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We present a novel three-dimensional (3D) numerical scheme for modeling the discon-
tinuous contact line pinning along sharp straight edges. The proposed scheme is devised 
for multi-phase flow solvers that rely on the Volume-of-Fluid (VOF) method, although 
its fundamental concepts can be extended and applied to other methods. Following the 
Piecewise-Linear-Interface-Construction (PLIC) approach in VOF, the discontinuous pinning 
is modeled by adjusting the orientation of PLIC polygons located near a sharp edge accord-
ing to the pinning stage. That is achieved by solving a root-finding problem and using a 3D 
geometrical toolbox, where the advancing contact angle determines critical volume frac-
tions in numerical cells neighboring the sharp edge. Implementing the proposed scheme 
in our multi-phase flow solver, we assessed its performance using several test cases where 
contact line pinning effects dominate. To demonstrate the scheme’s efficacy, we present 
quantitative comparisons of our results at various grid resolutions and with a theoretical 
study. Furthermore, we show quantitatively that without a numerical treatment of con-
tact line pinning, the simulation results will be drastically different. Contact line pinning 
plays a critical role in several technologies including separation, lithography, lens fabrica-
tion, micro-fluidic flow control among numerous others. The proposed scheme will help to 
accurately capture the pinning effects in computational simulations of such applications.

 2023 Elsevier Inc. All rights reserved.

1. Introduction

When a liquid drop is deposited on a partially wetting surface, the wetted area on the substrate can be clearly identified. 
The curved line enclosing this wetted area, where all three phases, solid, liquid and the ambient gas, meet is called the 
contact line. Pinning of contact line occurs when the motion of the contact line is arrested by a physical or a chemical 
inhomogeneous feature. Physical features may include sharp edges (corners) in the path of contact line motion. Chemical 
inhomogeneity causes a jump in contact angle across the transition between hydrophilic and hydrophobic regions. The 
contact line is pinned along the transition and moves only when the contact angle overcomes the requisite jump. The 
contact line pinning may be categorized into continuous and discontinuous pinning [23]. In continuous pinning the entire 

* Corresponding author.
E-mail addresses: apathak@iitj.ac.in (A. Pathak), wjin@umassd.edu (W. Jin), mraessi@umassd.edu (M. Raessi).

1 AP and WJ have equally contributed to this work.

https://doi.org/10.1016/j.jcp.2023.111986
0021-9991/ 2023 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.jcp.2023.111986
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jcp
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jcp.2023.111986&domain=pdf
mailto:apathak@iitj.ac.in
mailto:wjin@umassd.edu
mailto:mraessi@umassd.edu
https://doi.org/10.1016/j.jcp.2023.111986


A. Pathak, W. Jin and M. Raessi Journal of Computational Physics 479 (2023) 111986

contact line is pinned. The contact line is only partially pinned in discontinuous pinning. The present work focuses on 
discontinuous pinning of contact line at edges (corners) and proposes a numerical scheme to model it.

During contact line pinning, the curvature of the liquid-gas interface changes, which in turn modifies the capillary forces. 
The contact line pinning is, therefore, stronger at smaller length scales. There are many applications in which the contact line 
pinning is exploited. Some examples include the drop-weight method [20,42] for determining surface tension; liquid-liquid 
extraction (LLE) microsystems [3] for extracting and concentrating target molecules; slot coating [13,29,37]; step and flash 
imprint lithography [36]; flow control in microchannels [19,27]; mass production of microlenses [25] and superhydrophobic 
surfaces [8,24,26,47]

Most studies on contact line pinning/depinning are thermodynamic analyses which predict stable and metastable states 
corresponding to global and local minima in the free energy profile [14,22,43]. A droplet remains in the metastable state 
unless external energy is provided, upon accepting which the droplet overcomes the energy barrier and attains a lower en-
ergy state [4,22]. The thermodynamic studies, however, do not predict the actual dynamic event of transition from one state 
to another. The transient transition includes the pinning/depinning event and can be captured by solving the hydrodynamic 
momentum equation governing the interfacial flow. Capturing such events can be critical for important applications such 
as lithography and liquid flow in microcavities studied by Reddy and Bonnecaze [36] and Goldschmidtboeing et al. [19], 
respectively.

Ferdowsi and Bussmann [16] and Ferdowsi [15] in their pioneering work, proposed a numerical scheme to model con-
tact line pinning. However, their scheme was applicable to axisymmetric geometries, which implies continuous pinning. To 
the best of our knowledge, there is no flow solver currently available that models discontinuous pinning at straight sharp 
edges formed by two intersecting surfaces of different inclinations, where the contact line may wet both intersecting sur-
faces depending on the pinning strength. A novel numerical scheme is proposed for modeling discontinuous pinning in 
the context of the Volume-of-Fluid method, and its implementation into a multi-phase flow solver is also presented. The 
proposed algorithm is developed for mesh conforming solid geometries where the solid surfaces coincide with the faces 
of the computational cells. In this work, uniform Cartesian mesh is used, thus the sharp solid edges are formed by solid 
surfaces intersecting at 90◦ . Note that the focus of this work is not on contact angle hysteresis, where the contact angle 
varies due to changes in the velocity of a contact line moving on a flat surface. Modeling such contact angle hysteresis has 
been extensively discussed in the literature, for example, [11,12,39–41,45,46]. Contact angle hysteresis, as defined above, 
was not considered in this work on purpose to isolate discontinuous pinning effects, which only arise when the contact line 
meets and crosses a sharp edge.

The structure of the paper is as follows. In section 2, we present the equations governing the two-fluid flow, where the 
two fluids are separated by a sharp interface. Section 3 presents the numerical approach to solving the governing equations, 
along with the novel scheme to model the discontinuous pinning of the contact line. The performance of the proposed 
scheme is assessed by solving several test problems in section 4. Finally, section 5 presents concluding remarks.

2. Governing equations

Consider two immiscible fluids, fluid 1 and 2, separated by an interface. The fluids are assumed to be Newtonian and 
incompressible. The continuity and momentum equations are:

∇ · U = 0 (1)
∂

∂t
(ρU) + ∇ · (ρUU) = −∇p + ∇ · τ + FB + FST (2)

Here, U, ρ , and p are velocity vector, density and pressure, respectively. FB is the body force, e.g., gravity, FS T is the surface 
tension force and τ is the stress tensor, defined by:

τ = µ
(
∇U + ∇UT

)
(3)

where µ is the dynamic viscosity coefficient. Following the Volume-of-Fluid method, to track the interface between the two 
fluids, we define a scalar f as:

f (x) =
{

1 if x ∈ fluid 1
0 if x /∈ fluid 1

(4)

In a discretized computational domain, the volume fraction F is defined as the fraction of a cell volume, denoted by V , that 
is occupied by fluid 1, i.e.,

F = 1
V

∫

V

f dv (5)

which means the volume fraction of fluid 2 is 1 − F . In other words, fluid 2 need not be tracked explicitly. The tracking of 
the two fluids is done by solving the following transport equation:
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∂ f
∂t

+ (U · ∇) f = 0 (6)

The density appearing in the discretized form of eq. (2) is computed as:

ρ = F ρ$ + (1 − F )ρg (7)

where, ρ$ and ρg denote the densities of fluid 1 and fluid 2, respectively. The discretized coefficient of dynamic viscosity is 
computed from the following relation:

1
µ

= F
µ$

+ 1 − F
µg

(8)

where, µ$ and µg are the coefficients of dynamic viscosity of fluid 1 and fluid 2, respectively. Harmonic averaging of µ
ensures that fluid stresses do not result in excessive accelerations in less dense fluid near the interface [31,38].

No-slip and no-penetration boundary conditions are imposed at the wall boundaries of the computational domain:

U · n̂ = 0 (9)

U · t̂ = 0 (10)

Here, n̂ and t̂ are normal and tangent to the boundary walls, respectively. A zero pressure gradient is also imposed at the 
wall boundaries.

∂ p
∂n

= 0 (11)

3. Numerical implementation

A detailed explanation of the solution procedure of eqs. (1), (2) and (6) can be found in [31]. A brief summary is provided 
in this section. Equation (2) is solved using the finite volume discretization on a staggered mesh following the marker and 
cell method [21]. In a staggered arrangement, velocity components u, v and w are located at cell faces in x-, y- and z-
directions, respectively. All other field variables, such as f and p, are defined at cell centers. The two-step projection method 
of [10] was employed to solve eq. (2) in fractional steps:

ρn+1U∗ − ρnUn

%t
= −∇ · (ρUU)n + ∇ · (τ )n + FB (12)

ρn+1Un+1 − ρn+1U∗

%t
= −∇pn+1 + FST (13)

where superscripts n and n +1 denote previous and current times, respectively. U∗ represents the intermediate velocity. The 
pressure Poisson equation is obtained by applying the continuity eq. (1) on eq. (13):

−∇ ·
(∇pn+1

ρn+1

)
= − 1

%t
∇ · U∗ − ∇ ·

(
FST

ρn+1

)
(14)

The pressure Poisson equation is solved using the multigrid preconditioned BiCGSTAB linear solver that was previously 
introduced in [33]. The multigrid preconditioned Poisson solver is fast because the number of iterations to converge does 
not increase with mesh resolution.

High density ratios are typical of multi-phase flow systems. To ensure numerical stability and to avoid artificial interface 
deformation in such flows, mass and momentum are consistently transported in a coupled manner [31]. Here the same 
volume fluxes are used to transport both mass and momentum, establishing a tight coupling between the two transports and 
avoiding unphysical numerical artifacts in simulations at high density ratios. The transport equation of scalar f , representing 
mass, is solved in a sharp manner using the geometric method of Youngs [44]. The interface is reconstructed following the 
Piecewise-Linear-Interface-Construction (PLIC) approach. In PLIC, a continuous interface is represented by a collection of 
discontinuous linear segments in 2D, an example of which is shown in Fig. 1, or by a series of planar polygons in 3D (see 
Fig. 17). The volume fraction F is also shown in Fig. 1(b). The volume fluxes at cell faces required in eq. (6) are calculated 
using the semi-analytical approach by Youngs [44], where two ingredients are required: interface orientation n̂ f and the 
available discontinuous volume fraction F in a computational cell. Once the interface orientation and location in each cell 
are fixed, volume fluxes at the cell faces can be computed by calculating the area in 2D (volume in 3D) of each phase in 
the red rectangle (cuboid in 3D) shown in Fig. 2.

We will now briefly describe the scheme for computing the orientation of the PLIC interface. The normal vector to a PLIC 
interface is estimated using the relation:

n̂ f = ∇ F/|∇ F | (15)
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Fig. 1. (a) Schematic of an interface separating two immiscible fluids. (b) The PLIC approximation of the continuous interface shown in (a). The numbers on 
(b) show the discontinuous VOF field representing the volume fraction of fluid 1.

Fig. 2. Calculation of volume flux at the face of a donor finite volume cell. The volume flux of fluid 1 is represented by the colored area contained inside 
the red rectangle. In 3D, the red rectangle is a rectangular prism and the colored region inside the red rectangle is a trapezoidal prism. (For interpretation 
of the colors in the figure(s), the reader is referred to the web version of this article.)

A better approximation of n̂ f can be obtained if the discontinuous F is replaced by a smoothened F . The discontinuous 
volume fraction F is smoothened in a radially symmetric manner using a widely used kernel proposed by Peskin [34]:

δcos
ε (r) =






(
1 + cos

(πr
ε

))
/c r ≤ ε

0 r > ε

(16)

Here c normalizes the kernel and is defined as:

c =
ε∫

0

(
1 + cos

(πr
ε

))
2πr dr = ε2

(
π2 − 4

)
/π in 2D (17)

c =
ε∫

0

(
1 + cos

(πr
ε

))
4πr2 dr = 4

3
ε3

(
π2 − 6

)
/π in 3D (18)

The parameter ε is chosen to ensure that convolutions are restricted to 3 ×3 ×3 stencil. Parameter r denotes the distance 
from the center of the kernel. Normal vector n̂ f at cell vertices is calculated from the smoothened F . The n̂ f at cell vertices 
are then averaged to obtain the n̂ f at the cell center as illustrated in Fig. 3. The cell-centered n̂ f determines the orientation 
of the PLIC interface. The normal vector n̂ f can also be used to compute curvature κ = −∇ · n̂ f , which is needed in the 
surface tension force calculation.

When the liquid-gas interface is in contact with a solid surface, a known contact angle θa is used as a boundary condition. 
The boundary condition is imposed by specifying the vertex normal vectors at the solid surface as shown in Fig. 4. In 3D, 
vertices are identified on the solid surface in a narrow band around the contact line as shown in Fig. 5. Assuming the 
solid surface to be perpendicular to the z-axis, the x − y orientations of the normals at these identified vertices are simply 
borrowed from the normals one cell removed from the solid surface. The z-component of the normal vector is then defined 
to represent the contact angle θa . Vertices that are two cells removed from the solid surface have the quantity F available in 
the full 4 × 4 × 4 stencil, which is sufficient for n̂ f calculation. Cells that are one cell removed from the solid surface require 
F in a stencil that penetrates one cell deep into the solid surface. Ideally, we should extend the liquid-gas interface and the 
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Fig. 3. Vertex-centered and cell-centered normals vectors in a 2D cell (i, j) containing the interface. In the present work, a 3D version is used.

Fig. 4. Imposition of contact angle at the solid boundary. The unit normal vector n̂ f of the phase interface at the solid boundary is modified to reflect 
the contact angle θa . While the no-slip boundary condition is applied on the solid, the face-centered horizontal velocities, u, which contribute to the VOF 
transport, including the cells containing the contact line, are half a cell above the solid surface, hence non-zero.

corresponding volume fraction field F into the solid surface. For practical purposes, just mirroring the values of Fi, j,k from 
the fluid cells into adjacent solid cells was found sufficient [6,7].

The surface tension force is modeled with the balanced-force scheme proposed by [17]. The scheme builds upon the 
Continuum Surface Force (CSF) method of [5], and discretely establishes an exact balance between the pressure and surface 
tension as indicated in eq. (13). This, in turn, suppresses the spurious currents close to the interface.

Note that although the no-slip boundary condition is applied on the solid surface, the contact line is still able to slide 
on the surface because the advection of the VOF field, including the contact line, is carried out by face-centered velocities, 
shown in Fig. 4 (2D example). That is a common feature of the VOF method [1]. As seen in Fig. 4, in the numerical cell 
containing the contact line, the face-centered horizontal velocities are half a cell above the solid surface (hence non-zero). 
The VOF advection in contact line cells follows the same procedure of PLIC reconstruction and flux calculation that was 
discussed earlier.

3.1. Contact line pinning: interface reconstruction

Sharp edges on a substrate inhibit the motion of the contact line through the pinning phenomenon. The contact line 
momentarily comes to a halt due to the pinning effect, and can remain indefinitely pinned if sufficient energy is not 
supplied to the system to overcome the energy barrier associated with this metastable state. A common example of the 
contact line pinning can be found in the ability of a drinking glass with a sharp rim to hold slightly more water than its 
own volume.

A theoretical model of contact line pinning was first proposed by Gibbs [18]. We briefly describe Gibbs theory here. 
Consider a contact line approaching a sharp corner edge of angle φ as shown in Fig. 6 at the macro scale. It is only at 
the macro scale that the corner appears sharp; at the micro scale, however, the slope transition is rounded (not shown; 
see Ferdowsi [15, Fig. 6.1]). For simplicity, we assume that the advancing contact angle is constant and equal to θa . Before 
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Fig. 5. A 3D contact line resting on a solid surface (top view looking down on the surface is shown). The numbers shown are volume fractions in cells 
adjacent to the solid surface. The vertices at which n̂ f are modified to impose the contact angle are marked by bullets (•).

Fig. 6. A schematic showing orientation of the interface close to the contact line when (a) interface is approaching a sharp corner, (b) interface is at the 
sharp corner, (c) interface moves beyond the sharp corner.

reaching the sharp corner, this contact angle is maintained by the interface as demonstrated in Fig. 6(a). Upon reaching the 
sharp corner, the interface performs a rotation about this corner (Fig. 6(b)). During this rotation,

θa ≤ θ ≤ θ2 = (180◦ − φ + θa) (19)

The duration of rotation constitutes the interface pinning phenomenon. When θ becomes equal to 180◦ −φ + θa , the contact 
angle corresponds to the advancing contact angle of the inclined surface. Upon reaching this state, the contact line depins 
and the interface starts sliding down the inclined surface (Fig. 6(c)).

The theoretical model of Gibbs [18] mentioned above was validated experimentally by Oliver et al. [30], where droplets 
were bounded at the edge of a circular cylinder that had φ = 90◦ . The phenomenon of pinning has been studied either 
experimentally or by using tools that compute energetically stable states. The only study that proposed a model that could 
predict dynamic rotation of interface during pinning was by Ferdowsi [15], Ferdowsi and Bussmann [16]. They proposed a 
numerical scheme to compute interface orientation and volume fluxes during continuous pinning in axisymmetric geome-
tries.

The numerical scheme proposed in the present work is an extension of Ferdowsi [15] to discontinuous pinning in 3D 
non-axisymmetric problems. In discontinuous pinning, some points on the contact line may undergo pinning, while the rest 
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Fig. 7. The PLIC interface shown by the blue line in cell I makes an angle θa with the bottom surface. The interface also enters cells II and III when it pins 
and rotates at the corner.

Fig. 8. PLIC interface in computational cell I. Lines $1 and $2 are coincident with the lower side edges of the cell. Points p1 and p2 are both behind the 
sharp corner edge.

do not; or all points on the contact line undergo pinning, but they are at different stages of rotation at any given time. The 
numerical scheme proposed by Ferdowsi [15] cannot be applied to such problems, and we are not aware of any numerical 
scheme that can model discontinuous pinning. To handle such problems, we propose a novel scheme, which is described 
below.

Consider a PLIC interface approaching a sharp corner of φ = 90◦ as shown in Fig. 7. The figure shows three cells neigh-
boring the corner, which are labeled I to III. The PLIC interface approaches cell I from the left. Before entering cell I, the 
PLIC interface makes an advancing contact angle of θa with the substrate surface.

When the interface enters cell I, the following algorithm is used:

1. Compute the orientation of the PLIC interface using the VOF-based method proposed by Bussmann et al. [7]. Now that 
the orientation is known, the location of this interface is fixed by matching the volume fraction intercepted by the PLIC 
interface with the known volume fraction. This is accomplished by following the method of Youngs [44].

2. After both the location and orientation of the PLIC interface are computed, its intersection with the lower side edges of 
the computational cell can be identified. The lower side edges are labeled by lines $1 and $2 as shown in Fig. 8. The 
points of intersection of the PLIC interface with $1 and $2 are named p1 and p2, respectively. The intersection of the 
lines $1 and $2 with the sharp corner edge results in points e1 and e2, respectively. A critical volume fraction, F crit.,1 is 
also computed by fixing p1 at e1 and p2 at e2, and keeping the contact angle θ = θa . This is illustrated in Fig. 9. The 
3D geometric toolbox of Pathak and Raessi [32] is used to compute the intercepted volume by this PLIC interface. Now, 

7



A. Pathak, W. Jin and M. Raessi Journal of Computational Physics 479 (2023) 111986

Fig. 9. The calculation of F crit.,1 , given a contact angle θ = θa .

Fig. 10. (a) A PLIC interface without contact line pinning reconstructed from the method of Bussmann et al. [7], (b) The modified PLIC reconstruction based 
on the proposed pinning algorithm, where point p1 coincides with e1.

Fig. 11. PLIC reconstruction in the interfacial cell close to edge when F known > F crit.,1 .
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Fig. 12. Pinning rotation of the PLIC interface in cell II. Here, θ2 = 180◦ − φ + θa as defined in eq. (19).

denoting the volume fraction in cell I by F known, the following three scenarios are possible based on the locations of p1
and p2:

(a) F known < F crit.,1 and both p1 and p2 are behind the sharp corner edge (see Fig. 8), i.e., the x-coordinates of both p1
and p2 are less than the x-coordinate of the sharp edge (in this example, where the edge is parallel to the y-axis).

(b) F known < F crit.,1 and exactly one point between p1 and p2 is behind the sharp corner edge, and the other one is 
ahead of the sharp corner edge. An example is shown in Fig. 10(a).

(c) F known > F crit.,1

3. When case (a) is encountered, we accept the PLIC orientation and location already computed in step 1.
If case (b) is encountered, we identify the point between p1 and p2 that is ahead of the sharp corner edge. Sup-

pose point p1 is ahead of the edge as shown in Fig. 10(a). In the illustration, point p1 lies outside the cell and is the 
intersection between the prolonged PLIC interface and line $1 extended beyond the cell. Here, we do not accept the 
reconstruction performed in step 1. Instead, the interface is fixed at point e1, i.e., point p1 coincides with e1. Keeping 
contact angle θ = θa , the PLIC interface is rotated about a vertical axis (in the z-direction in this example) passing through 
e1, until the volume intercepted by the PLIC interface matches the known volume fraction at some angle ψ . Here the 
angle ψ is the horizontal angle (in the x − y plane) between the contact line p1 p2 and the line $1 as shown in Fig. 10(b). 
In other words, the following root-finding problem is solved:

F p(ψ) − F known = 0 (20)

The calculation of the predicted volume fraction F p requires the volume of a computational cell intercepted by the 
PLIC interface. This volume is computed using the 3D geometric toolbox developed by Pathak and Raessi [32]. Similar 
toolbox was developed by Baggio and Weigand [2]. To solve the root-finding problem given by eq. (20), Brent’s method 
is used [35]. The computed ψ and the known θ define the orientation of the PLIC interface. The point p1 fixed at e1
specifies the location of the interface.

If the case (c) in step 2 is encountered, then the reconstruction in step 1 is not accepted. The PLIC interface is assumed 
to contain the edge line of the sharp corner as shown in Fig. 11. The PLIC interface is now free to rotate about an axis of 
rotation that is aligned with the sharp corner edge line. The PLIC interface is rotated until the predicted volume fraction 
equals the known volume fraction for some θ . In essence, we solve the following root-finding problem using the Brent’s 
method:

F p(θ) − F known = 0 (21)

where F p(θ) is the volume fraction of the computational cell intercepted by the PLIC interface subtending an angle θ
with the substrate surface as shown in Fig. 11. The computed θ and the known ψ = 90◦ specify the orientation of the 
PLIC interface.

Due to the proposed approach presented above, as more liquid enters cell I from the left cell face, the interface will 
first appear to rotate about a vertical axis passing through either e1 or e2. At the end of this horizontal rotation, the PLIC 
interface will eventually become aligned with the sharp corner edge. Once aligned, more liquid entry will result in the PLIC 
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Table 1
Properties of water and air, denoted by subscript $ and g , respectively.

ρ$ (kg m−3) ρg (kg m−3) µ$ (kg m−1 s−1) µg (kg m−1 s−1) σ (N m−1)

1000 1.226 1.137 × 10−3 1.78 × 10−5 7.286 ×10−2

interface rotation about the sharp corner edge as the axis of rotation. This second rotation is called pinning rotation because 
the contact line becomes pinned at the sharp corner edge.

After cell I becomes full with liquid, the liquid is now allowed to flow into cell II. As a result, the PLIC interface now 
resides in cell II. At this point we compute a volume fraction F crit,2 corresponding to θ2 = 180◦ − φ + θa in Fig. 12. If the 
volume fraction in cell II F known < F crit.,2, the PLIC interface orientation is computed by assuming that the interface contains 
the sharp corner edge, and the PLIC interface is rotated about the edge until the corresponding volume fraction in cell 
II equals F known. The same equation (21) is solved, only this time F p and F known correspond to those in cell II. When 
F known > F crit.,2, the PLIC interface is assumed to be depinned and its orientation satisfies the contact angle θa associated 
with the vertical surface. The PLIC interface, in this depinned state, is reconstructed using the method of Bussmann et al. [7]
that was briefly explained earlier.

Due to the numerical scheme proposed above for cell II, the interface will be pinned at and rotate about the sharp corner 
edge as long as θ < 180◦ − φ + θa . When θ increases to 180◦ − φ + θa due to this rotation, the interface orientation satisfies 
the contact angle θa associated with the vertical surface and it becomes depinned. After depinning, the interface is free to 
slide down the vertical surface. The proposed scheme is thus aligned with the theory of Gibbs [18].

The methodology proposed in the current work assumes that the computational mesh conforms with the solid geometry, 
i.e., the surfaces of the solid geometry coincide with the faces of computational cells. For simulations with Cartesian grids, 
this implies that only φ = 90◦ is possible at the corners. Therefore, only test cases corresponding to φ = 90◦ are considered 
here. For handling other values of φ, an unstructured grid may be required along with a suitable implementation of the 
VOF framework, e.g., in Lv et al. [28].

3.2. Contact line pinning: volume fluxes

During contact line pinning, fluid 2, i.e., gas, is allowed to cross the face shared by cells I and II before the liquid, e.g., 
water. In other words, gas is allowed to pass before liquid through the face shared by cells I and II when the PLIC interface 
is performing horizontal and vertical rotations. Similarly, when the interface is in cell II and rotating about the sharp corner, 
the gas is allowed to cross the face shared by cells II and III before the liquid. This approach is adopted from Ferdowsi [15].

The modified flux advection during pinning is further illustrated here with the help of Fig. 2. Suppose the cell shown 
here corresponds to cell I in Fig. 12. The liquid (fluid 1) and gas (fluid 2) volumes contained in the cell shown in Fig. 2 are 
F V cell and (1 − F ) V cell, respectively. The volume inside the red rectangle, Vε , represents the volume advected out of the 
cell due to the face-centered velocity component u in a time step %t . In the absence of pinning, e.g., in cells away from the 
edge, both liquid and gas phases contained inside the red rectangle would be advected out of the cell. In cell I, however, 
as long as the interface is undergoing pinning, no liquid is allowed to advect out before gas. The advection is done by 
implementing the following scheme. If sufficient gas volume is available in the cell, only gas is advected out in a particular 
time step. In other words, if Vε < (1 − F ) V cell, the advected gas volume is modified to Vε and no liquid is advected out of 
the cell. If, however, gas volume available in the cell is less than Vε , the gas in the cell is advected out first, followed by 
the liquid. Thus, if Vε ≥ (1 − F ) V cell the advected gas volume is modified to (1 − F ) V cell and the advected liquid volume is 
modified to Vε − (1 − F ) V cell.

4. Results

This section starts with a validation test case where the computed interface profile is compared to a theoretically known 
one. We then apply the proposed methodology to problems where the interface undergoes discontinuous pinning. The 
fluids in these problems are water and air, the properties of which are listed in Table 1. In addition, the dimensionless 
Weber number, W e = ρ$ V 2 D/σ , and capillary number, Ca = µ$ V /σ , are reported for each problem. Here, σ is the surface 
tension coefficient, V is the characteristic velocity and D is the characteristic length.

4.1. Contact line pinning in a spreading 2D Cartesian drop

This test case has been adopted from [16]. A sessile 2D Cartesian drop is resting on a pedestal with an initial contact 
angle of 75◦ as shown in Fig. 13. The associated geometric parameters are h = 26.8 mm and r = 103.5 mm. Using the 
symmetry of the problem, only half of the domain is simulated. At t = 0, the contact angle is suddenly changed to θ = 30◦ . 
The simulation is run for two pedestal sizes: l = 7 %x and l = 8 %x, where the computational cell size %x = 15.625 mm.

On a flat surface, the drop will spread freely until it attains an equilibrium profile corresponding to a contact angle of 30◦ . 
In the presence of a sharp edge, however, the contact line pins to the edge, which prevents the drop from spreading further. 
The simulation results are shown in Fig. 14 and compared to the theoretically known drop profile at equilibrium, shown in 
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Fig. 13. Geometrical parameters of the test case in section 4.1.

Fig. 14. Simulations results corresponding to pedestal length l = 7%x (first row) and l = 8%x (second row), where %x = 15.625 mm. The exact theoretical 
profile is shown in red, and simulated PLIC interface is shown in black.

red, which is obtained using the pedestal size and drop volume (area). We find that the simulated profiles demonstrate a 
decent agreement with the theoretical profile; however, they appear to oscillate about the exact profile even after a long 
time (t = 8.75 s), which is consistent with the observations of Ferdowsi and Bussmann [16]. The oscillations are caused due 
to spurious currents induced by inaccuracies in curvature estimation [17].

4.2. Contact line pinning along straight edge

In this test case, a sessile water drop is made to slide down an inclined surface with an inclination angle of ϕ = 30◦ . The 
inclined surface ends abruptly in a sharp straight edge at an angle of φ = 90◦ as shown in Fig. 15. Radius of the sphere to 
which the cap belongs is R0 = 3.2 mm. The contact angle is prescribed as θa = 60◦ . The center of the sessile drop is initially 
located at a distance of 3.8 mm from the left face of the computational domain as shown in Fig. 15(b). The drop is given 
an initial uniform velocity of 0.25 m/s along the incline. Taking the characteristic length D to be 2R0 sin(θa) = 5.54 mm 
and characteristic velocity V to be 0.25 m/s, we obtain W e = 4.75 and Ca = 0.0039. The gravity, g = 9.8 m s−2, is acting 
vertically downward. The size of the computational domain is 12.8 mm × 19.2 mm × 9.6 mm. The domain contains a solid 
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Fig. 15. (a) Isometric and (b) and side view of a liquid spherical cap of radius R0, representing a sessile water drop on an inclined surface with a sharp 
straight edge at an angle of φ = 90◦ . The contact angle θa = 60◦ , and inclination angle ϕ = 30◦ . The drop is given an initial uniform velocity of V = 0.25 m/s 
along the incline. All units in mm. Drawings not to scale.

Fig. 16. Simulation results of discontinuous contact line pinning as a sessile water drop slides on an inclined surface with a sharp edge. W e = 4.75 and 
Ca = 0.0039.

block of size 6.8 mm × 19.2 mm ×3.6 mm on which the sessile drop slides (see Fig. 15). Simulations were performed at 
four different mesh resolutions of 16, 32, 64 and 128 cells-per-diameter (CPD), where the diameter is 2R0 = 6.4 mm.

Fig. 16 shows the results of the 32 CPD simulation, depicting various instances in time as the sliding drop is pinned 
along the straight edge. Due to the circular geometry of the contact line, different portions of the contact line arrive at the 
straight edge at different times. The contact line hence demonstrates discontinuous pinning. As can be seen in Fig. 16, the 
downward sliding motion of the liquid is hindered at the edge due to pinning, forcing the liquid to spread laterally along the 
edge. Shortly after t = 6 ms, the pinned contact line in the middle of the liquid forms the appropriate contact angle with 
the vertical side of the solid block, parallel to the y − z plane, allowing the liquid to flow downward again. That eventually 
reduces the length of the wetted portion of the edge.

To provide a detailed view of the PLIC surfaces undergoing pinning treatment, the snapshot of the sliding drop at t = 5.2
ms, illustrated in Fig. 17(a), is used as an example. Fig. 17(b) depicts the PLIC surfaces representing the liquid-gas interface 
contained in the boxed region shown on Fig. 17(a). Focusing on the sharp edge, note the difference in the degrees of rotation 
of various PLIC surfaces, where those in the middle have performed the rotation motions the furthest. Also, note that the 
gap between the PLIC surfaces is expected as the PLIC approach does not require the reconstructed interfaces to be joined 
or continuous across neighboring cells.
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Fig. 17. (a) Snapshot of the water drop pinned along the sharp edge at t = 5.2 ms. The box shows the region for which the PLIC representation of the 
liquid-gas interface is provided in image (b) at the same time. Notice the various degrees of rotation of the PLIC segments at the contact line pinned at the 
sharp edge.

Next, we present the grid convergence study in Fig. 18, focusing on two quantities: width w , which is the portion of the 
straight edge wetted by the liquid (see Fig. 18(a)), and depth d, which is the distance in the negative z-direction from the 
straight edge to the extremum point which is wetted by the liquid. Fig. 18(b) and (c) show the time histories of d and w , 
respectively, obtained at four different mesh resolutions. Fig. 18(b) shows that around t = 7.0 ms the liquid starts to spread 
to the vertical face of the sharp edge, parallel to the y − z plane, resulting in mass redistribution, which eventually affects 
w . As Fig. 18(c) illustrates, w first rapidly increases as the leading of the drop meets and becomes pinned at the edge, while 
the rest of the contact line is catching up. However, as the liquid starts to move down again, the slope of w continues to 
decrease, and at approximately t = 11 ms, w starts to decrease with time. Results at various mesh resolutions show that the 
16 CPD resolution is not sufficient to accurately capture the pinning. The results at mesh resolution of 32 CPD and above 
are very close, with 64 and 128 CPD results being the closest.

To demonstrate the efficacy and importance of the proposed scheme, we repeated the 32 CPD simulation without any 
numerical treatment for contact line pinning (i.e., the proposed scheme was turned off). Fig. 19 presents a quantitative 
comparison with respect to d and w between the two simulations: with and without the numerical treatment of contact 
line pinning. A drastic difference is seen in both d and w between the two cases. Without any pinning treatment, d starts 
increasing as soon as the leading front of the contact line reaches the sharp edge at about t = 0.92 ms. That is evident in 
the inlay of Fig. 19(a) and indicates that in the absence of pinning effects to resist or arrest the contact line motion, the 
drop “spills” over the sharp edge easily. As expected, in the simulation with the proposed pinning treatment, the contact 
line is pinned much longer, and it is not until t = 7.5 ms that the drop flows over the sharp edge. Similarly, without any 
pinning treatment, the sharp edge wetting occurs at a larger extent and earlier in time, as seen in Fig. 19(b).

In Fig. 20, we show a comparison of the top view between the simulations with (left column) and without (right column) 
the pinning treatment to illustrate why the wet width w is larger without the pinning treatment. In general, if a circle 
passes over a straight edge, the wetted width w increases in time until w becomes equal to the diameter of the circle. 
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Fig. 18. (a) Wetting depth d and width w in discontinuous pinning of a sessile drop sliding on a surface with a sharp edge. Time histories of (b) d and (c) 
w obtained at various mesh resolutions, reported as the number of cells-per-diameter (CPD).

Fig. 19. Quantitative comparisons of (a) wetting depth d and (b) width w between two simulations of the sliding sessile drop, with and without the 
proposed numerical treatment of contact line pinning. Both simulations are at 32 CPD resolution.

The increase in w would be purely due the circular shape. Without the pinning treatment, the circular contact line passes 
over the straight edge in a somewhat uninhibited manner compared to when pinning treatment is used. Due to the pinning 
treatment, the motion of the contact line is momentarily arrested at the straight edge, which in turn, slows down the 
portions of the contact line in the transverse direction approaching the sharp edge - see the contact line encircled in red 
in Fig. 20 at t = 6 ms. That ultimately leads to a smaller w in the case with the pinning treatment at any given time. The 
impact of the pinning treatment on the drop geometry as a whole can also be seen in snapshots shown in Fig. 20. The 
contact line profiles with and without the pinning treatment differ; for example see the images for t = 14 ms.

To ensure that the proposed pinning treatment is not affecting the discrete mass conservation of the VOF method, we 
compared the total liquid volume as a function of time between the above two cases at 32 CPD with and without the 
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Fig. 20. Top view comparison between two simulations of the sliding sessile drop with (left column) and without (right column) the proposed pinning 
treatment at 32 CPD resolutions.

Fig. 21. Time history of normalized volume error in two simulations of the sliding sessile drop, with and without the proposed pinning treatment performed 
at 32 CPD resolution. The normalized volume error is defined as (V 0 − Vt )/V 0, where Vt and V 0 denote the liquid volumes at time t and t = 0, respectively.
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Fig. 22. (a) Side view and (b) top view of the parallel gap module where water (blue) makes a contact angle θ1 at the hole edge. The computational domain 
is shown in the dashed red rectangle.

Fig. 23. Computational domain used for discontinuous pinning around a row of holes in a parallel gap. The transparent region along with the hole represents 
the portion open to the flow. The opaque gray region is closed to the flow and its boundaries act as walls. The water-air interface is shown in blue. Here, 
A = B = 1 mm and h = 0.25 mm.

pinning treatment. A normalized volume error is defined as (V 0 − Vt)/V 0, where Vt and V 0 denote the liquid volumes at 
any time t and t = 0, respectively. Fig. 21 shows the time history of the normalized volume error with and without the 
pinning treatment. As seen the normalized error remains below ∼ 5 × 10−8 (or 5 × 10−6 %) in both cases, confirming that 
the proposed treatment does not negatively impact the discrete mass conservation of the VOF method.

4.3. Discontinuous pinning around a row of holes in a parallel gap

This test case has been adopted from Hu et al. [23], who studied the discontinuous pinning around the holes of an 
immersion hood, also called shower head, employed for water extraction in lithography. The schematic of the parallel gap 
module is shown in Fig. 22.

The upper plate of the parallel module has a row of evenly spaced holes. As the air-water interface moves in the parallel 
gap of height h, the contact line becomes pinned at the edges of the holes. The edge length of the square holes is A and the 
gap between consecutive holes is B as illustrated in Fig. 22(b). For this study, A = B = 1 mm and h = 0.25 mm, adopted from 
Hu et al. [23]. The computational domain and boundary conditions are illustrated in Fig. 23. The computational domain has 
been carved out of the schematic shown in Fig. 22, where its location is shown in red dashed rectangle. To clearly show the 
liquid-gas interface and the sharp edges of the hole, the simulation setup is flipped upside down (note the gravity direction 
in Figs. 22 and 23), and the top solid surface is also removed, although its effects are incorporated in the computational 
domain using the appropriate boundary conditions. Leveraging the symmetry of the problem, only one hole was considered 
in the simulation. Symmetry boundary conditions were used at the lateral boundaries as shown in Fig. 23. Water is injected 
into the computational domain from the left boundary at uin = 0.025 m/s with the aid of an inlet velocity boundary 
condition. An outlet boundary condition at the opposite side allows the fluid out of the domain. An advancing contact angle 
of 80◦ was used at both the top and bottom surfaces. Taking the characteristic length D = A = 1 mm and characteristic 
velocity V = 0.025 m/s, the non-dimensional numbers characterizing this problem are W e = 0.35 and Ca = 0.026. The 
simulations were performed at two uniform grid resolutions of %x = h/8 and h/16, or 8 and 16 cells-per-height (CPH).
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Fig. 24. Simulation results showing the water-air interface (blue) traveling past a row of square holes in a parallel gap and discontinuous pinning of the 
contact line at the bottom surface along the square hole edges. The top solid surface is not shown but the contact line formed on it is visible. W e = 0.35
and Ca = 0.026.

Fig. 25. Length L and angle α used for comparison between our results and the work by Hu et al. [23]. The contact line pinned at the solid surface 
containing the square holes is shown in red. The contact line on the opposite smooth surface is shown in green.

Fig. 24 presents the results from the 16 CPH simulation, showing the evolution and pinning of the water-air interface 
(blue) as it travels past the row of holes. Note that using the symmetry of the problem, the computational domain is 
mirrored once to include two holes in the figures. The top solid surface, obtained after flipping the setup in Fig. 22 upside 
down, is not shown for visibility of the water-air interface. Contact lines exist on both the top and bottom solid surfaces, but 
only the contact line on the bottom solid surface, which includes the holes, will undergo pinning. The results clearly show 
that a portion of the water-air interface is arrested at the hole edges due to discontinuous pinning, while the remaining 
part of the interface continues to travel in the space between the holes.

Next, we quantitatively compare the computational results with Hu et al. [23], who studied this problem both experi-
mentally and analytically at the same A, B and h. The quantities used for the comparison include: angles θ1 and α and 
length L, shown in Figs. 22 and 25. Angle θ1 is between the liquid-gas interface and the edge of the holes on the corre-
sponding surface, as illustrated in Fig. 22. Angle α is formed by the lateral line and the line joining the centers of two circles 
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Fig. 26. Variation of shape parameters α (blue; left axis) and L (red; right axis) against θ1. The results from the simulations at two grid resolutions of 8 (*
symbol) and 16 CPH (• symbol) are compared against the theoretical model (solid line) of Hu et al. [23].

containing the contact lines formed on the bottom and top surfaces as shown in Fig. 25. The contact line shown in red is 
pinned by the holes, while that shown in green is in contact with the opposite smooth surface. The same figure also shows 
the length L, which is the distance between the trailing lateral edge of the hole and the point where the contact line sepa-
rates from the side edge of the hole. The above quantities are evaluated at 8 and 16 CPH simulations. In the present work, 
the quantities α, L and θ1 were measured from the isosurface visualized in the Visit software [9] during post-processing. 
For computing α the inflection point on the isosurface is first identified, followed by measurement of normal orientation at 
that point. The theoretical expressions for α(θ1) and L(θ1), which were rigorously derived by Hu et al. [23] are summarized 
here:

α = arccos
(

%p (B + 2 L0)

2σ

)
(22)

where,

%p = (A + B) − (S/h)

A + B
σ

h
(cos θa − cos θ1) (23)

L0 = h tan
(

θ1 − θa

2

)
(24)

S = B h + 2 r2
2

(
sin θ1 cos θa + 1

2
sin θ1 cos θ1 − 1

2
sin θa cos θa + θ1 + θa − π

2

)
(25)

r2 = h
cos θa + cos θ1

(26)

Also,

L = L0 + L1 + L2 (27)

where,

L1 = r4 (1 − sin α) (28)

L2 =
√

r2
3 −

(
B
2

)
− r3 sin α (29)

r3 = B + 2 L0

2 cos α
(30)

r4 = A − 2 L0

2 cos α
(31)

Fig. 26 shows the variation of α and L against θ1 as the interface moves past the row of holes and becomes pinned, 
along with the predictions from the theoretical model of Hu et al. [23]. The agreement between the theoretical model 
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and the simulation results is good when θ1 is between 80◦ and 125◦ . As θ1 goes beyond 125◦ , there is a discrepancy 
between the simulation results and the theoretical model, although the simulation results remain close to each other. The 
discrepancy can be attributed to the inertial effects that are neglected in the theoretical model but present and captured in 
the simulations. The theoretical model is based on a force balance on a stationary liquid-gas interface. In the simulations, 
however, the interface is continuously moving, and sufficient time may not be available for a redistribution of liquid mass to 
attain a state of minimum surface energy that is the basis of the theoretical model. The discrepancy between the theoretical 
and simulated results that occurs at high angles θ1 > 125◦ can be further explained by considering the small and large θ1
regimes separately. The inlet flow in the simulations is equivalent to assuming increasing pressure at the liquid side. At 
small values of θ1, the interface deformation takes place both in the horizontal and vertical planes to balance this increase 
in pressure. At the pinned portion of the contact line, the interface stretches in the vertical plane to increase θ1 and at 
the unpinned portion, the interface becomes more concave in the horizontal plane to reduce α. At large values of θ1 , the 
interface stretching at the pinned portion does not contribute as much towards balancing the increased pressure on the 
liquid side as done by the increased concavity of the unpinned portion of contact line. This is evident from both theoretical 
and simulated results as demonstrated in Fig. 26. Here, the rate of decrease in α becomes higher at higher θ1. This difference 
in interface deformation between the pinned and unpinned portions of contact line at higher θ1 becomes more exaggerated 
when there is flow. The flowing liquid prefers a path of the least resistance, i.e., flowing towards the unpinned portion of 
the contact line. Therefore, a higher rate of increase in L and a higher rate of decrease in α are present in the simulated 
results compared to the theoretical ones as can be seen in Fig. 26.

5. Summary and conclusions

This work presents a numerical scheme for modeling discontinuous contact line pinning in 3D and in the context of 
the Volume-of-Fluid method. The proposed scheme is focused on pinning at sharp straight edges, where the 3D Cartesian 
mesh conforms to the edge line. The discontinuous pinning is determined by solving a root-finding problem to adjust the 
orientation of PLIC polygons intersecting the edge line. Each polygon changes orientation by undergoing rotations, the axis 
of which is either normal or parallel to the edge line, and according to the stage of pinning, determined with the help of a 
geometrical toolbox. The proposed scheme was tested in discontinuous pinning of a sessile drop moving over a sharp edge, 
and water filling a parallel gap with a row of holes arresting the water contact line. In the latter, quantitative comparison 
with an experimental/theoretical study shows good agreement with the simulation results. Quantitative comparisons of the 
simulation results with and without the proposed numerical treatment of contact line pinning show a drastic difference. 
Future work includes extending the proposed scheme to model pinning at arbitrary shaped sharp edges that are non-
conforming to the mesh.
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