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Oxidation of aldehyde and primary alcohol functions of erythrose may 
lead to tartaric acid. Dehydration of C3 hydroxyl group in erythrose, 
keto-enol tautomerism and oxidation of aldehyde functional groups is a 
possible path to give malic acid found as one of the minor products. 
Dehydration of the malic acid followed by an H-transfer reduction of 
intermediate fumaric acid is the likely path for the succinic acid product 
as shown in the lower left side of the scheme. Similarly, dehydration of 
C4 hydroxyl group in erythrose, keto-enol tautomerism, oxidation of 
aldehyde functional groups followed by reduction - dehydration - 
reduction is a possible path to form 2-hydroxybutaric acid as shown in 
the lower left corner of the scheme in Fig. 6. 

In comparison of the current result with literature, catalytic oxida
tion of D-glucose to glycolic acid is known only in a handful of examples, 
and even in these instances glycolic acid was formed only as a minor 
product among a number of other C1-C6 glucose oxidation products 
[60], [7]. For example, Velarde et al. have studied the use of a series of 
Ti-Zeolites for oxidation of glucose using hydrogen peroxide as the 
oxidant; where the highest selectivity for glycolic acid was only 10.5%, 
and was observed with the use of Ti-MCM-41 [61]. In another example, 
Onda et al. have studied the D-glucose oxidation using a series transition 
metals: Ru, Cu, Ag, Pd and Pt on carbon catalysts in 1.0 M aq. NaOH, 
using air as the oxidant [7]. In this instance, highest glycolic acid se
lectivities of 8.7% and 5.1% were achieved with the use Cu/C and Ag/C 
catalysts, respectively [7]. However, relatively higher selectivity to
wards glycolic acid is known with acidic polyoxomolybdates, where 
H3PMo12O40 was used as catalyst in water at 125 ◦C, producing glycolic 
acid in 30.1% selectivity [53]. In a recent example, Cao and co-workers 
have shown that D-glucose can be converted to glycolic acid in 13.58% 
yield by using Wells–Dawson phosphomolybdic heteropolyacid 
H6P2Mo18O62 in aqueous media at 180 ◦C [54]. Additional literature 
examples for glucose oxidation using expensive noble metal catalysts are 
shown in Table 2 for comparison with the presented results from this 
work. Evidently, the application of noble metal catalyst mostly resulted 
gluconic acid as the major product. Therefore, in contrast to the 
currently available catalytic systems for conversion of D-glucose to 
value added products, the new spent LiB waste material based 
LiBBM-600 catalyst is highly selective inexpensive or no-cost catalyst 
system in producing glycolic acid. This superior selectivity for glycolic 
acid may be due to the ability of lithium nickel manganese cobalt oxide 
(LiaNibMncCodOe) for the efficient promotion of both [4 + 2] and 
[2 + 2] retro-Aldol fragmentation steps as well as oxidation of glyco
laldehyde to glycolic acid shown in the proposed reaction scheme in 
Fig. 6. 

4. Conclusion 

We have shown that an excellent catalyst for industrially important 
D-glucose to glycolic acid oxidation process can be prepared by pyrolysis 
of electrode coating material collected from a used Li-ion laptop battery 
in air at 600 ◦C. The new catalyst was shown to contain lithium nickel 
manganese cobalt oxide (LiaNibMncCodOe) impregnated on graphite 
carbon by SEM, EDX and X-ray crystallography analysis. Furthermore, 
the most likely active catalytic material has an empirical composition of 
Ni: Mn: Co 4.12: 2.10: 1.50 as indicated by the EDX data of the catalytic 
material. The new catalyst was tested for oxidation of D-glucose under 
an oxygen atmosphere of 1.0–3.4 Atm, at 100–150 ◦C, in water and aq. 
NaOH mediums with 10 mg /mmol glucose catalyst loading. The highest 
glucose yield of 94% was obtained for an experiment carried out at 
120 ◦C, 2 h, under 3.4 Atm. O2 in 0.50 M NaOH. Tartaric, malic, succinic 
and 2-hydroxybutaric acids were identified as minor products in D- 
glucose oxidation reactions. Furthermore, we have found that it is 
essential to use 0.5 M NaOH basic medium for the D-glucose oxidation 
as reactions carried out in aqueous medium under comparable condi
tions produced only a low 12% conversion of D-glucose. A reaction 
pathway is proposed to explain the formation of glycolic acid and minor 
C4 acid products formed in the experiments. In conclusion, we have 

presented a new use for spent Li-ion battery waste electrode material 
rich in Li, Ni, Co and Mn as a pre-fabricated catalyst for the preparation 
of a value added feedstock glycolic acid with numerous applications in 
cosmetic, food and other industries from D-glucose under mild condi
tions using oxygen as the oxidant. We are currently working on 
designing a new class of carbohydrate degradation catalysts based on 
this discovery and recyclability of these catalysts. 
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