1>
2 ( ( )) 2 2 (4.100)

co () s

22
Note that the first term on the right-hand side of (4.108) cancels with all of the \”(¢) terms outside the
integral operators in (4.106). Next, we note that

Gs(z) = %+o<b§c¥), - (4.110)

Recalling that Ga(w, A(t)) = A(t)Gy,(%), we have

ﬁ f: dw (N (¢ +1w) = X' (1)) Gaw, A1)

_ #‘)‘2 f dw (X' (¢ +w) = X"(1)) A(;?Z + Aé)rz f:dw (Wt +w) — ") <G2(w, ) + %)2>

0

The first term on the right-hand side of the above expression cancels with the second term on the right-hand

side of (4.106), and Ga(w, A(t)) + %t)z decays much more quickly for large w than Ga(w, A(t)) does, given
(4.110). Using the same procedure as in (4.107), we get

sz [ (40 =0 @) (Gatw o) + 200)

4 " ” t
= 5 <(,\ (2t) — A (t)) A(t)%ﬁ(m) (4.111)
m 2t _
A (—/\”’(215)W2(ﬁ) + ’\T()w e (S/\(t)t)/\””(s)ds)>

where we recall that G4 was defined in (4.109), and
3/2
Wa(z) = % (;1:3 log(16) + 2 <m2 n 1) " og (2x2 —2z\2? + 1 + 1) + 24 log (a:2 + 1)
—z + zlog(64) + 6z log(z) + 4tan71(£)>

Note that the second term on the right-hand side of our previous computation (4.108) cancels with the
term b (—A”(t)A() G4(ﬁ)) from (4.111).
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Lastly, we consider

<o ” w o w w = — . S A”(S)
A(t)QL A’ + w)Galw A(®) = ~4 | ds 2L

oo 2
wX' (t + w) (Gg(w7 A(t)) + M)

w

The first term on the right-hand side of the above expression cancels with the fourth term on the right-hand
side of (4.106). Then, we treat the following integral with the same procedure used in (4.107)

A(t)QL dw\' (¢ + w) <G2(w,)\(t))+ )

w
4

- a7 (—A”@t) (7G55 + A COND Wl 505) +20)° : de””<t+w)W2<A%>dw>

After combining all of our computations, we end up with (4.101), completing the proof of the lemma. ©

Finally, to compute the principal part (in the matching region r ~ A(¢)g(¢)) of the other two integrals in
(4.100), we start with

2Qi(5m) -1
= : ;(t) ) (U2,Sub(t7 T) + wl,sub(t7 T))

RHSs(t,r) — RHS>0(t,7) = ( r

Next, we replace vy gup and wy gp by their principal parts, which are vg cypic,main @0d W1 cubic,main, re-
spectively. Then, we use part 1 of second order matching, which says that

V2, cubic,main (t,r) + wl,cubic,main(tv r) = Vell,2,0,main (t, m)

Whence, we get

) 1(" 5 cos(2Q1(ﬁ)) -1 s
leading part of ;.[o s ( 2 Vell,2,0,main (ts m)ds

= (uw,2,ell - uw,Q,ell,O)princ,l (t7 7")

= = (2r (21 (WAD? + 22(DA®) log(r) - 12 (DAWD)))

leading part of — TJ
0

)ds

r (cos(2Q1(A(St) s
(®)

) —1
52 'Uell,Z,O,main(t: )\7

= (uw,2,ell - uw,Q,ell,O)pMnc,Z(ta 7")

= 1rAW? (~2471 () log (M) + 2441 (1) log(r) — 121 (1) — 12j2(1) log (A(1))

3
—12;2(t) log (A(t)) + 1252(t) log?(r) — 7% j2 (t))
where -
() = ;—QA””( t) + éaf (A”(t) + X(8) log(A() + ; ;2) >
ja(t) = %A””(t)

and we used
T . .
vett 20.main(t 575) = 7 j1(t) + r* log(r)ja (t)

We now estimate the difference between .y, o ¢jj — Uy,2,¢11,0 and its principal part in the matching region,
which will help us study other contributions to the third order matching.

Lemma 15 Let

(uw,Q,ell (t7 T) - uw,2,ell,0(t> r))princ

1
=5 ((Uw 2,ell — Uw,2 ell, O)pmnc 1(t,7) + (Uw 2,ell = Uw,2 ell O)prmc Q(ta""))

% ////( )ds — 7J (é‘)\ 8) + 4EK2(EXN(E)) + 2{) Sln(tf)’UQ 0(&)d¢
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Then, for 0 < k<2, and 0 < j < 8 we have

C At)3logd(t) [r*
S Atk % (t—Q + /\(t)Q) , A <r<

N| =+

Moreover, forO<m+k <1, m k=0,

CA(t)*1og(t) supyefigo,i) (My) log()) ¢
t9/2<t_7,>1/2+k+m ’9

1670 (w2, (1) = w2 e0 (8,7)) | < Sr<2 (4112)

In addition, for s >t, and 0 < k < 2,

_Yy < S
oatk - )| < CA(s)? log® Az)1 S YS 3
05T (U, 2,611 = Uw,2,e11,0) (5,)] (s)"log®(s) sup (A(z)log(z)) . s <y <5t 42N

z€[100,s] $0/2¢5/2+k )
(4.113)
Proof We first note that
U, 2,61l (8 7) — U, 2,e1,0 (7)) — (Uw,2,611 (6 7) — e 2,e11,0 (7)) prine
5y —
S (L 2 (COS(QQIiQ@)) 1) (10,0 89) + 2,0 (8:9) = (V2 cutic main(h )+ 01 i main (t ))) ds

r cos(QQl(ﬁ)) -1 s
+J s < 82( ) Vell,2,0,main (t, m)ds - r(uw,2,ell - uw,Q,ell,O)princ,l(ta T)
0

r cos(QQl(ASt ) —1 s 1
+ J’ ( 82( ) vell,2,07main(t7 W)ds + ;(uw,%ell - uw72,ell,0)princ,2(tv7‘)

r cos(QQl()\(St) ) —1
L 52 (wl,sub (t7 5) + V2, sub (t7 S) - (U2,cubic,main (ta 8) + W1, cubic,main (t7 5))) ds

0
(4.114)

where we used s
vQ,cubic,main(tv 5) + wl,cubic,main(tv S) = Vell,2,0,main (tv w)

which follows from the second order matching. Next, we use Lemmas 1 and 6, noting that s <r < % in the
integrals which compose the first and third terms of (4.114).

The estimate (4.112) follows directly from Lemma 10 and (4.61), and (4.113) is proven with the same
procedure as in Lemma 10. o

Next, we need to understand w3 (t,7) := ww,2(t,7) — Uy 2,611 (t:7) — Uy 2,5ub,0, Since w3 will turn out to
contribute terms which are logarithmically smaller than the largest contributions of w2 sup,0(t,7) in the
matching region, but not quite perturbative. Recalling the equations that these functions solve, (4.84) and
(4.85), we see that ws solves the following equation with 0 Cauchy data at infinity.

w3

2 2 1 2
—0; w3 + Orws + ;arw?) - 2 = 0} (uw,Z,ell - uw,Q,ell,O,cont)

Therefore,

2 2 1 w3 _
- _at w3,s + 67‘“’3,3 + ;arw?;,s - :); =0
ws(t,r) = J w3 s(t,m)ds, w3 s solves { ws s(s,r) =0
t

61w3,8(87 7‘) = a% (uw,Q,ell - uw,?,ell,O,cont)(57 r)

By the finite speed of propagation, in the region r < ¢, we have

—0Fvs,s + 0Fvss + LOrv3s — 25t =0
w3,s(t,7) =v3,5(t,r), w3, solves vz s(s,7) =0
01v3,5(5,7) = <1 (r — 8)0F (2,611 — U 2,¢11,0,cont) (5, 7)
where
1, 0
0, 1

T <
o

V<1 € CP(R), and ¢<i(z) = {
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Since we will only be interested in estimating ws(t,r) in the matching region g(¢)A(¢) < r < 2g(¢)A(t), it will
suffice to estimate vs given below

L.e., vz solves
2 2 1 v3 2
—0;v3 + 0rv3 + ;arvl’» - ) = d}Sl(T - t)at (uw,Q,ell - uw,Q,ell,O,cont)(tvr) = RHS3(t7 T) (4115)

with 0 Cauchy data at infinity. Let

-1 /1 (" o *
ellsoln = S5\ RHS3(t,s)ds +r RHS3(t, s)ds
0 T

and .
1
QE) = -5 J P<1(s — )07 (ww2,ell — W ,2,e1,0) (¢, 8)ds
0

Note that ellsoln satisfies
ellsoln

2ellsoln + %&»ellsoln -2 = RHSs3(t, )
Lemma 16 We have the following estimates. For 0 < j, k < 1,
CrA(t)® (| log®(r)|+1og® (¢
A1) (] tg4+(]7_”)| g*( ))’ r < A®)
. 3 2 3 5 2
|Tka£ag (ellsoln _ TQ(t)) | < CroX(t)” log®(t) sutzigj[lou,t](A(x) log()) + % )\(t)t4lfjg (t)’ )\(t) <r< %
CA(1)® 1og® (1) SUPae[100,¢] (A (@) 10g(r)), % <r<?2t

2
t3ta2

2 3
102 (ellsoln — rQ(8)) | < c,\(t):3 ﬁgZ (t) N Cr(t) supwe[low]t 6()\(33) log(x)) log (t)’ SO < < 20OAE)

Proof We have

ellsoln — rQ(t)
1 ("

.
2 9 T 2
=5 ] s V<1(s = 8)0; (W 2,ell — Uw,2,el1,0,cont) (t;8)ds + 5 f V<1(s — )05 (W 2,ell — Uw,2,e11,0) (t, 8)ds
0

2 Jo

o0
r 2
- 5 J- ¢s1(8 - t)at (uw,2,ell,0 - uw,?,ell,O,cont) (ta s)ds

T

We then estimate directly, using Lemmas 15 and 10 and the definitions of u, 2 1,0 and wy 2 ei1,0,cont from
(4.58), (4.61), and (4.62). We use the same procedure to estimate the higher derivatives, except for the last
estimate in the lemma statement, which is obtained by using

(53 + %6,- — ri2> (ellsoln — rQ(t)) = <1 (r — )07 (U, 2,61l = Uaw,2,e1,0,cont)
and Lemmas 15 and 10. o
We return to vs, which we recall solves (4.115), with 0 Cauchy data at infinity. If we define
q3(t,7) :=w3(t,7) — (ellsoln — rQ(t)) Y<1(r — )

then, g3 solves the following equation. Moreover, our estimates from Lemmas 16 and 10 show that g3(¢,r)
also has 0 Cauchy data at infinity.

1
—0fqs + 0Fqs + —0rqs — ;% = gi(r—1t) (atz (ellsoln — rQ(t)) + 07 (ww,2,e11 — W 2,11,0,cont) - (1 — 1 (7 — t)))
(ellsoln — T‘Q(t)))

r

+ i (r —1t) <—2 (01 + Or) (ellsoln — rQ(t)) —

:= RHS4(t,7)
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In other words, we have
. (2 +02+10,— L) g3 =0
gs(t,r) = J q3,s(t,r)ds, g3, solves { qs3.s(s,7) =0
' 01q3,5(s,7) = RHS4(s,7)
We recall that we only need to estimate ¢3(¢,r) for r < 2¢(¢)A(¢t) <t —2, and
Y<i(r) =1, Pgi(z) =0, <0
Therefore, by the finite speed of propagation, for r < 2g(¢)A(t), we have
(—f+0F+ 20— %) qas =0
q3,s(t,7) = qa,s(t,7), qa,s solves { qa s(s,r) =0
O141.5(5,7) = <1 (r — 5)22 (ellsoln — 1Q(s))
So, it suffices to estimate B
qa(t,r) := J v qa,s(t,r)ds
We recall that t
Y1 (r — )07 (ellsoln(t,r) — rQ(t))

_1 T
=<1 (r — )07 (g L $207 (W 2,011 — U 2,e11,0) (£, ) <1 (s — t)ds

1

r
2 A2
_Z f B} at (uw,27ell70 - uw,2,ell,07cont) (tz 5)¢§1(5 - t)dS
0

T
r 2
+ §f 07 (ww,2,ell — Ww,2,e1,0) (; 8)<1(s — t)ds
0
r oL 9
_5 J at (uw,Q,ell,O - uw,?,ell,O,cont) (t7 5)¢<1(8 - t)d5>
T
We correspondingly decompose g4 into

qa(t,r) == qa,1(t,7) + qa,2(t,7)

where g4,2 solves the following equation with 0 Cauchy data at infinity (and q4,1 = g4 — qa,2)

2, A2 1 1
<_at + @r + ;&« —_ 7"72> q472(t,7‘)

-1 ("
=<1 (r— t)at2 <7T JO 526? (Uw,Q,ell,O - uw,2,ell,0,com‘,) (t,s)h<1(s — t)d5> (4.116)
r oL
- ¢<1(7‘ - t)at2 <§ J ai? (uw,Q,ell,O - uw,?,ell,O,cont) (t SW (S - t)d >
T
= RHS4’2(t, T’)
To estimate g4,2, it will suffice to use energy estimates.
Lemma 17 We have the following estimates, for k = 0,1, and r > 0:
k OX(t)® log? (¢
|0t qa,2(t, )| + \/E(af%z, 0y qa2) + 1107 qa2 1 L2 (A1) g () 22 ()9 (1)) redr) < %
Proof We first note that the right-hand side of (4.116) includes the term
1 ("
1/)<1(7‘—t) <§ JO s 1#/41(5 - t)at (uw 2,ell,0 — Uw,2,ell,0, cont f ¢ at (uw 2,ell,0 — Uw,2,ell,0, cont)d )

We integrate by parts in each integral, integrating 1%, (s—t), and note that the boundary contributions from
each integral at s = r cancel. Then, we directly insert the estimates from Lemma 10 into the other terms
in (4.116), and use the same procedure used for (4.69). Finally, the symbol type estimates on w2 11,0 —
Un,2,ell,0,cont from Lemma 10 show that 0;q4,2 solves

1 1
<_6t2 + 62 + ;ar — 73) 6tq4,2(t, 7“) = atRHSAL,Q(t,T)

also with 0 Cauchy data at infinity. Then, we use the same procedure used to estimate g4,2. Finally, we
estimate

107 aa,21l L2 (A 8) g () 22 (1)g (1)) )
using the equation solved by ¢s4,2 and our earlier estimates from the proof of this lemma. o
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Now, we study ¢4,1. Let

—1 T
RHS471(t7 7") = 7/)<1(7" - t)at2 ( 5283 (uw,2,ell - uw,2,ell,0) (t 5)¢ (5 - t)d
(4.117)

+% f at2 (uw,Q,ell - uw,Q,ell,O) (t 8)1/1 (S - t)d )

so that we have

. (=07 +07+20r — &) qa1,s =0
q1(t,r) = f qa,1,s(t,7)ds, qa,1,s solves < qa1,s(s,7) =0
t
01q4,1,s(s,7) = RHS4,1(s,7)

Since we only need to estimate qa,1(¢,7) (and hence qa,1,5(t, 7)) in the region r < 2g(t)A(t) < %, the finite
speed of propagation shows that g4 1,s(¢,r) only depends on RHS4,1(s,y) for y < s —t+ 2g(t)A(t) < s— %
Given the limits of the integrals in the terms defining RHS4 1, this means that we may replace ¥<1(s —¢)
and <1 (r —t) by 1 when considering g4,1(¢,7) in the region r < 2g(t)A(t). Now, we estimate RHS4 1.

Lemma 18 For0<k,j<2,57=3,0<k<1, and s > t, we have

3

. Y <
y"|0y 01 RH S4,1(s,y)] < CA(s)*log®(s)  sup (A(w)log(w)){ssﬂf v

x€[100,s] BT <y<s—t+29@F)A()

Nln Nle

Proof We re-write (4.117) as
Y y3 o]
RHS41(s,y) = f F(w, )24 (RHS — RHS2,0) (s, w)dw — - f O (RH Sy — RHS2.0) (s, w)dw  (4.118)
0 0

where A 4 5 9
— (w* = y* + 4w?y? log(y/w))

F(w,y) = 16y

This is of the same form as (4.70), and is treated in the same way, noting that G{F(y, y)=0, j7=0,12.
In addition, we use s —t + 2g(£)A(t) < s — &, which implies that

1 C s
- 000< = — —
G ST 5 <y<s t+ 2g(t)A(t)
We then directly differentiate (4.118) to treat higher derivatives of RHS4 1. ©

Let

(4.119)

RHS.
(azRHS4,1 (s,p) + #)

q41otr:= J dsf
«/s—t

Now, we can estimate g4,1.

Lemma 19 For0<k <1, and0<j<2o0rk=2j=0, we have

Or® Supye100,1) (M) log()) A(t) log (1)

k Ak Aj
|T a7ag (Q4,1(t, T’) - q4}1,0(t,7')) | < 15+7 )

A(t)g(t) <7 < 2M(t)g(t)
(4.120)
Also, for 0 < j <3,

Crsup,efin0, (A(@) log(@)) A(t)* log® (¢)
t4+7

107 qa1.0(t,7)] <

Proof The spherical means representation formula gives (see also (4.99), pg. 24 of [25])

(t,7) = J J pdp 2™ RHS4.1(s,A/r% + p? + 2rpcos(9))
g4.1( Com (s —1)2—p2Jo A2 + p2 + 2rpcos(0)

If
2T

(r+pcos(9)do (4.121)

(r + pcos(h))
A/72 + p2 + 2rpcos(0)
Then, by the dominated convergence theorem and Lemma 18, 0,G(s, r, p) can be computed by differentiation
under the integral sign, and

G(s,m,p) = RHS4,1(s,A/72 + p% + 2rpcos(f)), p>0

1
G(S707p) =0 = G(S7T7 p) = TJ aQG(S7:BT> p)dﬁ
0
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Therefore, we have

27
dﬁf IrRHS, (8,78, p,0)d0 (4.122)

—-r [* pdp
q471(t’r):g ¢ s 0 m

where we recall the notation (2.2). Recalling (4.119), we get

1 27
f ag J dfintegrand, ; 5(s, 7, p,0) (4.123)
0

—r e s—t d
qa1(t, ) —qa,1,0(t,7) = %L ds.[o \/ﬁ )

where

, RHS41(s,p) .
integrandy ; (s, y,p,0) = Irus, , (s, y,p,0) — (9QRH54,1(57P) cos™(0) + BHSu1(5,0) Sm2(9)>

p

We note that
integrand, ; 5(s,v,p,0) = Irms, ,(s,9,p,0) — Irus, ,(5,0,p,0)
Also, for all » = 0,p > 3r,s = Ty, 0 € [0,27], and S € [0, 1],

y > Irgs, ,(s,y,p,0) € C'([0,78]), (note that, in this setting, \/y2 + p2 + 2ypcos(0) = Cp > 0)

Therefore, when s —t = 3r, and p > 3r in the integral in (4.123), we use

r3
integrand, ; (s, 78, p, 0) = f o Tris, , (5., p, O)dy
0

and we directly substitute our estimates from Lemma 18 into (4.123) for the other regions, to get (4.120)
for k = 0,5 = 0. Next, we use (4.123) to get

27
dfintegrand, ; 5(s,, p,0)

Or (@1 =aa10)(br) = =57 f f m

which is treated with the same argument used for (4.123). This gives (4.120) for k = 1,j = 0. To estimate
07 (qa,1 — ga,1,0) (t,7), we return to (4.123), and let w = s — t. Then, the dominated convergence theorem,
along with the estimates of Lemma 18 allow us to differentiate under the resulting integral signs, and we
get, for j = 1,2,

2m
ol ( J dﬁf d06]1ntegrand4 1,2(5,78,p,0)

4,1 — q4,1,0) (¢, 7) J dsJ
q q =3 %S_t =

We then repeat the same procedure used for gs4,1 — qa,1,0. To estimate g4,1,0, we use

RHS4 1(t ,
<62RHS471(75 + ’11)7/)) + w)

p

qa1,0(t,r) = f dwf
x/w2—p

differentiate under the integral sign, then substitute the estimates from Lemma 18. We prove (4.120) for
j =0,k = 2 by using the equation solved by g4,1 and our previous estimates from this lemma. o

Next, we study the analogous quantities related to vey sup Which we recall is defined in (4.83). In particular,
we start by studying

ws (tz 7‘) = Vegx,sub (tv T) - 'er,sub,o(t, T)

The function ws satisfies the following equation with 0 Cauchy data at infinity

1
< at + 62 + ar - 2 ) w5(t T) = at (Uegc ell — Vex cont) = at Ve ell, l(t 7")
where we define

Vez,ell,1 (tv T) += Vex (t, T) — Vex,sub (ta T) — Vex,cont (t7 T) = Vex,ell (ta T) — Vex,cont (tv 7”)

and recall that vey e and vesz,cont are explicitly given in (4.36) and (4.80), respectively. We have the
following lemma

Lemma 20 For 0 < k,j < 2, we have

CA(t)%F

J Ak
|at a’r’vex,ell,l(t7 T)' < t2+jg(t)3+k7

gOA) < v < 29(H)A(1)
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Proof We directly estimate vy 7,1 from the formulae (4.36) and (4.80). o

Next, we define ellsolna by

1 /1 (" o
ellsolna(t,r) := -5 (;J 826,521169:76”71(15, s)ds + TJ 6?1}61,6”,1(& s)ds>
0 T

Then, we have the following lemma.
Lemma 21 For all j,k = 0, there exists C; > 0 such that

L A0)° (1t o8t xf)1)

079} T = At
rkt1|656§ellsoln2(t,r)| <Cjp {r , T (t)

I (4.124)
T—A( Jtles sl - < a@)

In addition, 07 ellsolna(t,1) = Foisoin, (t,7) + log? (r)rg/l (t) + rlog(r)gh (t), where, for each t = Ty,
7+ Felisoin, (t,7) admits a C? extension to [0, 00)

For0<j+ k<2

rIRA()° log? (#) 0<k<l1
ko~ 61 5 <X <
|07 0] Fetisotn, (t,m)] < C r)\(t)({(rrlog(k(rt))\) . TEA®)
16F7 , k=2

Cy 1 3
001+ 16 0] < SEBRO- k>0

Proof We have

ellsolna(t,r) = _71 (% L 5207 Vea e 1 (t, 8)ds +TJ;I 6t2”ez,ell,1(t78)d5> = < 71t 3 )) +rfstt, AZt) ))
where
(6 R) = % ( 8(=2R* + 3(1 juli)%goga + RN (1)*
—24A(t) (R2 log(1 + %) +3log(R? + 1)) N ()2 (1)
—Ax(1)? (R2 log(1 + %) +log(1 + R2)> (3)\”(15)2 + 4)\’(t)/\”’(t))
BYON (—R2 + R%(2+ R*)log(1 + %) +log(1 + R2)> A””(t))
and

1 [ =42+ 1+ R*)log(l+ )N ()4
fS“’R):zl( (3o

+ 12 (—QIOg(l + %) + Lig(—%)) N (2N (1) + 2A(t )LIQ(RQ) (3)\”( )2 + 4)\’(26))\'"(15))
+ A0 (=1 + (1 + R*)log(1 + %) + Liz(%))x’”(t))

The lemma statement now follows from inspection. o

We define
gs(t,r) := ws(t,r) — ellsolna(t, r)v<i(r —t)

so that gs solves the following equation with 0 Cauchy data at infinity.

—07as + Orqs(t,7) + 5rqs - qf = <1 (r — t)dfellsolng + (1 — <1 (r — 1)) 07 veg eir,1 (8, 7)

(4.125)
—Plq(r—1t) <2 (01 + Or) ellsolna + ;ellsolng)
We define ¢5,0 by
d, O11ellsol ,
gs,0(t,r) = 5 J' dsf \/(s—pt)%p? (augellsolnz(s,p) + M) (4.126)

Then, we have the following lemma.
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Lemma 22 For0<k<1land0<j<2,

o Cr2a(t)® (log®(t) + |log(r)[?
777010} (g5 — gs.0) (t.7)] < ( )

r < 2g(t)A(t)

5 ’
For all 7 = 0, there exists Cj > 0 such that
; Cirlog?(H)A(t)®
|aiQS,0(ta 7")| < Jt4—+7
OX(t) log? (¢
162 (45— a5,0) (1)) < X8 1) < < 20000)
Proof First, we claim that in the region r < 2g(¢)A(t),
_ e s—t 27
gs(t,r) = -1 f dsf __pdp J dOdiellsolna (s, /T2 + p2 + 2rpcos(f)) (r + pcos(9))
2 Jy o Af(s—=1t)2—p2Jo /12 + p? + 2rpcos(0)

(4.127)

To verify this, we recall (4.125), and use the finite speed of propagation. The only item remaining is to
show that the integral on the right -hand side of (4.127) solves (4.125) with d7ellsolns on the right-hand
side, and zero Cauchy data at infinity. For this purpose, we note that

(r+ pcos(0))
12 + p2 + 2rpcos(f)
(r + pcos(9))
/2 + p2 + 2rpcos(0)

-1 r* s—t pdp 27
5 f dsJ J d0d3ellsolna (s, /T2 + p2 + 2rpcos(6))
t 0 0

_1 o8} s—t pdp 2
= o f dSJ’ J’ daFellsolnz (57 \/”'2 + p2 +2rp COS(G))
T Jt 0 0

N

2

s Y wdw
+ —J dyj _
21 Jo 0 VyZ—w? Jo

d9(1 + w cos(8)) (10g2 ("t (¢ + ry)

+ log(r) (log(l + w? + 2w cos(0))gY (t +ry) + gh (¢ + ry))

+log?(\/1 4+ w? + 2w cos(0))gl (t + ry)
+log(n/1 + w2 + 2w cos(0))gh(t + ry)))

The point of this splitting is that, by Lemma 21 and the dominated convergence theorem, we can differen-
tiate up to two times in (¢,7) under the integral sign. Then, we can proceed as in any standard verification
of the spherical means formula. Then, we return to (4.127) and use (4.124) and the same procedure used
to establish Lemma 19.

O

Now, we compute the leading behavior of ucj; 2(t, ) — Veir,2,0,main (¢, ﬁt)) in the matching region. We first

recall that vey 20 and vey 2,0,main are explicitly given in (4.12) and (4.14), respectively. So, it suffices to
explain how to compute the leading behavior of ue; o (t,7) — verr,2,0 (L, ﬁ) From (4.16), we have

) —bo(<T) - 5 s¢0(s
pa(t) — o m) _ %L @ err1(t, sA(t))sea(s)ds + ez(m)fo ® err1(t, sA(t)) ¢g( )ds
~$0(55y) (3 i) (3t
- 0(2/\(75))J0 " err1,0(t, sA(t))sea(s)ds + 0(2)\(t))J;) " (err1 —erri,0) (¢, sA(t))sea(s)ds
N 2)\,«(25) L,\(f,) err (t,s)\(t))S(%T(s)ds 4 <62(%) _ 2/\r(t)> Lk(t) erry (t7 S)\(t))‘q(%T(s)dS

where we recall that erri (¢, r) is defined in (4.18). Using the definition of vey 2 0 main given in (4.14), we
can write down the leading behavior of wuey 2(t, ) — veir,2,0,main (t, ﬁ) in the region r ~ g(¢)A(t), which we
denote by e 3(t,r).

Ue,3(t,T) = _22);(” Lk(t) erry,o(t, s/\(t))%sds + %(t) Lu (err1(t, sA(t)) — erri,0(t, sA(t))) s¢02(5) ds

Yo 2\ M
r f“  errpo(t, sa(t)) 2u)sds | A AT () (111 — 272 —108log(——) + 2410g2(L))

HEYORA 2 96 D) 20)
7(4\2
+ 1506~ 4log()\Lt))) (a% @A% + A (6)(1 + log()\(t)))> 2X(1) — 2X()°\" (1) (1 + log()\(t)))>

(4.128)
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By computing the integrals, we get

ue,3(t, RA(t))
(2N (1) = TAN (0)2N (1) + 4NN (1) + 6X(1)2N ()N (¢)) R (5 — 41og(R))

16
+ % (111 — 272108 log(R) + 24 IOgQ(R)) R)\(t)?’)\””(t)
FIRN O+ SR (<X BAON X)) + S RAD 0 (X (X))
! 2714&(02 (21 + 7% = 181og(R) + 1210g*(R) ) & (A(ON'(¢))

1

+ 5 R’ (39 + 72 — 421og(R) + 1210g2(R)) (af ()\(t))\”(t)) — AN (t))

+ - RA@) (60 -+ 7% — 541og(R) + 1210g®(B)) N (N (1)

12
_ % RA)2E () — g (A(t)c'l ON (1) + 612“) (-2 + A(t)A”(t))) _ gcl(t)x(tf

R, R ’ 7" /
+ N O (17— 1210g(R) — (5)\(t)>\ (02N (1) — 27 (t)4) (=3 + 21og(R)) (4129)

+ % (3 — 8log(R)) A(t)20; (A”(t))\’(t))

RA(1)%07 (AN (¢
24

) (6 + a4 120(3) — <36 ¥ 27r2> log(R) + 121og?(R) — 810g3(R))

- RAQZ)Q (a? (A(t))\”(t)) — AN (t)) (_27 — 272 —12¢(3) + (36 + 27°) log(R)
—2410g(R) + 8 1og3(R))
+ R%W (255 + 1772 + 72¢(3) — (360 + 127%) log(R) + 2521og?(R) — 48 1og3(R))
+ Riclf(t)i(t)z (=1 + 2log(R)) + R ()\(t))\l(t)cll (t) + 012@) (r" @) - 2A'(t)2)) (=1 +log(R))
+ RAD V()2 (17 4 12108(R) + AW (22151052 (m))

1(1\2
+ §1og(R)A(t)3 (a? @ ;2) + N (61 + log(A(t)))) — log(A(£) A" (t))

Now, we estimate the difference between wuey; 2(t,7) — veir,2,0,main (ts ﬁ) and ue 3(t, 7).

Lemma 23 For uey o defined in (4.9), vei,2.0,main defined in (4.14), and ue 3 defined in (4.128) we have, for
0<j+k<2,

, ONHP (1 +log* (515))
t

|oJ ok (uell,Q(tvr) — Vell,2,0,main (t, W) - ue,s(t,r)> | < S ES; ;> A1)
Proof We estimate each term in the difference between (4.15) plus (4.16) and (4.128) directly, using the
symbol type estimates on A(t), and the fact that erri(¢,r) and erri,o(t,r) are symbols in (¢,7). ©

Combining our work, we get

leading part of (uw,2 — Uy 2 e11,0 + Ve,sub) (1) = tw,3(t,7)

= Uw,2,sub,0,cont (tv T) + Vex,sub,0,cont (tv T)

1
- 5 ((uw,Q,ell - uw,Q,ell,O)princ,l(tv T) + (uw,Q,ell - uw,Q,ell,O)princ,Q(tvr))

5O [ W s = [ de (o +AeRaeA®) + 26 ) sin() 70O (4.130)
r (* st pdp O11ellsolna(s, p)
- §L dsfo m (61126ll80ln2 (s,p) + %)

T w d,
—§f dwj pep (aQRHS4,1(t+w,p)+
0 0

Ja? -2

RHS41(t+ w,p)>
P
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A careful inspection of all of the terms shows that the r logk (r) terms from we,3 and w3 all exactly match,
for k = 1,2, 3. In other words, we have

Ue,3(t, ) — Uw,3(t, )

= rFy(t) + 20 f Wa(EZ D)2 (s)ds

2 A(t)
LT rt (90 + ho)"(s) = (g0 +ho)"(t) (91 +2/1)"(s) = (91 +2£1)" () log(2(s — 1))
2 (s —1) (s—1)
(95(s) — g5(1)) (—1210g(s — ) log(4(s — 1)) + 7 — 1210g(2) ) )
— ds
12(s — t)

+ %Lj ((go + ho)”(s) + (g1 + 2f1)”(5) log(2(s —t))

g(s) (—1210g(5 —t)log(4(s — 1)) + 72 — 1210g2(2)) ds
B 12 (s —1)

(4.131)

g J < 5+ 46K (EA(L)) +2§> sin(t€)v2,0(§)
gf f pzlp (61126llsoln2(s p) + %W)
(s —1)2 —p2
+gjo Jow prdin <62RHS41(15+U) p) w>
=rF3(t)

where Fa(t) = F2 o(t) + F2.1(t), and

. t_3)\’(t)4 (121og(A(1)) + 1IN (1) cr (N ()2 er(t)(—121log(A(t)) — 1T)N (£)?
20(8) = OR 8A(t) O 12X(t)

1 (121og (A1) + 54log(A(1)) + 72 + 60) N (ON ()2 + %at (A'(t))\”(t)) AD)

12
12\ _ 14y _
+ fat (A”(t)/\'(t)> A()(8log(A(t) +3) — BAOY (@) ) 2;8 ) (Z21og(r(t) ~ )

24at (/\(t))\”(t)) A1) (mog (A(t)) + 181og(A(t)) + 72 + 21)

+ —a? </\(t)/\”(t)) A(t) (8 log? (A(1)) + 121og®(A(t)) + (36 + 27r2) log(A(t)) + 72 + 12¢(3) + 6)
214 1) (27 (AOX"(1) = A0A" (1) (~81log® (A(1)) — 24108 (A(1)) — (36 + 277 ) log(A(1)
—9x% —12¢(3) — 27)

L (Flog(A®) = 1) ADOAMN (@) + zer () AN (1) =2V (1)?)) 1

A1) Zk(t)clll(t)
£ A0 (~2log(A1) — Vel ()
+ %/\’(tﬂ (48102 (1)) + 2521087 (A (360 +127%) log(A(®)) + 1777 + 72((3) + 255
L 3BMON N -2V (AWt )A’ + 3e1(t) AHA"(H) — 2X'(1)%))
BA(t) 2X(1)

(4log(A(1)) +5) (2N () = TAEN ()N (£)2 + 6X(E)2X" ()N (t) + AN(1)? N (¢)?)
" 16A(t)
+ %A( )? (24 log®(A(1)) + 108log(A(t)) — 27° + 111) X" (t) + %A( )? (71’2 — 1210g2(>\(t))) A" (t)

+ ﬂA( ) (12 log2(A(t)) + 42 log(A(1)) + 7% + 39) (a? ()\(t)A”(t)) AN (t))
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+ (og(AM0) + D)) = s (1)
(cos) — 580) — § Qostd) = Dab(t) = 3 log(0gh(0) - 1 (v ~12) ()
2
_ (_ (% + %log(Q) log(t)) gt — 214 ( 212 + 15 + 6log>(2 )) "(t))
_ ( 116 ( 28¢(3) + 72 + 28) ga(t) — i log(1) (4 log(t) (log(t) + log(8)) — 2 + 1210g2(2)) A (t)>
(=5 (= 12) /10 = 270) (T1og*0) + g loe los(0)) = 5161 )
(00864 ~ DB — 5 og(OE(e) — 15 (~2n + 15 + 610g(2)) (1))
(%/\(t)Q (—24j1 1og(A(®)) — 121 — 12j2 1og> (A1) — 1272 log(A(1)) - 7T2j2))

. 2 . 2
+5 (-2(220* - 220)°) )
We quickly record some symbol-type estimates on F3(t).

Lemma 24 There exists C > 0 such that, for 0 < k < 3,

1R (1) < sup  (A(x) log(x)) log* (1) (4.132)

2€[100,t]

Proof Using the symbol type estimates on A, Lemmas 19 and 22, and integration by parts in the region
&t = 1 to treat the fifth term in (4.131), we get

CA(t)?

sup  (A(z) log()) log® (¢)
2€[100,t]

|F3(t)] <

We prove (4.132) for k > 0 as follows. Using the symbol-type estimates on \, we see that c1, fn, hn, gn, and

jn are all symbols, with estimates implying that their contributions to Fék) (t) are bounded above by the
right-hand side of (4.132). Moreover,

is a symbol in ¢ because A(¢) is. We similarly note that the sum of the third and fourth terms on the
right-hand side of (4.131) is a symbol in ¢. Finally, we study the following integral

17(0) = [ de (o + A6KaEA®) + 26 ) sin(19)570 €

Letting
H(z) = _78 +4cKo(x) + 22, x>0
we get, for 0 < k <7,

1
$1+k I

H® @) <c{ (2% o<k<1
2<k

Then, by Lemma (4) and inspection of the following formula, I (t) is a symbol in ¢ with |tk1$k) (t)| bounded
above by the right-hand side of (4.132) (for 0 < k < 3).

s | (0 )
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Now, we can choose the free wave, vo 2 from (4.50), so that the leading part of va2(t,7) in the region
r ~ g(t)A(¢t) is exactly equal to ue,3 — uw,3. As in (4.37), the leading part of v2 2(¢,7) in the matching region
is given by

20 p—
T (=2 esmeomaa) = T e (4.133)
0
and we choose the initial velocity, v2 3 by the following, which is the analog of (4.41).
730 = = [ (AROWa0snod, @ ={" TS o<m@<1 @1z
v = — — sin R x) = 5 X T) X .
2,3 € J; 3 2 2 I 29T 2

(We recall that T» is defined in (4.1)). Note that the sine transform inversion formula implies that
Gs(t) = —4F3(t)ya(t), t>0 (4.135)

Up to this point, all of our computations and estimates were valid for all ¢t = Ty for any Tp = Ts. In
particular, they are valid for all ¢ > T». At this stage, we restrict Ty so that Ty = 27> but is otherwise
arbitrary. Thus, we have G3(t) = —4F3(t) for t = Ty. We start with some estimates on o2 3(£):

Lemma 25 For 0 <k <3,

C, 165
|e*oE T2 3(6)] < {Cgk ¢< 10

Proof We use the same procedure as in Lemma 4. For instance, if £ < W then,

3O = =¢ | AROyL0sineed - — | '(—4F3 (1)) (1) sin(t€) dt
So,
v2,3()]
- CJ% A()? sup,efi00,4 (M) log(x)) log® ()15, dt N C f” A()? sup,efi00,4 (M) log(x)) log® (#) 157, dt
=7 ) 13 4
<C

where we used (4.3). Also, the estimates established in this lemma are not rapidly decaying because we
only estimated up to 3 derivatives of F3 in Lemma 24. This was due to the fact that the seventh term of
(4.131) was estimated using Lemma 19. o

Now, we can estimate vz 2
Lemma 26 We have the following estimates. For 0 < j <2, 0<k<1,

Cl k)\()

SUP,e[100,4 (A(@) log(z)) log®(t), r< 1
|6t7‘6,’?v2_’2(t, r)| < Wcﬂwv\/{ SUP,e[100,:] (A(@) 10g(2)) SuPLer100,4 (A(x) )log t), t>r>%
c

W, T’>t, ]+k$2

N sup,c 100, (M) log(a)) log® (1), 7 <

t
2
0202.2(t,7)] < Wsupxe[mo 1 (A(@)10g()) sup,efioo.g (M@)?) log* (1), t>7 >4

—C >t
NS

Forall0<j+ k<3,
|07 0 va 2 (t,7)| <

Tz

N+

<
v
Finally, for0< j,k <1 ork=2,j =0,

Cr®FA(6)? supepio0 4 (A(@) log () log? (1)

o , (4.136)

10]0F (v2,2(t,7) — rFs(1) | <

B[ =
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Proof In the region r < %7 we use (4.3), Lemma 24, and the same procedure used to estimate va. Next, we
treat the region ¢t > r > % Here, we use

vaa(t,T) = 4_—; JOW sin?(0) (G3(t + rcos(0)) + Ga(t — rcos(6))) do (4.137)

Note that ¢t + rcos() > 0 since ¢t > 7, so G3(t + rcos(0)) = —4 (F3 - ¢2) (t + rcos(9)), by (4.135). It suffices
to treat the following integral

= f sin?(0)Gs(t + rcos(0))df] < Cr sup  (A(z)log(z)) sup (A(m)2)10g3(t)
ar Jo 2€[100,t] x€[100,t]

F sin%(0)d6

o (t+rcos(9))*

where we use the fact that ¢2(x) = 0, x < 100. We then use Cauchy’s residue theorem, recalling that
t>r, to get

T sin? d0 1 2™ sin? mt
fo (t+rcos J t+rcos )) _2(t2—r2)5/2 (4.138)

and this gives

|va,a(t,7)| < sup (A(@)log(x)) sup (M) log® (1), t>r>%

(t = r)>2V1 ze[100.4] 2€[100,£]
The higher derivatives are treated similarly. Note that G3(t) = —2 S({ Esin(t€)v2,3(£)d¢ is an odd function
of ¢, and

G3(t) = —4F3(t)Y2(t), t>0

Also, if r > ¢, then, the argument of G3 is negative in a region of the 6 integral in (4.137). So, the procedure
of estimating v2,2(¢,7) in the region r > ¢ using (4.137) is more involved than in the region r < ¢. Instead,
we simply use

wattn) = " 53O 1 (r€) sin(t€)de

0

and proceed exactly as in the proof of Lemma 5. We also do the same procedure as in (4.46) to finish the
proof of all of the estimates in the lemma statement except for (4.136). The estimate (4.136) follows from

vaa(t,r) — rFs(t) = 417’; Lﬂ sin®(8) (Gg (ts) — Gs(t) — rcos(0)Gh(t) + Ga(t_) — Gs(t) +r cos(0) Gy (t)) d9

where

t+ =t =+ rcos(f)

Finally, we are ready to obtain the main result of this section, Proposition 2. We start with the decompo-
sition

T
uell72(t7 7n) — Vell,2,0,main (t7 W) - (’Uel (t7 T) - U€3¢7(«'Ont(t7 T) + UM,Q(ta T) — Uw,2,ell,0,cont (t7 T) + U2,2(t7 T))

r
= uell,Z(ta r) — Vell,2,0,main (t, W) — Ue,3 (t7 T)

- (vew,sub,o — Veg,sub,0,cont T 45 — 45,0 + Veg ell — Vex,cont + Uy 2 sub,0 — uw,2,sub,0,cont>
- (q472 + (ellsoln - TQ(t)Wﬁ(T - t) + Uw,2,ell — Uw,2,ell,0 — (uw,2,ell (t7 T) — Uw,2,ell,0 (t7 T))princ)
- (q4,1 —q4,1,0 + Uw,2,ell,0 — Uw,2,ell,0,cont + v2,2 — rF3 (t) + ellsolnz (t> 7‘)¢<1(T - t))

and use Lemmas 10, 12, 13, 15 - 17, 19 - 23, 26. o
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4.8 Joining the small r and large r solutions

Define
we(t,7) = Uy (t,7) + e 2(t, 1), Uwave(t,T) = Uw (t, 1) + ww,2(t,7) + v2,2(L,7) (4.139)

where we recall that u, is defined in (4.20). The point of the matching done in the previous sections is that
we can transition between ue (¢, r), which is accurate for small r and wwave(t, ), which is accurate for large
r with an expression of the form

for an appropriate choice of x<1 (which will be defined later), and not incur large error terms when deriva-
tives act on x<1, upon substitution of the above expression into the left-hand side of (4.5). As mentioned
previously, the basic idea of this procedure is inspired by matched asymptotic expansions. (The books [3],
[23] have more information about matched asymptotic expansions for ODEs). In addition, the idea is mo-
tivated by the fact that the correction denoted by vi, defined in (4.12), pg. 11 of [25], has a leading order
cancellation with v, defined in (4.63), pg. 18 of [25] near the origin, and simultaneously a leading order

cancellation with Q1 ( )\(Tt)) — m for large r, reminiscent of procedures used to match asymptotic expansions

in various regions.

We now define a cutoff xz1 € C*([0,0)), with the following properties.

Lemma 27 [Properties of x=1] There exists a function x=1 € C*([0,0)) satisfying

0,

<1 o X>1(J:) o 3 * 3
1 S f 2Z 2 dx = f 2% (1 = x>1(z))dz = J z”log(z) (1 — xz1(x))dx =0
, L=

0 x3 0 0

xz1(z) = {

(4.140)
In particular, this implies that, for all k = 0, there exists C. > 0 such that

x>1() CnQog(n)y, n<1
Bk ()'S{Ck n>1

777k7
Proof A direct computation shows that

where

satisfies (4.140), given that

aeCE(1,2)), f; a(s)g _ fol a(s)stds = Jl a(s)s* log(s)ds = 0, j a(s)ds # 0

To verify the stated estimates on X(Ziig)(n), we start with the case of n > 1. We have

=10, [ xzi@) ~(* xz1(@) Hi (Ji(nz))
() = J;) =5 Ji(nz)zdr = Jo 5 e xdx

where
f(=@)
22

HU(N@) = —f"() = 1) +
Then,

xz1() Ck
| <= n>1
(.)5 nk)
follows from repeated integration by parts, noting that there are no non-zero boundary terms obtained in
the process. For nn < 1, we use the integral condition on x>i. In particular, we have

x=10) oy 1 (7 xz@) 3 (7 1@, @)l
o (n)_zL > d+0<77fO - d>+0<J1 o d)

which implies the estimate in the lemma statement. o
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We recall that ue and wwave are defined in (4.139), and define x<i(z) = 1 — x>1(x), and

UC(t7 T) = Xgl()\(t;ﬂg(t) )ue(t7 T) + <1 - Xgl()\(t)rg(t) )) Uwave(t7 7') (4141)

Let h(t) = A(t)g(t). The error term of u. in solving the linear PDE (4.5) is

cos(2Q1(57))
(vt

N———

, - cos(2Q1 (7=
= X$1(m)attuell,2(tv r) + (1 - Xsl(w)) < lrg(t)
w2 | 1 X< () | ()
— (e — Uwave) <_X<1(h(t))h(t)4 - Xél(m) <_ (h(1))2 h(t)3 ) r h(t) + h(t)2

, r rh'(t) 2 r
- 2X$1(m) h(t)2 at (Ue - Uwave) - WX@(W)@(% - Uwave)

) — 1)
(vex (t, 1) + ww,2(t,7) + v2,2(¢t, 7))

(4.142)

Some of the error terms in (4.142) are already perturbative, while some will need additional corrections.
We first record estimates on those terms which are already perturbative. We recall the definitions of vey c11
in (4.36), and wuy,2 in (4.56), and start with the following lemma.

Lemma 28 If

\ c0s(2Q1 (5757)) — 1
eex,ell(ta T) = <1 - Xgl()\(t)g(t) )) ( ' A ) vex,ell(t’ T)

r2

and

r2

r (2Q1(5p) -1
ew,2(t,r) = (1 _X@(A(t)g(t))> <COS Y0 ) U, 2(t,7)

then, for k =0,1,
OXt) " log(t
15y eon e &l rary < gt (4.143)

X(®)

1 A2~ (14 (1)) 1og” (£) sup,e[100,9 (A(@) log(x))  OA(E) F log? (¢
||Lﬁ(ew72)(t7r)||L2(’rdT) < 4 g(t)2 + g(t)4+kt2

) (4.144)

Proof The estimate in (4.143) follows from straightforward estimation of the expression (4.36) for vy ey
To establish (4.144), we write w2 = Uw,2 — Uy 2,ell + U 2,ell — Uw,2,ell,0 + Uw,2,ell,0, 21d use Lemma 10 as
well as (4.61). o

We recall the definitions of vy syp from (4.78) and vep sup, cont from (4.79), and define
Vel sub, 1 (t, R) = Vel sub(t, R) — Vet sub,cont (t, RA(t)) (4.145)
We will now describe the difference ue — uwave. We have
ue(t, 1) = uep(t, 1) + Uy 2(t,7),  Uwave(t, ) = w1(t, 1) + vex (t, 1) + v2(t,r) + uw,2(t, ) + v2,2(t,7)

We recall the first order matching (4.82), which says that

r
Uell (ta T) - Uell,sub(t7 W) =2 (tv T) - v2,sub(t7 T) +wi (tz T) - wl,sub(t» T)
From the second order matching, we have

r
Vell,2,0,main (t7 m) = wl,cubic,main(t7 T) + vQ,cubic,main(t7 T)

and

Vell,sub,cont (t,r) = Vex,cont (t,r) + U, 2,ell,0,cont (t, )
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From the third order matching, we have the estimates from Proposition 2. These give

Ue (t7 T) — Uwave (t7 T)

T
= uell,?(t7 T) — Vell,2,0,main (ta W) - (uw,Q(t7 T) — Uw,2,ell,0,cont (t7 T) + U2,2(t7 T) + Vexr — Vex,cont — q4,2)

T
— t,r) + t, —
q4,2(t, ) + Verr, sub,1 ( )\(t))

5)\(6) t
- <w1,sub(t7 T) — W1, cubic,main (t7 T) - % (5 + IOg(g))

A6 (s) = AO) (1)) ds -
¢ T

192 s—t ot S—t
{6)(s) — A(6) o
5 2t ()\ (s)—A (t)) ds ©) " = 7\6) (5)ds
_m(ﬁ — X 0log() + | A
A ) ) P )
- W (5 + 10g(8)) - (UZ,sub(ta T') - v2,cub1’c,main(t7 T) + @F (t)> + @F (t)

where any function appearing without arguments is evaluated at the point (¢,7). We also recall that F is
defined in (4.38) (see also (4.41)). Using

Jzt (X9 () = 2O )
t

FY@) =4 ((log(Z) - %) A® @) + ds + 2 (¢) log(t)

—} (/\”(t) log(A(t))) -0 @}2; > * Ltf /\5(61(:)%>

we get

Ue(t, ) — Uwave(t, T)
r
= uell,Q(ta T‘) — Vell,2,0,main (ta m) - (uw,Q(tv r) — Uw,2,ell,0,cont (ta T) + U2,2(t7 r) + Vexr — Vex,cont — Q472)
T
- q4’2(t, r) + Uell,sub,l(t: W)

5)\(6) t
- <w1,sub(t7 7‘) — W1, cubic,main (t7 T) - 7"5776() (5 + 10g(8))

AB)(s) — A6 (1)) ds *
5 <ft( () ()) +/\(6)(t)10g(;)+f W))

_@ s—t 2t S —
()
- U2,sub(t7 T) - U27cubic,main(t7r) + @F (t)

— 1125 (6 (4 (V@ 10800) + o (550) ) + (13- 610z 0)

All of the terms (and sufficiently many of their derivatives) appearing in this expression have been estimated
already, except for the last term (which will be eliminated with another correction, utilizing the properties
of x>1) and vey sup.1 (s ﬁ) We now record estimates on veyy, sup,1(t, %), and another estimate on veg syp

which will be useful later on.

Lemma 29 For j =0,1 and k = 0,1, 2, the following estimate is true.

. 2—k 2
10k (vanawna(t 550 ) 1 < CXG 080 gae) < < 2000000

In addition, we have
Clog?(t + r)A(t)®
\/Ft5/2 ’

3 3
v, )] < SR CEED iy < k= 0,12 (4.147)

ve (t, )| < (4.146)
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CAt)3 log®(t +r
0r v sup(tr)] < LR gin <o k=01

CA(t)% log®(t)

rt4 ’

Finally, we also have the following (non-sharp, but sufficient) estimates

2
|arvez,sub(ta T)' <

5
CA(t)2 CA(t)3/?
10 ven(t, r)| < T%(tl  ven(t, )] < tr(% r = g(OA) (4.148)

Proof We directly estimate vejj syp,1 using its definition, (4.145), and the explicit formulae for vy g4 and
Vell,sub,cont rom (4.78) and (4.79), respectively. To obtain (4.147), we start with the definition (4.83), use
Fubini’s theorem to switch the order of s and ¢ integrals, and (for r = g(t)A(t)) divide the s integral into
three regions.

a:t<s<t+Alt), b:t+At)<s<t+r, c:t+r<s<w (4.149)
In each above region of s integration, we then divide the £ region of integration into four subintervals, based
on the scales % % =7 For example, in region a of the s integration, we have the four regions of the £
variable 1 1 L 1 L 1
0 - = S < )
<&s r’ r<£ A(t) /\(t)<§ s—t s—t<§<oo

In the regions where ¢ < ﬁ, we use
|sin((t —s)§)| < C(s —1)§

On the other hand, when & > ﬁ, we integrate by parts in the ¢ variable. To be clear, we show how the s
integral over the region c is treated.

L J dgsm —99) 1y (re) R RHS (s, €)
—+r

f dsf S0 t_S)E)Jl(rﬁ)aQRHs J dsJ’ g t_s)g)ch(rﬁ)@ RHS(s,€)
tr t+r

The integral over the region £ > % is then further treated as

st J ¢ S )5)J1(rs)aQRHS( &)
t+r

_ 1?2 cos(1) cos (t .f) J1 (ri)@?@(s,ﬁ)
_ L +Tdle( DERITS (s, =)= )° =) Lr J e ( & ) ¢
os((t — 8)&) . [ Ji(r€)22RHS(s,€) : cos((t — 8)&) . [ Ji(r€)O2RHS(s, &)
JtJerSJl (t—s) af( e >d§_L J (t—s) a’E( e >d5

Finally, we use the formula for EI—TS’(s,f), namely (4.33), to get, for 0 < k<5

R . CEA(s)* (1] log(£A(5))
¢s¥|0: 08 RHS (s, €)| + s"|0F RH S (s, €)| < o °
’ O

) 1
» SMe) <3 (4.150)

Then, we use
r, =<1
|Ji(@)| < Cq 4
‘7;»
as appropriate to estimate each integral above. We get (4.146) by using the same procedure as above, except
that we don’t integrate by parts when & > ﬁ and s <t + r, combined with (4.36). For (4.147), we use

r>1

O Vew sun(t,T) = f d&J1(r€) f ds sin((t —5)6) 2 FRHS(s,€), k=12
and the same procedure used for k = 0. Finally, to estimate &«Uem’sub(t, r), we start with

O, sun(t,) = f e g (re gf ds anRHS( )

€
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We make the same decomposition as described in (4.149). This time, we integrate by parts in £ (integrating
Ji(r€)) when t < s < t+ A(t), and L < ¢ < 2. We also integrate by parts in s (integrating sin((t — s)¢))
when ¢ > & and t + A(t) < s. Next, using

Prrem s (ts7) = j dE T, (re)e j ¥ —99) g )

&2
and the same argument above, we obtain the estimates on dtrves sub(t,7) in the lemma statement. Finally,
we use the fact that v, s, satisfies

Vex,sub

2
72 = 0y Vex,ell (t,7)

1
_attvem,sub + aT’FUez,sub + ;aT,Uez,sub -

to estimate 63v€$’sub(t, ). To obtain the estimate (4.148), we start with

Orveg,sub(t, 1) = J dém<i (r€) Ji (ré) f ds SIHT)OZ)EEF—I\S(S,&)

sin((t — s (4.151)

3

where mg1 is defined in (2.1). For the first term on the right-hand side of (4.151), we simply directly insert
(4.150) into the integral, and estimate. For the second term, we integrate by parts, to get

_ fr de(1 = mer (r€)) J. (r) f ds )8) 2 RIS (s, €)

0

“ sin((t—s

- [ det=martensiee | as ) 2 RES (s, €)
0 t

sin((t — s
3

and then, we directly estimate using (4.150). Next, using (4.36) and vex (t,7) = Veg e11 (£, 7) + Veg,sup(t, ), We
get

[ i [ deneo (a-mate) ) RS ) ) de

|Orvea (t,7)] < C;(tiz L= g(OAD)

Finally, the dominated convergence theorem and the formula for vez, namely (4.34), give
Orven(t,r) = —f dwf deJy (r€) sin (wE) o1 RIS (w + 1, €)
0 0

Then, we use the same procedure used in (4.151) to finish the proof of (4.148). o

Finally, we let

5

(tte — wwave)o(t, ™) = Ue — Uwave + 1’1“@ (6 (a;‘ ()\”(t) log()\(t))) +of (;}2;)) + (13— Glog(r)))\(ﬁ)(t)>

and we note the following lemma.
Lemma 30 We have the following estimate, for 0 < j,k <1 or k=2,7 =0, and g(t)A(t) < r < 2g(t)A(t)

|ai67]{3 ((ue - Uwave)o + Q4,2) |

_ OA®)*Flog?(1) Cg(t)*> A1) Flog* () sup,e[100, (A(@) log(z)) C/\() kg(t)""* log(t)
t2+jg(t)3+k + t5+7 t8+J

Proof We directly combine the results of Proposition 2, Lemma 1, Lemma 6, and Lemma 29 o

We now can estimate the (ue — uwave)o contribution to the error terms of our ansatz (4.141) which involve
at least one derivative of x<i. Let

€match,0 (t,r)

o 2H 02, ') 2 ®?\ | 1X< () ’(m)
> (~fap )+ R TGE

= — (ue — Uwave)o <_Xlél((t)) h(t)4 - Xél(T - (h(t)) h(t)

’ r rh 2 r
- 2X$1(m) h(t());) t (Ue — U'wave)o — mxgl(m)ar(ue — U'wave)o

Then, we have the following estimates.
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Lemma 31 [Estimates on the matching-induced error terms] For0<k<1,

OA(t)5log2(t)  Ch(t)' FA(®)* log* () sup,e[100,q (M=) log()) L CAWA(®)° " log(t)

k
HLﬁ(ematch,O)(tvT)HLz(rdr) =X 2h(t)4+k 5 38

Proof We directly use Lemma 30 and the estimates on g4,2 from Proposition 2. o

Next, we consider the error terms of u. which involve derivatives of x<1, and which result from replacing
Ue — Uwave with (Ue - me)e)o. In particular, let

_ b PR () 2R | LX) X G)
es(t,m) = —fs(t,7) <‘X<1(h(t)) nad =< <_(h(t))2 OB >+ +

- 2xg1<%>%atf5(t, " - %x’gm%)aﬁs(m)

where

fs(t,r) = —% <6 (a;* (A”(t) log(/\(t))) + o} <2A(t) )) + (13 — 6log(r))A\® (t))

The following piece of e5 turns out to be perturbative. Let

” r o r2h (t)? ’ r rh” 2rh! (t)2 ’ r rh’
6571(1577‘) = _.f5(ta T) <_X§1(w) h(t()t4) - XSI(W) <_ (h(t§§)2 + h(t()g) >> - 2X$1(m) h(t()tg) atf5(t7 T)

Lemma 32 We have the following estimates for k =0, 1.

Ch(t)5FX(t) log(t)
tS

k
||Lﬁ(€5,l)(tvr)||L2(rdr) <

Proof This follows from a straightforward and direct computation o

Next, we need to consider es o, which is given by

LG () o,
es.0(t,7) = es(t,r) — es1(t,7) = —f5(t,7) (ix ;L(:)‘t) + X ;(thé” ) - %Xgl(w)&«]%(t,r) (4.152)

The point is that, although es o(t,) does not decay fast enough (in L?, for example) to be perturbative, it

is orthogonal to qﬁo(ﬁ) to leading order. This is because es (¢, 7) is supported in the region A(t) « h(t) <

r < 2h(t). So, the leading order behavior of (2)\(t))71<¢0(m), e5,0(t, ) L2 (rdr) 18

K es,0(L, r)dr = f: x<1(@) ((24po(t) + 10p1.(5)) h(1)2® + 24p1 (HA(t)* 2> (log (1)) + log(2)) ) h(t)dz = 0
(4.153)

where we integrated by parts, defined p;(t) by

F5(t,7) = (po(t) + p1(¢) log(r))r®
and used Lemma 27. Therefore, we will add a term to u. which will be an appropriate truncation of a
solution to the ODE

cos(2Q1(R))

1
Orrw(t, R) + EaRw(t, R) — R2

w(t, R) = F(t, R) (4.154)
for an appropriate choice of F. (We leave F general here, since we will use a correction of this form to
eliminate error terms of u. other than just es o). For the class of F' which we will need to consider, we will
use the following particular solution to (4.154) (recall the notation (2.3))

R Fp(t,s)s?

4.155
o 1452 ds ( )

R
w(t, R) = —HLRQJO F(t, s)sea(s)ds + ea(R)

Returning to the correction associated to es o, we establish the following lemma
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Lemma 33 Let ws,o denote the function defined in (4.155) where
F(t,R) = A(t)%es,0(t, RA(t))

Then, we have the following estimate, for 0 < j+ k<2, j=2,k=1,7=0k=3, andj=1,k=2.

h(t)

k,jAj Ak 07)\ t}if‘s)Io(t)t h(t 2h(t
|R tjagaRw570(t,R)| < 04( )G(t)ﬁ a( )’ )\Eti < ]f < )\((t))
h(t)” log(t CRh(t)“A(t)" log(t 2h(t
% ()tsg() ()tcg) g()’ R > )\((t))

Proof By a straightforward insertion of the definition of e5 o, (4.152), into the following integral, we have

f 2 07 R < %
A(t)%es,0(t, sA(t))sea(s)ds| < o
IL 5,0 2(s)ds| Cnwlost) " Ry igg

On the other hand, we use (4.153) to get

R

R 60
A(t)Qf es.0(t, SA(L)) s’ds _ —)\(t)QJR es.0(t, s/\(t))ds—f-/\(t)zf

0 1+ s2 0

e5ﬁo(t,s)\(t))< -1 >ds

1+s2

(Note that the support properties of x<1 imply that the left-hand side of the above equation vanishes when
h(t
R< %) Then, we get

=

A1) ‘[R e5.0(t, sA(t)) s?ds | < wv ht) < p < 2h(H)
0

1+ s2 At)
Ch{t)>\(t)* log(t
(t) t(e) g()7 R>

This gives the estimate of the lemma statement for j = k = 0. Next, we have

ds

R R 26 s 52
Orwso(t,R) = —0g (TRR”) Jo /\(t)265,0(t,s)\(t))seg(s)ds + eIQ(R)L A(t) 51,05_1‘,,52)\(1‘,))

So, Orws,o(t, R) is the same expression as ws,o(t, R), except with an extra derivative on the coefficients
of each integral term. Our proof of the lemma for 7 = 0,k = 0 therefore immediately implies the lemma
statement is true for j = 0,k = 1. We prove the j = 0,k = 2 case of the lemma statement by noting that

cos(2Q1(R))

1
dRws,o(t, R) = A(t)%es,0(t, RA(1)) — RORWs0(t, R) + R2

11)5’0(t7 R)

Finally, the symbol-type estimates on A(t), definition of es o, and the fact that

0ol .
J A(t)%es,0(t, sA(t))ds = 0 for all t implies &/ (
0

foo A(t)2es o0(t, sA(t))ds) =0

0

finishes the proof of the lemma. o

We define f5 (¢, 7), the function to be added to our ansatz, by

") (4.156)

Fs.0(t,r) = mer (S ws o(t, o)

t

where we recall the definition of m«; in (2.1). Then, we define the error term of f5 ¢ by

cos(2Q1(577))
1A<t)f5,o> +e5,0(t,7)

1
€fso(t,r) i=— <_attf5,0 +0rrfs.0 + —0rfs.0 —

r2

Then, an insertion of our estimates from Lemma 33 into the above expression for ey, , gives the following
lemma.
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Lemma 34 For k=0,1,

||L (ef5 o)(t T)HLZ (rdr) < 12 6 +4

Y0 (h(t)“log%) . h(t)Qk)\(t)2log2(t)>

Now, we will consider the error term in (4.142) involving (M) Vew,sub(t,7)-

Lemma 35 Let Wey sub(t, R) be defined by the expression (4.155) for

%) Ve sub(t A1) xz1(—x )

Fli.e) = < g(t)

Then, we have
wez,sub(tv m) =0, r< )‘(t)g(t)

For0<k+j<2,j=1k=2,andj=2k=1,

L) < CAt)°log3(t)  Cri7Ia(t)3log?(t)
A(t) = pltgpatk td+kg(1)2 ’

Proof We define int.; s, by the integral

|ail‘€a7j" <wex,sub(tv g(t))‘(t) srst

R F(t,s)s?

int t,R) =
ex,sub( ) 0 1+ 52

s == [ ae [ D9 2 RS 0 1 (.61

where

s 82
L(R, 1) = LR (%) Jl(s/\(t)g)wds

s 1+ 52
and we used Fubini’s theorem. Note that I1(R,&,t) = 0 for R < g(t). For R = ¢(t), we decompose I; as

L(R,&,t) = I00(&,t) + T101(&, 1) + [11(R, &, 1)

where .
-8 x>
o060 = o 2 co00)
o _ 52 s
IlOl(f,t) — J;) ((COS(2Q312(S)) 1) T 82 —+ S%) Jl (SA(t)f)le(ﬁ)dS
and

o — s . s%ds
mren = (w)mmws)x;l(—) d

R
We claim that, for 0 < j < 2,

|07 Ii00 (&, 1)| <

c {f?’g(t)?’A<t>3<log(5g(t>A<t>>>, £ < S

347 C L
g(t) tJ (gg(t))]\c(t))k ; 6 2 g(t))\(t)
. EX() At
|0] Lo (€, 8)] < g PIORR EAD) < (t)
g(t)d(fk(t)g(t))2k7 s ( )

A(t)?
53/&,,,)9/2 S A(t)lg(t)

i r C ) et
o (s 60) 1< 5189 <t

At)® 1 1
e 7 SES " TN
For j = 0, I0o is estimated by using Lemma 27, while, for all 0 < j < 2, I101 and I11 are estimated by

integrating by parts when £A(¢) > g(lt), and directly estimating 0therw1se (as in Lemma 27). For j > 0, the

most delicate estimate is on ¢! I100(¢,t) in the region ¢ < W. We write

Tioo(&,t) f hTszl(y)dy
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which gives

aution(€,t) = 2D (e, -8 [ LA ()0 s ()

Then,

—s [ AOX) 00 e )

0 g(t)3y*
DI ! W 1 -1 !
_ _8J9() O %(g((;;(;i) yﬁxgl(y)dy—fﬂJ’o e (J] (g(t)A(t)zi))gyZ) (g(t)A() yexs1 (1) dy
s[4 AT (4070 61 )y

(t)*(t)i

and to estimate the first term on the right hand side of the above expression, we use Lemma 27. We use a
similar procedure for 6?1100 (&, 1).

P (-m%m,sub(t,ﬁ)) . (ff dgf Slntgi)g)aQRHS(:r L 7(;),5,1&)>

= 3 (— fo d&fo )dwmé;"g) RRHS(t +w,¢) (hoo(é,t) +hou(E0) + I (5756 t)))

After differentiating under the integral sign in the last integral, we let x = w + ¢, and split the z integration
into two regions: t < z < t+ + and = > ¢t + %. In the latter region, we integrate by parts in the z variable,
integrating sin((t—x)&). Then, we make a similar decomposition of the ¢ integral as was made while proving
Lemma 29. This gives, for £k =0,1,2,

e T CA(t)*1og?(t)
- < — 7 @9 r7
|at <7fnte:1:,sub(ta b ))) | =~ t4+kg(t)2 3

t

We recall the definition of es in (2.3). The next integral to consider is

R
intes sup.a(t R) = j (w)vembu AO)1 (5 )sea()ds

- _f dgf sin )5)62RHS(39 6)I2(R, &, 1)
(T [cos(2Q1(s)) — 1 s
Bren = [ (—2) TN (5 sea(s)ds
As with I; above, I2(R,€,t) =0 for R < g(t). A direct estimation gives, for 0 < k < 2,
log (o) ADE, €< X
ot (Bee0) 1< 7 {00 Nos(E a0, L << sy

C 1

g(£)3/24/A(t)E’ &= At)g(t)

where

Then, as above, we get, for k = 0,1, 2,

e r CA(t)*log?(t) r ¢
|0t (Zntex,sub,Q(ta 7)) | < T Ak g(t) < NO) < NO)

>
—~
=
>
—~
N

Recalling (4.155), we have

r %ol Znt)). r (N T
wem,sub(ta m) 5 BV

which gives, for 0 < k < 2,

& r CA(t)®log?(t) — CrA(t)®log?(t)
- < < <
|at (wef,sub(t7 >\(t) )> | ~ ’I’t4+k + t4+kg(t)2 ’ g(t))‘(t) ITS i

Next, we note that

T _¢6(A7(A ) ) . r r 1 . r
Or <wew,sub(t7 ﬁ)) = T(t)tzntem,subﬂ(t )\( )) + 62()\ t)) ( ) tez,sub(t, w)

Finally, we estimate 2 (wew’sub(t, ﬁ)) using the equation solved by weg ¢yp, Lemma 29, and our previous
estimates from the proof of this lemma. o
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The truncation of weg ¢ Which we will add to our ansatz is

fea:,sub(tv T) = mgl(g)wex,sub(t: ﬁ) (4'157)

where we recall that mg1 was defined in (2.1). We define the error term of feg g5 (¢, ) as

cos(QQl(ﬁ)) >
- o9 Jex,sub

1
eem,sub(t’ T) = - <_attfem,sub + a’r‘?”fef,sub + ;af‘fer,sub - 2

s

cos(201 (35) ~ 1 i
+ < 2 Uex,sub(t7 T)X21(A(t)g(t))
We get
noT —r? 1 r
eex,sub(tvr) = _m$1(¥) e + 2 wew,sub(tv W)

(5 (T 2 ) wewsantt 5750+ 2501 (werntts 5750 + 20 (wenatts 7))

+msi (s )07 (wez,sub(tv ﬁ))

-1
) Uex,sub(tv r)x=1(

Lemma 35 directly gives
Lemma 36 For k=0,1,

. CA(£)>F log?(t)
||Lﬁ (eem,sub)(t7 T)HLQ(TdT) = W

Lemma 37 Let gey2(t, R) be defined by the expression (4.155) for the choice

Flt,s) = /\(t)QX@(ﬁ)a%Ueu,z(t,5)\(15))
and let
feur,2(t,7) = gent 2(t, ﬁ)msl(g)

Then, for0<j <2, 0<k<3,

R®(1+1log?(R)), R<1
k_jAJ Ak CA(t)G 5( ( ))
|Rt'0{0Rgen 2(t )] < — 57— { R log(t), 1< R<2g(t)
Ry(t)? log™ (1) + 20505 - R 5 9g(1)

Also, letting eq2 denote the error term of fey 2:

cos(2Q1( )\7(;) )

r2

r

1
eeir,2(t, 1) = — <—5ttfeu,2 + Orr feri 2 + ;anell,2 - fell,2> + Xél(m)a%ueug(t,r)
we have, for k=0,1,
CA(®) " log® (t)g(t)* "
tS

k
||Lﬁ(eell,Q)(t7T)||L2(rd7‘) <

Proof We will take advantage of two of the orthogonality conditions in Lemma 27 when studying ge;; 2. We
recall that wuey; o is defined in (4.9), and we use (4.13) to get

e (R) R s r
gell72(t7 R) = 22 )\(t)QJO Xﬁl(ﬁ) (atZ (Uell,2,0,main(t7 m))

+ o} (solng(t, ﬁ))

R
_ @A(t)zjo X () a0, 5N (D) sea(s)ds

2 T
rsA(E) + 0; (solnl (¢, m))

)) s¢o(s)ds

r=sA(t
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where, for the reader’s convenience, we recall that

3 3 / 2
vatzmaint9) = =240 (3 (N0 4+ X704 X (01050 ) = X" () og(sx(0) + 547 (0)

We then estimate gq; o by using the orthogonality conditions of Lemma 27 to treat the term in the above
expression for ge; » Which involves vey 2,0, main, and estimate the rest of gey; o directly. We have the following
two estimates for 0 < k<1l and 0 < j <2,

j oAx®)?* [s°7F(1 4+ |log(s)]), s<1
ook <a2 ( Iy (6, " ) ) < G 4.158
| t Vs t | SO nl( /\(t)) r=sA(t) | 16+7 sl_k(l + logQ(s)), s>1 ( )
; ox@®)? (371 +1og?(s)), s
ol oF <62< ! t,L> ) < )
| t t | SO TLQ( )\(t)) 7‘=s>\(t) | t6+] s 7k:(1 + IOgS(S)), s

This results in the estimates on gy o and eg o in the lemma statement. o

(4.159)

Finally, we treat the linear error term associated to vz 2 which we recall is a free wave added to w2, and
is chosen so as to allow for the third order matching. This error term is

2 —1 .
era(tor) = <COS( 1(x@) ) vaa(tor) (1 ~ Xs1(h(t))>

We define ug2 to be the solution to the following equation, with 0 Cauchy data at infinity.

2 2 1 u2,2
—0tu2,2 + Oruz,2 + ;aru2,2 — 727 =e2,2(t,7)

Then, we have the following lemma.

Lemma 38 For@$r$%, and 0<k<1,0<5<2,

5
oH10] b (1) < CA S0Paelion.) () log(a) log (1)

L) (4.160)
" Crat)® SUPue[100,1] (A(®)log(z)) sup,e[100,1 ()‘(55)2) log* (1)
6
Also, for h(t) <r< %,
CA(t)* sup, A(z) log(z)) log® (¢
Pz 2(t, )] < (t) 6[100 h((; ) log(x)) log”(t)
CA(t)? SUPue[100, (A(@)log(z)) sup,e[100,1 (M=)?) log™ ()
* 76
In addition, for all T > 0,
CA(t 2supz A(z) log(z)) sup, Az)? log3 t
Blun ) + it ) <« A0 iction O 08 o () 080410
Finally, for 0 < j <2,
. CA(t)* sup, Ax) log(z)) log® (
ot < CO MPreton g O log(o) g0
& —rYlTIin(t)2t (4.162)
N CA1)? SUPue[100,] (A(@) 10g(2)) Sup,epi00,4] (A(x)?) log® (1) by
15/2(t — ryT/2+i g =7
4
|Orug,2(t, r)| < 70010‘% ® 5o (4.163)
tz

—5C,
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Proof As in (4.122), we have

2T
da[ﬁz 2(5 Tﬂ7p7 )

e s—t
ug2(t,r) = Q—T J dsf __pdp dﬁ
™ t 0 m

where we recall the notation (2.2). We start with the estimate of the lemma statement in the region
h(t) <r<2h(t)< L. Forallp<s—t, r<% and0<p<1, wehave

\/B2r2 + p2 + 2Brpcos(0) <5r+p<s—t+%<s
From Lemma 26, we get

A(s)? log?(s)A(s)?
ez a (5,75, p, )| S C ( s4 xe?ﬁ)pM] (A(z) log(z)) (h(s)2 + B2r2 + p? + 2Brpcos(6))?

)\(5)2 SUPze([100,s] (A(z) log(z)) SUPze[100,s] (/\(95)2) log3(s)>

+

(s —AJr2B2 + p2 + 2frpcos(0))7/259/2

We then make the analogous decomposition as in (4.123), and use

s —~/B2r2 4+ p2 + 2Brpcos(0) = s—(r+p)=t—r=Ct

which is true for p < s —t and all r < L. This gives (4.160) for k = 0,5 = 0, and @ < r < 2h(t). For
k=1,7 =0, we note that

which, when combined with the same procedure used for us 2, completes the proof of (4.160) for j = 0 and

Oruz2(t,r) = dfle, ,(s,r, p,0)

0 < k <1, in the region @ < r < 2h(t). To treat higher j, we simply note that

. _ L 2
Huz2(t,r) = T;L dsfo \/s—pf% dﬂf d@ajfew(s rB,p,0)

and use the same procedure used for j = 0.

In the region 2h(t) < r < %, a slightly more complicated argument is needed because factors of hrt)
are no longer controlled by a constant in this region. We have

luz,2(¢,7)]
Bt g (2 (A3 SUDscfio0,s] (@) log(@)) log® (s)
<cr dsfo N dﬂf d9<s4< 262 4+ 7 + 2rBpcos(0) + h(s))?

A(s)? SUPze[100,s] (A(z) log(x)) SUPze[100,5] ()\(55)2) 10g3(s)
+ 97272

(4.164)

The second term of the integrand of the expression (4.164) is estimated with the following simple procedure.

J dsf PdP dﬁ m de)‘(S)Q SUPge[100,s] (A(x) log(z)) SUPze[100,s] (A($)2) 10g3(s)|
p2 0 0 §9/2¢7/2

<cC J As )qupme[loo s (A(@) 10g(x)) sup,e100,5) (M@)?) log*(s)
T ds
. $7/247/2

- Cr(t)? SUPue[100,] (A(@)log(z)) supue[100,4 (A()?) log® (1)
~ t6 ’

r<

N|

Using Cauchy’s residue theorem appropriately, we get the following, for a, p,y > 0.

(4.165)

J‘Q’T do _ 21(a® + p° +y?)
o W2 +0%+2pyc0s(0) +a%)7 (02 + (0~ 9)*)(a? + (p +1)2))H2
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So, for the first term of the integrand in (4.164), we get

) SUDye 100,51 (A(@) log()) log? (s)

e S pdp 27
|TJ dSJ /(s —1)2 — p? dﬁf 252+P + 2rfpcos(9) + h(s)?)?

)?)
CTJ dsf pdp ! 3 As)* SuP;ce[loo,s]( (z) log(x)) log®(s)
V=02 =p2Jo " siR()2Z + p? + 1282 (h(s)? + (p—r)2)32
<or f“’h W[ pdo A6 suPaeino.g (M) log(x)) Iog® (s)
¢ 0o A(s—t)2—p2 sih(s)t
e Jt””“ ao [ ___pdp M8 sUPseqig s (M) log(x)) log®(s)
tr3n(t)y  Jo A(s=1)2=p? sth(s)*
A dp  A(8)"suPueaon,q) (A(@) log(x)) log’(s) a
C d :
" r£+3h(t) SLh(t) (s =12 —p2 54 JO (h(s)2 + (p— rB)2)3/2
MO pdp M) suPseqio,s) (M) log(x)) log® (s)
pap 2€[100,s]
o 4[f+3r o 0 (s —)2 —p? sth(s)?
[ dp ___ M5)'sUPsepioo,q) (M@) log(x)) log”(s) (1 s
o L+3r o Lh(t) (s —t)2 —p? st fo (h(s)2 + (p —rB)2)3/2

L Or J”"‘ s st dp As)! Supxe[mof] ()\(as)glog(:c))logg(s)
tr3r  Jar Af(s—1)2 —p? st(r+p)

- CrA(t)* sup,e[100,4 (A(x) log(x)) log® (1)
= t4h(t)2 ’

2h(t) <r <

N =+

The derivatives of uz2 in the region 2h(t) < r < % are treated in a similar way. A similar procedure

establishes (4.162). Finally, the estimate on d7us 2 is obtained by noting that

ugg(t, 7“)

5%’&272(25,7’) = 62,2(ta r) + r2

1
- ;9ru2,2(t,7’) + Ofuz,2(t,7)

For (4.161), we again use Lemma 26 to get that

CMOE MO up, 100,41 (A(@) log()) log? (1), ) <r<}
2suTel (A {(z) lo SUPLer100.¢1 (A @)?) log? (¢
le2.2(t1)] < Lyona cxros) Paefi00,1 (M) g((t >1>J/1:\[[ 00,01 (A(2)?) £ t<rst

CA(t)?

—_— >
r9/2, [{t—r)’ r=t

which gives

CA(t)? sup, (A=) log(z)) sup,, Az)?) log? (t)
||62,2(t7r)||L2(rd7‘) < €[100,t] § e[100,t]( )

Then, the same procedure used in (4.69) (energy estimate) finishes the proof of (4.161). Finally, we prove
(4.163) by using Lemma 26 to get

|I€2,2 (S, T, P, 0)' s

which implies

=
|Orug2(t, )| < CJ ds 5
t

5550y 15-5Cu
Note that
(1- x<1(%))(1 ~ X)) = (1= x<i ()

So, we will add the following truncation of us o into our ansatz:

f2,2(t,7) == u22(t,7) (1 - Xsl(%)) (4.166)
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We define the error term associated to f22 by

2Q1(5)) — 1 r
() s = (cos lr;(t) ) v2,2(t,7) (1 - X@(@)) - (—af + 07 + %a,« - %2) fa2(t,7)

= 2 o2 dr o 2r ar*n' () 4 2r
= u2,2(t,7) (WX@(W) EADE XSl(m)h )2 — WX@(W)

WaGy) 2”@y, 2r )>

<1
o2 oz <G

4XI< (A r

2Q1 (<)) — 1
7@)) (h(t)aruzg +rh’(t)atu272) . <cos( Q1(>\(t))) >ug72(t,7“) <1 —x 2r >

1
HENAOF 72 <1(z)

Then, a direct estimation gives the following lemma.

Lemma 39 For k=0,1,

CA(t)* sup (A\(z) log(z)) log® (t)
k 2€[100,t]
125 (er, )2y < e

Now, we let
Ua (t7 T) = uC(t> r) + f5,0(t7 T) + fem,sub(t7 T) + fell,2(t7 7') + f2,2(t7 7") (4167)

Ucorr (t, 1) = ua(t, ) + ur(t, r)

where we recall that u. is defined by (4.141). The equation for u; which results from substituting Qﬁ (r)+

Ucorr into (1.1) is

cos(2Q1 (v
_ 6t2u1 + 63u1 + larul _ Mul
r r2
Qucorr) = 1 _. cos(2Q1(x))
=eq(t,r) + (%) Sln(QQl(ﬁ)) + TW (sin(2ucorr) — 2ucorr)

where
€a(t, 7“) = (eew,ell +ew,2 + €match,0 +es51+ €fs.0 + €ex,sub + €ell,2 + efz,z) (tvr)

Combining Lemmas 39, 37, 36, 34, 32, 31, 28 and using (1.7) and (4.2) gives the following lemma.

Lemma 40
||€(l||L2 (rdr) < C logG (t)
NOE = pa+min{da—C;—2,1—a—2C, ,4—5C, —6a}

I Clog®(t) Clog?(t) = Clog®(t) C'log®(t)
L 15 (ea) 2 rary S 372030, 2+5a 5-3C, T 860, 5a

4.9 First set of nonlinear interactions

It only remains to treat the terms which are nonlinear in wcorr = uq + u1. For this, we define

_ 201 (1
NL(t,7) = (%) Sin(201 (—1~)) + w (sin(2ucorr) — 2ucorr)

= (%) Sin(2Q1 (5777) + 2ua)

sin(2u1) — 2u r COS(2Q1(,\(Tt) )
(e e
(cos(?Ql()\(rt)) + 2uq) — cos(QQl()\(Tt)))> . sin(QQl(A(Tt) )

r2

>
~

~
=

+ u1
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We focus on the ui-independent terms of the expression above. In particular, we define

COS(QQl(AE't) ) sin(QQl()\a) )

No(t,r) = 52 (sin(2uq) — 2uq) + 9,2 (cos(2uq) — 1)
We recall that
Uq = X<1(%)ue + (1 - Xsl(%)) Uwave + f5,0 + fex,sub + feir,2 + f2,2
We write
Ua = Uqa,0 + Ua,1 (4.168)
with

a0t 7) = <1 G g o) + (1 - x@ﬁ)) (wr(t,7) + va(t, 1) + vaa(t,1))

T T
Ua,1 = Xsl(w) (e — ueyy) + <1 - Xsl(@o (Vex + uw,2) + f5,0 + fez,sub + feii,2 + f2,2

Then, we get
cos(2Q1(517) Sin(2Q:1 (575))
Na(t,r) = —52 (sin(2ua,0) — 2ua,0) + 5z (cos(2uq,0) — 1)
cos(2Q1 () |
t—52 (sin(2uq,0) (cos(2uq,1) — 1) + (sin(2uq,1) — 2ua,1) cos(2uq,0) + (cos(2uq,0) — 1) 2uq,1)
Sin(2Q1 (7)) | . .
+ —z ((cos(2uqa,1) — 1) cos(2uq,0) — 28in(2uq,0)ua,1 — sin(2uq,0) (sin(2uq,1) — 2uq,1))
:= Ng + N1
where
N1 (t, 7“)
cos(QQl(ﬁ)) ) )
=53 (sin(2uq,0) (cos(2uq,1) — 1) + (sin(2ua,1) — 2uq,1) c0s(2uq,0) + (cos(2uq,0) — 1) 2uq,1)
sin(2Q1 (575) | . .
t——a ((cos(2uqa,1) — 1) cos(2uqa,0) — 28in(2uq,0)ua,1 — sin(2uq,0) (5in(2uq,1) — 2uq,1))

(4.169)

We proceed to estimate the term Nj, which turns out to be perturbative.

Lemma 41 We have the following estimates on Ni.

IINL(E ) 2 rary . Clog®(2) Clog'3(t) Clog®(t) Clog™(t)
)\(t)Q s 16—3C, —2« + t5*%CL*9Cu’ ||Lﬁ(N1)(t7 T)HL?(rdr) < /6-5C, 2a-C; + t571790u701,

Proof We estimate N; by combining the following estimates on various terms of uq,0 and uq,1. We use
the explicit formulae following (4.7) and (4.81) to estimate u.;. We use the decomposition (4.13), along
with (4.14) and the analogous estimates to (4.158) and (4.159) to estimate uj; 2. We use (4.146) in the
region r > £, and (4.147) and the expression for v, .y, namely (4.36) in the region g(t)A(t) < r < , to
estimate vez. We use Lemma 10 to estimate wy,2. (In particular, we use (4.63) and (4.67) in the region
g(t)A(t) < r < L, and (4.64) in the region r > £). Next, we use Lemma (2), Lemma (5), and Lemma 26 to
estimate w1, va, and va 2, respectively. Finally, we use Lemma 38, and (4.166) (for f22), Lemma 37 (for
feit,2), Lemma 33 and (4.156) (for f5,0), and Lemma 35 and (4.157) (for fey sup). This gives rise to

|u¢1,0(t7 T)'
rA(t)lo
(t)tz s(t) < i o (4.170)
< c SUPge[100,r] ()\(z) log(z)) log(r) SUPe[100,t] ()\(x) log‘(z)) SUPge[100,t] (A(I) ) log (t)]l{t>,,'>%} t
NV Gy P T
and

o) Ho’ 1) 1 < op(r)
A og® A og®
luas (t,r)] < € 4 2o (D) 4 CrADloe (1) - op(1) < <

(4.171)

[SIES

R L B
5—3Cu S 2
t t 2
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Then, a straightforward, but slightly long computation gives the estimate on [[Ni(¢,7)|[12(yqr) from the
lemma statement. Recall that

cos(Q1 (375))

Lx(lt)Nl(t7r):aTNl(t7T)_ r

N1 (t, ’I“)

To estimate HLﬁ N1(t,7)l|L2(rar), We use the procedure outlined at the beginning of the proof to estimate

Oruq,0 and Orug,1. The only difference here is the following. After differentiating Ny (t,r) with respect to
7, we use the pointwise estimates on druz2(t, ) given in (4.160) for the region r < £. We use Holder’s
inequality and (4.161) to estimate the terms involving dru2 2(¢,7) in the region r > % ]

It remains to treat Ny, which we recall is defined by

M (sin(Qua,o) — 2ua,o) + M

No(t,r) = (cos(2uq,0) — 1) (4.172)

272 2r2
where
ua,0(t, ) = Xﬁl(%)uell(tv r) + <1 - Xs1(%)> (wi(t,r) +v2(t,r) +v2,2(t,7))

We define uy, to be the solution to the following equation with 0 Cauchy data at infinity.

1
—0Fun, + dPun, + ~drun, — "TZO = No(t,r) (4.173)

Then, we have

Lemma 42 We have the following estimates. For 0 < k<2 and 0<j <1,

1—j 3. 3
Cr' Y (supyequon i (A(@) log(a)) ) " log® (1)
t4+k

j0F lun, (t,7)] < rs<y (4.174)

3 3
C (suPseqinn.q (A(@)10g(@)))” (suPsepiong (A@)?)) log”(®)  (4.175)
funy (1 7)] + /By druy) < :

E
Finally,

Ortuy (&,7)|

_ O (sWPacpio0.g (Nw) 0g(x))) 10g(0)  C (supreron) (M) 0B(@)))” (sUPaepion.g (Ae)?)) log”()

= t3/2(t — r)5/2 + t3/2(t — rH17/2

O (51Pacfio0, (A@) 108())) (5ubseqion (A)?)) log (1)

+ t2<t—’l“>6 5 §<’r‘<t
(4.176)
Clog"(t
llorung (6,7 Lo < %ﬁ (4.177)
tQ u
Proof As in (4.121), we have
r €L J~s—t pdp 1 27
t,r)=—- d — | d dol ,r8,p,0
uNo( T) 27T£ S o \/m o /B o NU(S Tﬂ P )

where we use the notation defined in (2.2). We then estimate uq,0 and its derivatives using the procedure
described in the proof of Lemma 41. This results in the following estimate for j = 0,1,2 and k£ =0, 1.

|aga£N0(t7r)|

rA(t)2 log®(t
t4((rg+)\%t)(2))’ rsg

@) (Supze[wo,t](k(z)log(z)))z 2 2 6
<C (1 1 >k <1 1 )] i1 &=y (SUPxe[loo,t] (A=) )) log™(t)

r + <t — 7"> T + <t - 7"> + (SuPze[loo,t](A(I) 10%’(1)))3 log®(t)
rT2{t—ry3/2
. A 1 3 ) A(2)2))? log? (¢
+(Sque[100,t]( (z) Og(zs)_))T;i}l?F;;Z[loo,t]( (=) )) og ()’ % <r<t

(4.178)
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We start with the region r < 5. Using an analog of (4.165), we get
luny (¢, 7)]
s8] s—t 1 3 3
<or [ ds pdp d A(s)” log™(s)
S Jt Jo V(s =1)? —p? Jo g (84\/0\(8)2 +(p+7rB)*)(A(s)? + (p—75)?)
M) (SuDscpio0s] (@) 108(@)) (SPacfioo.s) (A@)%)) Tog ()
st(s — (p +7))°
(SUPme[loo a] z) log(z ’ log
ST (s = (p - r>)5/2
(suPeq100,9 (@) 08()” (suPseqio0.q (Ax)?)) 108”5
" T — (o + )T

+

J’_

(4.179)

where we used the fact that, if 0 < 8 < 1, then,

(s = /P2 + 71282 + 2rBpcos(0)) = C (s — (p+1)).-
By a direct estimation, we get

|J 1 < C'log(s)

\/—rﬂp s)+rB+p) T (r+p)(A(s) + p)

and therefore,
1 A(s)2 log®(s) CYTA( )3 log® (¢)

r JI‘ d J pdp
S 2b 4
t 0 A(s—t)?—p? e log™ (s)\/(A(s)2 + (p +1B)2)(\(5)% + (p — 13)? ) ¢
The other terms of (4. 179) are treated with a similar argument, using s— (r+p) = s—r—(s—t) = Ct (since

r < L). This gives (4.174), for k = 0,5 = 0. To obtain (4.174) for k = 1,2 and j = 0, we first note that

27
dﬂf d00% T, (s, 8, p. 9)

__pdp
(t,r) = d ————
atUNn r) 27TJ SJ e

Then, after applying (4.178), we obtain an extra factor of

1, L (%48 )’20
s (s—~/r2B2 + p2+2rBpcos(0)y) \s s—(r+s—t)) "tk

in the integrand of the expression for 6fuN0 (t,7), relative to that for up,, which we just estimated. This
immediately gives (4.174) for k = 1, 2. Next, we use the same procedure as in (4.77), to get (4.175). Finally,

we use
2T

ovun, (tr) = = [ a S
7-’UANO(77“)_§ . S o (S_t)2_p2 o

and a similar argument used to estimate uy,, to get (4.174) for j = 1,k = 0. For completeness, we show
how to estimate the most delicate integral, which is

deINo (S, TP 9)

f ds f pdp A(s)* log® (s)
V(s = 1)2 = p2 s34 /A(8)2 + (p + )2/ A(8)2 + (p — )2

Here, we use

4 arctanh(——2—"" )| = .

dp a?+ (p—r)? a? + (r—p)?
and estimate the integral directly. A similar argument establishes (4.176). Finally, to obtain (4.177), we
again estimate wuq,0 and Oruq,o using the procedure described in the proof of Lemma 41 to get, for all
r>0,0€e[0,2n],p < s—t,
Clog'?(s)
|[N0(877",P7 0)| < 5%_790“
This gives
Clog'?(s) be%)

55—9Cu S 13—9Cu

o
|Orupn, (t, )] < CJ- ds(s —1t)
t



76 Mohandas Pillai

The linear error term of uy, is ey, defined by

eny (t,7) 1= (COS(QQl(W) - 1) wny (t7) (4.180)

Then, a straightforward estimation, using Lemma 42 gives the following (recall (2.1)).

Lemma 43 We have the following estimates for k =0, 1.
L 1 a
12 (e (8, 7) (1 = mgl(%)))ﬂm(rdr)

D (3UPeiong (@) og@) log®®) [ 1 (supeqiony (A@)?))” 1og® (1)

S 4 h(t)2+k + ti+k

It remains to treat mgl(#(t))e% (t,7). For the reader’s convenience, we repeat the outline (that was given
in Section 3, just below (3.5)) of the procedure to be used. We start with solving the equation

cos(2Q 1 _(r)) .

1 )
Orrung ell + ;5rUN0,elz - +UNO,C” = m§1(2h(t))eN“ (t,r) (4.181)

and then inserting the following function into the ansatz

rA(t RA(t 2r
wcor (07) 1= (g entor) = s (A ens (. RAO), o0 patary | mar () + vaa(t)
(4.182)
where vg 4 solves
1
—01tv2,4 + Orrv2,a + ;57*0274 - % =0 (4.183)

and vz 4(t,) matches 7'>\4(t) <m<1(%((tt)))€No(t7 RA(t)), ¢0(R))12(rar) for small r. (Recall that m<; was defined

in (2.1)). In particular, we choose the initial velocity, say va,5 of v 4 by requiring, for all ¢ sufficiently large,

T2 [ esinmma(©ds = P\ mar (Gaithen, (¢ FAO). 0B ey

We refer the reader to the discussion in Section 3, just below (3.5), for some intuition regarding this pro-
cedure.
A(t)

We start by estimating uy, ey (£, 7) — TT<m<1(§;((f)> Jen, (£, RA(E)), ¢o(R)).

Lemma 44 We have the following estimates. For 0 < k<1 and 0 < j <2,

7410{08 (wxpent:r) = {0 mar (Gt ew, 1 RAW). () ) |

{ Crlog?(t) (sup,eqioo,n (A(@) log(2)))* (4.184)

r < A(¢)

t
Cl1o0g(t) +log (575 DA (5uPacqron, i (M) log(2)))° log? (¢)
rtd ’

Alt) <r
In addition, we have

22 (wwpntor) = {2 mer (G en, (1 RAD). 0 () )

C{ T (supze[mo’t](A(azlog(m)))alog3(t)’ r< )\(t) (4185)

NOE

(
/\(t)2(log(t)+10g(ﬁ))(sur:g;iwu,t](/\(x) log(l')))zlogS(t)7 = A()

Finally, for 0 < k<2,

3
Clog®(t) (Supxe[loo,t] (M) 10g(90))) (4.186)
t4+k)\(t)

|0F (e (t, RA(t))m<1 (
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Proof We consider the particular solution given by

'
UN,,ell (£ 7) = Uy, et (t, w)

where
R sds

R
ot ) = ea(R) [ MO man (e, (A 0)d0(5) 5 = 0(R) [ X0 (e (6 M O)eas)

We remind the reader that ey, is defined in (4.180). Let inty, ;(¢,7) denote the ith term on the right-
hand side of the above equation, evaluated at R = ﬁ In the region r < A(¢), we separately estimate

intny1, ntn,2, and %u)(mgl(gﬁ((:)))em(t,R)\(t)),qbo(R», using Lemma 42. This gives (4.184), in the

region r < A(¢), and for £k = j = 0. When r > A(t), we take advantage of the fact that

ea(R) - ] < 0B,

R=1

In particular, we estimate inty, 2(t,7) directly, using Lemma 42 and write

FAL) RA(D)
3 (=l 2h(t)

Jen, ( BA)), ¢o(R))

inty,,1(t,7) —

ally) o ) ([ .
=<2 0 —4A<t>>f0”*<t>2m<1<2 Jen (6 A (D) do(s)sds

_ @) _[7 met (5o )eny (t sA(1))do(s)sds

4
NO)

Directly estimating the integrals using Lemma 42, we obtain (4.184), in the region r > A(t), and k = j = 0.
To obtain (4.184) for k = 1, we use

_d)l( r ) )\Tt ) .
Orung et (t,r) = %L ® /\(t)2m<1(29(t))€N0(t, 5)\(15))62(8)%
e'g(ﬁ) Yol ) s o
(@) L A (g gy)ens (tsA ) do(s) 5

and then repeat the same procedure used to obtain (4.184) for k = 0. For the estimate (4.184) for j > 0,
we first re-write uy, ¢, as follows, and then differentiate in ¢ directly.

uny () = =d0( 7y j mea (g e (1 2)eal ) T + ea fmq e ()do(575) 5

At)

Using the same procedure as for (4.184) with j7 = 0, and noting the symbol-type nature of the estimates in
Lemma 42, we finish the proof of (4.184) for j > 0. Finally, to get (4.185), we use the equation solved by
UN,,eli- The estimates in (4.186) follow directly from Lemma 42. o

Just after (4.135), we restricted Tp to satisfy Tp = 2T», and all of our computations and estimates are valid
for all t = Ty for any Tp = 2T». At this stage, we restrict Ty so that Ty = 47> but is otherwise arbitrary.
Then, recalling the cutoff 12 defined in (4.134), we define a function vs 5 by

THO) = 2 [ A0 mer (5o e, (6. RAD). (R v 5) sin(ee (4.187)
Letting
F24 = —QJ &sin t{)’uz 5(5) d€

the inversion of the sine transform gives

Fa.a(t) = =A0)a(g)men (505)en, (. RAO). b0(R) acrary . ¢> 0

Therefore, (4.186) gives the following estimate for 0 < £ <2 and ¢ > 0:

3
" (suPseri00,0 (A@) log(@))) " log® (1)
|at F2,4(t)| < C]l{t>2T2} Atk

We have the following estimates on v2 5.
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Lemma 45 For 0 < k <2,
C, ¢< 15

|€* ok 25 (6)| < { o

(4.188)
gﬁ—kr 5 > 1710

Proof We recall
_ -1 (* .
v25(8) = E 0 Fo4(t) sin(t€)dt

In the region ¢ < Wlo’ we simply directly estimate as follows
C (¢ c(*
TOI< G [ IPaidt+ C [ 1Pl
0 =
g

If £ > ﬁ, then, we have
_ 1 (.
5O = gz | s a0

where we note that we can integrate by parts only twice (simply because of the estimates we have on uy,,
which gave rise to estimates on up to two derivatives of F> 1) which is why the decay for large ¢ in the
estimate (4.188) is not as strong as the analogous estimate for v2,9 in Lemma 4. To estimate the derivatives
of U2 5(€), we first re-write its formula as

I N S
U25(8) = 752_[0 F2,4(E)Sln((7)dc7

and then differentiate in £. Then, we estimate as above. &

We define vz 4 to be the solution to the following Cauchy problem.

2 2 1 V2,
—0; v2,4 + 67"02,4 + ;arng — ;4 =0

v2,4(0,7) =0 (4.189)

0tv2,4(0,7) = v2,5(r)

Now, we obtain estimates on vz 4(t,r) — (- Fz,4(t))

Lemma 46 For 0 <k <2,

Or*F 1og (1) (subefio0. (A(@) log(2)))

k r 2
|0k («;M(t, r) + 4F2,4(t)) | < = o<y (4.190)
For0<k<2,0<j<landj+k<2.
1—j 1.3 3
i Cr' 7 log? (1) (SuPae(100.4 (A(x) log(a)) ) ;
|0 lvz.4(t, )| < pren: v TS G
For 0 <k +j <2, we have the following estimate.
3 3
o _ Clog’(®) (3uPseong M@ log(a)))” ¢ _ o1
| r t”274(t774)|\ \/Z<t—’r'>5/2+k+j ) §\T<t ( . )
Finally, for 0 <k <1,
|08 va 4 (L, )] ¢ >t (4.192)

S ———1
it —ryztE
Proof The proof of this lemma uses the same procedure as the proof of Lemma 26. In particular, we have

TC

vaalt,r) = 5 j sin2(6) Fo.(t + 1 cos(8))d8 (4.193)
0

In the region r < %, we have

r

U274(t7 T) + 4

Foalt) = 5" f: sin?(0) (Fa.a(t + 1 cos(6)) — Fa.a(t)) do
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and this immediately gives rise to (4.190).

Next, we note that i
vaatr) = | dERGOsin()RE)
0

which leads to the following estimate, for all r > L.

2 1
B 100 d¢ Oode 1 c
v2,4(t,7)] < OL dére + CL st Cfi NG (4.194)
The same computation leads to
k0] v2.a(t, )] < % rel 0<j+k<?

On the other hand, if ¢ > r > L, we have (using (4.193))

3
F sin?(0)d6

|U2,4(t,r)|<crlog3(t)< sup (A(x)log(w))) T3 reos@)t

2€[100,t]

Recalling (4.138), the above estimate, combined with (4.194), gives (4.191). (The same procedure is used to
estimate derivatives of vz 4(t,7) in the region & < r < t). Finally, to establish (4.192), we use the identical
procedure used to establish the analogous estimates in Lemma 5. In particular, we do the same procedure
which starts with (4.47). (The amount of high frequency decay in the estimate (4.188) is sufficient for this).

O
We can now define and estimate the linear error term associated to upny, corr. For ease of notation, let

B (0) 1= Ae)mar (G e, (6 EAO), b0(R) s mar

We first recall the definition of un,, corr in (4.182):

rha(t 2r
UNy, corr(t, 1) = (uNo,ell(tv r) — Z( )> m@(T) + v2,4(t,7)

Then, we define the linear error term associated to upn, corr by

L cos2Qi(57) .
eNo,corr(taT) = - <_5262 + 93 + ;ar - T() uNo,corr(tvr) + m<1(2h(t))€N0 (t,’r’)
We therefore get
2 r 2r T r2ry 2r
eNU,corr(t7 T) = at (uNo,ell(t7T) - ZhQ(t)> mﬁl(T) - 2at (UNOYE” (t,T) - ZhQ(t)> mSl(T) . tig
r o 4?4 or  4AmZy (%)
+ (uNo,ell(tar) - ZhQ(t)) <m21(t)t4 + tfgm/@(j) - Tt
/ 2r
r mgl(*) 1 2r 2 r
— 40, (uNo,ell(ta r)— th(t)) % - ;m%1(7)¥ ( No,ell — ZhQ(t)>
cos(2Q1(+=)) —1 9
+ ( = (v2a(tr) = Gha(®) mea ()
cos(2Q1 (7)) — 1
+ < ;(t) v2,4(¢,7) <1 - mél(&))
r t
where we used the fact that 5
r r
(m<1(=-) — 1) 'msl(%(t)) =0
We write
€Ny,corr (ta T) = 6N0,co7‘r,l(t7 T) + eNO,corr,Q(ta T)
where (201 (1)) -1
COSs 1(x7)) — 2
eNO,cm“r,Q(t: 7") = ( r;(t) ) ’U2,4(t: T) (1 - mél(%)) (4'195)

Then, it turns out that ep, corr,1 is perturbative, as per the following lemma.
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Lemma 47 For k =0,1,

" CA®)? F 1og%2 (1) ’
||Lﬁ(eNo,corr,l)(tvT)HLz(rdr) < 16 sup ()\(l‘) log(x))
2€[100,¢]

Proof This is a direct consequence of Lemma 44 and 46 o

We need to add one more term to our ansatz in order to eliminate en, corr,2, given in (4.195). In particular,
we define upn, corr,2 to be the solution to the following equation with 0 Cauchy data at infinity.

2 9 1 1
—0; UNy,corr,2 T aruNO,corr,Z + ;a’l'uNg,corr,Q - ﬁuN0,007’r,2 = eNo,corr,2(t7 T) (4196)

Then, we prove the following lemma.

Lemma 48 We have the following estimates on un, corr,2- For 0 < k<1l and0<j <1,

3
Cr' R0 1og® (1) (suPaef100.4 (@) log(a)) )
t5/2<t _ 7.>7/2+j ’

167 0Fun,y corr2(t,7)] < r<t (4.197)

In addition,

A1 108° (1) (SUD,e100, (M) log(x) )

T ,or<t  (4.198)

|6252'U«N0,co7'7',2 (t7 T)' + |a7%uNo,co7'r,2 (t7 T)' <

For all r > 0,

A1 108° (1) (5UP, 100, (M) log(x) )
3

|uNo,corr,2(ta T)' + \/E(uNo,corr,Qv atuNo,cor'r‘,Q) < (4199)

Finally,
Clog®(t)

oy (4.200)

||aruNg,corr,2(ty 7')||L‘7‘{J <

Proof As in Lemma 42, we have

27
UNy,corr,2(t,T) = or f dSJ J dﬁf Teny corr, 2 (8,78, p,0)do
A/ ( s—t — p2

where we recall the notation (2.2). From Lemma 46, we get the following estimate.

A($)10g%(s) (5P, c(100,6) (M) log()))
39/2<t _ r>7/2

|I€N0,cu7-r,2 (57 Tﬂ, P 0)' g C
Using (4.3), we get (4.197) for k = j = 0. The formulae

s
de[ﬁNU,com«,Q (S,T, P 9) (4201)

-1 (> ¢ d
arUNo,corr,Q(t: r) = o J; dsjo \/ﬁ JO

and
2T

dﬂ Otleny corr2 (8,75, p, 0)d0

—r (% d
t —_ —

along with the same procedure used to establish (4.197) for k = j = 0, implies (4.197) for all larger k,j in
the lemma statement. Next, we note that

(r+ pcos(0)) db.

" = =L (7 g [ pde [T eNpcorralt + w1 4 g7 + 2rpcos(6))
Ny,corr,2 o

Vw2 —p2 Jo /12 + p2 + 2rpcos(0)

Differentiation under the integral sign, combined with the procedure used to prove (4.197) gives the estimate
on 6,52uN0’c0m2 in (4.198). We estimate 63uNO’COM72 by directly differentiating (4.201). Next,

3
CA(1)? 10g* (1) (suPaef100.4 (A() log(a)) )
||€N0,co7"7",2(t7 T)”LQ(rdr) < 4
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and this implies (4.199). Finally, using Lemma 46, we get

CX(s)?1og®(s)

EIEYo) , s=t, r>0,p<s—t,0€]0,2n]
2 w

|IeN(),co'r‘7“2 (87 TP 0)' <
S

and this gives
x log®(s) _ Clog®(t)

Ot corna(t.r)| < C [ dsts ) EIEL < OB

O

Let m>1 : R —» R be any function satisfying

e
mz1(z) = 0. z<
) ~

Then, we will add mx1(7)uny,corr,2(t,7) to our ansatz in order to eliminate the error term eny corr,2-
Accordingly, we define the error term, erry, corr 2, associated to m=1(f)un,, corr,2(t, ), by

cos(2Q1<A(t)>>> (

, mx1€C”(R) (4.202)

e

2, 2, 1 r
errNg,corT,Q(t7 T) = - <_at + ar + ;ar - 21(7)uN0,CO7‘7‘,2(t7 T)) + 6N07co7‘r72(t7r)

r2 t
"o(r 2 r(r 2
mz1(F) r m>1(%) 2r
— <t2t (1 — t72> + T 1- tT uNo,corr,2(t, T)
_2mea(f)

r
i (aTuNO,COT7‘,2(t7 ) + EatuNg,COTT,Q(t7 T))

1 —cos(2Q1 (%))
_< Sl 1) >m>1(r)uNo,corTx2(t’r)

r2 t

where we used the fact that

r
(1 — m}l(;))eNg,COT’I"72(t7 T) =0

which follows from the definition of m31, and en, corr,2, Which we recall is given in (4.195). The following
lemma shows that erry, corr2 is small enough to be treated with our final, perturbative argument.

Lemma 49 We have the following estimates for k =0, 1.

CA(B (L + M(1))log (1) (Su,eqio0,) (M) log()))

k
||Lﬁ(eTTNg,corr,2)(t7 T)||L2(rdr) < 16+

1—cos(2Q1 (52
Proof We directly apply Lemma 48. The only point to note is that, to estimate (W) mz1(5)ung corr,2(t,7),

we use (4.197) in the region r <t — t¥7 and (4.199) for the region r >t —t>7. o

4.10 Second set of nonlinear interactions
The next step is to treat the nonlinear interactions between the newest addition to our ansatz, namely

r

uﬂ(t7 T) = UN, (t’ T) + UNy,corr (tv T) +mz1 (E)uNo,cornQ(ta T)7 (4203)
and uq. The interactions between vz 4 (part of up, corr) and itself, along with the interactions between vz 4
and ugq,0 are not quite perturbative, but the rest of the nonlinear interactions are. In order to show this,
we note that

Sin(2Ql(ﬁ) + 2uq 4 2un) = 2r2 (No + N1 + Na + N3) + cos(2Q1()\Lt))) - 2(ua + un) + sin(2Q1(>\Lt)))
where Ny is defined in (4.172), N; is defined in (4.169), and we define
cos(2Q1(ﬁ)) ) )
Nao(t,r) : = 272(—2(11@0 +v2,4) + SIin(2(ua,0 + v2,4)) — (Sin(2uq,0) — 2uq,0))
, . (4.204)
sm(2Q1(m))

+ (cos(2ua,0 + 2v2,4) — cos(2uq,0))

2r2
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We therefore have

sin(2Q1(ﬁ))
Na(t,r) = —a (cos(2uq + 2un) — cos(2ua) — (cos(2ua,0 + 2v2,4) — c08(2ua,0)))
2 T _
+ w (sin(2uq + 2un) — 2(ua + un) — (5in(2ua) — 2uq)

—(sin(2uq,0 + 2v2,4) — 2(ua,0 + v2,4)) + sin(2ua,0) — 2uq,0)

where we recall the definition of uq, from (4.168). We define unew by
Unew(t,r) 1 = un(t,r) —v24(t,r)

We remark that N2 contains the interactions between vz 4 and uq,0, except for the uq o self-interactions,
which were already contained in Np. To give the reader an idea of how we estimate N3, we re-write its
expression as follows.

N3(t,1“)

cos(2Q1 (1)) |
= ————— ((cos(2ua) — 1)((cos(2unew) — 1) sin(2v2 4))

2
2 +(cos(2unew + 2v2,4) — 1)(sin(2uq,0)(cos(2uq,1) — 1))
+ sin(2v2,4)(cos(2ua,0)(cos(2uq,1) — 1)) + sin(2uq,0)((cos(2unew) — 1) cos(2v2,4))
)

+(COS(2unew) — 1) sin(211274) — 2Unew + Sin(2unew)
sin(QQl(ﬁ))

+ 272
cos(ZQl(ﬁ))

+ 2r2

(cos(2(ua + un)) — cos(2uq) — cos(2uq,0 + 2v2,4) + cos(2uq,0))

((cos(2ua) — 1) sin(2unew) cos(2v2,4) + (cos(2(unew + v2,4)) — 1) cos(2uq,0) sin(2uq,1)
— sin(2v2,4) sin(2ua,0) sin(Zuavl) — sin(2ua,0) sin(2unew) Sin(2U2$4)
+ sin(2unew)(cos(2v2,4) — 1))

(4.205)
Lemma 50 We have the following estimates.
Nas(t,r) C'log?*(t) Clog?*(t)
|| )\(t)2 ||L2(rdr) < 19/2—15C,,—2C;’ ||Lﬁ(N3(tar))||L2(rdr) < 19/2—15C,—C
Proof We note that, as per (4.202),
r t
_ —) = > —
1 m>1(2t) 07 r= 2
Using Lemma 42, Lemma 44, and Lemma 48, we get
CT'10g4(t)(s‘1pxe[100,t]()‘(1") 108(45)))3 r< t
‘ < % ’ =2 4.206
|Unew( ,T)| (Supme[lol).t] (A=) IOg(x)))3(sume[100,t] (M@z))glo%g(t) t < r ( )
t2 I 2 =

We then straightforwardly estimate the expression (4.205), for N3 (as well as its r derivative), using (4.171),
(4.170), and Lemma 46 (to estimate wuq,1, ua,0, and vz 4, respectively). o

Next, we add a correction, uy, to improve the error term Na, defined in (4.204). In particular, we define
up, to be the solution to the following equation with 0 Cauchy data at infinity.

1
—0Fun, + 0, + —drun, - “gQ = Na(t,7) (4.207)

Then, we have the following lemma.
Lemma 51 For0<k<1,andr<t

k| Ak
r|Orun, (t,7)]

log” (t) CrA(t) [ ,a0,, s 5% log!?(t) Crlog'(t)t°C« 4% log®(t)
S Orr+A®) <t5—30u> * 12 —ryt £ log™(1) + {E—r)? * {t — rY9/2¢3/2 1+ {t—ryt
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In addition, for all r > 0,

Clog'®(t
lun, (£, 7)| + 4/ E(un,, Orun,) < tz_gigcf)

Clog!®(t)
t%_gcu

Finally,

lorun, (6. |r < (4.208)

Proof The lemma is proven with the same procedure as in Lemma 42, using the estimates from Lemma 46
and (4.170). o

It only remains to estimate the linear error term associated to uy;, (¢,7) as well as its nonlinear interactions
with all of the previous terms added into our ansatz. We start with the linear error term, which we denote

by en,: i
eny (1) i= (COS(QQl(W) - 1) ey (£7)

r2

By directly estimating ey, using the estimates from Lemmas 51, we get the following lemma.
Lemma 52 Fork=0,1,

k Clog'®(t)
||Lﬁ(eN2)(tvr)||L2(rdr) < 5110, —kC;

4.11 Third set of nonlinear interactions

Finally, it remains to treat the nonlinear interactions between wy, and all of the previous terms of our
ansatz (the sum of which is equal to ug + un). Le., it suffices to estimate N4 given by

r

sin(ZQl(m) + 2uq + 2un + 2uy;,)
=22 (No + N1 + N2 + N3) + cos(2Q1()\Lt))) - 2(uq + un +un,) + sin(2Q1()\Lt))) + 2r2N4(t, )
So,
Na(t,r) = % (m(mﬂﬁ) + 2uq + 2un)(cos(2up,) — 1) + cos(QQl(ﬁ))(sin(QuNz) — 2up,)
+ (cos(2Q1(ﬁ) + 2uq + 2un) — cos(2Q1(ﬁ))> sin(2uN2)>
bemma 53 —9 Clog®°(t) C'log®°(t)
A@) TN ) L2 (rary < 120150, ||Lﬁ(N4)(t7T)||L2(rdr) < SI15Cu—0;

Proof We have

Na(er)l < 5 ((Gare ey o + k. ) Gl + fual + ual) + (3 + Dl )

where we recall the definitions of u, and un in (4.168), and (4.203), respectively. We then use Lemmas 51
and 46, and estimates (4.170), (4.171), and (4.206), to estimate uy, and the various terms in u, and un,

and then straightforwardly estimate N4, and L . Ny o

We recall that u, is defined in (4.167), uy is defined in (4.203), and uy;, is defined in (4.207), and define
our final ansatz by the following.

Uansatz(t,7) 1= ua(t,7) + un(t, ) + un, (&, 7) (4.209)

The error term of ugnsatz, denoted by Fs, is equal to the following.

F5(t7 7") = €N, (1 - mﬁl( )) + €Ny, corr,1 T €T Ny corr,2 + N1+ N3 +en, + Ny +ea (4210)

2h(t)



84 Mohandas Pillai

Lemma 54 [Estimates on the error of ugnsatz] There exists Cs > 0 such that, if

6= %min{éla -C;—2,1-2Cy — a,4—-5C, — 60, % —2C; — 15Cy}

then, 20 > Cj, and

I[F5 ()2 (rary _ Cs1log®(t) Clog*(t) | Clog®(t) Clog™(t)
< o L Fs () p2rar) <
OE 14426 O] [2+5a t4+2a—3C, " 9/2-C;-15C,

Proof The inequality 26 > C; follows from (1.7) and (4.2). The ith term in (4.210) is estimated in the ith
Lemma in the following list: Lemma 43, 47, 49, 41, 50, 52, 53, 40. o

We finish this section with some estimates on various quantities involving ugnsatz-

Lemma 55 We have the following estimates.

8A(t)uansatz (t,T) 4 ( 5 Co 2 Clog(t) = Clogb(t)
A Uansatz\b, 7)) o 2 =2 4.211
ey e <z (M +3 (3+27")) + Tt {54 (4.211)
||Uansatz (t,r) || < CIOgG (t)
T s +5—3Cu
C'log®(t
||a7‘uansatz(t7 T)||L{~‘ < %C() (4'212)
t273Cu
Uansatz (t7 7")aruansm‘,z (ta T) c 10g7 (t)
I . ERESYODE iiC. (4.213)
Uansatz (t» T)aruansatz (ta T) c 10g7 (t)
I 2 L2 (r=a)}) < -0, (4.214)
OrUansatz (ta 7’) 1 2 Ca 2 C IOgG (t)
friansatzlh ) < — = =
OIS ey < g (M7 + B +209) ) + =50
Proof We recall (4.7), and note that
INOQuan(t, IND) _ 4 (NOV* VO
RAX®O3((RZ+1)  (1+R2) \A\©® O
where . ,
. 4(R*—1) L R°+1
iy = B2 () § (8% 7) - WUy (1)
! (1+ R2)? T (1+ R2)2

We start with
8(1 + R?)(R? — (1 + R?)log(1 + R?))
R3

numi (R) =

Then, since
R (32 — (14 R?)log(1 + RQ)) = —2Rlog(1 + R?) <0

and
2 2 2 _

(R (1+ R?)log(l + R ))\R:O =0

we have
R®—(14+R*log(1+R* <0, R>0
Therefore,
numi(R) <0, R>0
So,
numi(R) = numi (1) = 212 +8 > 0, 0<R<l1
Therefore,
R % = m1(R) is non-increasing on (0, 1]
Hence, for 0 S R< 1,
. _4(3+27?)
(B < lim _ma () = 252
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If R > 1, then,

2)(s2 +(1+ 52) log(1 + 52))

ds
53

R
Inuma (R)| < [numa (1)] + SJ (L+s
1
<2 (2 + 7% +2R% + 2log(1 + R?) + 2(R? + 2log(1 + RB?)) log(1 + RZ)) := ma(R)

If 1 < R <2, then,

d (_m2(R) \ _ —8R(r®+log(l+R*)(=3+R*+4log(1+R?*)) _ R
dR ((1+R2)2> B (1+ R2)3 S (1+R?%)3

Therefore, for 1 < R < 2,

(—87r2 +24 1og(5)) <0

|num1 (R)| < ma(R) < ma(1) _ ﬁ 2
O+ R SA+R)ES 22 = 2% 5 T21087(2) +log®)

Im1(R)| <

Finally, if R > 2, then,

ma(R) 4 2 8log?(5)  4log(5) = 4log(b)
_e\iY = .
MBS G5 mye S5+ 35 (2+7%) + =50 + 5 e (4.215)

This gives (4.211). To prove (4.212), we estimate 0ruq(t,r) using the procedure detailed in the proof of
Lemma 41. We then estimate drun (t,7) using (4.177), (4.200), (4.206) and Lemma 46. Finally, we estimate
Oruy, using (4.208). With the same procedure, we also get (4.213) and (4.214). Next,

Iruen(t,r) _ N(t)? N (t)
r2 + X(t)2 lr=RA(1) - 21 + RN " A(t)2 m3(R)
for
! 2, ™ 2y (L+7R*+7R* + R%log(1 + R?) N
m3(R):m 1+3R" + 5 (1-R) — - (= B Lia ()

With a similar procedure as that used to obtain (4.215), and its analogs for other regions of R, we get

3+ 272
6 b

|ms(R)| < R>0

O

The proof of our main proposition of this section, Proposition 1, is finished, once we establish (4.4). Let

Vpad(t,m) = va(t,r) + 7)2,2(t, r) + 112,4(757 ) (4.216)
We first note that
Uansatz(t7 7“) Urad = X<1( (t)rg( ))(ue” + uell,z) + (1 _ Xgl(m))(wl s+ uw72)
<1( (t)rg( ))(vz +02.2) + f5,0 + fewoub + ferr2 + fo,2 +un,
+ (ung, el — r>\4(t) <m<1(§2\((f)))61\70 (t, R)\(t)),¢0(R)>L2(RdR))m<1(2tl)

.
+ mzl(;)uNo,cm«r,z + un,

Since, for non-constant A, 6%2% (r), 0t (X;l(m)wl(t, r)) ¢ L?(rdr), the most delicate term to estimate
will be the following, which is finite.

10: ( Ol (r) + XBl(g(t))\(t) Jwi (¢, T)) ||L2(rdr) (4.217)
We note that . .
X?l(m) =1- ()\(t) @ )) 1, 7=2Xt)g(t)

Therefore, we will show in detail how to estimate (4.217), when the L? norm is taken over the region
r = 2g(t)A(t), since the norm in the region r < 2g(¢)A(¢) is a direct estimation, using Lemma 2. From (4.24),

wi(t,r) = —% <)\(t +r)=At) =N (t+ 7“)) +2r Jf Nt +7y)(y — 2 — 1)dy (4.218)
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and
A
Ql(ﬁ) =7 — 2arctan($)
Therefore,
Q1(ﬁ) +wi(t,r)=m— Qarctan(y) + 2@
— % (A(t +r)—rN(t+ r)) +2r ff N (t+ry)(y — Vy?2 — D)dy
1

Therefore,

(Ql(—)) +w1(t,7")> _ 2 <r2 oYe ) % (/\’ (t+r) _r/\”(t+r))

r

o
+2rf /\”’t-‘rry Ny —y? —1)d
1

and this gives
r r Clog?(t
[0 (Ql(r(t)) + le(i)\(t)g(t))wl(tvr)) 172220009 (6)rdr) 7152_%0&)

We complete the proof of (4.4) by using (4.7) and (4.81) (for u.y), (4.9), and the formulae following it,
for wejy 2, Lemma 2 (for w1 ), Lemma 29, for ves, Lemma 10, for wy,2, Lemma 5 for v, Lemma 26 for vz 2,
Lemma 33, for f5 0, Lemma 35, for fe; sup, Lemma 37, for f.; o, Lemma 38, for f2 2, Lemma 42, for upy,,
Lemma 44, Lemma 48 for up, corr,2, Lemma 51 for up,.

5 Constructing the exact solution

If we substitute
u(t,r) = Q1(57) + vansars () + v6(t.7)

t)
into (1.1), we get

c0s(2Q1 (515))

2 v = F5 + F3(U6) (5'1)

1
— 6%116 + 6?1}6 + ;&«116 —

where (note that the following expressions are essentially the same as F3 on pg. 144 of [25])

F5(f) = N(f) + L1(f) (5.2)
sin ( 2Q ( ) + 2uansatz cos (2Q1 (577)
i HUKAR ) stz -1+ (Q;QW))(Sin(?f) ~2f)
. 2 T 2 _r_
Li(f) = ——Sm ( (022;2()\(”)) sin(2uansatz) Sin(2f) + —COS ( (;Q:Q(A t))) (cos(2uansatz) — 1) sin(2f) (5.3)

and Fj is as in Proposition 1. We will solve (5.1) by first formally deriving the equation for y (namely (5.5))
given by

y(t,€) = F(vvs(t, A1) (EX(E)?)

where F denotes the distorted Fourier transform of [16] (which is defined in section 5 of [16]). Then, we
will prove that (5.5) admits a solution, say yo (with 0 Cauchy data at infinity) which has enough regularity
to rigorously justify the statement that if vg given by the following expression, with y = yo

=207 (e i) () G4

then, ve is a solution to (5.1). We have (see also (5.4), (5.5), pg. 145 of [25])

ey +wy = —F(VFs(t, AE))WA®)?) + Fa(y) (t,w) — F(VFs(v6 (1)) (¢, A1) (wA®)?) (5.5)
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where vg(y), which appears in the argument of F3, is the expression given in (5.4), and

' ! _ " / 2
Pt = Dt o) + 20 (a1t 1750 ) @309 + (ol 4 X0
)\/I( ) . )\/(t)Q
5 (4 557 o (ieoe k10,

2
)\((;))2 K (’C(y(t, A(t)Q))> (WA(t)?)

where K is the transference operator of [16] (which is defined in section 6 of [16]). Next, we note that, by
Proposition 5.7 b of [16], there exists Cy, > 0 such that

pA(D)?) A@)? AW
plar@?) SO (A(t)? * A(m)?) (5.7)

Recall Proposition 1, and let C§ = C5+/C,. Now, we define the space Z in which we will solve (5.5). Let Z
be the set of (equivalence classes) of measurable functions y : [Tp, ) x (0,00) — R such that

y(t, w) T\ p(wA(t)2)wA ()% € CP ([To, ), L (dw))
2ry(t, W)t (14 V(1)) Vp(@A(t)2) € CF ([To, ), L (dw))

)) (WA®D?) +2 ))) WA®)?) (5.6)

>

and ||y||z < oo where

llyllz := suppzr, (272 (G587 1og (11t )l L2 pur )y + VATVt )l L2 (puriey) )
+*+2log (1) (cg*ﬂ*lnaty(t,w)||Lz<,,<m<t>2>dw> +Cy ||va<t)Qaty<t,w>||L2<p<wA(t>2)dw>))
(5.8)

and B8 and C are positive, but otherwise arbitrary, and will be further constrained later on. We start with
the following estimates on F5.

Lemma 56 For allye Z, and k = 0,1, we have
k
(WA®)?) 2 Fa(t, )] 12 (p(w()? ) dw)

N(t
< IOt oo g (142061 s )

2 "
2. k/2 1 2 N@)] (1
+ 1A y(t7w>||Lz<pw<t>z>dw>((A(t)) (5 + 2R g 12 g )+ 50 (510l e

Proof This follows directly from (5.6), and Theorem 6.1, Proposition 6.2, and Proposition 5.7 of [16]. &

For i = 1,2, let y; € Z, and define f; by
_ A =
) - r F <y’b(ta At 2

Lemma 57 There exists C > 0 such that, for all y1,y2 € Z,

IF (V- (L1(f2) = L1(f1)) (& -A@) @A) L2 (p(wr)?)dw)

We now estimate F3(f2) — F3(f1).

Uansatz (t T')

ansatz t?
< w2 — 1) (69|22 (o)) ( OISy e + 2||“+(’”)||%;n)

[IVWAD2F (V- (L1 (f2) = Li(f1) (¢, - ())) @A)z pwAw?)dw)
< CIINKoA®) 2 (2 = y1) (b W)l L2 (p(wA()2)dw)

) (Mﬂ”wﬂ " ||“ansatz (t, 7)0rUansatz (£, T)

Uansatz (ta T)aruansatz (t: T)
2@z I ” I (rencey) + A@]

r2

L2 (r=At)

Uansatz(t T)
+ (MOIEESER

(A Uly2 (1 )AL (o t)2yd0) + M2 )V L2 (o (tr2yaw) + 1))

Uansatz (t7 7") 2
tansatz(t7) 2

iz + 1l
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IF (v- (N (f1) = N(£2)) (t, - A(£))) @AB )| £2(p(wr()2)dw)
< OIWKwA®)2)(y1 — y2) (& W)l 22 (p(wr ()2 )dw)
: (||<<M(t) D1 )2 (oo (t)2)dew) + KON ()17 2 (p(eon(e)2)do)

Ugnsatz(t, T
<||%|| <+ 505 ) (INGADD0 ) pr @) + INGAOD (2 por ) )

[IVwA®)2F (V- N(f1)) (£, M) (@A) L2 (p(eon(e)?)de)
< OlKwA®)*) (w2 — y1) (t, )| L2 (p(one) (||<w)\( )2 (t W) 12 (o ()2 )dw) T ||<w)‘(t)2>y1(t7w)||L2(p(w)\(t)2)dw))
. (ﬁ + ||aruansatz(taT)||L;f“‘ + ||M”L£>

+ ClKwA® ) (2 — y1) (6 W)l L2 (p(eon(t)2)dw) <||<w)\( )22 (& )72 (peon(0)2)d) F KA D1 (tvw)||%2(p(w>\(t)2)dw))
Proof We can read off most of the required estimates on L and N from (5.83), (5.84), pg. 155 of [25], along
with pgs. 180-187 of [25]. The only extra information we need is an estimate on

I (V- (La(f2) = L1 (f1)) (A1) @A L2 (p(wn()?)dw)
with quantitative constants, which is obtained by direct estimation of (5.3). o

Now, we are ready to solve (5.5). For y € Z, define T'(y) by

7)) = [ S (Cr(e (5 4 Fao0() (0 AN @A) + Bl do 13Ty
(5.9)

Then, we have

Proposition 3 There exists So > 0 such that, for all B > Bo, there exists C9 > 0 such that, for all Cz > Co,
there exists T1 > 0 such that, if To > T1, then, T is a strict contraction on B1(0) < Z.

Proof Let y € B1(0) = Z. Any constant C appearing in this proof is independent of y and Tp. First,
10ET @) (1, )l 2o ()2 )
* - Cu a (NEs ()L
1—k T x l L2(rdr) 2
VG [ =0 ()7 (5)7) (T + PR @ AN AL paeria

+||F2(m:w)”Lz(p(w)\(m)z)dw)) dr, k=01

where we used (5.7) and

|oF (sin((x — t)v)) | _ (w—t) "
\/(; S

Since the inequality in (1.8) is strict, there exists a positive constant es < 155 such that (1.8) is true with
%g? replaced by %g? + 4e4 on the left-hand side. Then, we directly apply Proposition 1 and Lemmas 57 and

56, to get

1OET () (t, )| 22 (o (1))

Ctlog®0(t 1 BCEA/CT,log30 (1) 1
< fz+§a+£ ) (; o T g> e (M(l +2/[Kl £ z2)) + M (a +2|[06, Klll £ zz) + ||K||%<Lg>>

1 C
+C2 (5 + ||IC||£(L%)> +4< + ?2(3+27r )>>

_ 1 N 1 L oa+ 83)10g® (t)
(3—Cu+26—4es) ' (3—Cp + 26 —4eq) #2+k+26+55

= $2+k+20 3 t2+k+26+353

< BC3log™ () < 1 63) L CUL+6°)log™ (1)

(5.10)
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for some e3 > 0, g sufficiently large, depending on e3, and if Ty is further constrained to satisfy Tp > e%.
Here, 63 > 0 is given by
53 = min{2a, 1-—- GCu, 26 — Cl}

15
The €4 terms in (5.10) arise from noting that z — % is decreasing on (e2¢4, ). The last inequality in

(5.10) is true by (1.8) and (3fcu+1257454) + G Cz+25 ) < 129 + 2¢4. Next,

A>T (1) (£, )l 22 (p(eon(t)2)dw)
%(m)]\/[-‘rcl <||L 1 F5(93 )Lz (rar)
t

< C’/\(t)f

¢ Ry + VWA @)2F (VB (, M) @A@) )| L2 (oo (@)2)dw)
+|[WVwA(z)2 Fy (w’w)HLz(p(w)\(w)z)dw)) dx

C log?(t) log®(t) N log®° (1) N (B +1+Cz)log30(t)
T 2420 \ g—1-2045a 1 §1-20+42a-3CL | 43-20—-C;—15C, t1-C,,

(5.11)

where we used |sin((z —t)y/w)| < 1. Similarly, there exist C7 > 0 and 0 < ¢; < %, both independent of Cz,y
and T, such that

[IVWA®)2 0T (y) (¢, W) L2 (p(wr ()2 dw)
]V[+Cl 2
cf |INaA@)2F (VP51 A@) @@ 1 (p(eor ()2
+\/07J ( QCl + (?)Cum) [IVwA(@)2 P2 (y) (@, )l 2 (p(eoA(2)?) duo) T2
+/Cp f ( )" (E)CM) |V A @2 F (VL (06 (1)) (2, AN @) @A) |2 (o 00 1)) i) 42

t

(5.12)

e f ) VA @ F AN w0 w) (@ A EAD L2 (s

C7(b’3+1)10g © . Cz(3 — ) log™ () _ Czlog™(t) <1 e1>

S 13+28 $3+28 =T 3426 3 2

where the second to last inequality in (5.12) follows from the strictness of the inequality in (1.9) and is
true for Ty sufficiently large, depending on absolute constants (not Cz), with a similar argument used in

Cr(8+1) i i
(5.10). The last inequality in (5.12) is true, as long as Cz > 277 , which we can enforce, recalling that

Cr and €; are independent of Cz. With the same argument used in (5 10), we get

C(1 + %) log3° (¢
VAR ) ()l 2 ranrey) < gt

Thus, by (5.10), (5.11), and (5.12), there exists 8’ > 0 such that, for all 8 > ', there exists Cs > 0 such
that, for all Cz > Cs, there exists T» > 0 such that if To > T% then, for all y € B1(0) = Z, ||Ty||z < 1. So,
T maps B1(0) into itself, and it remains to show that T is a strict contraction. If y2, 31 € B1(0), then, since
the expression for F» ((5.6)) depends linearly on y, we have

” sin((x — 1))

7o <F2(y2 —y1)(@,w) = F(V-(N (v6(y2)) = N(v6(y1)) (@, A(@))) (wA(2)?)

—F(v+(L1(v6(y2)) — L1 (v6(y1))) (=, -A(w)))(wk(m)%) dx

Then, by the same procedure used in (5.10), (5.11), and (5.12), we get, for 8 and Cy sufficiently large, and
some ez > 0,

CLlog®(t) (1 C(1 4 %) log® (¢
1108 (T(y2) — T (1)) |22 (p(eon(ey)dey < 1 — 21z <%§25() (g - €2> + t2+§+)25+%53 ( )) , k=01

T(y2) —T(y1) = L

1+ 8%)|y2 — log™ (¢
[IVwA@®)2(T T L2 (pwr®)?)dw) S ca+p )LL?3267y01||Z og” ()

Cllyr — Cz1
AW (T02) = T pponoryan < = 12llzC7 LB 20

Cy log® — 1
[INWA(£)20: (T(y2) — TW1)) 112 (p(on(t)?)dw) < —2 g EBHL? vellz (§—€2>

This completes the proof of the Proposition. o
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By Proposition 3, completeness of (B1(0), ||-||z), and the Banach fixed point theorem, there exists 3 > 0 and
Cyz > 0 such that, for all Ty sufficiently large, there exists yo € B1(0) such that T'(yo) = yo. By inspection of
(5.9), and (5.5), yo is a solution to (5.5). By the derivation of (5.5) from (5.1), the function vg,0, defined by
(5.4) with y = yo, for r > 0, is a solution to (5.1). We also note that, ve (¢, -) admits a continuous extension
to [0, 00), by defining ve,0(¢,0) := 0, by Lemma 5.1 of [25].

6 Decomposition of the solution as in 1.11

Let

u(t,r) == Ql(ﬁ

In this section, we prove the following lemma, which finishes the proof of Theorem 1.

) + Uansatz (t7 T) + V6,0 (tv T)

Lemma 58
C'log?(t)

E(u—Q 1 = Vrad, 0t (u = vrad)) < —550,

Proof By Lemma 5.1 of [25],

llve,0(t, ) 72 = [lve,o(t, rA) g < C (IIL(ve,o(t,M(t)))IILz(mr) + ||v670(t7T)‘(t))HLz(rdr))

C'log®° (¢
NNt N (aone1) < g

By the transference identity,

N ()] AW -
e 0t ) geam < C BN 2LF 0t 5520 M2y + €I 227 @untt, 55)) g v
NGIRG! : r
+ B2 ot 5352 Mo
C'log° (t)
= 342620,

The lemma now follows from (4.4). o
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