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Abstract

We present a theoretical and computational model for the behavior of a porous solid undergoing two interde
the [Jnite deformation of a solid and species migration through the solid, which are distinct in bulk and on sur
theories allow us to systematically study porous solids in a wide range stigh@gdtiomsielivery, biomaterial
designfundamental study of biomechanics and mechaaaobdith@ggesign of sensors and actAsteesaim to
understand the physical phenomena at a smaller length scale, towards comprehending fundamental biologic
miniaturization of devices, surface effect becomes more pertinent. Although existing methodologies provide
tools to study coupled bulk effects for deformation and diffusioreriditds ég,known about fully coupled bulk
and surface poroelasticity at [Jnite strain. Here we develop a thermodynamically consistent formulation for st
poroelasticity, specialized for soft hydrated solids, along with a corresponding [Jnite element implementation
three-Jeld weak form. Our approach captures the interplay between competing multiphysical processes of [
and species diffusion, accounting for surface kinematics and surface transport, and provides invaluable insig|
effects are important.

Keyword$urface diffusion - Surface energy - Hydrogels

1 Introduction nonlineacomplex constitutive responsd2[23, 16,
42, 59]. These nonlinear theories have been highly releva
Poroelasticity is the theorydbstribes the coupling oin the pasfew decades as the study of hydrated bioma-
deformations of a continuum body with diffusive [Jawraflstissues and hydrogels at [Jnite shgptisations
solvent through the body itself due to its permeabl@ipdmogisleliverfissue regeneratibiomaterials design,
naturelhe theory of linear poroelasticity as pioneeréghldpmental studies in biomechanics and mechanobiolog
Biot [8-10]has been applied to describe hydrogels atedign of morphing structures as well as sensors and actu
hydrated biological tissueg[1383],but in many casestors, nonlinear theories of poroelasticity have provided a ¢
nonlinear variants of the theory of poroelasticity aramasrstanding of the rich observed raatesialictural
essary due to bulk deformation of [Jnite deformationsspodses. However, the majority of these studies have be
in the macroscale, where surface effect can often be negl
B i as bulk energetic contributions dominate the response of
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approache=san be developed to study the surface amtlmerical instabilities that are known to arise due to the \
interface response of materials and material¥kgstetion of the Ladyzhenskaya-Babus “ka-Brezzi (LBB) conditio
pioneering works of Gurtin [25, 26] established a sy3temadiS1].For differenvvariants ofonlineaporoe-
framework to derive kinematics and balance principdasi€diygn array of approaches has been propb2ed [2,
surfaces that focused on the thermodynamics of purg)}&I|a%;20,31,41,47,48,60].Although the existing
tic systems. Further, this framework was extended mmethodiiogies provide the necessary tools to study coupl
to accourfor thermadffects and mass trangpamtticu- bulk effects for deformation and diffusion, to the best of ti
larized for surfaces [2B].Many studies have followeduthors’ knowledge an implementation of the [Jnite eleme
since exploring the mechanics of surfaces and interfestgotterthat fully couples bulk and surface poroelasticity
continua involving purely mechanical as well as colpliéd gpir@in has not been previously presented. Motivated
cesses [18, 28, 37, 44, 54]. the theoretical work of McBride et]diH&0considered
The competition of bulk and surface energetics itarmg&d thermomechanics with species diffusion accounti
scale dependdrr elastic solids with shear modylusf@r individual surface energetic contributions from elastic-
and surface energy Xglevant length scale is the ela#ity-heat transfer and mass diffusion, here we aim to deve
capillary length X = Xy[85]. Generally speaking, if thherobust and open-source [Inite element framework for the
characteristic dimension is much larger than elastoa@ailtagnt of surface and bulk poroelasticity. In our previo
length (H X X), surface effects are negligible. On thenmttkel2], we considered the surface elasticity coupled witl
handjf the characteristic dimension is much smalleptimaalasticity in bulk, not accounting for surface diffusion.
elastocapillary length (H & Hurface effects are domi- The ultimate goal of this paper is the development of a
nant. Focusing on soft solids, work from Style et al {B&irandynamically-consi&ienulation for surface and
Bico etal [7] focused on the implication of surface ebelk poroelasticity specialized for soft hydrated solids, alo
getics on the mechanical behavior of this class of nwatarthks,developmeafta corresponding [Jnite element
looking at the subtle relationships between surfaceistpdseasntation. Focusing on soft solids, and more speci[]
and the bulk response. Surface and interface energeatlls ndmgels, we discover a set of numerical complicati
been further explored in the context of soft solids tohstiuage not evident when the general theoretical framewt
their implications to adhesion, fracture, instabilitiessaprneedintethis is because of the nature of the coupling
as the design of composites. of surface and bulk poroelastiagwyellas the nearly
Specialized boundary value problems allow for theaeaekessibility assumptionsthttized to modiie
opmenbf analyticasolutionsn this contexf2, 12]. elastomeric component of the hy@ihegelanuscript is
However, [Jnite element implementation that accownrigforized-as follows: In Sect. 2, we describe the coupled t
face effects is necessary to tackle general problemariaotadilyding kinematics, balance laws and the general fo
Javili and Steinmann [33)] developed the [Jnite elemehthe constitutive equations considering both bulk and su
framework fofnite deformation accountingtfwface face energetics. In Sect. 3, the free energies are specialize
energetics. Steinmann and co-authors [36, 50] alscofaeadipdeabel material. Section 4 presents the [Jnite elem
(nite element schemes to study several classes of aoppdedentation including the weak form, normalization ar
problemsdncluding mass transpad thermomechanicsolution procedusection 5 elaborates on the numerical
These types of frameworks allowed the study of maiphaations for two three-dimensional (3D) boundary valu
genesis and wound healing in microtissue syisegms,problems corresponding to free-standing response of a cu
“active” surface and bulk effects were shown to enimaseructure as surface effects dond@satellas the
from the cellularctivity ofthe extracellulavatrix [38, response under external loading highlighting unique contr
39, 49]. Focused on drug delivery applications, Boulklasomsdf surface effects, and the bulk and surface diffusi
co-authors [2] investigated the mechanical surfacepethetays. Section 6 provides the conclusions and outlook
the context of [Jnite deformation poroelasticity, undotzerengork.
the importance of such effects on the transient response of
swelling hydrogel microspheres of the porous solids coupled
with solvent diffusion using a mixed [Jnite element dh&t@antinuum multiphysics approach for
More recently, Dortdivanlioglu and co-authors [52] prlopblseand surface poroelasticity
a computatiorfarmulation thalftows the consideration
of curvature-dependent surface energies using isodadimstsaction, we present a brief overview of key concept
analysis. of differential geometry towards describing the kinematic:
There is an extensive body of work on the developeareanicalquilibrium and mass balaamé obtain the
of mixed [Jnite element frameworks for linear poroajastical relationships for the constitutive relations for the
ity,including stabilization approaches for the tofatnaenk surface responses. It is noteworthy that a surface qua
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tity to be introduced is not necessarily the same asideatiyikensor and the mixed Kronecker delta, respectivel
quantity evaluated on the surface. Let V be a [Ixed N@ﬂ@’d&ha%& 1fori=j,and ip= Ofori%xj (i,j=
con[Jguration of a continuum body B, where materid| godts
in the reference con[Jguration are tracked through th@hedmrariant and contravariant basis vectors are not n
Xev. essarily orthogonal to each other but linearly independent
) requiring {x a) - 3 = 0 (the vectors do not lie in a plane)
Remark 1 (Notation) The dyad (®) anid detote the [59] The vectorsamd hare connected to metric tensors
tensoand dotproductsiespectivelyhe double dat) i, dlby
denotes the double contraction over two second-ordér ten-
sors; e.A 1 B = Aj;Bjj. For convenienee adopt the 5 = 3,3l with aj=aji=a - g (2a)
convention that other operations involving repeated indices . halegicd. g 2b
will not be indicated by a speci[Jc symbol, speci[lcaﬁy_m Sh. With a7 =a "= (2b)
ing for v = Au (¥ Ajjuj) and A = BC (A = Bj Lk ),
we do notvrite v=A-uand A = B - Crespectively.
Throughout the text, we use the Einstein summatio'H

tion: when an index variable appears twice in an e LU ith diff tindi tth
it implies summation of that variable over all value Fﬂ% ric tensors wi lierent indices represent the pro

St .
index. Latin indices take the value 1, 2, 3, and are & etgﬁe ‘:_hs and the cosine of the angle 8 ; for example,
ables describing the ambient, three-dimensional, EdYia |2 .co$9 (Q’. 2)).

space. Greek indices take the value 1, 2, and are use h ¢ ?f—‘t't.y {7} Is a vector [Jeld de[Jned thraughout
ables in the embedded, two-dimensional, surface. (?/- Uig ﬁ“g'ch is bounded by a clqsed surface S, the.n. b
denote bulk and surface quantities, respectively, fo divergence operators in 3D general curviline

radi
occupying volume V bounded by outer surface denS?&ﬁéjg%.es are de[ned as follows:
The overhat {i+} denotes normalized quantities, and the sgpel- i

where two tensors are inverse to each dthgs BJe a

ots that.metric tensors with the identical indices represe
. f the lengths; for exam pdg?,avhereas

fagidares o gths; for examizd?,

posed dot { denotes the material time derivative. eX\ﬂIFi}e_‘agi ®a (3a)
A~1 = (A)~land tfA) for the inverse and trace of a ten- a{*} .
sor A. The double-bracket ([[£+]]) represents the av%?‘a'dé}a_ rrd =Ux{e}:l (3b)

jump of a surface quantity ({Fiui) over thedndiface C
e.g. W-K11 =W+ KR+t +W— K- ="W+-W~-".Kt = With the above equations, the divergence theorem is [23]
A % 2

c. W N where the superscriptafd«{<-denote the X K
surface quantity on the outward and inward of the int&tfacés} dV = {*}NdS (4)
respectively, and we de[]ne the surface outward norrhal vec- S
torN :=N* over the interfage C where N is a unit outward normal vector on the surface S.

We now move our attention to the surface description. |
Xr denote an arbitrary vector expressed in terms of the inc
ual components of the general surface curvilinear coordin

We brie[Jy review the key concepts of differential g§9§@§§y’ ie., ir =5§I’.(§2). We can always associate two
required to describe the kinematics of the bulk and{u4ifaetiblets of vectgrari@adawith the general curvi-

Further details on differential geometry can be fou"l‘ﬁiué%rbéegﬁjinéﬁe by coordinate transformations [23].
and papers, for example, Gurtin [25], Green [23], Steinmann

[37,54] and Do Carmo [19]. . Jir . ok

We [Irst focus on the bulk description. Let r be ar@biggry@Nd 8 = —= (5a)
vector expressed in terms of the individual componrents,af the fa _ aw <
curvilinear coordinate sydtéra.£r = r(E €, £3). We e %Aa ®xd where®f = %5 Ap (5b)
can always associate two new triplets of vaatbss (a
with the general curvilinear coordibgte81.

2.1 Key concepts of differential geometry

wheregand®aare referred to as covariant and contravarian
surface basis vectors, respeétamd)g are the mixed-
variant surface identity tensor and the mixed Kronecker d

_ i

a = a_rl and a = % (la) respectively (a, B = 1, 2). Note that the surface identity te
_a& . ar_ . sor also can be expresded by N ® N.

=8 a®ad whereg =4d-3 (1b) The vectorg&nd®are connected with the geometrical

. characteristics
wherejand ‘[are referred to as covariant and contravariant

basis vectonespectivelyand § are the mixed-varianfa = Zag8 with Xap = ig« = Z@- 48 (6a)
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X§ = X% with &P = 2B = 25 & (6b) con[Jguration cannot be transformed into a unit normal ve
tor n in the spatial con[Jguration using solely the deformat
whereggand £8are surface metric tensors, and theggadient [29, 54]. This motivates us to follow the kinemat
mappings are inverse to each otﬁéialg_@:_% of an in[Jnitesimal surface element [38, 39].
If a quantity {X<} is a surface vector [Jeld de[Jned throughout

a surface S, which is bounded by a closed curve L, tt‘fZS the ax &, D) 1 _ % <oy
surface gradiemd divergence operators in a 2D gener I% t= aX A= TyixX, t) (10a)
curvilinear coordinates are de[Jned as follows: L -1 P

Flax, o 2B g ki, (10b)
. B a{}i‘é B aAX
Yy ik} =, o (7a)

) £ ’ ) wher&(X, t) ané_l(fix, t) are the surface deformation gra-

V- {X'}?E; Ka=Wg{X}: (7b)  dient and inverse surface deformation gradkesta Note
mapping from the bulk (3D) to the surface (2D), so it is ral

With the above equatiamesintroduce the surface divéfellcient (it has rank 2, whereas full-rank would be 3). The

gence theorem as follows [54]: 4=1-N®Nandt =i—n®n are the mixed surface

unit tensors with the outward unit normal vectors N and n

A B wher&and act as a surface (idempotent) projection tensor

S §< {a+} ds 5 in material and spatial con[Jgurations, respectively. Note t
A A KX, t) = da/dA = def(X, t) > 0 is the Jacobian deter-

= L{E‘Nd- - SKK{K‘I\}CS (8)  minant of the surface deformation gradient de[Jning the a

ratio of a surface element between material and spatial cc

wheré&l is the unit outward bi-normal vector to the MW@S‘ ) 2 . .
curve L (see Fig. 1), and I»?(x: M is the total curvature "< w&goduce C &ndhe right Cauchy-Green tensors in

(twice the mean surface curvature) [25]. t%e bulk and on the surface, respectively, as

@
I

.
2.2 Kinematics FTF (11a)

(11b)

(Ca
I

=
P

We use the notation x : \PfeRthe deformation of body

B. A motion x is the vector [Jeld of the mapping x =g, £)tr(C) is the [rst principal invariant. The detailed
of a material point in the reference conflguration X gaM/gidn for the surface kinematics can be found in Do
position in the deformed con[lguration x € v. The kingmat{ao], Green and Zerna [23], Steinmann [54]. Note |
of a typical particle are described by the displacemgat {8t perform the inverse of the surface right Cauchy
[eld in the spatial description, u(X, t) = x (X, t) — ¥rdBf tensor due to its rank de[Jciency. Nevertheless, we
kinematics of an in[Jnitesimal bulk element are desgfipWh&Nn its inverse form in the generalized sense,

E1=4c % (12)
F(X, 1) ="Xa())(<' D vex (x, t) (9a)
ax ~L(x, t) which will be utilized in the forthcoming developments for
F74(x, t) =T' = Vx X(x, t) (9b)  de[lning the surface kinetic law.

where F(X, t) andP(x, t) are the deformation gradiept3 Mechanical equilibrium

and inverse deformation gradiespgectiveliMote that

J (X, t) = dv/dV = det F(X, t) > 0 is the Jacobian detMiechanical equilibrium is assumed to be maintained at al
minanbf the deformation gradiefining the ratio of atimes during the motion. The strong form of the correspor
volume element between the material and spatial dB8[@V&MNINg equation is

tion.

Assuming conformittye surface displaceméhttfip( Vx-P+B=0 in V (13a)
can be determined by uéX &, t ). The motion of apy -y BP=T on Sr (13b)
arbitrary differential vector element dX can be mapped by thue= on S, (13¢)
deformation gradient F to a vector dx in the deformed con-,

(guration. However, a unit normal vector N in the mater{gfm] =0 on L (13d)
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Fig. 1 Schematic illustration of
the reference, initial, and current -
state of a continuum body. The Fo,Fo
initial state is assumed to be
isotropically scaled from the N / \
s 17
S

reference state. The reference
volume and surface, and
boundary are denoted by V and
S, and L respectively. The
normal vector to the surface in
the reference and current
conJguration (N and n) and the
bi-normal vector to the
boundaryNj are shown, where
the over-tilde indicates surface
quantities

Initial state
(Swollen)

Current state

where P aRdare the [rst Piola-Kirchoff stresses in buMthriditial conditions,

on surface, B and T are the body force and the traction vector,

and yis the prescribed displacement. Note that a Negmarng) = g (15a)
type boundary condition is also de[Jned on boundary, gurves,, x

that [[*]] indicates summation over surfaces interséé/éghé_or%\)) =&o (15b)

boundary curves [54]. : o . o
where gand&g are the initial species concentration in the

2.4 Species balance bulk and on the surface at #reNote that we assume
homogeneous initianditionshis choice wilbecome

Through species (or mass) balance, the strong forn? RRa{iAt as we discuss the general solution process for tr

corresponding governing equation is [50]: corresponding boundary value problems in Sect. 5.
C+Vx'J=r in V (14a) 2.5 Thermodynamic considerations
€+¥x-$-J N = on 3 (14b) In addition to the free energy density in the bulk, we cons
}=14p on X (14¢)  the free energy density on the surface. We will denote the
)

[B-NII=0 on L (14d) and surface free energy densities as

where C is the bulk nominal concentration (the nunggelr@f and A(k, &) (16)
species per unit reference volimdhe surface nomi-

nal concentration (the number of species per unit refer
area), J is the bulk nominal Jux (the number of spe(x.’\llleqs(,a
unit time per unit ared)jsatted surface nominal [Jux (

& .
number of species per unit time per unit length). Tﬁé'g% & Jespectively.

2
are the source/sink terms for the number of species (I)nljgr%%lrcéer(l)r;‘gerz?tscyosterlzc’lcrl\zlai’ctkl]nsclLelcclieessatrr\]aetlzsrtelcfraer;dtgor;?L
into the reference volume and area per unigfjiise, amcithe porF(;us netwolils the rate gf change of the system’sg
the prescri rf tion (14a) is the standar ’

@ prescribed surface Bguation (14a) is the standaf{ 9¥¢G has to account for several effects [2, 13, 27, 29,

species balance equation prescribed for the bulk in rﬁ%rcan be expressed as
erence con[Jguratieguation (14b) describes the specie's xp

ence . |
rpee\r/ve assume that they are functions of the deformat
rgdlent and nominal concentration in the bulk and on the
C

hd

e

balance on the surface, where the third term on the lefkhand X A

is similar to the source i, but describes the outwar€noermglgv + idS — BxdV

Jux from the bulk to the surface; note that species can dégt S VX

to the surface either from the exterior (environment) orfromy g — urdV —  Zuids (17)
the interior (bulk). Additionally, Eqg. (14) are supplementeds v S
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where the third and fourth terms are the rate of maguivareg=alTo satisfy the constraint, the Coleman-Noll proce
work by the body force B and traction vector T, andithre [B8] states that each integrand in Eq. (20) to be eith:
and sixth terms are the rate of chemical work by thedgualttive or equal to zero.

chemical potential p and the surface chemical potentfabiputhe [Jrst four terms in Eqg. (20) we obtain the follov
Note that thermodynamics dictate that the free enéngycohthidéutive relations

system should not increasd, £d,

Substituting Egs. (13) and (14) into Eq. (17), the pate®(F. C) | _ 9A(F, C) (21a)
change of the free energy of the system can be express%cB/Es/ ; -~ aC )
follows, = oAk, €) and i = oA( K, &) (21b)
X X X ok FYS

G= Adv+ AdS- P:FdV for the bulk and surface [Jrst Piola-Kirchhoff stresses tensc

X S > v and the bulk and surface chemical potentials, respectively
- P:FdS For the [Jfth term in E80),the most obvious way to

x° _ A guarantee the dissipation inequality on surface is to impo:
— uCdv - X&dS the condition [50],

KV S
+ (Au—M-NdS M(X, t) = X, t)on S (22)

%S

A
+ J - Vxp dV which prescribes local chemical equilibrium between the <

XV face and the bulk. This point is discussed in McBride et al
" } & iudS <0 (18) [50_],where also the_po;siblility. of an alternate strategy to

S satisfy that constraint is highlighted.

Finally to maintain thidte lastwo terms in Eq20)
Using the chain-rule, the rate of bulk and surface freshesiargy be negative or z@adopkinetic laws for

densities can be expressed as diffusion [31ih bulk and on surfacEhis allows us to
) . maintain negative semi-de[Jniteness and describes the co
5= 0A E o+ ai(f (19a) tent species diffusion that is driven by gradients of chemi
oF aC potential:
;s O0A . 0A
A= 3 2 3 +£€ (19b) J = =MV xpt (23a)
= —M¥; %KM (23b)
By substituting Eq. (19) into Eq. (18), and rearranging terms
yields where M ari¥l are the bulk and surface mobility tensors. In
X 5 A the upcoming section, we will specialize the symmetric an
L A g positive de[Jnite mobility tensorMMoaﬁurHIy de[lne the
G= P :FdVv
\ gBF R constitutive laws for the [Juxes.
A <
Z—i— -P :KkdsS
S = A . . .
Az A 3 Speci[Jc considerations for hydrogels
— —u CaVv
x4 af: A In this workwe will focus on a coupled bulk and surface
% — & poroelastic framework for hydrogels. We have to specializ
+ Au & dS
xS o8 X our choices for the surface and bulk free energy densities,
+ (u-—W-NdS+ ) VUxudv corresponding constitutivedadge[]nition of mobility
S v tensors for our theory to be complete and to be able to pr
+ } & £ dS < 0 (20) to the development of the numerical solution scheme.
S

3.1 Particularizing the surface and bulk free energy
where each integmapresents distinctmechanism of densities
energy dissipatiamsociated with mechaaitdlchem-
ical worksThe inequality must hold at every point oftirehe free energy densities of polymer in thebulk,
continuum body analdtimes during a thermodynan&dopt the Flory-Huggins mode2?2231,57],assuming
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the following additive decomposition into elastic anof exaitigqpcompressibility fidre surfaces one cannot

contributions constrain the number of layers of species on the surface,
even though the constituents are individually incompressi

A(F, C) = A o(F) + An(C). (24) Thus, we introduce a penalty term to loosely introduce a ¢
straint for species concentration in the surface connected

These can be individually specialized to the area change of the boundary, with a penalty coef[Jciel

) £k [J/mol/.

AelF) = §N IBI(Il —3-2 nj) 2 (253)  Remark 2 (The application of Flory-Huggins model to sur-

N kgT A“ 1 +ac? X A face poroelasticity) In the Flory-Huggins model [22, 33], tl

Am(C) = TR AClIn AC + 1 + AC (25b) solvent and polymer molecules are considered to be arrar

in the 3D lattice sites such that each site may be occupiec
where A is the volume of a solvent molecule, x is a dithenby a solvent molecule or by a segment of the polyn
sionlesparameteaf polymer-solventixing,N is the chain, and the equations of entropy and enthalpy of mixin
number of polymer chains perrafégtence volunkg, are derived in the statistical thermodynamics approach (s
is Boltzmann’s constant, and T is the absolute tem@raptee.7 of [57] for the details). Without loss of generalit
Note that the [Jrst and second term¢Zblfqepresentthe Flory-Huggins model can be also considered on the 2L
the entropy and enthalpy of mixing, respectively [3attice modaethere the probability of encountering a site
Following [2, 12, 13, 31, 32], we assume that theogelypiet by the solvent and polymer molecules is the fun
chains and the diffusion species are individually inagon- of the area. Although the number of adjacent sites wc
pressibléurthermorthe gel is a condensed matter wighdifferent in 2D and 3D models, the Flory parameters x
negligible void space, so any volume change of theghydrogebduced to eliminate the number of adjacent sites
is due to species diffusion, thus and their dependence on the dimensionality is to be [Jttec
experimental data. We introduce the Banatinetrerix-
J — 1. (26) ing part of surface free éngtgyaccount for the number
A of 2D lattice layers that arise due to the size difference of

Similar to Eq. (24), we assume that the surface frERNE Eé%,cules and polymer chains considering the surfac

density of the hydrogel is also decomposed into el t?f&?a NW(E dtc; n;)’;hcon?d(te_r the chnt;arac]’glon ?nergy betwe
mixing contributions as (see Remark 2)) € layersiote that the elastic part of surtace iree energy

X does not include the number of layer ghvaneter
A oF, &) +BE (&) (27) We assume to be a constant.

1+AC=]=>C=

Ak, &)

which can be individually expressed as 3.2 Constitutive relations

R Y Using Equation (21), (25) and (28), the speci[]c constitutiv
Aok €)= 2 JK‘_} —A 6; + Af . . (28a)  relations are obtained as follows:
A keT % . %1 +K&° x A A
An(®) = —— A& In = + = = =T i
m(€) % S 11K E& P = NkgT F+og%JF gW|thA .
28b -1
(280) a1=—Il %J}+Injj +JX—2 (29a)
In a microscopic descriptiba,length scales of polymer A A AC A 1 X A
chains and solvanblecules are very diffefeadusing u = ksT In 1 +iC + e + —
on the surface, where the interaction of polymer chains and A A (1 + 40 (29b)
solvent molecules is crucial, and more speciflcally the [Jnite Dok Al
thickness of the surface zone, here we consider theftredddi— 1 —A€& + KyfF " (29¢)
alization of a constant number ofllay@utential sites t A i€ 2 1 % 4
that solvent molecules can occupy in the surface zape=¥dreln 175 & + S ti—%
A is the area that a solvent molecule occupies on the sur- oz o 1 +A €
faceX is a dimensionless parameffgpolymer-solvent — A%k f— 1 —A& = & =& (Xp}) (29d)

mixing. In the second term of the right hand side of Eq. (28a),

we consider a constant surface energy per unit curvenmichraee the specifjc forms of the constitutive relations ft
Xy [J/m], which leads to a [Juid-like response for the thggiest Piola-Kirchhoff stresses and the chemical potentiz
gate. Additionally, it is not realistic to enforce the eigquilieléntk and on the surface. Note that we do not use th
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constitutive relation of Eq. (29b), but the incompreshikilibyoportional to the gradient of chemical pibtential),

condition of Eq26) to determine the bulk concentraidaronvenient to use the chemical potential (instead of sol
C . On the other hand, we do not have an incompressifiildoyncentration) as an independent variable in the [Jnif
condition for solvent molecules on surface, and we skeonéhusermulation. Additionally, this allows u% to avoid
the constitutive relatiort28y) to determine the surfamentinuity requirements [13]. For this purpose, we rewrite
concentrati@n However, there is no closed-form solfréerenergy densities as a function of the deformation gra
for the surface concentration in Eq. (29d), so we neet tansbblreemical potential through a Legendre transform

the constitutive relation numerically. 31,50],which replaces a variable with its thermodynamic
conjugate:
3.3 Bulk and surface diffusion
A(F, p) = A(F, C) — pC (31a)
Particularizing the expression for the bulk rra@aiilr'rty,g(j;' A) A(k, &) - Ké (31b)

following [31], and prescribing an equivalent de[Jnition for

surface mobility After the Legendre transform, similar to Equation (21), the

cD constitutive relations can be rewritten as follows:
M = k—c—1 (30a)

T b aa(F, ) and C = _aa(F, ) (32a)
M= 6_?_&,-1 (30b) . "g . . "’; .

° P= ﬂaxﬁ” and & = —%) (32Db)

wherekis the Boltzmann’s constant, T is an absolute tem-

%elrat%rebTrkeéo;fDEient off diffusion of thedsolvsnt. vr\ﬂ”ﬁk% ‘g?ds the same constitutive relation for the surface
Icr;.t de u d n]E E s:r?ce are assur(‘jne to be Iﬁgqu irchho#, but the bulk [Jrst Piola-Kirchhoff stress P
and independent of the deformation an concentragwgh?cﬂggemodiued because the incompressibility conditio

simplest approximation [31]. Note that the current felela) orced by substituting thi2@gnto Eq25) to
trations are related to the nominal concentrations = (ﬁhe bulk concentration C [32]:

onzas Aifm
andXc &/ R. It is important to note that Egs. (30a) and <§’6% ) )
are formulated to consider the change of the porosity of the # Tt h
solid due to the [Jnite deformations, as the mobilitya:e_né\gﬁ%-r F+ O%J F wit

are inversely proportional to the Green deformation tensorg. 6 A 1 ;‘J - 1@ X u
o=—+—— —+In — + 5 -
J  Ni J J?  keT

2
A

33

4 Mixed [Jnite element formulation 33)

Note that the bulk concentration C can still be obtained b
This section presents a [Jnite element formulation haggeh@Ressibility condition of Eq. (26), but the surface cor
the nonlinear theory in Sects. 2 and 3. The main aigeherstis®®s now given implicitly by solving a nonlinear
provide an accessible open-source implementationdhaibwic equation in Eq. (29d).
be utilized by the research community, and thus, we g@®$€g into account the inability of the FEnICS frame-
FEnICS [1, 46] for the implementation; a choice whigB&l$8 solve nonlinear equations at the Gauss-point level
affects the set-up of the mixed [Inite element formyatiaiacERE to solve Eq. (29d) directly with the mixed [Jnit
formulation starts with the strong form of the govemigeftUdethod. The weak form of the problem is obtaine
tions and initial and boundary conditions. We [Irst ig{re@du{&§ a set of test functions, which satisfy the necessal
the weak form of the problem and subsequently derftdgeathifity conditioByg.multiplying Eq$13a)(14a)
normalization, discretization, solution steps, and sogpg $R9d) with the test functions 6u, @,amctldnte-

ciflc implementation details for FEniCS. As the mainyf@€ity over the domedapectivelshen we obtain that
here is the coupled mechanics between diffusion and defor-

mation in bulk and on surface, we here-on neglect the source X
terms, i.e., r =i0. P:Vx6udV+ B:¥z6udS=0 (34a)
Vv v

X xS X

CoudV — | -VxbpdV+ &Bbuds
\ S

Vv
Since the chemitmlundary conditions for hydrogels aré _ ]
often specifled in terms of cheputahtiar diffusion ~ s§. ¥5duds =0 (34b)

4.1 Three-field weak form
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~ X ‘ A Lo ~
A AG S 1 X for the bulk and the surface.
AL —KT In - + -— + ;v\ —— %5 o y
1+A€ 1+A€ +R&72 A A
N (A P vgoxui+ ¥y 6x50&i=0 (40a)
— i K $ &8 oF Vo S
XK —-A& B8 dS=0 (34c¢) ng X A & A
& BAU 4+ Vj xOAU a¥
where the derivation of Eq. (34b) can be found in Appen&ﬂx 3}
A. The statement of the weak form is to [Jnd the trial func- &k _§ Té?;(ﬁiu ds =0 (40Db)
tionsu, u and&, such thathe integrals in E@4) are S df
satis[Jed for any permissible test functions, 56, ou ahdkd A & b 1 %
. . gu —In 2z - — A Az
4.2 Normalization S 1+&  1+& T Lk
X A A
For the [Jnite element simulations in the following sectiokialkk K— & & d&=0 (40c)

variables and parameters are normalized, as denoted by {A<}.

All lengths are normalized by a characteristic dimension, H

(e.g. the length of the edge of a cube in the refereﬁ’&@ecr@nﬁ andiN are the dimensionless parameters, and

uration). The chemical potential and stresses are nErPﬁwQFi’f&P“ZGd Ouxes in bulk and on surface are obtained
as follows,

v ’ u o P = —&c-1. Vi Al (41a)
A = L, P=—, * = (35) %
“eT NigT NigT H §- _é%é_l,%é“ (41b)

Following the normalization of the surfacessiress
energy and penalty coef[Jcient should be normalizegHa /D is the ratio of diffusivity between in bulk and on

same way, surface.
Xy XK : .
= = 4.3 Temporal discretization

Xy NTeT H’ XK NleT H (36) p

Solvent concentration and time are normalized as fB'ﬂS\pé,Ckward Euler scheme is used to intedddte) E
over time:
. o t
&=ic, &=K§ f=_ (37) iRy i X i

‘ -2y
T

é”éf - &t GAp - }f+4f- Vs 6Apd¥¥

where T = #iD is the characteristic time scale of dn"fu5|om Z”\A‘ 14

Recall that the shear modulus linearized about the uhde- = éfﬂf éf ok — §f+"‘f W&$Hd5 =0
formed dry state (F =1)is G= Nk gT[1l2].Ina (42)
homogeneously swollen stress-fredistadeformation
gradient takes the formyF with dthe swelling stretchyhere the superscripts indicate the time step, at the curre
the shear modulus about that state is de[lned as fotiavesdtbil4+ 4£ ) or the previous ét&pe can combine
Egs. (40a), (40c) and (42) as

r-f'>

NigT
Go = )\f (38) x
P VXGAu‘w+ k. §§(6Au§i
Considering again a homogeneously swollen state, tHe elas- x 5

:>>z

tocapillary length scale is de[Jned by gfer SprGtant
surface free energy per unit current surface area. TaklngAth \Y i o
account the characteristic dimension H the normalized elas é éf Sk — £§ ¥, 5k oS
tocapillary length scale is given as k

D
@ —éf BApn — &) - V5 5Xp d¥

R S U
=Ava (39) s 1 14+& 1+& 7 g2

i=

I| =
})w

By substituting the normalized variables into the weak fo A
in Equation (34), we can obtain the normalized weak fo n@j Ak -1 é ok & =0
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where the superstrigtt () is omitted for all the terms@tahtties to the right-hand side and denote as f (which is
current time steptéaddit are the species concentrakpawn from previous time step). The residual of nonlinear
at the previous time step in the bulk and on the suggg@tions in iteration siegiven by R=f — N (d),
which can be solved using the Newton-Raphson method.
4.4 Spatial discretization In particulathe procedure requires the calculation of the
tangent Jacobian matrix at each iteration, namely,

A mixed []nite element method is utilized to solve for the [ 1
normalized displacemehgmicapotentiadnd surface 1 KAURU Ausp il
concentration [Jelds concurr@otbvoid the numerical®™ 1 _ K AHAU K AHER KZ*I&J (48)

instability with the mixed method, we should emplo?l%lapper
spatial discretization technique¥/El3iilize a Taylor-

Hood elemenb6]for the bulk quantities (displacementFEniCS version 2019.2.04dl is used to numerically

and chemicpbtentialyyhere the interpolation order focglve the coupled non-lineguationsia the Portable

chemicgbotentidlinear) is one-order lower than for . o :
displacement (quadratic). We note that a linear int )Etﬁlr%igllﬁ Toglkfbr SC|en.t|Dc Computan(rﬁ’ETSc)
) - : alable Nonlinear Equations Solvers (SNES) interface [4].
is utilized for the surface concentration [Jeld. ) . .
) ) . Tplﬁ Bracess repeats until a level of convergence speci[jec
The normalized displacement and chemical poten |t . rt% SNES <ol At h iterati the block bi:
interpolated through the domain of interest as within the Solver. At each [teration, the bloc Ja(_:o I
matrices are set up using multiphenics [5], a python librar
E_& éé:n that also facilitates the de[Jnition of boundary restricted v
=H (44)  ables within FENICS, a feature necessary for dealing in our
o ) . case with the surface concentration. We note that the sur
where 44 I-I‘-‘“andﬂlé are the shape functiyn§andt” chemicgbotentias tied with the de[Jnition of the corre-
are the nodal values of the normalized displacemenpariding bulk quantity, but the surface concentration is n
ical potential and surface concentespeativelNote

that the shape funckibris only de[Jned on surface eld.6 FEnIiCS implementation details
ments. The test functions are discretized in the same way
Although many documents 4D]145]provide FEniCS
6iu = H6xYy 6xp = MO, & = ﬁ&@én (45) implementation details, it is still not trivial to deal with sut
face kinematics using FENnICS as several surface quantitie:
The stressespncentratiorsd [Juxes are evaluated Jave a rank de[Jciency. For educational purposes, we revit

integration points, depending on the gradients of thWispRr&ant mathematical deflnitions of surface quantit
mentand chemicpbtentialia the constitutive relation@d then we provide their corresponding FEnICS de[Jnitior

Kégu Ké[\u Kéé

Au=PFRO,  Ap= PG

Taking the gradient of Eq. (44), we obtain that The s.urface unit tensor is deﬁmd—b@@N, whic_h .
can be interpreted as surface (idempotent) projection ten-
Vyiku = ZHAA = BY4 (46a) SO and surface deformation gradient can be obtained fro

surface projection of bulk deformatiof qr&ijiS'rm-

Vxiu = YHY6x0 = B (46b) ilarly, the surface gradient is obtained by surface projectic
Vé(é _ Vgﬁlééj” — BEEn (a6c) Of the bulk grad®@pp = Vi
1 N = FacetNormal ( mesh )
where Band BYare the gradients of the shape functil_bulk = Identity (3)
Ty s | surf = | _bulk - outer (N, N)
the bulk, aBf is the one on the surface. . Fsurf = dot(F bulk, | surf)
s grad_mu_surf = dot (grad (mu), |_surf)

4.5 Nonlinear solution Note thathe surface urtiénsok is absentfrom the

The weak form in Eq. (43) can be expressed as a Sé\%ﬁ?Igf:a)c?i?)rr:naali/vcaorgFl)gan;sn’toNa(?'aﬁ;kajeatkgHm_
nonlinear equations, bro) y [smenag,

cannot perform the inverse operations for the surface qua

D . Dr ties. Nevertheless, they possess an inverse in the generall
N (d) = f with d = X012 &" (47)  sense, i.d; ' :=fFland ' :=4C %
F fi = dot (I f,i F bulk
Note thal (d) denotes the pafthe weak form tFnsatj C‘S;trrf‘li?\/, = dgt E |_§3:f, :jn(;lt (( c buu”(),)
not known at current timeatdpye take all the know | surf)) N -

123



© ®

Computational Mechanics

In addition, we cannot perform the determinant aferatideasomposition. While it is possible to decompose tF
for the surface quantities due to rank de[Jciency. Wesfiarradtien gradient usingFp ferfa direct relationship
alternative way of using Nanson’s formula to obtairb&teeetdhe initial and current statepnesgmEing the

minant of surface quantitieji;i.cdae,t? := |cofFN]|. deformation gradient of the current state relative to the fr
A surf = dot ( cofac ( F_bulk) ,N) slw.e!llng statg [32], the deformation at the free swelling st
J_surf = sqrt (dot ( A_surf, A_surf)) (initial state) is chosen based on a homogeneayss stretch )

and from that point the deformation ensues.
The initialchemicapotentialy is derived by equat-
) ing the stress expression front33j.to zero using the
5 Numerical examples free swelling stretghas outlined in previous works [31,
32]. This approach allows us to establish the initial chemic

To study the performance of the suggested framewssitential under the conditions of stress-free swelling,
analyze the transient responses for two initial boundary value ¢

problems involving bulk and surface poroelasticity of hydfo- 1 4 1 ° 1 x
gels: (1) free contraction of a cube with smooth edd¥s agd 2t In 1 33 tatie T A (50)
uniaxial tension of a cube with sharp edges. In both cases the° 0 070

edge length of the cubeg®m 1M the following numerj: . - ) .
cal study, we take the initial swelling raB®ab A and We can obtain the initial free-swelling sfret8t2A >

, . by setting the immersed condigien).QM31]. We can
the Flory interaction parameter af x €.2. At room also obtain the initial normalized surface concentration by

— 1 :
temperaturgTk= 4 x 107}/mol, and the rep_resen“tat| erically solving the normalized constitutive relation of
value of the volume and area per molecule &mela = §,29), which yields the initial Eahee. 3673. It is

X — 1019 , . .
andk = 10~*n?. In the absence of solvent mOIeCUIenhE)ortant to note that the boundary of swollen hydrogel i

dry network has shear moduligh N B x 13 N/m?, . .
. : ‘= b — 103 _ assumed to be impermeable for the cases studies here, w
which gives N & = 18and NiH = 10 [2]. The char =is_LBeruIated by the [Jux boundary cohglitioh(see

acteristic dimension and time scales are setdsrH 20 14). That is, th i nth o e not allow
and T= 1.0 secWithoutoss of generalitye prescribe ~9: =/ 'hat 15, the SPECIES on the surface are not allowes

the following values for the paraﬁwetér@,&y = 1.0, Fo migrate into Fhe exterior (environment). We note that f
%k = 10 and®/D = 1.0. |_mrT1ersgd conditions, we would need to assume local equ
For robustness the numericproceduraye follow librium instantaneously on the surface which would overri

1:I e surface diffusion mechanism.

a two-stage proceik initialize from a homogeneous 'IC' investigate the numerical stability when time step is
swollen state, with initial homogeneous swelling stret . o
9 % aﬁl&ta 0), the block Jacobian matrix in Eqg. (48) can

neglecting elastic surface energy contributierjsist sm
stage, we ramp the surfacekgrregrly, from zero to ?t% reduced to

prescribed value, for the time interval t /T € [0.0, 1.0].IThisr AUU g RUAK Kéé-l
time interval is signi[Jcantly smaller compared to tha\timewt\Lg‘ o
system needs for equilibration. Then in the second Fgge, WieK " KKK Kk
exponentially increase the time steps At /T until equilibldi'um k& & &R
is attained, while holding the value of the surfdge energy
(xed. - )

In Fig. 1, we illustrate the distinction between the dry n%tL Kiusu o kb (51)
work as the reference state (stress-free con[Jguration) and thediu k& (&E&

free-swollen network as the initial state. In cases of homo-

geneous swelling at the initial state, this initial conjgue@tiomis proportionaio time step (4t ), and it
can be characterized by the initial deformationogradisptsalches zerdla¢ shortime limitThis indicates the
andko, which arise due to the initial free-swelling wighdyle point problem structure inhadeiatlyis known

KAUAU AUAR A& 1

swelling ratio af A to lead to numerical oscillations; however, as the time pro
} } gresses in the transient process, the parabolic nature of tt
Fo= Nl and ko= Mt (49) diffusion equations regularizes the problem (see [58] Cha

ter 3 for the details of the saddle point problem of 3 X 3 b
It is importanip emphasize thadirapproach does notmatrices). It is worth noting that this type of oscillations fc
employ a decomposition of the deformation gradiethe bulk poroelasticity problem, stemming from the inf-su
manner similar to elastoplastibiéye separate constitproblem are known to be aleviated by several approaches
tive assumptions are often made for individual compaohetibg the choice of Taylor-Hood spaces (as shown for
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Fig. 2 Temporal sequence of 1

the chemical potential during
the free contraction of cubes
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the nonlinear problem in [H&}le we have also choserred to be caist a fully swollen statasd then released
a Taylor-Hood space between the displacement anth@rearivironmentwhich itis free to deforroutwith
cal potential, but also between the displacement anchsthrféiaeannot exchange sofyert Q). For the [Inite
concentration. element implementation of the free contraction of cubes,

use 3063 tetrahedral elements. The two-stage solution prt
5.1 Free contraction of a cube with smooth edgedure detailed above is followed here.

We plot the temporal sequence of the [Jnite element sin

In this exampleye Jrstinvestigate the surface and bu#ion for the chemical potential, bulk concentration, surfa
poroelastic effects on a hydrogel cube. The cube is c@methtration, and surface Jux in Fig. 2, 3, 4 and 5, respe

123



Computational Mechanics

Fig. 4 Temporal sequence of
the surface concentration during
the free contraction of cubes
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Fig. 5 Temporal sequence of
the surface [Jux during the free 1 2
contraction of cubes
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tivelywhere althe values are normali¥éd.remove a are athe initiastate by a homogeneous swelling stretch,
quarter of the domain from the images of chemical¥oteBi2dl5. It is noteworthy that the cube is taken to have
in Fig. 2 and bulk concentration in Fig. 3 to show thenooth edges (a case with sharp edges will be discussed |
tour plot on two sections of the interior along with the fielldwing example).

on the surface. The surface [Jux in Fig. 5 is shown on 8bép 2 of Figs. 2 to 5 corresponding to the time steps th
one face of the cube for visualization purposes. Imatesliaesarly ramping of the surface ¥pargyincluded.

taken at normalized time t /T = 0.0, 1.0, 8.4,%7r8 x Tis is for time t /T = 1.0 which is signi[Jcantly smaller (4
the clockwiseshich are denoted by Ste&p3and 4 in orders of magnitude) compared to the equilibration time.
the following discussion. In Step 1 of Figs. 2 to 5, theotealikat the current interpolation scheme leads to unstal
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Fig. 6 Surface energy drives the species migration between irthribpenies still migrate from the surface into the bulk due to chemi-
on surface. a The numbers of species in bulk and on surface aaé patekeidl. At equilibrium (t /T ~ 1.8) xHdre is no migration

with respect to the normalized time. b The change of volumeletdasan-the bulk and the suWéeaote thahe totahumber of

face area are tracked with respect to the normalized time. Dggdegi¢hés constant at all times, and the volume increase of bulk is id¢
surface energy ramping (t /t% @ bulk is gaining the speciesical to the sum of the vgplyme of gpecies molecules moving into the
and the volume increases, while the surface is losing the spebigikard thé) — 1)d¥ = ,, & —&p d¥ due to the incompress-

surface area decreases. While surface energy is being fjxed (tbitity ddhdition of Eq. (26)

results if the ramping time is signi[Jcantly shorter, fibimspgcies migration between t /T = 0.0 &nwhle8x 10
to the need for the developofeminore advanced stathe total number of species is conserved. In Step 2 of Fig.
bilization scheme in the futhie pathology might be &he surface concentration is high near the smoothened ve
consequence of the three-[Jeld formAkthlensurface of the cube because the deformation at that location is hi
energy increases, the elastocapillahbtaoghies largercompared to the fawéitich subsequently leads to higher
than the characteristic dimension H ; as a result, thehsunfaaépotential and species migration. In Step 2 of Fig.
effects become dominant that the geometry beconibe aimnfaste diffusion is mainly directed from the edges to
spherical. In Step 2 of Fig. 2, the chemical potentiainédraiend-the facet. The direction of the surface diffusion
geneous due to the deformation driven by surface goeegpebh by the surface deformation and chemical potent
Step 2 of Figs. 3 and 4, the distribution of the bulk ¢ere&ntrdl).
tion on boundary is distinct from the surface concentiB&iond Step 2, and for the rest of the transient respons
and has nagvolved as rapidFhis is owing to the fact the surface enedgy= 1) is maintained at the same level,
that the species migration in bulk is slower than thawndaverexponentially ramp the time steps towards equilib
surface, a speci[lc modeling choice to highlight theriack.ofhe deformation of the cubes is small beyond the in
volumetric constraints for surface diffusion. Howevsgriadé@&nergy ramping, but the concentration (especially
equilibrium state, as shown in Step 4 of Figs. 3 andtetbelk) signi[Jcantly chardyasen by gradients of the
distributions are similar on the surface. chemicgbotentialn Step 3 of Figs. 3 andvg, can see

On top of surface and bulk diffusion, in this systethdlkffeision in bulk and on surface, and the species migrz:
is an exchange of species between the surface andttveabd lkhe interior of the faicdte cubetn Step 4 of
as captured in the strong form of the balance law férdEQ® i€l simulation reaches the equilibriuwlsite,
The species exchange between bulk and surface isieahyjrmed by the homogeneous chpotamatiathe
tracked by accounting for the molecular incompresdibtitipution of the bulk concentration on the boundary is
condition of Eq. (26), indicating that the change of siohilarto the surface concentradsmshown in Step 4
of the bulk is the same as theuzohaine of the specief Figs. 3 and 4n Fig. 6we can observe the signi[Jjcant
migrating from bulk to surface. In Fig. 6, we track thagration between bulk and surface during ramping the s
malized total species population in bulk and on surface anergy (t /< 1), butthe migration between bulk
all time steps by integrating the normalized concerdnatimursace is negligible with surface energy being [Ixed
over the bulk and the surface accolinghn observe (1 < t/t ~ 7.8 x 10
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Fig. 7 Temporal sequence of
the chemical potential during
the tension of cubes
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Fig. 10Temporal sequence of
the surface [Jux during the

tension of cubes
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5.2 Uniaxial tension of a cube with sharp edgebetween t /t = 0.0 and InGtep 3 of Figs. 7 to we,
maintain the surface energy and the stretch, and we expc

In this example&e [Jrstinvestigate the surface and bulklly ramp the time-step size towards equilibrium. In Step
poroelastic effects on a hydgdsd subjetd external of Figs. 7 to 10, the simulation approaches the equilibriur
load.Similar to the previous example the cube is cosidtle. Through the second example, we can observe that
ered to be cast in a a fully swollen state, and releadedercancentration is disfitoch the bulk concentration
environment with which it cannot exchange solvenevaldiabed on the boundary.
this case it is subject to displacement controlled loadidglikénéhe previous example in Sect. 5.1, the cube at in
two-stage solution procedure detailed above is follohegd haethe sharp corners to investigate the impact of st
as wellThe lateral surfaces at=x{@} = +H /2 are the geometric features to the numerical scheme. We can obse
clamped boundaries, and the others are free. For tlam [dsit@lateon of the surface concentration near the edges
ment implementation of the tension of cubes, we ubeeldyb&dn Fig. 9, which is partially regularized with time,
tetrahedral elements. In this case, the displacementelpoinistzemyt of the enforcement of an initial condition in a
conditions at lateral surfaces, are ramped linearly fhaatzenoduction problérs originates from the weakly
in the same timeframeridraping of the surface energyforced continuity condition in Eq. (14d), which states th
takes place. the net surface Jux on the boundary curve (between the :

In this case external mechanical loading along witbrsustaitace elements) is always balanced. Of course, this
and bulk energy contributions together dictate the ¢éemilsidret resolved (as in the previous example), where shz
response of the systBme. other conditions are the safeatures can be smoothened at the expense of computati
as in the previous example of Sect. 5.1. We note theddoothisg to a [Jner non-structured mesh. Alternative, on
example, we have taken a cube geometry with shacpuareerbark on deriving an appropriate stabilization sch
We plot the temporal sequence of [Jnite element sifioultttisnd/e do not consider the impact of these initial osc
for the chemical potential, bulk concentration, surféaigaronto be signi[Jcant to the transient response, similar
centratiomnd surface Jux in Figs. 7 tork8pectively, imposing discontinuous chemical potential boundary (witk
where althe values are normaliZiéte surface [Jux in respect to the initial condition) for swelling of hydrogels [
Fig. 10 is shown on only one face of the cube for vif\gdinatilois might be speci[jc to the three-[Jeld formulation
purposesmages are taken at normalized time t /T =a@da two-[Jeld formulation could also alleviate the issue.
1.0, 5.4 x4@.1 x 0 the clockwise, which are denoted
by Step 1, 2, 3 and 4 in the following discussion.

In Step 1 of Figs. 7 to 10, the cubes are at the inigatgat@usion
by a homogeneous swelling sgret@215. In Step 2 of

Figs. 7 to 10, the cubes are deformed by the surfacg egRf#ium multiphysics formulation and corresponding
and stretch, after the initial load and surface energy{RE@jBfhent implementation has been presented to acce
The cubes are initially clamped at lateral sides, ancr§y&,ifk and surface nonlinear poroelasticity in hydrogels.
early ramp the surface éhergit and stretch € = 68.9%e governing equations for the response of a continuum
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body have been presented, and the general constitpleéyeneelaay use the distinct migration mechanism for the
tions are derived in a thermodynamically-consistenédawanned, design of hydrogel-based sensors and actuator:
which is subsequently specialized for hyditog elw- Even though we focus on hydrogels in this work, the ge!
posed nonlinear theory is numerically solved throughalHfeamework and [Jnite element implementation develo
mixed [Jnite element method by employing the opemesewame allow studying several problems for solids as wel
Onite element framework FEmC&dditionye provide mechanobiology, where diffusion processes in the bulk an
FEniCS implementation details that could be imporantiersurface are coupled with the elastic response. One
problems where surface kinematics are of interest.adopbur numerictameworkutdifferentonstitutive

In our study, we assumed that the curve and vertekaéifastmnulsé specialized for studying other materials.
and corresponding thermodynamic contributions [ 33jesspciflc example that the authors plan to pursue is th
as curve elasticity and diffusion in this context, areroodgling of morphogenic processes in tissue mechanics &
ered to be negligible compared to the bulk and surfaoseefigeti]cally modeling of contractile microtissues [38
However, in cases involving contact, such as multimé M@lonhere cells apply forces and contract the extrace
gel contactisiterfaciadffects and curve thermodynanmidar matrix (ECM), but at the same time can diffuse withir
would become important and should be consideredtfe mtkeof the ECM but also on its peripaeing sig-
accurate analyses, as demonstrated in previous womnK3cedit,ibilications in problems like wound healing. In thi
54]. For the speci[Jc scenarios we investigated, the gap@tinge report numerical issues that can arise due to se
of bulk and surface poroelasticity was the primary fe@lgeasons and propose approaches to alleviate them. F
allowing us to gain valuable insights into the multipgut$ioss’ future work, it would also be interesting to exten
phenomena withdkhie added complexitycofisidering our moddio consider growth mechanisms to atmrount
curve and vertex thermodynamics contributions. surface morphology in evolving nayst@msuch as

Two numerical examples are investigated to understaumadtered during tumor growth.

the effect of coupling bulk and surface poroelastic:’%/. In the

: gemenfts and NB acknowledge the suppobly the
(rst example, where a cube with smoothened geo N%E%%\gﬁ ience Foundation under gr&iMb2129776CYH

tures is investigated (see Figs. 2 to 6), we probe thg¥as\@E@dks the support by the National Science Foundation under
of concentratiaurface Juxand change of volume andrant naCMMI-190330&B thanks the project “Numerical model-

surface area along with the chemical potential, whi¥ #6[I8ws in porous media” funded by Universita® Cattolica del Sac
8i nd the INDAM-GNCS project “Metodi numerici per lo studio di

accounting for a DUId_“_ke surface energy for th? Sof#%?tu € geometriche parametriche complesse” (CUP_E53C2200193
As a result of the transient procedure and species ¥Ghang€ mMaria Strazzullo).

between bulk and surface, a smooth cube-like object is grad-
ually transformed into an alspbsricadne.From this Declarations
observation, one may expect that the volume of the cube is

decreased. Interestingly, the result is the opposite, as shown

; ; ; ; ; ; ; i terest The authors declare ttiaty have no known
in Fig. 6. It implies that the species collectively mlgg@mrég;%%(%nancial interests or personal relationships that could hav

the surface into the bulk because the volume increggg.afdy
is identical to the volume of total species moving into the
bulk; consequently, the volume of the cube rather increases
in spite of the surface area decreasing. This result dppemeix A: Derivation of weak form of
that the multiphysical complication could play an impetié®s balance
role in understanding the responsegdfliststin length
scales that surface effects dominate. Staring form Eq. (14a),
In the second example (see Figs. 7 to 10), we further inves-
tigate the response of a cube with sharp featieres, X X
external load, while still accounting for a [Juid-like surfé@u dv + (Vx:))déudV =0 (A1)
energy. Although the distributions of species concen¥rationin Vv
bulk and on the surface are similar on the boundary in the [Jrst
example (see Figs. 3 and 4), the second example sByv@¥¥éng the product rule and divergence theorem [29
that the pathways of species migrations can be sigaif4Rey substituting Eq. (14b) into Eq. (A1),
different (see Figs. 8 and 9). In this example, we chopse the .

same mobility constant in bulk and on the surface aétr}fﬁr&_\/ _A
sig
a

infJuence the work reported in this paper.

plest case, but this result still provides an important ip VJ $Vxdp dv

into hydrogel-based applications at small scales. For exam;

X
+ €6pdS+ Wg -k oudss= (A2)
S S
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Fig. 11The convergence study was performed with respect tondiffeedrtime for four diffemumnbers of elemerithe relative
numbers of elements (N ele) and normalized time for cube-cantoaratiith respect to normalized time is shown, with reference values
simulatiora The diameters in the x-direction are tracked overatdgined from the simulation using N ele = 4414 elements

where the last term in Eq. (A2) can be rewritten by Ref@rences

rule and surface divergence theorem,
1. Alnaes MS Blechta JHake | etal (2015) The FEnICS project
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