

A finite element implementation of finite deformation surface and bulk poroelasticity

Jaemin Kim¹ · Ida Ang¹ · Francesco Ballarò⁴ · inChung-Yuen Hu^{1,2,3} · Nikolaos Bouklas^{1,2}

Received: 16 May 2023 / Accepted: 15 September 2023

© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023

Abstract

We present a theoretical and computational model for the behavior of a porous solid undergoing two interdependent deformation of a solid and species migration through the solid, which are distinct in bulk and on surface. Theories allow us to systematically study porous solids in a wide range of applications, delivery, biomaterial design, fundamental study of biomechanics and mechanics, design of sensors and actuators, and to understand the physical phenomena at a smaller length scale, towards comprehending fundamental biological processes. Miniaturization of devices, surface effect becomes more pertinent. Although existing methodologies provide tools to study coupled bulk effects for deformation and diffusion, very little is known about fully coupled bulk and surface poroelasticity at finite strain. Here we develop a thermodynamically consistent formulation for surface poroelasticity, specialized for soft hydrated solids, along with a corresponding finite element implementation in a three-field weak form. Our approach captures the interplay between competing multiphysical processes of deformation and species diffusion, accounting for surface kinematics and surface transport, and provides invaluable insights into how these effects are important.

Keywords Surface diffusion · Surface energy · Hydrogels

1 Introduction

Poroelasticity is the theory that describes the coupling of the few decades as the study of hydrated biomaterials deformations of a continuum body with diffusive porous tissues and hydrogels at finite applications solvent through the body itself due to its permeability, porous delivery, tissue regeneration, materials design, nature. The theory of linear poroelasticity as pioneered fundamental studies in biomechanics and mechanobiology. Biot [8–10] has been applied to describe hydrogels and design of morphing structures as well as sensors and actuators for hydrated biological tissues [11–13]. However, in many cases, nonlinear theories of poroelasticity have provided a better understanding of the rich observed material properties due to bulk deformation of finite deformations and responses. However, the majority of these studies have been

B Nikolaos Bouklas
nb589@cornell.edu

¹ Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14853, USA

² Field of Theoretical and Applied Mechanics, Cornell University, Ithaca, NY 14853, USA

³ Global Station for Soft Matter, GI-CoRE, Hokkaido University, Sapporo, Japan

⁴ Dipartimento di Matematica e Fisica “N. Tartaglia”, Universita` Cattolica del Sacro Cuore, Via della Garzetta 48, 25133 Brescia, Italy

nonlinear complex constitutive responses [23, 16, 42, 59]. These nonlinear theories have been highly relevant in the past few decades as the study of hydrated biomaterials, tissues and hydrogels at finite ~~Applications~~ ~~length scales~~ ~~for drug delivery, tissue regeneration, biomaterials design, fundamental studies in biomechanics and mechanobiology, and design of morphing structures as well as sensors and actuators, nonlinear theories of poroelasticity have provided a deeper understanding of the rich observed material responses.~~ However, the majority of these studies have been in the macroscale, where surface effect can often be neglected as bulk energetic contributions dominate the response of the system. But, as we aim towards miniaturization of devices and also aim to probe and fundamentally understand the effects that dominate the material response at smaller length scales surface effect become more relevant. When the length scales that are probed are sufficiently small, one can expect the coupling of elasticity and solvent diffusion to be significantly influenced by surface contributions toward all aspects of these multiphysical processes.

Following free energy-based phenomenological approaches for the bulk response of materials similar

The competition of bulk and surface energetics is ~~coupled~~ thermomechanics with species diffusion accounting for elastic solids with shear modulus for individual surface energetic contributions from elastic- and surface energy. The relevant length scale is the elasto-heat transfer and mass diffusion, here we aim to develop a capillary length $\lambda = \lambda_0$ [55]. Generally speaking, if the characteristic dimension is much larger than elastocapillary length (H $\gg \lambda$), surface effects are negligible. On the other hand, if the characteristic dimension is much smaller than the elastocapillary length (H $\ll \lambda$), surface effects are dominant. The ultimate goal of this paper is the development of a framework. Focusing on soft solids, work from Style et al [56] and Bico et al [7] focused on the implication of surface energy for surface and bulk poroelasticity specialized for soft hydrated solids, also looking at the subtle relationships between surface energy and the bulk response. Surface and interface energetics in hydrogels, we discover a set of numerical complications that have been further explored in the context of soft solids that are not evident when the general theoretical framework is applied to their implications to adhesion, fracture, instabilities, and the design of composites. This is because of the nature of the coupling of surface and bulk poroelasticity, as well as the nearly

Specialized boundary value problems allow for the incompressibility assumption to model the development of analytical solutions in this context [2, 12]. The elastomeric component of the hydrogel manuscript is, however, a finite element implementation that accounts for the following: In Sect. 2, we describe the coupled interface effects necessary to tackle general problems, notably including kinematics, balance laws and the general framework for finite deformation accounting for surface–face energetics. In Sect. 3, the free energies are specialized energetics. Steinmann and co-authors [36, 50] also developed material. Section 4 presents the finite element schemes to study several classes of problems including the weak form, normalization and problem including mass transport and thermomechanics. Section 5 elaborates on the numerical solution procedure. These types of frameworks allowed the study of morphulations for two three-dimensional (3D) boundary value problems corresponding to free-standing response of a cut, “active” surface and bulk effects were shown to emit structure as surface effects dominate. The cellular activity of the extracellular matrix [38, 39, 49] response under external loading highlighting unique contributions of surface effects, and the bulk and surface diffusion. Boulton and co-authors [2] investigated the mechanical surface effects. Section 6 provides the conclusions and outlook in the context of finite deformation poroelasticity, unfettered by work.

the importance of such effects on the transient response of swelling hydrogel microspheres of the porous solids coupled with solvent diffusion using a mixed finite element ~~continuum~~ multiphysics approach for More recently, Dortdivanlioglu and co-authors [52] propose a continuum and surface poroelasticity a computational formulation that allows the consideration of curvature-dependent surface energies using isogeometric analysis. In this section, we present a brief overview of key concepts of differential geometry towards describing the kinematics

There is an extensive body of work on the development of numerical models to obtain the mechanical equilibrium and mass balance, obtain the of mixed finite element frameworks for linear poroelastic relationships for the constitutive relations for the soil, including stabilization approaches for the treatment of surface responses. It is noteworthy that a surface quan-

entity to be introduced is not necessarily the same as the identity tensor and the mixed Kronecker delta, respectively. The identity tensor and the mixed Kronecker delta, respectively, are defined as $\delta_{ij} = 1$ for $i = j$, and $\delta_{ij} = 0$ for $i \neq j$ ($i, j = 1, 2, 3$). The covariant and contravariant basis vectors are not necessarily orthogonal to each other but linearly independent, requiring $\mathbf{a}^i \cdot \mathbf{a}^j = 0$ (the vectors do not lie in a plane) in the reference configuration are tracked through the vector \mathbf{a}^i .

Remark 1 (Notation) The dyad (\otimes) and dot (\cdot) denote the tensor and dot products, respectively. The double dot ($\cdot \cdot$) denotes the double contraction over two second-order tensors; e.g. $\mathbf{A} : \mathbf{B} = A_{ij}B_{ij}$. For convenience, we adopt the convention that other operations involving repeated indices will not be indicated by a specific symbol, specifically meaning for $\mathbf{v} = \mathbf{A}\mathbf{u}$ ($\mathbf{v} = A_{ij}u_j$) and $\mathbf{A} = \mathbf{B}\mathbf{C}$ ($A_{ij} = B_{ik}C_{kj}$), we do not write $\mathbf{v} = \mathbf{A} \cdot \mathbf{u}$ and $\mathbf{A} = \mathbf{B} \cdot \mathbf{C}$, respectively. where two tensors are inverse to each other, i.e., a

Throughout the text, we use the Einstein summation convention: when an index variable appears twice in an expression, it implies summation of that variable over all values of the index. Latin indices take the value 1, 2, 3, and are used in variables describing the ambient, three-dimensional, Euclidean space. Greek indices take the value 1, 2, and are used in variables in the embedded, two-dimensional, surface. The overhat $\{\hat{\cdot}\}$ denotes bulk and surface quantities, respectively, for a body occupying volume V bounded by outer surface denoted as S . The overhat $\{\hat{\cdot}\}$ denotes normalized quantities, and the superposed dot $\dot{\cdot}$ denotes the material time derivative. We write $\dot{\mathbf{A}} = \frac{\partial \mathbf{A}}{\partial t}$.

$\mathbf{A}^{-1} = (A)^{-1}$ and $t(\mathbf{A})$ for the inverse and trace of a tensor \mathbf{A} . The double-bracket $([[\hat{\cdot}]])$ represents the average and jump of a surface quantity $(\{\hat{\cdot}\})$ over the interface C . e.g. $[[\hat{\mathbf{W}} \cdot \hat{\mathbf{N}}]] = \hat{\mathbf{W}}^+ \cdot \hat{\mathbf{N}}^+ + \hat{\mathbf{W}}^- \cdot \hat{\mathbf{N}}^- = \hat{\mathbf{W}}^+ - \hat{\mathbf{W}}^- \cdot \hat{\mathbf{N}}^+ = \hat{\mathbf{W}} \cdot \hat{\mathbf{N}}$ where the superscripts $+$ and $-$ denote the surface quantity on the outward and inward of the interface, respectively, and we define the surface outward normal vector $\hat{\mathbf{N}} := \hat{\mathbf{N}}^+$ over the interface C .

2.1 Key concepts of differential geometry

We briefly review the key concepts of differential geometry required to describe the kinematics of the bulk and surface. Further details on differential geometry can be found in books and papers, for example, Gurtin [25], Green [23], Steinmann [37, 54] and Do Carmo [19].

We first focus on the bulk description. Let \mathbf{r} be an arbitrary vector expressed in terms of the individual components of the curvilinear coordinate system, $\xi = r(\xi^1, \xi^2, \xi^3)$. We can always associate two new triplets of variables with the general curvilinear coordinate system by coordinate transformations [23].

$$a_i = \frac{\partial r}{\partial \xi^i} \quad \text{and} \quad a^i = \frac{\partial \xi^i}{\partial r} \quad (1a)$$

$$I = \delta_{ij} a_i \otimes a^j \quad \text{where} \quad \delta_{ij} = a^i \cdot a_j \quad (1b)$$

where a_i and a^i are referred to as covariant and contravariant

basis vectors, respectively, and δ_{ij} are the mixed-variance

where a_i and a^i are referred to as covariant and contravariant surface basis vectors, respectively, and δ_{ij} are the mixed-variance surface identity tensor and the mixed Kronecker delta, respectively ($\alpha, \beta = 1, 2$). Note that the surface identity tensor also can be expressed by $\mathbf{N} \otimes \mathbf{N}$.

The vectors a_i and a^i are connected with the geometrical characteristics

$$a_i = \hat{a}_{\alpha} \hat{a}^{\alpha} \quad \text{with} \quad \hat{a}_{\alpha} = \hat{a}_{\alpha\beta} a^{\beta} \quad (6a)$$

$$\tilde{A}^\alpha = \tilde{A}^\alpha_\beta \tilde{A}^\beta \quad \text{with} \quad \tilde{A}^\alpha_\beta = \tilde{A}^\beta_\alpha = \tilde{A}^\alpha \cdot \tilde{A}^\beta$$

where \mathbf{g}_p and \mathbf{g}_d are surface metric tensors, mappings are inverse to each other, \mathbf{e}_p , \mathbf{e}_d

If a quantity $\{\vec{A}\}$ is a surface vector field defined throughout

a surface S , which is bounded by a closed curve L , then the surface gradient and divergence operators in a 2D general curvilinear coordinates are defined as follows:

$$\nabla_{\tilde{A}} \{ \tilde{A}^\bullet \} = \frac{\partial \{ \tilde{A}^\bullet \}}{\partial \tilde{A}^\alpha} \otimes \tilde{A}^\alpha \quad (7a)$$

$$\nabla_{\tilde{X}} \cdot \{ \tilde{X} \bullet \} \frac{\partial \{ \tilde{X} \bullet \}}{\partial \tilde{X}^\alpha} \tilde{X}^\alpha = \nabla_{\tilde{X}} \{ \tilde{X} \bullet \} : \quad (7b)$$

With the above equations, we introduce the surface divergence theorem as follows [54]:

$$\begin{aligned} & \int_S \vec{A} \cdot d\vec{S} \\ &= \int_L \vec{A} \cdot d\vec{L} - \int_S \vec{A} \cdot d\vec{S} \end{aligned} \quad (8)$$

where \mathbf{N} is the unit outward bi-normal vector to the boundary curve L (see Fig. 1), and $\mathbf{K}_X = \mathbf{N}$ is the total curvature (twice the mean surface curvature) [25].

configuration cannot be transformed into a unit normal vector n in the spatial configuration using solely the deformation gradient [29, 54]. This motivates us to follow the kinematics of an infinitesimal surface element [38, 39].

$$\text{then the general } \mathbf{A}(\mathbf{x}, t) = \frac{\partial \mathbf{x}(\mathbf{x}, t)}{\partial \mathbf{x}} \cdot \mathbf{A} = \nabla_{\mathbf{x}} \mathbf{x}(\mathbf{x}, t) \quad (10a)$$

$$\tilde{\mathbf{F}}^{-1}(\tilde{\mathbf{A}}\mathbf{x}, t) = \frac{\partial \chi^{-1}(\tilde{\mathbf{A}}\mathbf{x}, t)}{\partial \tilde{\mathbf{A}}\mathbf{x}} \cdot \tilde{\mathbf{A}} = \tilde{\mathbf{V}}_{\tilde{\mathbf{A}}\mathbf{x}} \tilde{\mathbf{A}}(\tilde{\mathbf{A}}\mathbf{x}, t) \quad (10b)$$

where $\mathbf{f}(\mathbf{\tilde{x}}, t)$ and $\mathbf{f}^{-1}(\mathbf{\tilde{x}}, t)$ are the surface deformation gradient and inverse surface deformation gradient. Note mapping from the bulk (3D) to the surface (2D), so it is rank deficient (it has rank 2, whereas full-rank would be 3). The $\mathbf{I} = \mathbf{I} - \mathbf{N} \otimes \mathbf{N}$ and $\mathbf{i} = \mathbf{i} - \mathbf{n} \otimes \mathbf{n}$ are the mixed surface unit tensors with the outward unit normal vectors \mathbf{N} and \mathbf{n} , where \mathbf{I} and \mathbf{i} act as a surface (idempotent) projection tensor in material and spatial configurations, respectively. Note that $\mathbf{J}(\mathbf{\tilde{x}}, t) = da/dA = \det(\mathbf{f}(\mathbf{\tilde{x}}, t)) > 0$ is the Jacobian determinant of the surface deformation gradient defining the area ratio of a surface element between material and spatial configurations.

2.2 Kinematics

$$C = F^T F \quad (11a)$$

$$\mathbf{\tilde{C}} = \mathbf{\tilde{A}}^T \mathbf{\tilde{A}} \quad (11b)$$

We use the notation $\chi : V^3$ for the deformation of body

B. A motion χ is the vector field of the mapping $x = \chi(X, t)$. $\text{tr}(C)$ is the first principal invariant. The detailed derivation for the surface kinematics can be found in Do Carmo [59], Green and Zerna [23], Steinmann [54]. Note that of a typical particle are described by the displacement vector. We cannot perform the inverse of the surface right Cauchy-Green tensor due to its rank deficiency. Nevertheless, we kinematics of an infinitesimal bulk element are described by still obtain its inverse form in the generalized sense.

$$F(X, t) = \frac{\partial \chi(X, t)}{\partial X} = \nabla_X \chi(X, t) \quad (9a)$$

$$F^{-1}(x, t) = \frac{\partial \chi^{-1}(x, t)}{\partial x} = \nabla_x \chi(x, t) \quad (9b)$$

where $F(X, t)$ and $F^{-1}(x, t)$ are the deformation gradient and inverse deformation gradient, respectively. Note that

and inverse deformation gradients. Note that $J(X, t) = dv/dV = \det F(X, t) > 0$ is the Jacobian determinant. Mechanical equilibrium is assumed to be maintained at all times during the motion. The strong form of the corresponding governing equation is

$$\tilde{\mathbf{C}}^{-1} = \tilde{\mathbf{A}} \mathbf{C}^{-1} \tilde{\mathbf{A}} \quad (12)$$

which will be utilized in the forthcoming developments for defining the surface kinetic law.

2.3 Mechanical equilibrium

where $F(X, t)$ and $F^{-1}(x, t)$ are the deformation gradient and inverse deformation gradient, respectively. Note that

and inverse deformation gradients. Note that $J(X, t) = dv/dV = \det F(X, t) > 0$ is the Jacobian determinant. Mechanical equilibrium is assumed to be maintained at all times during the motion. The strong form of the corresponding governing equation is

Assuming conformity, the surface displacement u ($\nabla x \cdot P + B = 0$) can be determined by $u(x, t)$. The motion of an arbitrary differential vector element dX can be mapped by the deformation gradient F to a vector dx in the deformed configuration. However, a unit normal vector N in the material

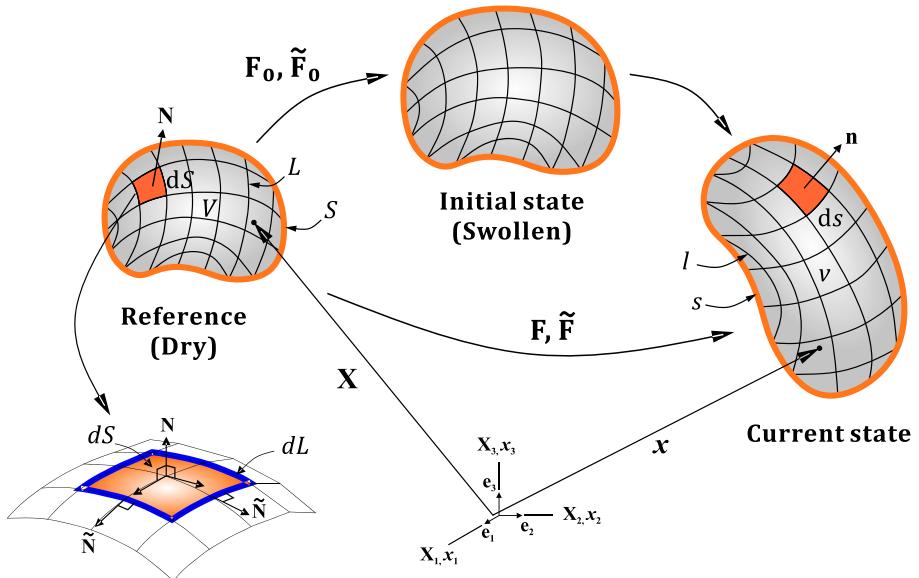
in V (13a)

on S_T (13b)

on S_u (13c)

on L (13d)

Fig. 1 Schematic illustration of the reference, initial, and current state of a continuum body. The initial state is assumed to be isotropically scaled from the reference state. The reference volume and surface, and boundary are denoted by V and S , and L respectively. The normal vector to the surface in the reference and current configuration (N and n) and the bi-normal vector to the boundary (\tilde{N}) are shown, where the over-tilde indicates surface quantities



where P and \mathbf{F} are the first Piola-Kirchoff stresses in bulk and at the boundary, B and T are the body force and the traction vector, and ψ is the prescribed displacement. Note that a Neumann type boundary condition is also defined on boundary curves $\mathcal{C}(X, t=0) = \psi_0$ that $[[\bullet]]$ indicates summation over surfaces intersecting on boundary curves [54].

2.4 Species balance

Through species (or mass) balance, the strong form for the corresponding governing equation is [50]:

$$\dot{C} + \nabla_X \cdot J = r \quad \text{in } V \quad (14a)$$

$$\dot{\epsilon} + \nabla_X \cdot \dot{J} - J \cdot N = i \quad \text{on } S \quad (14b)$$

$$\dot{J} = \dot{J}_p \quad \text{on } S \quad (14c)$$

$$[[J \cdot N]] = 0 \quad \text{on } L \quad (14d)$$

where C and ϵ are the initial species concentration in the bulk and on the surface at $t=0$. Note that we assume homogeneous initial conditions; this choice will become apparent as we discuss the general solution process for the corresponding boundary value problems in Sect. 5.

2.5 Thermodynamic considerations

In addition to the free energy density in the bulk, we consider the free energy density on the surface. We will denote the and surface free energy densities as

$$\text{where } C \text{ is the bulk nominal concentration (the number of species per unit reference volume), } \epsilon \text{ is the surface nominal concentration (the number of species per unit reference area), } J \text{ is the bulk nominal flux (the number of species per unit time per unit area), } \dot{J} \text{ is the surface nominal flux (the number of species per unit time per unit length). The } \dot{C} \text{ and } \dot{\epsilon} \text{ are the source/sink terms for the number of species injected into the reference volume and area per unit time, and the prescribed surface flux } \dot{J}_p \text{ is the standard species balance equation prescribed for the bulk in the reference configuration. Equation (14b) describes the species balance on the surface, where the third term on the left hand side is similar to the source } i \text{, but describes the outward flux from the bulk to the surface; note that species can get to the surface either from the exterior (environment) or from the interior (bulk). Additionally, Eq. (14) are supplemented by the following boundary conditions: } \mathcal{A}(F, C) \text{ and } \mathcal{A}(F, \epsilon) \text{ where we assume that they are functions of the deformation gradient and nominal concentration in the bulk and on the surface, respectively. Considering a system that includes an elastic and porous solid component coupled with species that are free to migrate in the porous network, the rate of change of the system's energy } G \text{ has to account for several effects [2, 13, 27, 29, 30]. This can be expressed as}$$

$$\begin{aligned} & \dot{A} + \nabla_X \cdot \dot{A} = 0 \quad \text{in } V \quad (14a) \\ & \dot{A} + \nabla_X \cdot \dot{A} - A \cdot N = i \quad \text{on } S \quad (14b) \\ & \dot{A} = \dot{A}_p \quad \text{on } S \quad (14c) \\ & [[A \cdot N]] = 0 \quad \text{on } L \quad (14d) \end{aligned}$$

where the third and fourth terms are the rate of mechanical work by the body force B and traction vector T , and the fifth and sixth terms are the rate of chemical work by the chemical potential μ and the surface chemical potential $\tilde{\mu}$. To satisfy the constraint, the Coleman-Noll procedure states that each integrand in Eq. (20) to be either negative or equal to zero. Note that thermodynamics dictate that the free energy of the system should not increase.

Substituting Eqs. (13) and (14) into Eq. (17), the rate of change of the free energy of the system can be expressed as follows,

$$\begin{aligned} \dot{G} = & \frac{\partial \tilde{A}}{\partial V} dV + \frac{\partial \tilde{A}}{\partial S} dS - \frac{\partial \tilde{A}}{\partial V} P : \dot{F} dV \\ & - \frac{\partial \tilde{A}}{\partial S} : \dot{F} dS \\ & - \frac{\partial \tilde{A}}{\partial V} \mu \dot{C} dV - \frac{\partial \tilde{A}}{\partial S} \tilde{\mu} \dot{C} dS \\ & + \int_S (\tilde{\mu} - \mu) \cdot N dS \\ & + \int_V J \cdot \nabla \chi \mu dV \\ & + \int_S \tilde{J} \cdot \nabla \chi \tilde{\mu} dS \leq 0 \end{aligned} \quad (18)$$

Using the chain-rule, the rate of bulk and surface free energy densities can be expressed as

$$\dot{A} = \frac{\partial \tilde{A}}{\partial F} : \dot{F} + \frac{\partial \tilde{A}}{\partial C} \dot{C} \quad (19a)$$

$$\dot{\tilde{A}} = \frac{\partial \tilde{A}}{\partial \dot{F}} : \dot{F} + \frac{\partial \tilde{A}}{\partial \dot{C}} \dot{C} \quad (19b)$$

By substituting Eq. (19) into Eq. (18), and rearranging terms yields

$$\begin{aligned} \dot{G} = & \frac{\partial \tilde{A}}{\partial F} \frac{\partial \tilde{A}}{\partial F} - P : \dot{F} dV \\ & + \frac{\partial \tilde{A}}{\partial F} \frac{\partial \tilde{A}}{\partial \dot{F}} - \frac{\partial \tilde{A}}{\partial \dot{F}} : \dot{F} dS \\ & + \frac{\partial \tilde{A}}{\partial C} \frac{\partial \tilde{A}}{\partial C} - \mu \dot{C} dV \\ & + \frac{\partial \tilde{A}}{\partial C} \frac{\partial \tilde{A}}{\partial \dot{C}} - \tilde{\mu} \dot{C} dS \\ & + \int_S (\tilde{\mu} - \mu) \cdot N dS + \int_V J \cdot \nabla \chi \mu dV \\ & + \int_S \tilde{J} \cdot \nabla \chi \tilde{\mu} dS \leq 0 \end{aligned} \quad (20)$$

where each integral represents a distinct mechanism of energy dissipation associated with mechanical and chemical works. The inequality must hold at every point of the continuum body and at times during a thermodynamic process. For the free energy densities of polymer in the bulk, we adopt the Flory-Huggins model [22, 57], assuming

$$\frac{\partial \tilde{A}}{\partial C} \text{ and } \mu = \frac{\partial \tilde{A}}{\partial C} \quad (21a)$$

$$\tilde{\mu} = \frac{\partial \tilde{A}}{\partial \dot{F}} \text{ and } \tilde{\mu} = \frac{\partial \tilde{A}}{\partial \dot{C}} \quad (21b)$$

for the bulk and surface first Piola-Kirchhoff stresses tensors and the bulk and surface chemical potentials, respectively.

For the fifth term in Eq. (20), the most obvious way to guarantee the dissipation inequality on surface is to impose the condition [50],

$$\mu(X, t) = \tilde{\mu}(X, t) \text{ on } S \quad (22)$$

which prescribes local chemical equilibrium between the surface and the bulk. This point is discussed in McBride et al [50], where also the possibility of an alternate strategy to satisfy that constraint is highlighted.

Finally, to maintain the last two terms in Eq. (20) negative or zero, we adopt kinetic laws for diffusion [31] in bulk and on surface. This allows us to maintain negative semi-definiteness and describes the content species diffusion that is driven by gradients of chemical potential:

$$J = -M \nabla \chi \mu \quad (23a)$$

$$\tilde{J} = -\tilde{M} \nabla \chi \tilde{\mu} \quad (23b)$$

where M and \tilde{M} are the bulk and surface mobility tensors. In the upcoming section, we will specialize the symmetric and positive definite mobility tensor M to fully define the constitutive laws for the fluxes.

3 Specific considerations for hydrogels

In this work we will focus on a coupled bulk and surface poroelastic framework for hydrogels. We have to specialize our choices for the surface and bulk free energy densities, corresponding constitutive and definition of mobility tensors for our theory to be complete and to be able to proceed to the development of the numerical solution scheme.

3.1 Particularizing the surface and bulk free energy densities

the following additive decomposition into elastic and inelastic contributions

$$\tilde{\alpha}(F, C) = \tilde{\alpha}_e(F) + \tilde{\alpha}_m(C). \quad (24)$$

These can be individually specialized to

$$\tilde{\alpha}_e(F) = \frac{1}{2} N k_B T (l_1 - 3 - 2 \ln J) \quad (25a)$$

$$\tilde{\alpha}_m(C) = -\frac{k_B T}{\tilde{A}} \tilde{A} C \ln \frac{1 + \tilde{A} C}{\tilde{A} C} + \frac{\chi}{1 + \tilde{A} C} \quad (25b)$$

where \tilde{A} is the volume of a solvent molecule, χ is a dimensionless parameter of polymer-solvent mixing, N is the number of polymer chains per reference volume, k_B is Boltzmann's constant, and T is the absolute temperature. Note that the first and second terms in (25b) represent the Flory-Huggins model can be also considered on the 2D lattice model, where the probability of encountering a site

Following [2, 12, 13, 31, 32], we assume that the polymer chains and the diffusion species are individually incompressible. Furthermore, the gel is a condensed matter with negligible void space, so any volume change of the hydrogel is due to species diffusion, thus

$$1 + \tilde{A} C = J \Rightarrow C = \frac{J - 1}{\tilde{A}}. \quad (26)$$

Similar to Eq. (24), we assume that the surface free energy density of the hydrogel is also decomposed into elastic and inelastic mixing contributions as (see Remark 2))

$$\tilde{\alpha}(F, \tilde{C}) = \tilde{\alpha}_e(F, \tilde{C}) + \tilde{\alpha}_m(\tilde{C}) \quad (27)$$

which can be individually expressed as

$$\tilde{\alpha}_e(F, \tilde{C}) = \frac{\tilde{A} k_B T}{2} \tilde{A} - 1 - \tilde{A} \tilde{C} \frac{\tilde{A}^2}{\tilde{A}} + \tilde{A} \tilde{C} \quad (28a)$$

$$\tilde{\alpha}_m(\tilde{C}) = -\frac{k_B T}{\tilde{A}} \tilde{A} \tilde{C} \ln \frac{1 + \tilde{A} \tilde{C}}{\tilde{A} \tilde{C}} + \frac{\chi}{1 + \tilde{A} \tilde{C}} \quad (28b)$$

In a microscopic description, length scales of polymer chains and solvent molecules are very different. Using $\mu = k_B T \ln \frac{1 + \tilde{A} \tilde{C}}{\tilde{A} \tilde{C}}$ on the surface, where the interaction of polymer chains and solvent molecules is crucial, and more specifically the finite thickness of the surface zone, here we consider the realization of a constant number of polymer-solvent sites that solvent molecules can occupy in the surface zone. Then \tilde{A} is the area that a solvent molecule occupies on the surface, \tilde{A} is a dimensionless parameter of polymer-solvent mixing. In the second term of the right hand side of Eq. (28a), we consider a constant surface energy per unit area $\tilde{\alpha}_m(\tilde{C})$ [J/m²], which leads to a fluid-like response for the most Piola-Kirchhoff stresses and the chemical potential. Additionally, it is not realistic to enforce the equilibrium and on the surface. Note that we do not use the

existing compressibility for surfaces one cannot constrain the number of layers of species on the surface, even though the constituents are individually incompressible. Thus, we introduce a penalty term to loosely introduce a constraint for species concentration in the surface connected to the area change of the boundary, with a penalty coefficient $\tilde{\alpha}_k$ [J/mol/m²].

Remark 2 (The application of Flory-Huggins model to surface poroelasticity) In the Flory-Huggins model [22, 33], the solvent and polymer molecules are considered to be arranged in the 3D lattice sites such that each site may be occupied either by a solvent molecule or by a segment of the polymer chain, and the equations of entropy and enthalpy of mixing are derived in the statistical thermodynamics approach (see Chapter 7 of [57] for the details). Without loss of generality, the entropy and enthalpy of mixing, respectively [31],

are polymerized by the solvent and polymer molecules is the function of the area. Although the number of adjacent sites would be different in 2D and 3D models, the Flory parameters χ are reduced to eliminate the number of adjacent sites and their dependence on the dimensionality is to be fitted to experimental data. We introduce the parameter $\tilde{\alpha}_k$ to account for the number of 2D lattice layers that arise due to the size difference of solvent molecules and polymer chains considering the surface zone, but we do not consider the interaction energy between the layers. Note that the elastic part of surface free energy $\tilde{\alpha}_e$ does not include the number of layer parameter we assume to be a constant.

3.2 Constitutive relations

Using Equation (21), (25) and (28), the specific constitutive relations are obtained as follows:

$$P = N k_B T \frac{\tilde{A}}{F} + \alpha_1 \frac{\tilde{A}}{F} \frac{T}{F - T} \quad \text{with} \quad \alpha_1 = -\frac{1}{\tilde{A}} + \frac{1}{\tilde{A}} \frac{1}{N \tilde{A}} \frac{1}{J} + \ln \frac{J - 1}{J} + \frac{\chi}{J^2} \quad (29a)$$

$$\frac{\tilde{A}}{F} = \frac{\tilde{A} C}{1 + \tilde{A} C} + \frac{1}{1 + \tilde{A} C} + \frac{\chi}{(1 + \tilde{A} C)^2} \quad (29b)$$

$$\frac{\tilde{A}}{F - T} = \frac{\tilde{A} C}{1 + \tilde{A} C} + \frac{\tilde{A} \tilde{C}}{1 + \tilde{A} \tilde{C}} \quad (29c)$$

$$\frac{\tilde{A}}{F} = \frac{\tilde{A} C}{1 + \tilde{A} C} + \frac{1}{1 + \tilde{A} C} + \frac{\chi}{1 + \tilde{A} C} \quad (29d)$$

$$-\tilde{\alpha}_k \frac{\tilde{A}}{F} - 1 - \tilde{A} \frac{\tilde{A}}{F} \Rightarrow \tilde{C} = \tilde{C} (\tilde{\alpha}_k \tilde{A}) \quad (29d)$$

which are the specific forms of the constitutive relations for the most Piola-Kirchhoff stresses and the chemical potential. Additionally, it is not realistic to enforce the equilibrium and on the surface. Note that we do not use the

constitutive relation of Eq. (29b), but the incompressibility condition of Eq. (26) to determine the bulk concentration is convenient to use the chemical potential (instead of solute concentration C). On the other hand, we do not have an incompressibility condition for solvent molecules on surface, and we can formulate. Additionally, this allows us to avoid the constitutive relation (29d) to determine the surface concentration. However, there is no closed-form solution for the surface concentration in Eq. (29d), so we need to solve the constitutive relation numerically. [\[31,50\]](#), which replaces a variable with its thermodynamic conjugate:

3.3 Bulk and surface diffusion

$$\dot{\alpha}(F, \mu) = \tilde{\alpha}(F, C) - \mu C \quad (31a)$$

$$\text{Particularizing the expression for the bulk mobility, } \dot{\alpha}(F, \tilde{\mu}) = \tilde{\alpha}(F, \tilde{C}) - \tilde{\mu} \quad (31b)$$

following [31], and prescribing an equivalent definition for surface mobility

$$M = \frac{C D}{k_B T} C^{-1} \quad (30a)$$

$$\tilde{M} = \frac{\tilde{C} \tilde{D}}{k_B T} \tilde{C}^{-1} \quad (30b)$$

where k_B is the Boltzmann's constant, T is an absolute temperature. The coefficient of diffusion of the solvent molecules

[which](#) yields the same constitutive relation for the surface Piola-Kirchhoff stress, but the bulk first Piola-Kirchhoff stress P and independent of the deformation and concentration as the simplest approximation [31]. Note that the current concentrations are related to the nominal concentrations as $C = \tilde{C}/J$. It is important to note that Eqs. (30a) and (30b) were enforced by substituting Eq. (26) into Eq. (25) to eliminate the bulk concentration C [32]:

$$\text{are formulated to consider the change of the porosity of the solid due to the finite deformations, as the mobility tensors are inversely proportional to the Green deformation tensors.} \quad (33)$$

4 Mixed finite element formulation

This section presents a finite element formulation based on the nonlinear theory in Sects. 2 and 3. The main aim here is to provide an accessible open-source implementation that will be utilized by the research community, and thus, we choose FEniCS [1, 46] for the implementation; a choice which also affects the set-up of the mixed finite element formulation. The formulation starts with the strong form of the governing equations and initial and boundary conditions. We first introduce the weak form of the problem and subsequently describe the normalization, discretization, solution steps, and some implementation details for FEniCS. As the main focus here is the coupled mechanics between diffusion and deformation in bulk and on surface, we here-on neglect the source terms, i.e., $r = 0$.

4.1 Three-field weak form

Since the boundary conditions for hydrogels are often specified in terms of chemical potential or diffusion

After the Legendre transform, similar to Equation (21), the constitutive relations can be rewritten as follows:

$$P = \frac{\partial \dot{\alpha}(F, \mu)}{\partial F} \quad \text{and} \quad C = -\frac{\partial \dot{\alpha}(F, \mu)}{\partial \mu} \quad (32a)$$

$$\tilde{P} = \frac{\partial \dot{\alpha}(F, \tilde{\mu})}{\partial F} \quad \text{and} \quad \tilde{C} = -\frac{\partial \dot{\alpha}(F, \tilde{\mu})}{\partial \tilde{\mu}} \quad (32b)$$

[which](#) yields the same constitutive relation for the surface Piola-Kirchhoff stress, but the bulk first Piola-Kirchhoff stress P and independent of the deformation and concentration as the simplest approximation [31]. Note that the current concentrations are related to the nominal concentrations as $C = \tilde{C}/J$. It is important to note that Eqs. (30a) and (30b) were enforced by substituting Eq. (26) into Eq. (25) to eliminate the bulk concentration C [32]:

$$\text{are formulated to consider the change of the porosity of the solid due to the finite deformations, as the mobility tensors are inversely proportional to the Green deformation tensors.} \quad (33)$$

[Note that the bulk concentration \$C\$ can still be obtained by](#) the incompressibility condition of Eq. (26), but the surface concentration is now given implicitly by solving a nonlinear algebraic equation in Eq. (29d).

[Keeping into account the inability of the FEniCS framework to solve nonlinear equations at the Gauss-point level, we proceed to solve Eq. \(29d\) directly with the mixed finite element method.](#)

[The weak form of the problem is obtained by using a set of test functions, which satisfy the necessary integrability conditions. By multiplying Eq. \(13a\), \(14a\)](#)

[and \(29d\) with the test functions \$\delta u\$, \$\delta \tilde{u}\$, and \$\delta \mu\$ and integrating over the domain respectively, then we obtain that](#)

$$\int_V P : \nabla \delta u \, dV + \int_S \tilde{P} : \nabla \tilde{\delta u} \, dS = 0 \quad (34a)$$

$$\int_V C \delta \mu \, dV - \int_V J \cdot \nabla \delta \mu \, dV + \int_S \tilde{C} \delta \mu \, dS$$

$$- \int_S \tilde{J} \cdot \nabla \tilde{\delta \mu} \, dS = 0 \quad (34b)$$

$$\int_S \frac{\partial \mu}{\partial \mathbf{x}} - kT \ln \frac{1 + \mathbf{C}}{1 + \mathbf{C}} + \frac{1}{1 + \mathbf{C}} + \frac{\mathbf{K}}{1 + \mathbf{C}} \mathbf{A}^2 - \mathbf{A} \mathbf{K} \mathbf{A} - 1 - \mathbf{C} \mathbf{A} \mathbf{C} dS = 0 \quad (34c)$$

where the derivation of Eq. (34b) can be found in Appendix A. The statement of the weak form is to find the trial functions u , μ and C , such that the integrals in Eq.(34) are satisfied for any permissible test functions, δu , $\delta \mu$ and δC .

4.2 Normalization

For the finite element simulations in the following section, variables and parameters are normalized, as denoted by $\{\cdot\}$.

All lengths are normalized by a characteristic dimension, H (e.g. the length of the edge of a cube in the reference configuration). The chemical potential and stresses are normalized as follows,

$$\tilde{\mu} = \frac{\mu}{k_B T}, \quad \tilde{P} = \frac{P}{N k_B T}, \quad \tilde{\delta} = \frac{\delta}{N k_B T H} \quad (35)$$

$$\tilde{J} = -\mathbf{C}^{-1} \cdot \nabla_{\mathbf{x}} \tilde{\mu} \quad (41a)$$

$$\tilde{\delta} = -\frac{D}{D} \mathbf{C}^{-1} \cdot \nabla_{\mathbf{x}} \tilde{\mu} \quad (41b)$$

Following the normalization of the surface stress, energy and penalty coefficient should be normalized in the same way,

$$\tilde{\gamma} = \frac{\gamma}{N k_B T H}, \quad \tilde{K} = \frac{K}{N k_B T H}$$

4.3 Temporal discretization

Solvent concentration and time are normalized as follows, The backward Euler scheme is used to integrate Eq. over time:

$$\tilde{C} = \mathbf{C}, \quad \tilde{C} = \mathbf{C}, \quad \tilde{t} = \frac{t}{\tau}$$

$$\frac{\tilde{A}H}{\tilde{A}} \frac{1}{\tilde{A}} \mathbf{C}^{\tilde{t}+\frac{1}{2}\tilde{t}} - \mathbf{C}^{\tilde{t}} \mathbf{A} \delta \tilde{\mu} - \mathbf{J}^{\tilde{t}+\frac{1}{2}\tilde{t}} \cdot \nabla_{\mathbf{x}} \delta \tilde{\mu} d\mathbf{v}$$

where $\tau = \frac{H}{D}$ is the characteristic time scale of diffusion. Recall that the shear modulus linearized about the undeformed dry state ($F = I$) is $G = Nk_B T$ [12]. In a homogeneously swollen stress-free state deformation gradient takes the form F , with the swelling stretch where the superscripts indicate the time step, at the current the shear modulus about that state is defined as follows [12]:

$$G_0 = \frac{N k_B T}{\lambda_0}$$

$$\frac{1}{S} \mathbf{C}^{\tilde{t}+\frac{1}{2}\tilde{t}} - \mathbf{C}^{\tilde{t}} \mathbf{A} \delta \tilde{\mu} - \mathbf{J}^{\tilde{t}+\frac{1}{2}\tilde{t}} \cdot \nabla_{\mathbf{x}} \delta \tilde{\mu} d\mathbf{v} = 0 \quad (42)$$

where the superscripts indicate the time step, at the current time step ($+\frac{1}{2}\tilde{t}$) or the previous step.

we can combine Eqs. (40a), (40c) and (42) as

Considering again a homogeneously swollen state, the elastocapillary length scale is defined by a constant surface free energy per unit current surface area. Taking into account the characteristic dimension H the normalized elastocapillary length scale is given as

$$\tilde{\lambda} = \frac{\tilde{\lambda}}{H} = \tilde{\gamma} \vartheta \lambda$$

$$+ \frac{\tilde{A}H}{\tilde{A}} \frac{1}{\tilde{A}} \mathbf{C}^{\tilde{t}+\frac{1}{2}\tilde{t}} - \mathbf{C}^{\tilde{t}} \mathbf{A} \delta \tilde{\mu} - \mathbf{J}^{\tilde{t}+\frac{1}{2}\tilde{t}} \cdot \nabla_{\mathbf{x}} \delta \tilde{\mu} d\mathbf{v}$$

$$+ \frac{\tilde{A}H}{\tilde{A}} \frac{1}{\tilde{A}} \mathbf{C}^{\tilde{t}+\frac{1}{2}\tilde{t}} - \mathbf{C}^{\tilde{t}} \mathbf{A} \delta \tilde{\mu} - \mathbf{J}^{\tilde{t}+\frac{1}{2}\tilde{t}} \cdot \nabla_{\mathbf{x}} \delta \tilde{\mu} d\mathbf{v}$$

$$+ \frac{\tilde{A}H}{\tilde{A}} \frac{1}{\tilde{A}} \mathbf{C}^{\tilde{t}+\frac{1}{2}\tilde{t}} - \mathbf{C}^{\tilde{t}} \mathbf{A} \delta \tilde{\mu} - \mathbf{J}^{\tilde{t}+\frac{1}{2}\tilde{t}} \cdot \nabla_{\mathbf{x}} \delta \tilde{\mu} d\mathbf{v}$$

By substituting the normalized variables into the weak forms in Equation (34), we can obtain the normalized weak forms,

for the bulk and the surface.

$$\frac{\tilde{P}}{S} : \nabla_{\mathbf{x}} \delta \tilde{\mu} d\mathbf{v} + \frac{\tilde{P}}{S} : \nabla_{\mathbf{x}} \delta \tilde{\mu} d\mathbf{v} = 0 \quad (40a)$$

$$\frac{\tilde{A}H}{\tilde{A}} \frac{1}{\tilde{A}} \frac{d\tilde{C}}{d\tilde{t}} \delta \tilde{\mu} \mathbf{J} \cdot \nabla_{\mathbf{x}} \delta \tilde{\mu} d\mathbf{v} = 0 \quad (40b)$$

$$+ \frac{\tilde{A}H}{\tilde{A}} \frac{1}{\tilde{A}} \frac{d\tilde{C}}{d\tilde{t}} \delta \tilde{\mu} \mathbf{J} \cdot \nabla_{\mathbf{x}} \delta \tilde{\mu} d\mathbf{v} = 0 \quad (40b)$$

$$+ \frac{\tilde{A}H}{\tilde{A}} \frac{1}{\tilde{A}} \frac{d\tilde{C}}{d\tilde{t}} \delta \tilde{\mu} \mathbf{J} \cdot \nabla_{\mathbf{x}} \delta \tilde{\mu} d\mathbf{v} = 0 \quad (40b)$$

$$+ \frac{\tilde{A}H}{\tilde{A}} \frac{1}{\tilde{A}} \frac{d\tilde{C}}{d\tilde{t}} \delta \tilde{\mu} \mathbf{J} \cdot \nabla_{\mathbf{x}} \delta \tilde{\mu} d\mathbf{v} = 0 \quad (40b)$$

$$+ \frac{\tilde{A}H}{\tilde{A}} \frac{1}{\tilde{A}} \frac{d\tilde{C}}{d\tilde{t}} \delta \tilde{\mu} \mathbf{J} \cdot \nabla_{\mathbf{x}} \delta \tilde{\mu} d\mathbf{v} = 0 \quad (40b)$$

$$+ \frac{\tilde{A}H}{\tilde{A}} \frac{1}{\tilde{A}} \frac{d\tilde{C}}{d\tilde{t}} \delta \tilde{\mu} \mathbf{J} \cdot \nabla_{\mathbf{x}} \delta \tilde{\mu} d\mathbf{v} = 0 \quad (40b)$$

$$+ \frac{\tilde{A}H}{\tilde{A}} \frac{1}{\tilde{A}} \frac{d\tilde{C}}{d\tilde{t}} \delta \tilde{\mu} \mathbf{J} \cdot \nabla_{\mathbf{x}} \delta \tilde{\mu} d\mathbf{v} = 0 \quad (40b)$$

$$+ \frac{\tilde{A}H}{\tilde{A}} \frac{1}{\tilde{A}} \frac{d\tilde{C}}{d\tilde{t}} \delta \tilde{\mu} \mathbf{J} \cdot \nabla_{\mathbf{x}} \delta \tilde{\mu} d\mathbf{v} = 0 \quad (40b)$$

$$+ \frac{\tilde{A}H}{\tilde{A}} \frac{1}{\tilde{A}} \frac{d\tilde{C}}{d\tilde{t}} \delta \tilde{\mu} \mathbf{J} \cdot \nabla_{\mathbf{x}} \delta \tilde{\mu} d\mathbf{v} = 0 \quad (40b)$$

$$+ \frac{\tilde{A}H}{\tilde{A}} \frac{1}{\tilde{A}} \frac{d\tilde{C}}{d\tilde{t}} \delta \tilde{\mu} \mathbf{J} \cdot \nabla_{\mathbf{x}} \delta \tilde{\mu} d\mathbf{v} = 0 \quad (40b)$$

$$+ \frac{\tilde{A}H}{\tilde{A}} \frac{1}{\tilde{A}} \frac{d\tilde{C}}{d\tilde{t}} \delta \tilde{\mu} \mathbf{J} \cdot \nabla_{\mathbf{x}} \delta \tilde{\mu} d\mathbf{v} = 0 \quad (40b)$$

$$+ \frac{\tilde{A}H}{\tilde{A}} \frac{1}{\tilde{A}} \frac{d\tilde{C}}{d\tilde{t}} \delta \tilde{\mu} \mathbf{J} \cdot \nabla_{\mathbf{x}} \delta \tilde{\mu} d\mathbf{v} = 0 \quad (40b)$$

$$+ \frac{\tilde{A}H}{\tilde{A}} \frac{1}{\tilde{A}} \frac{d\tilde{C}}{d\tilde{t}} \delta \tilde{\mu} \mathbf{J} \cdot \nabla_{\mathbf{x}} \delta \tilde{\mu} d\mathbf{v} = 0 \quad (40b)$$

$$+ \frac{\tilde{A}H}{\tilde{A}} \frac{1}{\tilde{A}} \frac{d\tilde{C}}{d\tilde{t}} \delta \tilde{\mu} \mathbf{J} \cdot \nabla_{\mathbf{x}} \delta \tilde{\mu} d\mathbf{v} = 0 \quad (40b)$$

$$+ \frac{\tilde{A}H}{\tilde{A}} \frac{1}{\tilde{A}} \frac{d\tilde{C}}{d\tilde{t}} \delta \tilde{\mu} \mathbf{J} \cdot \nabla_{\mathbf{x}} \delta \tilde{\mu} d\mathbf{v} = 0 \quad (40b)$$

$$+ \frac{\tilde{A}H}{\tilde{A}} \frac{1}{\tilde{A}} \frac{d\tilde{C}}{d\tilde{t}} \delta \tilde{\mu} \mathbf{J} \cdot \nabla_{\mathbf{x}} \delta \tilde{\mu} d\mathbf{v} = 0 \quad (40b)$$

$$+ \frac{\tilde{A}H}{\tilde{A}} \frac{1}{\tilde{A}} \frac{d\tilde{C}}{d\tilde{t}} \delta \tilde{\mu} \mathbf{J} \cdot \nabla_{\mathbf{x}} \delta \tilde{\mu} d\mathbf{v} = 0 \quad (40b)$$

$$+ \frac{\tilde{A}H}{\tilde{A}} \frac{1}{\tilde{A}} \frac{d\tilde{C}}{d\tilde{t}} \delta \tilde{\mu} \mathbf{J} \cdot \nabla_{\mathbf{x}} \delta \tilde{\mu} d\mathbf{v} = 0 \quad (40b)$$

$$+ \frac{\tilde{A}H}{\tilde{A}} \frac{1}{\tilde{A}} \frac{d\tilde{C}}{d\tilde{t}} \delta \tilde{\mu} \mathbf{J} \cdot \nabla_{\mathbf{x}} \delta \tilde{\mu} d\mathbf{v} = 0 \quad (40b)$$

$$+ \frac{\tilde{A}H}{\tilde{A}} \frac{1}{\tilde{A}} \frac{d\tilde{C}}{d\tilde{t}} \delta \tilde{\mu} \mathbf{J} \cdot \nabla_{\mathbf{x}} \delta \tilde{\mu} d\mathbf{v} = 0 \quad (40b)$$

$$+ \frac{\tilde{A}H}{\tilde{A}} \frac{1}{\tilde{A}} \frac{d\tilde{C}}{d\tilde{t}} \delta \tilde{\mu} \mathbf{J} \cdot \nabla_{\mathbf{x}} \delta \tilde{\mu} d\mathbf{v} = 0 \quad (40b)$$

$$+ \frac{\tilde{A}H}{\tilde{A}} \frac{1}{\tilde{A}} \frac{d\tilde{C}}{d\tilde{t}} \delta \tilde{\mu} \mathbf{J} \cdot \nabla_{\mathbf{x}} \delta \tilde{\mu} d\mathbf{v} = 0 \quad (40b)$$

$$+ \frac{\tilde{A}H}{\tilde{A}} \frac{1}{\tilde{A}} \frac{d\tilde{C}}{d\tilde{t}} \delta \tilde{\mu} \mathbf{J} \cdot \nabla_{\mathbf{x}} \delta \tilde{\mu} d\mathbf{v} = 0 \quad (40b)$$

where the superscript $\text{step}()$ is omitted for all the terms. Quantities to the right-hand side and denote as f (which is current time step) and \mathbf{c} are the species concentration known from previous time step. The residual of nonlinear equations at the previous time step in the bulk and on the surface are given by $\mathbf{R} = \mathbf{f} - \mathbf{N}(\mathbf{d})$, which can be solved using the Newton-Raphson method.

4.4 Spatial discretization

A mixed finite element method is utilized to solve for the normalized displacement, chemical potential and surface concentration fields concurrently. To avoid the numerical instability with the mixed method, we should employ proper spatial discretization techniques [10] to utilize a Taylor-

Hood element [56] for the bulk quantities (displacement and chemical potential) where the interpolation order for chemical potential (linear) is one-order lower than for the displacement (quadratic). We note that a linear interpolation is utilized for the surface concentration field.

The normalized displacement and chemical potential are interpolated through the domain of interest as

$$\hat{u} = H\hat{u}_0, \quad \hat{\mu} = H\hat{\mu}_0, \quad \hat{c} = H\hat{c}_0 \quad (44)$$

where H and H^* are the shape functions and \hat{u}_0 and $\hat{\mu}_0$ are the nodal values of the normalized displacement and chemical potential and surface concentration respectively. Note

that the shape function is only defined on surface elements. The test functions are discretized in the same way

$$\delta\hat{u} = H\delta\hat{u}_0, \quad \delta\hat{\mu} = H\delta\hat{\mu}_0, \quad \delta\hat{c} = H\delta\hat{c}_0 \quad (45)$$

The stresses, concentrations and fluxes are evaluated at integration points, depending on the gradients of the displacement and chemical potential via the constitutive relations.

Taking the gradient of Eq. (44), we obtain that

$$\nabla \hat{x}\hat{u} = \nabla H\hat{u}_0 = B\hat{u}_0 \quad (46a)$$

$$\nabla \hat{x}\hat{\mu} = \nabla H\hat{\mu}_0 = B\hat{\mu}_0 \quad (46b)$$

$$\nabla \hat{x}\hat{c} = \nabla H\hat{c}_0 = B\hat{c}_0 \quad (46c)$$

where B and B^* are the gradients of the shape functions in the bulk, and B^* is the one on the surface.

4.5 Nonlinear solution

The weak form in Eq. (43) can be expressed as a system of nonlinear equations,

$$\mathbf{N}(\mathbf{d}) = \mathbf{f} \text{ with } \mathbf{d} = \begin{bmatrix} \hat{u} \\ \hat{\mu} \\ \hat{c} \end{bmatrix} \quad (47)$$

Note that \mathbf{d} denotes the part of the weak form that is not known at current time step and we take all the known

$$\begin{bmatrix} \partial N \\ \partial \mu \\ \partial c \end{bmatrix} = \begin{bmatrix} K_{\hat{u}\hat{u}} & K_{\hat{u}\hat{\mu}} & K_{\hat{u}\hat{c}} \\ K_{\hat{\mu}\hat{u}} & K_{\hat{\mu}\hat{\mu}} & K_{\hat{\mu}\hat{c}} \\ K_{\hat{c}\hat{u}} & K_{\hat{c}\hat{\mu}} & K_{\hat{c}\hat{c}} \end{bmatrix} \quad (48)$$

FEnICS version 2019.2.0 [46] is used to numerically solve the coupled non-linear equations via the Portable Extensible Toolkit for Scientific Computation (PETSc) Scalable Nonlinear Equations Solvers (SNES) interface [4].

This process repeats until a level of convergence specified within the SNES solver. At each iteration, the block Jacobian matrices are set up using multiphenics [5], a python library that also facilitates the definition of boundary restricted variables within FEniCS, a feature necessary for dealing in our case with the surface concentration. We note that the surface chemical potential is tied with the definition of the corresponding bulk quantity, but the surface concentration is not.

Although many documents [40, 45] provide FEniCS implementation details, it is still not trivial to deal with surface kinematics using FEniCS as several surface quantities have a rank deficiency. For educational purposes, we review few important mathematical definitions of surface quantities and then we provide their corresponding FEniCS definitions.

The surface unit tensor is defined as $\mathbf{N} \otimes \mathbf{N}$, which can be interpreted as surface (idempotent) projection tensor, and surface deformation gradient can be obtained from surface projection of bulk deformation gradient. Similarly, the surface gradient is obtained by surface projection of the bulk gradient $\mathbf{F}_\text{bulk} = \nabla \mathbf{x}\hat{u}$.

¹ $\mathbf{N} = \text{FacetNormal}(\text{mesh})$

² $\mathbf{I}_\text{bulk} = \text{Identity}(3)$

³ $\mathbf{I}_\text{surf} = \mathbf{I}_\text{bulk} - \mathbf{N} \otimes \mathbf{N}$

⁴ $\mathbf{F}_\text{surf} = \text{dot}(\mathbf{F}_\text{bulk}, \mathbf{I}_\text{surf})$

⁵ $\mathbf{grad_mu_surf} = \text{dot}(\mathbf{grad}(\mathbf{mu}), \mathbf{I}_\text{surf})$

Note that the surface unit tensor is absent from the (principal) normal component $\mathbf{N} \otimes \mathbf{N}$; as a result, surface projection always leads to a rank deficiency, cannot perform the inverse operations for the surface quantities. Nevertheless, they possess an inverse in the general sense, i.e., $\mathbf{N}^{-1} := \mathbf{F}_\text{surf}^{-1}$ and $\mathbf{C}^{-1} := \mathbf{C}_\text{surf}^{-1}$.

⁶ $\mathbf{F}_\text{surf_inv} = \text{dot}(\mathbf{I}_\text{surf}, \text{inv}(\mathbf{F}_\text{bulk}))$

⁷ $\mathbf{C}_\text{surf_inv} = \text{dot}(\mathbf{I}_\text{surf}, \text{dot}(\mathbf{C}_\text{bulk}, \mathbf{I}_\text{surf}))$

In addition, we cannot perform the determinant of the decomposition. While it is possible to decompose the for the surface quantities due to rank deficiency. We have a gradient using F for F a direct relationship alternative way of using Nanson's formula to obtain the initial and current state. By using the determinant of surface quantities $\det F := |\text{cof} F|$.

$$8 \quad A_{\text{surf}} = \text{dot}(\text{cofac}(F_{\text{bulk}}), N) \\ 9 \quad J_{\text{surf}} = \text{sqrt}(\text{dot}(A_{\text{surf}}, A_{\text{surf}}))$$

5 Numerical examples

To study the performance of the suggested framework, analyze the transient responses for two initial boundary value problems involving bulk and surface poroelasticity of hydrogels: (1) free contraction of a cube with smooth edges and (2) uniaxial tension of a cube with sharp edges. In both cases the edge length of the cubes is 10. In the following numerical study, we take the initial swelling ratio $\lambda_0 = 1.025$ and the Flory interaction parameter $\chi = 0.2$. At room temperature $T = 4 \times 10^2 \text{ J/mol}$, and the representative value of the volume and area per molecule are $\lambda = 10^{-19} \text{ m}^3$ and $A = 10^{-19} \text{ m}^2$. In the absence of solvent molecules, the dry network has shear modulus $G = 4 \times 10^4 \text{ N/m}^2$, which gives $N = 10$ and $M = 10^3$ [2]. The characteristic dimension and time scales are set as $H = 10^{-3} \text{ m}$ and $\tau = 1.0 \text{ sec}$. Without loss of generality, we prescribe the following values for the parameters: $\gamma = 1.0$, $\lambda = 10^3$ and $D = 1.0$.

For robustness of the numerical procedure, we follow a two-stage procedure: initialize from a homogeneously swollen state, with initial homogeneous swelling stretch λ_0 neglecting elastic surface energy contributions. In the first stage, we ramp the surface energy linearly, from zero to its prescribed value, for the time interval $t/\tau \in [0.0, 1.0]$. This time interval is significantly smaller compared to the time the system needs for equilibration. Then in the second stage, we exponentially increase the time steps $\Delta t/\tau$ until equilibrium is attained, while holding the value of the surface energy fixed.

In Fig. 1, we illustrate the distinction between the dry network as the reference state (stress-free configuration) and the free-swollen network as the initial state. In cases of homogeneous swelling at the initial state, this initial configuration is proportional to time step (Δt), and it can be characterized by the initial deformation gradient F_0 , which arise due to the initial free-swelling with a swelling ratio of λ

$$F_0 = \lambda_0 I \quad \text{and} \quad F_0 = \lambda_0^3$$

(49)

It is important to emphasize that this approach does not employ a decomposition of the deformation gradient for the bulk poroelasticity problem, stemming from the inhomogeneous manner similar to elastoplasticity. The separate constitutive problem are known to be alleviated by several approaches. Assumptions are often made for individual components, the choice of Taylor-Hood spaces (as shown for

the deformation gradient of the current state relative to the free swelling state [32], the deformation at the free swelling state (initial state) is chosen based on a homogeneous stretch λ_0 and from that point the deformation ensues.

The initial chemical potential μ_0 is derived by equating the stress expression from (33) to zero using the free swelling stretch λ_0 as outlined in previous works [31, 32]. This approach allows us to establish the initial chemical potential under the conditions of stress-free swelling,

$$\frac{N}{\lambda_0} \frac{1}{\lambda_0^3} + \ln \left(1 - \frac{1}{\lambda_0^3} \right) + \frac{1}{\lambda_0^3} + \frac{\chi}{\lambda_0^6} = \mu_0 \quad (50)$$

We can obtain the initial free-swelling stretch by setting the immersed condition $\lambda = 1.0$ [31]. We can

also obtain the initial normalized surface concentration by numerically solving the normalized constitutive relation of Eq. (29d), which yields the initial value 0.3673. It is

important to note that the boundary of swollen hydrogel is assumed to be impermeable for the cases studies here, which is formulated by the flux boundary condition (see Eq. 14). That is, the species on the surface are not allowed to migrate into the exterior (environment). We note that for immersed conditions, we would need to assume local equilibrium instantaneously on the surface which would override the surface diffusion mechanism.

To investigate the numerical stability when time step is small ($\Delta t \rightarrow 0$), the block Jacobian matrix in Eq. (48) can be reduced to

$$\begin{bmatrix} K_{\text{uu}} & K_{\text{u}\mu} & K_{\text{u}\lambda} \\ K_{\mu\text{u}} & K_{\mu\mu} & K_{\mu\lambda} \\ K_{\lambda\text{u}} & K_{\lambda\mu} & K_{\lambda\lambda} \end{bmatrix} \quad (51)$$

where λ is proportional to time step (Δt), and it approaches zero at the short time limit. This indicates the saddle point problem structure inherent to this known to lead to numerical oscillations; however, as the time progresses in the transient process, the parabolic nature of the diffusion equations regularizes the problem (see [58] Chapter 3 for the details of the saddle point problem of 3×3 block matrices).

Fig. 2 Temporal sequence of the chemical potential during the free contraction of cubes

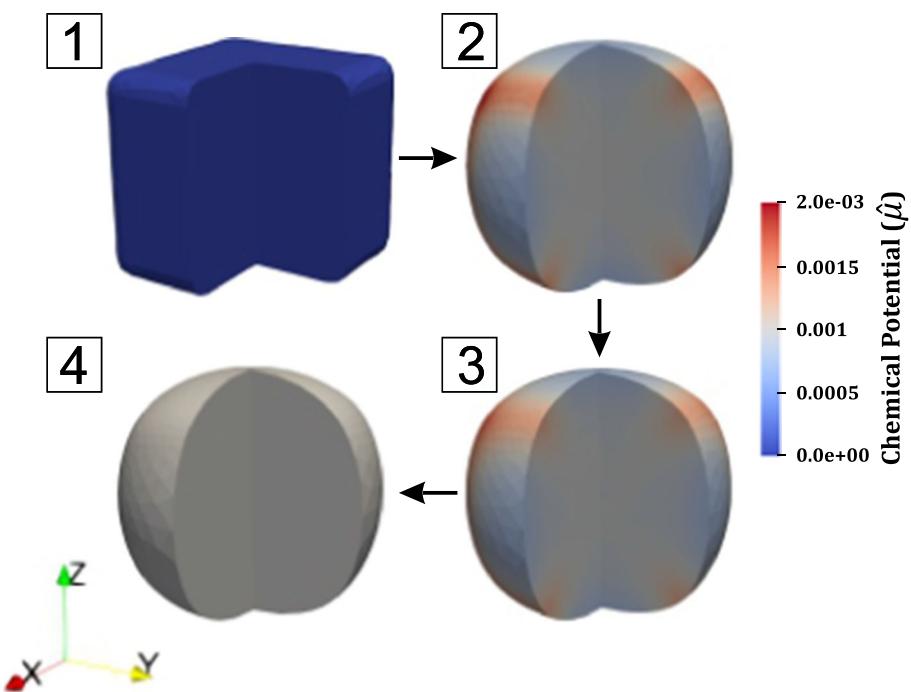
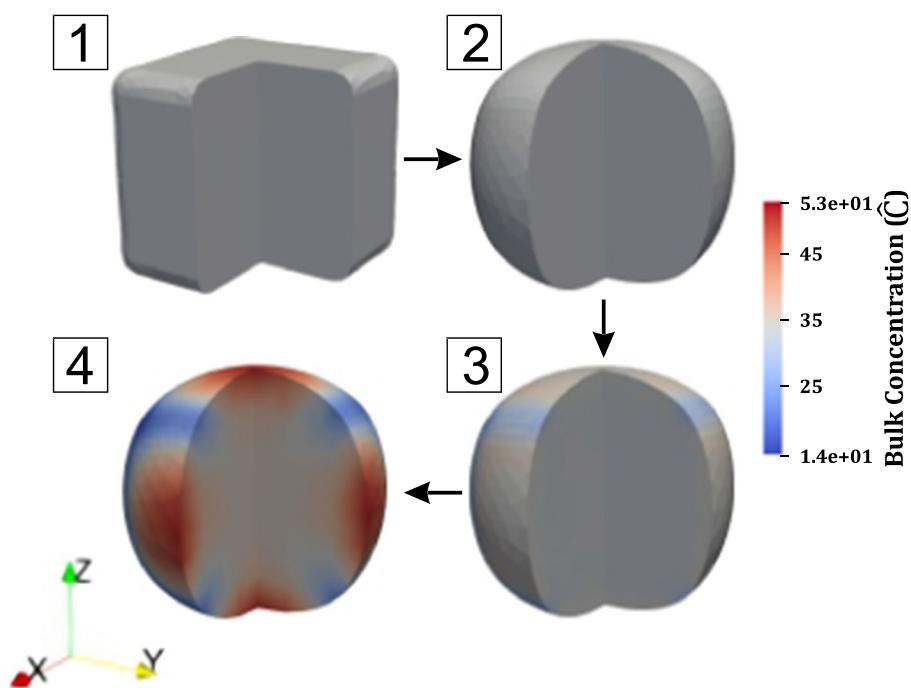


Fig. 3 Temporal sequence of the bulk contraction during the free contraction of cubes



the nonlinear problem in [10] we have also chosen to be cast a fully swollen state and then released a Taylor-Hood space between the displacement and environment which it is free to deform but with cal potential, but also between the displacement and which it cannot exchange solvent (0). For the finite element implementation of the free contraction of cu

5.1 Free contraction of a cube with smooth edges procedure detailed above is followed here.

In this example, we first investigate the surface and bulk variation for the chemical potential, bulk concentration, surface poroelastic effects on a hydrogel cube. The cube is **concentrated**, and surface flux in Fig. 2, 3, 4 and 5, respectively.

Fig. 4 Temporal sequence of the surface concentration during the free contraction of cubes

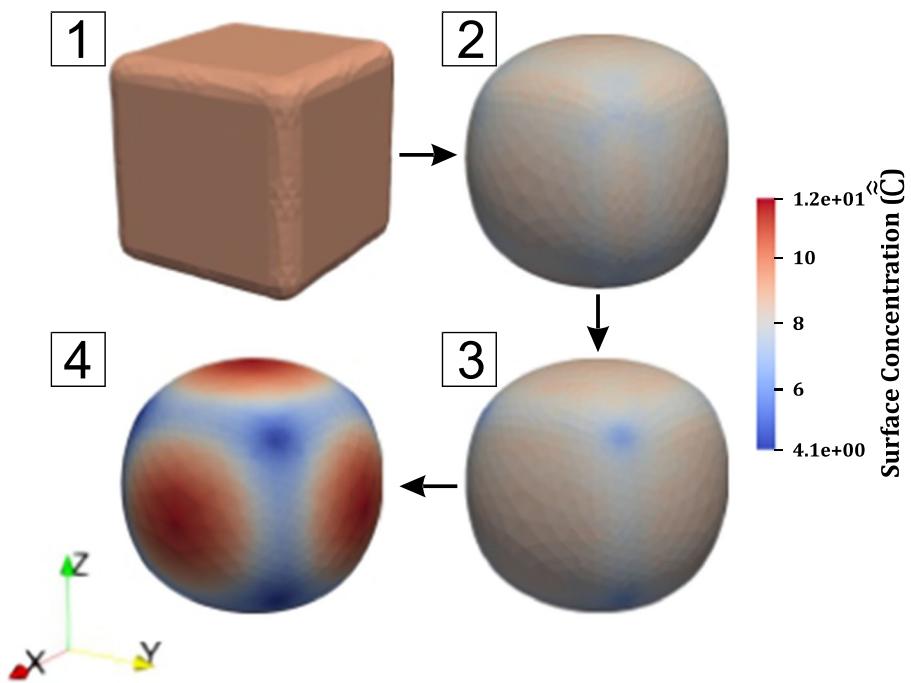
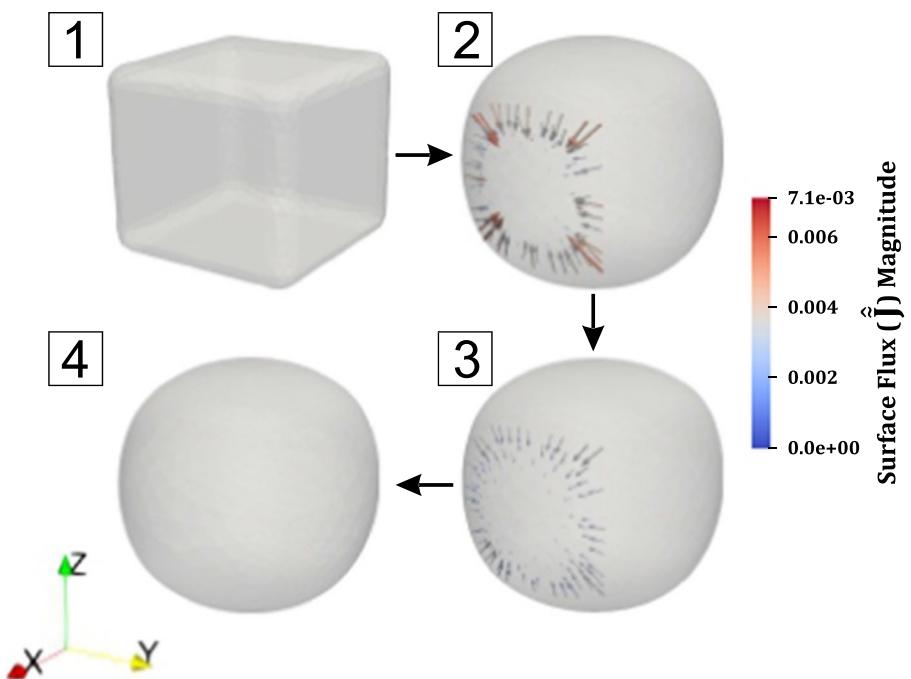


Fig. 5 Temporal sequence of the surface flux during the free contraction of cubes



tively where all the values are normalized. We remove a quarter of the domain from the images of chemical potential. It is noteworthy that the cube is taken to have a smooth edges (a case with sharp edges will be discussed in the following example).

on the surface. The surface flux in Fig. 5 is shown on Step 2 of Figs. 2 to 5 corresponding to the time steps the one face of the cube for visualization purposes. Images show ramping of the surface energy included.

taken at normalized time $t/\tau = 0.0, 1.0, 8.4, 7.8 \times 10^3$ is for time $t/\tau = 1.0$ which is significantly smaller (4 orders of magnitude) compared to the equilibration time. In the following discussion, In Step 1 of Figs. 2 to 5, the note that the current interpolation scheme leads to unsta-

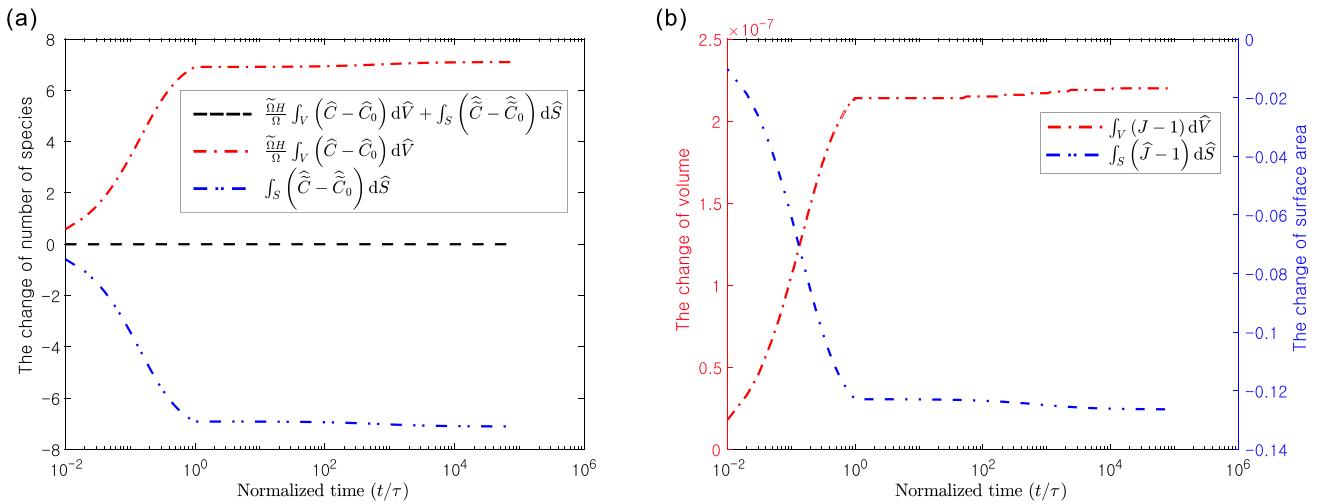


Fig. 6 Surface energy drives the species migration between bulk and surface. a The numbers of species in bulk and on surface are tracked with respect to the normalized time. b The change of volume and surface area are tracked with respect to the normalized time. Despite the surface energy ramping ($t/\tau \approx 1.6$), the bulk is gaining the species to the sum of the volume of species molecules moving into the bulk and the surface is losing the species, and the volume increases, while the surface energy is being fixed (initial condition of Eq. (26))

results if the ramping time is significantly shorter, the species migration between $t/\tau = 0.0$ and 7.8×10^{-3} to the need for the development of more advanced stabilization scheme in the future. This pathology might be the consequence of the three-field formulation, as the surface of the cube because the deformation at that location is higher than the characteristic dimension H ; as a result, the surface energy increases, the elastocapillary angles are larger compared to the facets, which subsequently leads to higher effects become dominant that the geometry becomes almost spherical. In Step 2 of Fig. 2, the chemical potential is distributed over the facets. The direction of the surface diffusion is homogeneous due to the deformation driven by surface energy and the surface deformation and chemical potential. In Step 2 of Figs. 3 and 4, the distribution of the bulk concentration is distinct from the surface concentration beyond Step 2, and for the rest of the transient response and has not evolved as rapidly. This is owing to the fact the surface energy ($\neq 1$) is maintained at the same level, that the species migration in bulk is slower than the exponential ramp the time steps towards equilibrium state, a specific modeling choice to highlight the lack of the deformation of the cubes is small beyond the in-volumetric constraints for surface diffusion. However, surface energy ramping, but the concentration (especially equilibrium state, as shown in Step 4 of Figs. 3 and 4) significantly changes by gradients of the distributions are similar on the surface.

On top of surface and bulk diffusion, in this system the diffusion in bulk and on surface, and the species migration is an exchange of species between the surface and the interior of the facets. In Step 4 of the simulation reaches the equilibrium state, as captured in the strong form of the balance law for Eq. (26). The species exchange between bulk and surface is easily formed by the homogeneous chemical potential, tracked by accounting for the molecular incompressibility. The distribution of the bulk concentration on the boundary is condition of Eq. (26), indicating that the change of similar to the surface concentration shown in Step 4 of the bulk is the same as the total of the species of Figs. 3 and 4. In Fig. 6 we can observe the significant migration from bulk to surface. In Fig. 6, we track the migration between bulk and surface during ramping the normalized total species population in bulk and on surface energy ($t/\tau \approx 1$), but the migration between bulk all time steps by integrating the normalized concentration. The surface is negligible with surface energy being fixed over the bulk and the surface according to the condition of Eq. (26).

Fig. 7 Temporal sequence of the chemical potential during the tension of cubes

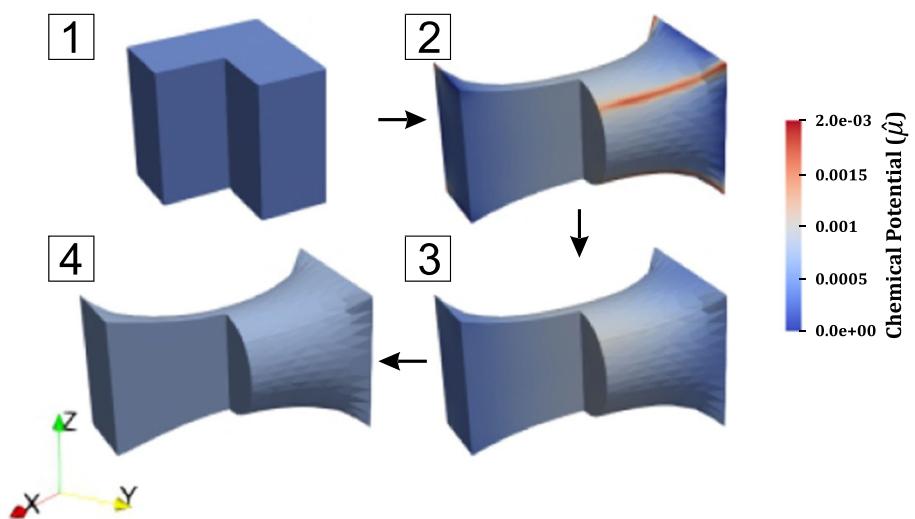


Fig. 8 Temporal sequence of the bulk contraction during the tension of cubes



Fig. 9 Temporal sequence of the surface concentration during the tension of cubes

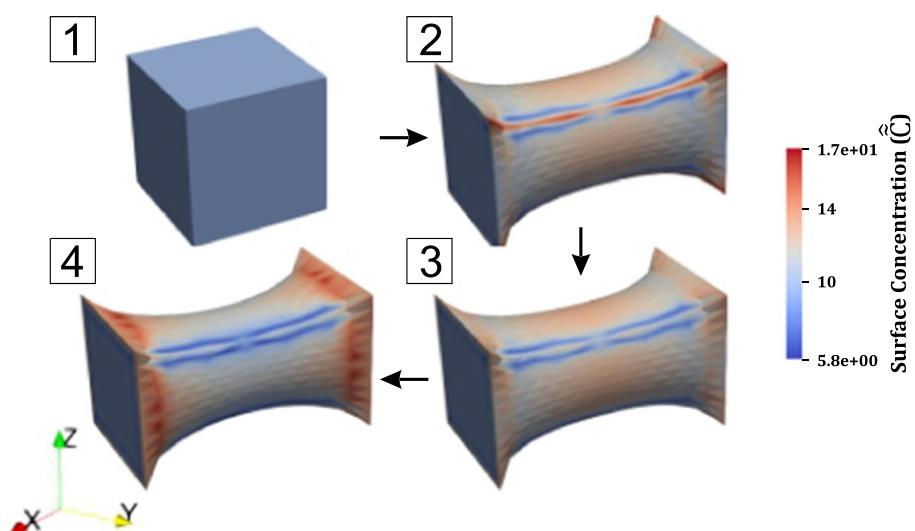
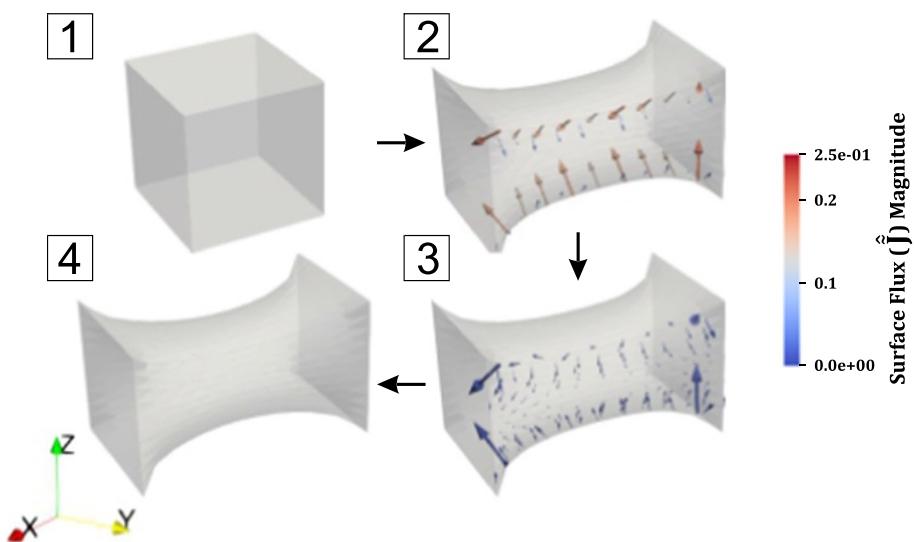


Fig. 10 Temporal sequence of the surface flux during the tension of cubes



5.2 Uniaxial tension of a cube with sharp edges between $t/\tau = 0.0$ and $t/\tau = 1.0$ in Step 3 of Figs. 7 to 10, maintain the surface energy and the stretch, and we expo

In this example we first investigate the surface and bulk ramp the time-step size towards equilibrium. In Step 3 of Figs. 7 to 10, the simulation approaches the equilibrium load. Similar to the previous example the cube is considered to be cast in a a fully swollen state, and released. The concentration is disfroth the bulk concentration environment with which it cannot exchange solvent, valuated on the boundary.

this case it is subject to displacement controlled loading. Like the previous example in Sect. 5.1, the cube at initial state has two-stage solution procedure detailed above is followed here to investigate the impact of sharp corners to investigate the impact of sharp corners as well. The lateral surfaces at $x = \pm H/2$ are the geometric features to the numerical scheme. We can observe clamped boundaries, and the others are free. For the simulation of the surface concentration near the edges, we use a two-stage implementation of the tension of cubes, we use a two-stage implementation of the enforcement of an initial condition in a tetrahedral elements. In this case, the displacement boundary conditions at lateral surfaces, are ramped linearly from zero to one. This originates from the weakly in the same timeframe that the surface energy is forced continuity condition in Eq. (14d), which states that the net surface flux on the boundary curve (between the two-stage

In this case external mechanical loading along with surface elements) is always balanced. Of course, this and bulk energy contributions together dictate the transient response of the system. The other conditions are the same as in the previous example of Sect. 5.1. We note that switching to a finer non-structured mesh. Alternative, on example, we have taken a cube geometry with sharp corners and we have taken a cube geometry with sharp corners. We plot the temporal sequence of finite element simulations. We do not consider the impact of these initial oscillations for the chemical potential, bulk concentration, surface concentration and surface flux in Figs. 7 to 10 respectively, imposing discontinuous chemical potential boundary (with where all the values are normalized to the surface flux in respect to the initial condition) for swelling of hydrogels [10]. Fig. 10 is shown on only one face of the cube for visualization. This might be specific to the three-field formulation purposes. Images are taken at normalized time $t/\tau = 0.0$ and $t/\tau = 1.0$ on the clockwise, which are denoted by Step 1, 2, 3 and 4 in the following discussion.

In Step 1 of Figs. 7 to 10, the cubes are at the initial state by a homogeneous swelling stretch $\epsilon = 0.1$. In Step 2 of

Figs. 7 to 10, the cubes are deformed by the surface energy and stretch, after the initial load and surface energy ramping.

The cubes are initially clamped at lateral sides, and we linearly ramp the surface energy and stretch $\epsilon = 68.9\%$.

6 Conclusion

A continuum multiphysics formulation and corresponding finite element implementation has been presented to account for bulk and surface nonlinear poroelasticity in hydrogels. The governing equations for the response of a continuum

body have been presented, and the general constitutive theory may use the distinct migration mechanism for the two. Even though we focus on hydrogels in this work, the general theory is numerically solved through the framework and finite element implementation developed in the mixed finite element method by employing the open-source FEniCS framework. The framework allows studying several problems for solids as well as for fluids. In addition, we provide mechanobiology, where diffusion processes in the bulk and on the surface are coupled with the elastic response. One of the problems where surface kinematics are of interest is the adoption of the numerical framework for different constitutive models.

In our study, we assumed that the curve and vertex effects are specialized for studying other materials. and corresponding thermodynamic contributions [50]. We provide an example that the authors plan to pursue is the study of morphogenetic processes in tissue mechanics as curve elasticity and diffusion in this context, are considered to be negligible compared to the bulk and surface effects. Specifically modeling of contractile microtissues [38, 39, 40]. However, in cases involving contact, such as multiphysics problems [37, 41, 42], where cells apply forces and contract the extracellular matrix (ECM), but at the same time can diffuse within the ECM, it would become important and should be considered both on the bulk of the ECM but also on its periphery. For accurate analyses, as demonstrated in previous work [37, 43, 44], implications in problems like wound healing. In this work [54], For the specific scenarios we investigated, the paper reports numerical issues that can arise due to separation of bulk and surface poroelasticity was the primary reason and propose approaches to alleviate them. For allowing us to gain valuable insights into the multiphysics' future work, it would also be interesting to extend the phenomena without added complexity by considering our model to consider growth mechanisms to account for curve and vertex thermodynamics contributions. surface morphology in evolving natural systems such as

Two numerical examples are investigated to understand the effect of coupling bulk and surface poroelasticity. In the first example, where a cube with smoothened geometric features is investigated (see Figs. 2 to 6), we probe the variation of concentration, surface flux and change of volume and surface area along with the chemical potential, which follows accounting for a fluid-like surface energy for the soft solid. As a result of the transient procedure and species exchange between bulk and surface, a smooth cube-like object is gradually transformed into an almost spherical one. From this observation, one may expect that the volume of the cube is decreased. Interestingly, the result is the opposite, as shown in Fig. 6. It implies that the species collectively migrate from the surface into the bulk because the volume increase of bulk is identical to the volume of total species moving into the bulk; consequently, the volume of the cube rather increases in spite of the surface area decreasing. This result suggests that the multiphysical complication could play an important role in understanding the responses at small length scales that surface effects dominate.

Acknowledgements LS and NB acknowledge the support by the National Science Foundation under grant CMMI-2129776 CYH. CYH acknowledges the support by the National Science Foundation under grant CMMI-1903308. B thanks the project "Numerical modeling of flows in porous media" funded by Universita` Cattolica del Sacro Cuore, and the INDAM-GNCS project "Metodi numerici per lo studio di strutture geometriche parametriche complesse" (CUP_E53C2200193).

Declarations of interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Appendix A: Derivation of weak form of species balance

Starting from Eq. (14a),

$$\int_V \delta \mu dV + \int_V (\nabla \cdot J) \delta \mu dV = 0 \quad (A1)$$

In the second example (see Figs. 7 to 10), we further investigate the response of a cube with sharp features, \tilde{A} external load, while still accounting for a fluid-like surface energy. Although the distributions of species concentration in the bulk and on the surface are similar on the boundary in the first example (see Figs. 3 and 4), the second example shows that the pathways of species migrations can be significantly different (see Figs. 8 and 9). In this example, we choose the same mobility constant in bulk and on the surface as the simplest case, but this result still provides an important insight into hydrogel-based applications at small scales. For example,

$$\int_V \delta \mu dV - \int_V J \cdot \nabla \mu dV + \int_S \mathcal{C} \delta \mu dS + \int_S \tilde{A} \tilde{J} \cdot \tilde{A} \delta \mu dS = 0 \quad (A2)$$

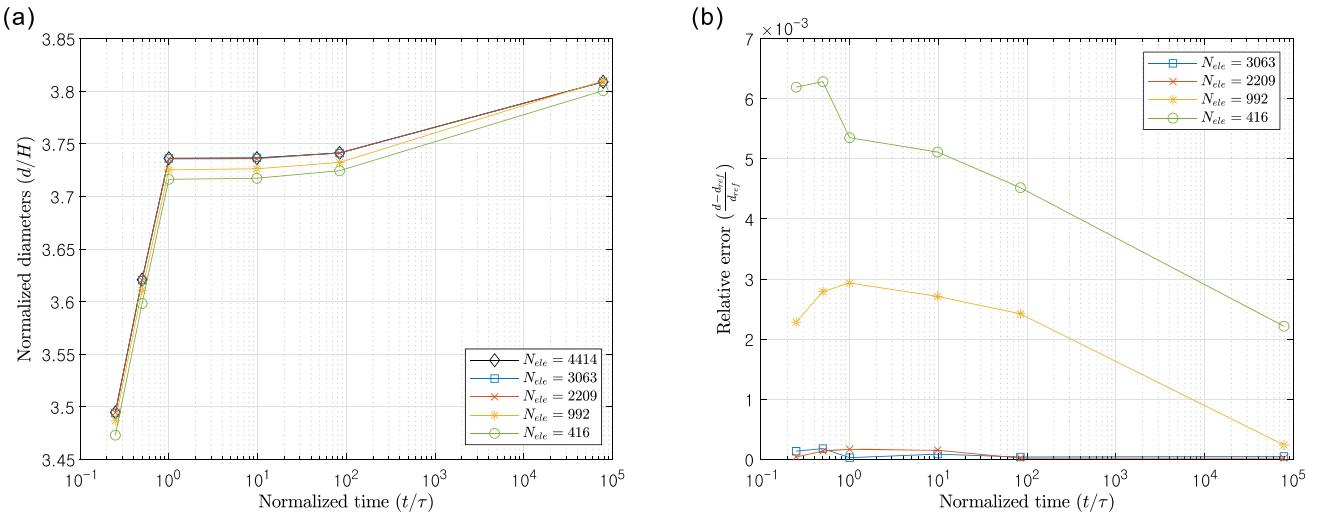


Fig. 11 The convergence study was performed with respect to different time for four different numbers of elements. The relative numbers of elements (N_{ele}) and normalized time for cube-contracting with respect to normalized time is shown, with reference values simulation. The diameters in the x-direction are tracked over time obtained from the simulation using $N_{ele} = 4414$ elements

where the last term in Eq. (A2) can be rewritten by rule and surface divergence theorem,

$$\begin{aligned} \int_S \nabla \cdot \mathbf{J} \delta \mu \, dS &= - \int_S \mathbf{J} \cdot \nabla \delta \mu \, dS \\ &+ \int_L \mathbf{J} \cdot \mathbf{N} \delta \mu \, dL \end{aligned} \quad (A3)$$

where the second term in the right-hand side of Eq. (A3) is assumed to be zero. By substituting Eq. (A3) into Eq. (A2)

$$\begin{aligned} \int_V \mathbf{C} \delta \mu \, dV - \int_V \mathbf{J} \cdot \nabla \delta \mu \, dV \\ + \int_S \mathbf{C} \delta \mu \, dS - \int_S \mathbf{J} \cdot \nabla \delta \mu \, dS = 0 \end{aligned} \quad (A4)$$

This equation corresponds to Eq. (34b) in the manuscript.

Appendix B: Convergence study on cube-contracting example

We perform the convergence study to demonstrate the simulation results and mesh resolution (see Fig. 11) on the cube-contracting example in Sect. 5.1. During the surface energy ramping phase ($t/\tau \in [0, 10]$) the bulk gains species, leading to a rapid increase in normalized diameters. While the surface energy is fixed ($t/\tau \in [0, 10]$) the species continue to migrate from the surface into the bulk due to the chemical potential, resulting in a gradual increase in normalized diameter. The normalized diameters stop increasing once the chemical potential reaches equilibrium ($t/\tau \sim 1.6^5$). It is important to note that the normalized diameters at multiple normalized times approach the reference values. Here we confirm a convergence of the solution following a global deformation metric.

References

- Alnæs MS, Blechta J, Hake J, et al (2015) The FEniCS project version 1.5. Archive of Numerical Software 3(100)
- Ang I, Liu Z, Kim J, et al (2020) Effect of elastocapillarity on the swelling kinetics of hydrogels. J Mech Phys Solids 145:104132
- Babuska I (1971) Error-bounds for finite element method. Numerische Mathematik 16(4):322–333
- Balay S, Abhyankar S, Adams M, et al (2019) PETSc users manual
- Ballarin F (2019) multiphenics—easy prototyping of multiphysics problems in FEniCS. <https://github.com/multiphenics/multiphenics>
- Bathe KJ (2001) The inf-sup condition and its evaluation for mixed finite element methods. Comput Struct 79(2):243–252
- Bico J, Reyssat E, Roman B (2018) Elastocapillarity: when surface tension deforms elastic solids. Annu Rev Fluid Mech 50:629–659
- Biot MA (1955) Theory of elasticity and consolidation for a porous anisotropic solid. J Appl Phys 26(2):182–185
- Biot MA (1956) Theory of propagation of elastic waves in a fluid-saturated porous solid II higher frequency range. J Acoust Soc Am 28(2):179–191
- Biot MA (1962) Mechanics of deformation and acoustic propagation in porous media. J Appl Phys 33(4):1482–1498
- Bleyer J (2018) Numerical tours of computational mechanics with FEniCS. Zenodo
- Bouklas N, Huang R (2012) Swelling kinetics of polymer gels: comparison of near and nonlinear theories. Soft Matter 8(31):8194–8203
- Bouklas N, Landis CM, Huang R (2015) A nonlinear transient finite element method for coupled solvent diffusion and large deformation of hydrogels. J Mech Phys Solids 79:21–43
- Brezzi F (1974) On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers. Publications mathématiques et informatique de Rennes S4:1–26
- Capdebos P, Fried E, Gurtin ME (2005) Transport relations for surface integrals arising in the formulation of balance laws for evolving fluid interfaces. J Fluid Mech 544:339–351
- Chen S, Anand L (2010) A coupled theory of fluid permeation and large deformations for elastomeric materials. J Mech Phys Solids 58(11):1879–1906

17. Chester SA, Di Leo CV, Anand L (2015) A finite element implementation of a coupled diffusion-deformation theory for soft polymeric gels. *Int J Solids Struct* 52:1–18
18. Dingreville R, Qu J, Cherkaoui M (2005) Surface free energy and its effect on the elastic behavior of nano-sized particles, wires and films. *J Mech Phys Solids* 53(8):1827–1854
19. Do Carmo MP (2016) Differential geometry of curves and surfaces, revised and updated, 2nd edn. Courier Dover Publications
20. Duda FP, Souza AC, Fried E (2010) A theory for species migration in a finitely strained solid with application to polymer network swelling. *J Mech Phys Solids* 58(4):515–529
21. Flory P (1961) Thermodynamic relations for high elastic networks. *Trans Faraday Soc* 57:829–838
22. Flory PJ (1942) Thermodynamics of high polymer solution. *J Chem Phys* 10(1):51–61
23. Green AE, Zerna W (1992) Theoretical elasticity. Courier Corporation
24. Gurtin ME, Jabbour ME (2002) Interface evolution in three dimensions with curvature-dependent energy and surface diffusion: interface-controlled evolution, phase transitions, epitaxial growth and elastic energy. *Arch Ration Mech Anal* 163:171–208
25. Gurtin ME, Murdoch AI (1975) A continuum theory of elastic material surfaces. *Arch Ration Mech Anal* 57(4):291–323
26. Gurtin ME, Murdoch IA (1978) Surface stress in solids. *Int J Solids Struct* 14(6):431–440
27. Gurtin ME, Fried E, Anand L (2010) The mechanics and thermodynamics of continua. Cambridge University Press
28. Henann DL, Bertoldi K (2014) Modeling of elasto-capillary nomena. *Soft Matter* 10(5):709–717
29. Holzapfel GA (2000) Nonlinear solid mechanics II. Wiley
30. Hong S, Sycks D, Chan HF et al (2015) 3d printing of highly stretchable and tough hydrogels into complex, cellularized structures. *Adv Mater* 27(27):4035–4040
31. Hong W, Zhao X, Zhou J et al (2008) A theory of coupled diffusion and large deformation in polymeric gels. *J Mech Phys Solids* 56(5):1779–1793
32. Hong W, Liu Z, Suo Z (2009) Inhomogeneous swelling of a gel in equilibrium with a solvent and mechanical load. *Int J Solids Struct* 46(17):3282–3289
33. Huggins ML (1941) Solutions of long chain compounds. *J Chem Phys* 9(5):440–440
34. Javili A, Steinmann P (2009) A finite element framework for continua with boundary energies. Part I: the two-dimensional case. *Comput Methods Appl Mech Eng* 198(27–29):2198–2208
35. Javili A, Steinmann P (2010) A finite element framework for continua with boundary energies. Part II: the three-dimensional case. *Comput Methods Appl Mech Eng* 199(9–12):755–765
36. Javili A, McBride A, Steinmann P (2013) Thermomechanics of solids with lower-dimensional energetics: the importance of surface, interface, and curve structures at the nanoscale. A review. *Appl Mech Rev* 65(1):32
37. Javili A, McBride A, Steinmann P (2014) A unified computational framework for bulk and surface elasticity theory: curvilinear-coordinate-based finite element methodology. *Comput Mech* 54(3):745–762
38. Kim J, Mailand EA, Ang I et al (2020) A model for 3d deformation and reconstruction of contractile microtissues. *Soft Matter* 17:10198–10209
39. Kim J, Mailand E, Sakar MS et al (2023) A model for mechanosensitive cell migration in dynamically morphing soft tissues. *Extreme Mech Lett* 58(101):926
40. Langtangen HP, Logg A (2017) Solving PDEs in python: the FEniCS tutorial I. Springer
41. Leronni A, Bardella L (2021) Modeling actuation and sensing in ionic polymer metal composites by electrochemo-poromechanics. *J Mech Phys Solids* 148(104):292
42. Li B, Cao YP, Feng XQ et al (2012) Mechanics of morphological instabilities and surface wrinkling in soft materials: a review. *Soft Matter* 8(21):5728–5745
43. Mooney DJ (2016) Designing hydrogels for controlled drug delivery. *Nat Rev Mater* 1(12):1–17
44. Liu Z, Jagota A, Hui CY (2020) Modeling of surface mechanical behaviors of soft elastic solids: theory and examples. *Soft Matter* 16(29):6875–6889
45. Logg A, Mardal KA, Wells G (2012) Automated solution of differential equations by the finite element method: the FEniCS book, vol 84. Springer, London
46. Logg A, Mardal KA, Wells GN (2012) Automated solution of differential equations by the finite element method. Springer
47. Lucantonio A, Nardinocchi P, Teresi L (2013) Transient analysis of swelling-induced large deformations in polymers. *Meccanica* 48. MacMinn CW, Dufresne ER, Wetzlaufer JS (2016) Large deformations with curvature-dependent energy and surface diffusion: interface-controlled evolution, phase transitions, epitaxial growth and elastic energy. *Arch Ration Mech Anal* 117(5):975–986
49. Mailand E, Li B, Eyckmans J et al (2019) Surface and bulk stresses of elastic films. *Arch Ration Mech Anal* 163:171–208
50. McBride A, Javili A, Steinmann P et al (2011) Geometrically nonlinear continuum thermomechanics with surface energies coupled to morphological changes in fibrous microtissues. *Comput Mech* 51. Murad MA, Loula AF (1994) On stability and convergence of finite element approximations of biot's consolidation problem. *Int J Numer Methods Eng* 37(4):645–667
52. Rastogi A, Dortdivanlioglu B (2022) Modeling curvature-resisting materials with isogeometric analysis. *Comput Methods Appl Mech Eng* 401(115):649
53. Shi X, Liu Z, Feng L et al (2022) Elastocapillarity at cell-matrix contacts. *Phys Rev X* 12(2):021053
54. Steinmann P (2008) On boundary potential energies in defor-mation and configuration mechanics. *Mech Phys Solids* 56(43):772–800
55. Style RW, Jagota A, Hui CY et al (2017) Elastocapillarity: surface tension and the mechanics of soft solids. *Ann Rev Condens Matter Phys* 8:99–118
56. Taylor C, Hood P (1973) A numerical solution of the Navier-Stokes equations using the finite element technique. *Comput Fluids* 1(1):73–100
57. Javili A, Steinmann P (2009) A finite element framework for continua with boundary energies. Part II: the three-dimensional case. *Comput Methods Appl Mech Eng* 198(27–29):2198–2208
58. Wan J (2003) Stabilized finite element methods for coupled geom-echanics and multiphase flow. Stanford University
59. Javili A, Steinmann P (2010) A finite element framework for continua with boundary energies. Part II: the three-dimensional case. *Comput Methods Appl Mech Eng* 199(9–12):755–765
60. Zhang J, Zhao X, Suo Z et al (2009) A finite element method for transient analysis of concurrent large deformation and mass transport in gels. *J Appl Phys* 105(9):093522
61. Javili A, McBride A, Steinmann P (2013) Thermomechanics of continua with lower-dimensional energetics: the importance of surface, interface, and curve structures at the nanoscale. A review. *Comput Mech* 65(1):32
62. Javili A, McBride A, Steinmann P (2014) A unified computational framework for bulk and surface elasticity theory: Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. *Comput Mech* 54(3):745–762
63. Kim J, Mailand EA, Ang I et al (2020) A model for 3d deformation and reconstruction of contractile microtissues. *Soft Matter* 17:10198–10209
64. Kim J, Mailand E, Sakar MS et al (2023) A model for mechanosensitive cell migration in dynamically morphing soft tissues. *Extreme Mech Lett* 58(101):926
65. Langtangen HP, Logg A (2017) Solving PDEs in python: the FEniCS tutorial I. Springer
66. Leronni A, Bardella L (2021) Modeling actuation and sensing in ionic polymer metal composites by electrochemo-poromechanics. *J Mech Phys Solids* 148(104):292