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Abstract
We present a theoretical and computational model for the behavior of a porous solid undergoing two interdependent processes,
the nite deformation of a solid and species migration through the solid, which are distinct in bulk and on surface. Nonlinear
theories allow us to systematically study porous solids in a wide range of applications,such as drug delivery, biomaterial
design,fundamental study of biomechanics and mechanobiology,and the design of sensors and actuators.As we aim to
understand the physical phenomena at a smaller length scale, towards comprehending fundamental biological processes and
miniaturization of devices, surface effect becomes more pertinent. Although existing methodologies provide the necessary
tools to study coupled bulk effects for deformation and diffusion; however,very little is known about fully coupled bulk
and surface poroelasticity at nite strain. Here we develop a thermodynamically consistent formulation for surface and bulk
poroelasticity, specialized for soft hydrated solids, along with a corresponding nite element implementation that includes a
three-eld weak form. Our approach captures the interplay between competing multiphysical processes of  nite deformation
and species diffusion, accounting for surface kinematics and surface transport, and provides invaluable insight when surface
effects are important.

KeywordsSurface diffusion · Surface energy · Hydrogels

1 Introduction
Poroelasticity is the theory thatdescribes the coupling of
deformations of a continuum body with diffusive ow of a
solvent through the body itself due to its permeable/porous
nature.The theory of linear poroelasticity as pioneered by
Biot [8–10]has been applied to describe hydrogels and
hydrated biological tissues [30,31,43],but in many cases
nonlinear variants of the theory of poroelasticity are nec-
essary due to bulk deformation of nite deformations and
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nonlinearcomplex constitutive responses [2,12,13,16,
42, 59]. These nonlinear theories have been highly relevant
in the pastfew decades as the study of hydrated bioma-
terials,tissues and hydrogels at nite strains.Applications
in drug delivery,tissue regeneration,biomaterials design,
fundamental studies in biomechanics and mechanobiology,
design of morphing structures as well as sensors and actua-
tors, nonlinear theories of poroelasticity have provided a deep
understanding of the rich observed materialand structural
responses. However, the majority of these studies have been
in the macroscale, where surface effect can often be neglected
as bulk energetic contributions dominate the response of the
system. But, as we aim towards miniaturization of devices,
and also aim to probe and fundamentally understand the
effects that dominate the material response at smaller length
scales surface effect become more relevant. When the length
scales that are probed are sufciently small, one can expect
the coupling of elasticity and solvent diffusion to be signi-
cantly inuenced by surface contributions toward all aspects
of these multiphysical processes.

Following free energy-basedphenomenological
approachesfor the bulk responseof materials,similar
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approachescan be developed to study the surface and
interface response of materials and materials systems.The
pioneering works of Gurtin [25, 26] established a systematic
framework to derive kinematics and balance principles for
surfaces that focused on the thermodynamics of purely elas-
tic systems. Further, this framework was extended by Gurtin
to accountfor thermaleffects and mass transportparticu-
larized for surfaces [15,24].Many studies have followed
since exploring the mechanics of surfaces and interfaces for
continua involving purely mechanical as well as coupled pro-
cesses [18, 28, 37, 44, 54].

The competition of bulk and surface energetics is length
scale dependent.For elastic solids with shear modulus G0
and surface energy γ ,a relevant length scale is the elasto-
capillary length  = γ /G0 [55]. Generally speaking, if the
characteristic dimension is much larger than elastocapillary
length (H  ), surface effects are negligible. On the other
hand,if the characteristic dimension is much smaller than
elastocapillary length (H  ),surface effects are domi-
nant. Focusing on soft solids, work from Style et al [55] and
Bico etal [7] focused on the implication of surface ener-
getics on the mechanical behavior of this class of materials,
looking at the subtle relationships between surface stresses
and the bulk response. Surface and interface energetics have
been further explored in the context of soft solids to study
their implications to adhesion, fracture, instabilities as well
as the design of composites.

Specialized boundary value problems allow for the devel-
opmentof analyticalsolutionsin this context[2, 12].
However, nite element implementation that account for sur-
face effects is necessary to tackle general problems. Notably,
Javili and Steinmann [34,35] developed the nite element
framework fornite deformation accounting forsurface
energetics. Steinmann and co-authors [36, 50] also developed
nite element schemes to study several classes of coupled
problems,including mass transportand thermomechanics.
These types of frameworks allowed the study of morpho-
genesis and wound healing in microtissue systems,where
“active” surface and bulk effects were shown to emanate
from the cellularactivity ofthe extracellularmatrix [38,
39, 49]. Focused on drug delivery applications, Bouklas and
co-authors [2] investigated the mechanical surface effect in
the context of nite deformation poroelasticity, uncovering
the importance of such effects on the transient response of
swelling hydrogel microspheres of the porous solids coupled
with solvent diffusion using a mixed nite element method.
More recently, Dortdivanlioglu and co-authors [52] proposed
a computationalformulation thatallows the consideration
of curvature-dependent surface energies using isogeometric
analysis.

There is an extensive body of work on the development
of mixed nite element frameworks for linear poroelastic-
ity,including stabilization approaches for the treatmentof

numerical instabilities that are known to arise due to the viola-
tion of the Ladyzhenskaya-Babusˇka-Brezzi (LBB) condition
[3, 6, 14,51].For differentvariants ofnonlinearporoe-
lasticity,an array of approaches has been proposed [2,12,
13,16,17,20,31,41,47,48,60].Although the existing
methodologies provide the necessary tools to study coupled
bulk effects for deformation and diffusion, to the best of the
authors’ knowledge an implementation of the nite element
methods that fully couples bulk and surface poroelasticity at
nite strain has not been previously presented. Motivated by
the theoretical work of McBride et al [50] that considered
coupled thermomechanics with species diffusion accounting
for individual surface energetic contributions from elastic-
ity, heat transfer and mass diffusion, here we aim to develop
a robust and open-source nite element framework for the
treatment of surface and bulk poroelasticity. In our previous
work [2], we considered the surface elasticity coupled with
poroelasticity in bulk, not accounting for surface diffusion.

The ultimate goal of this paper is the development of a
thermodynamically-consistentformulation for surface and
bulk poroelasticity specialized for soft hydrated solids, along
with the developmentof a corresponding nite element
implementation. Focusing on soft solids, and more speci-
cally hydrogels, we discover a set of numerical complications
that are not evident when the general theoretical framework
is presented.This is because of the nature of the coupling
of surface and bulk poroelasticity,as wellas the nearly
incompressibility assumption thatis utilized to modelthe
elastomeric component of the hydrogel.The manuscript is
organized as follows: In Sect. 2, we describe the coupled the-
ory, including kinematics, balance laws and the general form
of the constitutive equations considering both bulk and sur-
face energetics. In Sect. 3, the free energies are specialized
for a hydrogel material. Section 4 presents the nite element
implementation including the weak form, normalization and
solution procedure.Section 5 elaborates on the numerical
simulations for two three-dimensional (3D) boundary value
problems corresponding to free-standing response of a cube-
like structure as surface effects dominate,as wellas the
response under external loading highlighting unique contri-
butions of surface effects, and the bulk and surface diffusion
pathways. Section 6 provides the conclusions and outlook for
future work.

2 A continuum multiphysics approach for
bulk and surface poroelasticity

In this section, we present a brief overview of key concept
of differential geometry towards describing the kinematics,
mechanicalequilibrium and mass balance,and obtain the
general relationships for the constitutive relations for the bulk
and surface responses. It is noteworthy that a surface quan-
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tity to be introduced is not necessarily the same as the bulk
quantity evaluated on the surface. Let V be a xed reference
conguration of a continuum body B, where material points
in the reference conguration are tracked through the vector
X ∈ V .

Remark 1 (Notation) The dyad (⊗) and dot(·) denote the
tensorand dotproducts,respectively.The double dot(:)
denotes the double contraction over two second-order ten-
sors; e.g.A : B = A i jBi j. For convenience,we adopt the
convention that other operations involving repeated indices
will not be indicated by a specic symbol, specically mean-
ing for v = Au (vi = Ai juj ) and A = BC (Ai j = Bj kCk j),
we do notwrite v = A · u and A = B · C,respectively.
Throughout the text, we use the Einstein summation conven-
tion: when an index variable appears twice in an expression,
it implies summation of that variable over all values of the
index. Latin indices take the value 1, 2, 3, and are used in vari-
ables describing the ambient, three-dimensional, Euclidean
space. Greek indices take the value 1, 2, and are used in vari-
ables in the embedded, two-dimensional, surface. {•} and {•}
denote bulk and surface quantities, respectively, for a body
occupying volume V bounded by outer surface denoted as S.
The overhat {•} denotes normalized quantities, and the super-
posed dot {˙•} denotes the material time derivative. We write
A−1 = (A)−1 and tr(A) for the inverse and trace of a ten-
sor A. The double-bracket ([[•]]) represents the average and
jump of a surface quantity ({•}) over the interface Ck := ∂ Sk;
e.g. [[W·N]] = W+·N++ W−·N− = W+ − W−·N+ =

Ck
W ·N where the superscripts {•}+ and {•}− denote the

surface quantity on the outward and inward of the interface,
respectively, and we dene the surface outward normal vec-
torN :=N+ over the interface Ck.

2.1 Key concepts of differential geometry

We briey review the key concepts of differential geometry
required to describe the kinematics of the bulk and surface.
Further details on differential geometry can be found in books
and papers, for example, Gurtin [25], Green [23], Steinmann
[37, 54] and Do Carmo [19].

We rst focus on the bulk description. Let r be an arbitrary
vector expressed in terms of the individual components of the
curvilinear coordinate system ξi , i.e., r = r(ξ1, ξ2, ξ3). We
can always associate two new triplets of vectors (ai and ai )
with the general curvilinear coordinate ξi , by [23].

ai = ∂r
∂ξi and ai = ∂ξi

∂r (1a)

I = δi
j ai ⊗ aj whereδi

j = ai · aj (1b)

where ai and ai are referred to as covariant and contravariant
basis vectors,respectively.I and δij are the mixed-variant

identity tensor and the mixed Kronecker delta, respectively.
Note that δi

j = 1 for i= j , and δij = 0 for i= j (i , j =
1, 2, 3).

The covariant and contravariant basis vectors are not nec-
essarily orthogonal to each other but linearly independent,
requiring (a1× a2) · a3 = 0 (the vectors do not lie in a plane)
[29]. The vectors ai and ai are connected to metric tensors
ai j, ai j by

ai = ai jaj with ai j = aj i = ai · aj (2a)
ai = ai jaj with ai j = aj i = ai · aj (2b)

where two tensors are inverse to each other, i.e., ai kak j = δij .
Note that metric tensors with the identical indices represent
the squares of the lengths; for example, a11= |a1|2, whereas
the metric tensors with different indices represent the product
of the lengths and the cosine of the angle θ ; for example,
a12= |a1||a2| cos(θ (a1, a2)).

If a quantity {•} is a vector eld dened throughouta
volume V which is bounded by a closed surface S, then bulk
gradient and divergence operators in 3D general curvilinear
coordinates are dened as follows:

∇ X{•} =∂{•}
∂ξi ⊗ ai (3a)

∇ X · {•} =∂{•}
∂ξi · ai = ∇X{•} : I (3b)

With the above equations, the divergence theorem is [23]


V
∇ X · {•} dV =



S
{•} ·N dS (4)

where N is a unit outward normal vector on the surface S.
We now move our attention to the surface description. Let

r denote an arbitrary vector expressed in terms of the individ-
ual components of the general surface curvilinear coordinate
systemξα, i.e., r = r(ξ1,ξ2). We can always associate two
new doublets of vectors (aα and aα) with the general curvi-
linear coordinateξα, by coordinate transformations [23].

aα = ∂r
∂ξα and aα = ∂ξα

∂r (5a)
I = δα

β aα ⊗aβ whereδα
β = aα · aβ (5b)

whereaα andaα are referred to as covariant and contravariant
surface basis vectors, respectively.I and δαβ are the mixed-
variant surface identity tensor and the mixed Kronecker delta,
respectively (α, β = 1, 2). Note that the surface identity ten-
sor also can be expressed byI = I − N ⊗ N.

The vectorsaα andaα are connected with the geometrical
characteristics

aα = aαβaβ with aαβ = aβα = aα · aβ (6a)
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aα = aαβaβ with aαβ = aβα = aα · aβ (6b)

where aαβ and aαβ are surface metric tensors, and these two
mappings are inverse to each other, i.e. aαγaγβ =δα

β.
If a quantity {•} is a surface vector eld dened throughout

a surface S, which is bounded by a closed curve L, then the
surface gradientand divergence operators in a 2D general
curvilinear coordinates are dened as follows:

∇ X{•} =∂{•}
∂ξα ⊗aα (7a)

∇ X · {•} =∂{•}
∂ξα · aα = ∇ X{•} :I (7b)

With the above equations,we introduce the surface diver-
gence theorem as follows [54]:



S
∇ X · {•} dS

=


L
{•} ·N dL −



S
κ{•} ·N dS (8)

whereN is the unit outward bi-normal vector to the boundary
curve L (see Fig. 1), and κ = −∇ X · N is the total curvature
(twice the mean surface curvature) [25].

2.2 Kinematics

We use the notation χ : V → R3 for the deformation of body
B. A motion χ is the vector eld of the mapping x = χ (X, t ),
of a material point in the reference conguration X ∈ V to a
position in the deformed conguration x ∈ v. The kinematics
of a typical particle are described by the displacement vector
eld in the spatial description, u(X, t ) = x (X, t ) − X. The
kinematics of an innitesimal bulk element are described by

F(X, t) =∂χ (X, t)
∂X = ∇X x (X, t ) (9a)

F−1(x, t) =∂χ −1(x, t)
∂x = ∇x X(x, t) (9b)

where F(X, t) and F−1(x, t) are the deformation gradient
and inverse deformation gradient,respectively.Note that
J (X, t) = dv/dV = det F(X, t) > 0 is the Jacobian deter-
minantof the deformation gradientdening the ratio of a
volume element between the material and spatial congura-
tion.

Assuming conformity,the surface displacement u(X, t )
can be determined by u(X, t )|S = u(X, t ). The motion of an
arbitrary differential vector element dX can be mapped by the
deformation gradient F to a vector dx in the deformed con-
guration. However, a unit normal vector N in the material

conguration cannot be transformed into a unit normal vec-
tor n in the spatial conguration using solely the deformation
gradient [29, 54]. This motivates us to follow the kinematics
of an innitesimal surface element [38, 39].

F(X, t) =∂χ (X, t)
∂X ·I = ∇ Xx (X, t ) (10a)

F−1(x, t) =∂χ−1(x, t)
∂x ·i = ∇xX(x, t) (10b)

whereF(X, t) andF−1(x, t) are the surface deformation gra-
dient and inverse surface deformation gradient. NoteF is a
mapping from the bulk (3D) to the surface (2D), so it is rank-
decient (it has rank 2, whereas full-rank would be 3). The
I = I − N ⊗ N andi = i − n ⊗ n are the mixed surface
unit tensors with the outward unit normal vectors N and n,
whereI andi act as a surface (idempotent) projection tensors
in material and spatial congurations, respectively. Note that
J (X, t) = da/dA = detF(X, t) > 0 is the Jacobian deter-
minant of the surface deformation gradient dening the area
ratio of a surface element between material and spatial con-
guration.

We introduce C andC, the right Cauchy-Green tensors in
the bulk and on the surface, respectively, as

C = FTF (11a)
C =FT F (11b)

and I1 = tr(C) is the rst principal invariant. The detailed
derivation for the surface kinematics can be found in Do
Carmo [19], Green and Zerna [23], Steinmann [54]. Note that
we cannot perform the inverse of the surface right Cauchy-
Green tensor due to its rank deciency. Nevertheless, we can
still obtain its inverse form in the generalized sense,

C−1 =IC −1I (12)

which will be utilized in the forthcoming developments for
dening the surface kinetic law.

2.3 Mechanical equilibrium

Mechanical equilibrium is assumed to be maintained at all
times during the motion. The strong form of the correspond-
ing governing equation is

∇ X · P + B = 0 in V (13a)
PN −∇ X ·P = T on ST (13b)

u = up on Su (13c)
[[PN]] = 0 on L (13d)

123



Computational Mechanics

Fig. 1 Schematic illustration of
the reference, initial, and current
state of a continuum body. The
initial state is assumed to be
isotropically scaled from the
reference state. The reference
volume and surface, and
boundary are denoted by V and
S, and L respectively. The
normal vector to the surface in
the reference and current
conguration (N and n) and the
bi-normal vector to the
boundary (N) are shown, where
the over-tilde indicates surface
quantities

where P andP are the rst Piola-Kirchoff stresses in bulk and
on surface, B and T are the body force and the traction vector,
and up is the prescribed displacement. Note that a Neumann-
type boundary condition is also dened on boundary curves
that [[•]] indicates summation over surfaces intersecting on
boundary curves [54].

2.4 Species balance

Through species (or mass) balance, the strong form for the
corresponding governing equation is [50]:

Ċ + ∇X · J = r in V (14a)
̇C + ∇ X ·J − J · N = i on SC (14b)

J = J p on SJ (14c)
[[J · N]] = 0 on L (14d)

where C is the bulk nominal concentration (the number of
species per unit reference volume),C is the surface nomi-
nal concentration (the number of species per unit reference
area), J is the bulk nominal ux (the number of species per
unit time per unit area), andJ is the surface nominal ux (the
number of species per unit time per unit length). The r and i
are the source/sink terms for the number of species injected
into the reference volume and area per unit time, andJ p is
the prescribed surface ux.Equation (14a) is the standard
species balance equation prescribed for the bulk in the ref-
erence conguration.Equation (14b) describes the species
balance on the surface, where the third term on the left hand
is similar to the source i , but describes the outward normal
ux from the bulk to the surface; note that species can get
to the surface either from the exterior (environment) or from
the interior (bulk). Additionally, Eq. (14) are supplemented

with initial conditions,

C(X, t = 0) = C0 (15a)
C(X, t = 0) =C0 (15b)

where C0 andC0 are the initial species concentration in the
bulk and on the surface at time t= 0. Note that we assume
homogeneous initialconditions;this choice willbecome
apparent as we discuss the general solution process for the
corresponding boundary value problems in Sect. 5.

2.5 Thermodynamic considerations

In addition to the free energy density in the bulk, we consider
the free energy density on the surface. We will denote the bulk
and surface free energy densities as

(F, C) and ( F, C) (16)

where we assume that they are functions of the deformation
gradient and nominal concentration in the bulk and on the
surface, respectively.

Considering a system that includes an elastic and porous
solid component coupled with species that are free to migrate
in the porous network, the rate of change of the system’s free
energy G has to account for several effects [2, 13, 27, 29, 31].
This can be expressed as

Ġ =


V
̇ dV +



S
̇ dS −



V
Bẋ dV

−


S
Tẋ dS −



V
μr dV −



S
μi dS (17)
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where the third and fourth terms are the rate of mechanical
work by the body force B and traction vector T, and the fth
and sixth terms are the rate of chemical work by the bulk
chemical potential μ and the surface chemical potential μ.
Note that thermodynamics dictate that the free energy of the
system should not increase, i.e.,Ġ ≤ 0.

Substituting Eqs. (13) and (14) into Eq. (17), the rate of
change of the free energy of the system can be expressed as
follows,

Ġ =


V
̇ dV +



S
̇ dS −



V
P : Ḟ dV

−


S
P : ̇F dS

−


V
μĊ dV −



S
μ̇C dS

+


S
(μ − μ) J · N dS

+


V
J · ∇ Xμ dV

+


S
J · ∇ Xμ dS ≤ 0 (18)

Using the chain-rule, the rate of bulk and surface free energy
densities can be expressed as

̇ = ∂
∂F : Ḟ + ∂

∂C Ċ (19a)

̇ = ∂
∂F : ̇F + ∂

∂C
̇C (19b)

By substituting Eq. (19) into Eq. (18), and rearranging terms
yields

Ġ =


V

 ∂
∂F − P


: Ḟ dV

+


S

 ∂
∂F −P


: ̇F dS

+


V

 ∂
∂C − μ


Ċ dV

+


S

 ∂
∂C − μ


̇C dS

+


S
(μ − μ) J · N dS +



V
J · ∇Xμ dV

+


S
J · ∇ Xμ dS ≤ 0 (20)

where each integralrepresentsa distinctmechanism of
energy dissipation,associated with mechanicaland chem-
ical works.The inequality must hold at every point of the
continuum body and atall times during a thermodynamic

process. To satisfy the constraint, the Coleman-Noll proce-
dure [29] states that each integrand in Eq. (20) to be either
negative or equal to zero.

From the rst four terms in Eq. (20) we obtain the follow-
ing constitutive relations

P = ∂(F, C)
∂F and μ = ∂(F, C)

∂C (21a)

P = ∂( F, C)
∂F and μ =∂( F, C)

∂C (21b)

for the bulk and surface rst Piola–Kirchhoff stresses tensors,
and the bulk and surface chemical potentials, respectively.

For the fth term in Eq.(20),the most obvious way to
guarantee the dissipation inequality on surface is to impose
the condition [50],

μ(X, t) = μ(X, t ) on S (22)

which prescribes local chemical equilibrium between the sur-
face and the bulk. This point is discussed in McBride et al
[50],where also the possibility of an alternate strategy to
satisfy that constraint is highlighted.

Finally,to maintain thatthe lasttwo terms in Eq.(20)
remain to be negative or zero,we adoptkinetic laws for
diffusion [31]in bulk and on surface.This allows us to
maintain negative semi-deniteness and describes the consis-
tent species diffusion that is driven by gradients of chemical
potential:

J = −M∇ Xμ (23a)
J = −M∇ Xμ (23b)

where M andM are the bulk and surface mobility tensors. In
the upcoming section, we will specialize the symmetric and
positive denite mobility tensors M andM to fully dene the
constitutive laws for the uxes.

3 Specic considerations for hydrogels
In this work,we will focus on a coupled bulk and surface
poroelastic framework for hydrogels. We have to specialize
our choices for the surface and bulk free energy densities,
corresponding constitutive laws,and denition of mobility
tensors for our theory to be complete and to be able to proceed
to the development of the numerical solution scheme.

3.1 Particularizing the surface and bulk free energy
densities

For the free energy densities of polymer in the bulk,we
adopt the Flory-Huggins model [21,22,31,57],assuming
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the following additive decomposition into elastic and mixing
contributions

(F, C) =  e(F) + m(C ). (24)

These can be individually specialized to

 e(F) = 1
2N kBT (I1 − 3 − 2 ln J ) (25a)

 m(C) = −kBT



C ln

 1 + C
C


+ χ

1 + C


(25b)

where  is the volume of a solvent molecule, χ is a dimen-
sionlessparameterof polymer-solventmixing,N is the
number of polymer chains per unitreference volume,kB
is Boltzmann’s constant, and T is the absolute temperature.
Note that the rst and second terms in Eq.(25b) represent
the entropy and enthalpy of mixing, respectively [31].

Following [2, 12, 13, 31, 32], we assume that the polymer
chains and the diffusion species are individually incom-
pressible.Furthermore,the gel is a condensed matter with
negligible void space, so any volume change of the hydrogel
is due to species diffusion, thus

1 + C = J ⇒ C = J − 1
 . (26)

Similar to Eq. (24), we assume that the surface free energy
density of the hydrogel is also decomposed into elastic and
mixing contributions as (see Remark 2))

( F, C) =  e(F, C) + β m(C) (27)

which can be individually expressed as

 e(F, C) = κ
2

J − 1 − C2 + γJ (28a)

 m(C) = −kBT



 C ln

 1 + C
 C


+ χ

1 + C



(28b)

In a microscopic description,the length scales of polymer
chains and solventmolecules are very different.Focusing
on the surface, where the interaction of polymer chains and
solvent molecules is crucial, and more specically the nite
thickness of the surface zone, here we consider the the ide-
alization of a constant number of layersβ of potential sites
that solvent molecules can occupy in the surface zone. Here,
 is the area that a solvent molecule occupies on the sur-
face,χ is a dimensionless parameterof polymer-solvent
mixing. In the second term of the right hand side of Eq. (28a),
we consider a constant surface energy per unit current area
γ [J/m2], which leads to a uid-like response for the aggre-
gate. Additionally, it is not realistic to enforce the equivalent

of exactincompressibility forthe surface,as one cannot
constrain the number of layers of species on the surface,
even though the constituents are individually incompressible.
Thus, we introduce a penalty term to loosely introduce a con-
straint for species concentration in the surface connected with
the area change of the boundary, with a penalty coefcient
κ [J/mol/m2].

Remark 2 (The application of Flory-Huggins model to sur-
face poroelasticity) In the Flory-Huggins model [22, 33], the
solvent and polymer molecules are considered to be arranged
in the 3D lattice sites such that each site may be occupied
either by a solvent molecule or by a segment of the polymer
chain, and the equations of entropy and enthalpy of mixing
are derived in the statistical thermodynamics approach (see
Chapter 7 of [57] for the details). Without loss of generality,
the Flory-Huggins model can be also considered on the 2D
lattice model,where the probability of encountering a site
occupied by the solvent and polymer molecules is the func-
tion of the area. Although the number of adjacent sites would
be different in 2D and 3D models, the Flory parameters χ and
χ are introduced to eliminate the number of adjacent sites,
and their dependence on the dimensionality is to be tted by
experimental data. We introduce the parameterβ in the mix-
ing part of surface free energy m to account for the number
of 2D lattice layers that arise due to the size difference of sol-
vent molecules and polymer chains considering the surface
zone, but we do not consider the interaction energy between
the layers.Note that the elastic part of surface free energy
 e does not include the number of layer parameterβ which
we assume to be a constant.

3.2 Constitutive relations

Using Equation (21), (25) and (28), the specic constitutive
relations are obtained as follows:

P = NkBT

F + α1J F−T


with

α1 = −1
J + 1

N

 1
J + ln

 J − 1
J


+ χ

J 2


(29a)

μ = kBT

ln

 C
1 + C


+ 1

1 + C + χ
(1 + C)2



(29b)
P = 

κJ − 1 − C+ γ J F−T (29c)

μ = kBT


ln
  C

1 + C


+ 1

1 + C + χ
1 + C2



− κJ − 1 − C ⇒ C = C (μ,J ) (29d)

which are the specic forms of the constitutive relations for
the rst Piola–Kirchhoff stresses and the chemical potential
in the bulk and on the surface. Note that we do not use the
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constitutive relation of Eq. (29b), but the incompressibility
condition of Eq.(26) to determine the bulk concentration
C . On the other hand, we do not have an incompressibility
condition for solvent molecules on surface, and we should use
the constitutive relation Eq.(29d) to determine the surface
concentrationC . However, there is no closed-form solution
for the surface concentration in Eq. (29d), so we need to solve
the constitutive relation numerically.

3.3 Bulk and surface diffusion

Particularizing the expression for the bulk mobility,again
following [31], and prescribing an equivalent denition for
surface mobility

M = C D
kBT C−1 (30a)

M =
C D
kBT

C−1 (30b)

where kB is the Boltzmann’s constant, T is an absolute tem-
perature. The coefcient of diffusion of the solvent molecules
D in the bulk andD on the surface are assumed to be isotropic
and independent of the deformation and concentration as the
simplest approximation [31]. Note that the current concen-
trations are related to the nominal concentrations as c = C / J
andc =C/ J . It is important to note that Eqs. (30a) and (30b)
are formulated to consider the change of the porosity of the
solid due to the nite deformations, as the mobility tensors
are inversely proportional to the Green deformation tensors.

4 Mixed nite element formulation
This section presents a nite element formulation based on
the nonlinear theory in Sects. 2 and 3. The main aim here is to
provide an accessible open-source implementation that will
be utilized by the research community, and thus, we choose
FEniCS [1, 46] for the implementation; a choice which also
affects the set-up of the mixed nite element formulation. The
formulation starts with the strong form of the governing equa-
tions and initial and boundary conditions. We rst introduce
the weak form of the problem and subsequently describe the
normalization, discretization, solution steps, and some spe-
cic implementation details for FEniCS. As the main focus
here is the coupled mechanics between diffusion and defor-
mation in bulk and on surface, we here-on neglect the source
terms, i.e., r = i= 0.

4.1 Three-field weak form

Since the chemicalboundary conditions for hydrogels are
often specied in terms of chemicalpotentialor diffusion

ux (proportional to the gradient of chemical potential),it
is convenient to use the chemical potential (instead of sol-
vent concentration) as an independent variable in the nite
element formulation. Additionally, this allows us to avoid C1

continuity requirements [13]. For this purpose, we rewrite the
free energy densities as a function of the deformation gradi-
ent and chemical potential through a Legendre transform [13,
31,50],which replaces a variable with its thermodynamic
conjugate:

(F, μ) = (F, C) − μC (31a)
( F, μ) =( F, C) − μC (31b)

After the Legendre transform, similar to Equation (21), the
constitutive relations can be rewritten as follows:

P = ∂(F, μ)
∂F and C = −∂(F, μ)

∂μ (32a)

P = ∂( F, μ)
∂F and C = −∂( F, μ)

∂μ (32b)

which yields the same constitutive relation for the surface rst
Piola–KirchhoffP, but the bulk rst Piola–Kirchhoff stress P
should be modied because the incompressibility condition
was enforced by substituting the Eq.(26) into Eq.(25) to
eliminate the bulk concentration C [32]:

P = NkBT

F + α2J F−T


with

α2 = −1
J +

β
N

 1
J + ln

 J − 1
J


+ χ

J 2 − μ
kBT



(33)

Note that the bulk concentration C can still be obtained by
incompressibility condition of Eq. (26), but the surface con-
centrationC is now given implicitly by solving a nonlinear
algebraic equation in Eq. (29d).

Keeping into account the inability of the FEniCS frame-
work to solve nonlinear equations at the Gauss-point level,
we proceed to solve Eq. (29d) directly with the mixed nite
element method. The weak form of the problem is obtained
by using a set of test functions, which satisfy the necessary
integrability conditions.By multiplying Eqs.(13a),(14a)
and (29d) with the test functions δu, δμ and δC , and inte-
grating over the domain,respectively,then we obtain that



V
P : ∇Xδu dV +



S
P : ∇ Xδu dS = 0 (34a)



V
Ċ δμ dV −



V
J · ∇Xδμ dV +



S
̇C δμ dS

−


S
J · ∇ Xδμ dS = 0 (34b)
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

S


μ − kBT



ln
  C

1 + C


+ 1

1 + C + χ
1 + C2



− κJ − 1 − C
δC dS = 0 (34c)

where the derivation of Eq. (34b) can be found in Appendix
A. The statement of the weak form is to nd the trial func-
tions,u, μ and C, such thatthe integrals in Eq.(34) are
satised for any permissible test functions, δu, δμ and δC.

4.2 Normalization

For the nite element simulations in the following section, all
variables and parameters are normalized, as denoted by {•}.
All lengths are normalized by a characteristic dimension, H
(e.g. the length of the edge of a cube in the reference cong-
uration). The chemical potential and stresses are normalized
as follows,

μ = μ
kBT , P = P

N kBT , P =
P

N kBT H (35)

Following the normalization of the surface stress,surface
energy and penalty coefcient should be normalized in the
same way,

γ = γ
N kBT H, κ = κ

N kBT H (36)

Solvent concentration and time are normalized as follows,

C = C, C =  C, t̂ = t
τ (37)

where τ = H2/D is the characteristic time scale of diffusion.
Recall that the shear modulus linearized about the unde-

formed dry state (F = I) is G = Nk BT [12]. In a
homogeneously swollen stress-free state,the deformation
gradient takes the form F = λ0I, with λ0 the swelling stretch,
the shear modulus about that state is dened as follows [12]:

G0 = N kBT
λ0

(38)

Considering again a homogeneously swollen state, the elas-
tocapillary length scale is dened by  = γ /G0 for constant
surface free energy per unit current surface area. Taking into
account the characteristic dimension H the normalized elas-
tocapillary length scale is given as

 = 
H = γ λ0 (39)

By substituting the normalized variables into the weak forms
in Equation (34), we can obtain the normalized weak forms,

for the bulk and the surface.


V
P : ∇Xδu dV +



S
P : ∇ Xδu dS = 0 (40a)

H




V

 dC
dt̂ δμ −J · ∇ Xδμ


dV

+


S


dC
dt̂ δμ −J · ∇ Xδμ


dS = 0 (40b)



S


μ − ln

 C
1 +C


− 1

1 +C
− χ


1 +C

2

+ NH κ


J − 1 −C
 

δC dS = 0 (40c)

where N  and NH are the dimensionless parameters, and
the normalized uxes in bulk and on surface are obtained by

J = −CC−1 · ∇Xμ (41a)
J = −C

D
D

C−1 · ∇ X
μ (41b)

whereD/D is the ratio of diffusivity between in bulk and on
surface.

4.3 Temporal discretization

The backward Euler scheme is used to integrate Eq.(40b)
over time:

H




V

 1
 t̂


C t̂+ t̂ − C t̂


δμ −



V
J t̂+ t̂ · ∇Xδμ


dV

+


S

 1
 t̂

C t̂+ t̂ − C t̂


δμ −


S
J t̂+ t̂ · ∇ Xδμ


dS = 0

(42)

where the superscripts indicate the time step, at the current
time step (t̂ +  t̂ ) or the previous stept̂. We can combine
Eqs. (40a), (40c) and (42) as


V
P : ∇Xδu dV +



S
P : ∇ Xδu dS

+
H




V


C − C t̂


δμ − ̂tJ · ∇ Xδμ


dV

+


S

C −C t̂


δμ − ̂tJ · ∇ Xδμ


dS

+


S


μ − ln

 C
1 +C


− 1

1 +C
− χ


1 +C

2

+ NH κ


J − 1 −C
 

δC dS = 0 (43)
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where the superscript (t̂+ t̂ ) is omitted for all the terms at the
current time step andC t̂ andC t̂ are the species concentration
at the previous time step in the bulk and on the surface.

4.4 Spatial discretization

A mixed nite element method is utilized to solve for the
normalized displacement,chemicalpotentialand surface
concentration elds concurrently.To avoid the numerical
instability with the mixed method, we should employ proper
spatial discretization techniques [13].We utilize a Taylor–
Hood element[56]for the bulk quantities (displacement
and chemicalpotential),where the interpolation order for
chemicalpotential(linear) is one-order lower than for the
displacement (quadratic). We note that a linear interpolation
is utilized for the surface concentration eld.

The normalized displacement and chemical potential are
interpolated through the domain of interest as

u = Huun, μ = Hμµn, C = HCCn (44)

where Hu, HμandHC are the shape functions,un, µn andCn

are the nodal values of the normalized displacement, chem-
ical potential and surface concentration,respectively.Note
that the shape functionHC is only dened on surface ele-
ments. The test functions are discretized in the same way

δu = Huδun, δμ = Hμδµn, δC = HCδCn (45)

The stresses,concentrations,and uxes are evaluated at
integration points, depending on the gradients of the displace-
mentand chemicalpotentialvia the constitutive relations.
Taking the gradient of Eq. (44), we obtain that

∇ Xu = ∇XHuun = Buun (46a)
∇ Xμ = ∇XHμδµn = Bμµn (46b)
∇ X

C = ∇XHCCn = BCCn (46c)

where Buand Bμare the gradients of the shape functions in
the bulk, andBC is the one on the surface.

4.5 Nonlinear solution

The weak form in Eq. (43) can be expressed as a system of
nonlinear equations,

N (d) = f with d =

un µn Cn

T
(47)

Note thatN (d) denotes the partof the weak form thatis
not known at current time step,and we take all the known

quantities to the right-hand side and denote as f (which is
known from previous time step). The residual of nonlinear
equations in iteration step iis given by Ri = f − N (di ),
which can be solved using the Newton–Raphson method.
In particular,the procedure requires the calculation of the
tangent Jacobian matrix at each iteration, namely,

∂N
∂d


di

=

⎡
⎢⎣

Kuu Kuμ KuC

K μu K μμ K μC

K Cu K Cμ K CC

⎤
⎥⎦ (48)

FEniCS version 2019.2.0 [1,46] is used to numerically
solve the coupled non-linearequationsvia the Portable
Extensible Toolkitfor Scientic Computations(PETSc)
Scalable Nonlinear Equations Solvers (SNES) interface [4].
This process repeats until a level of convergence specied
within the SNES solver. At each iteration, the block Jacobian
matrices are set up using multiphenics [5], a python library
that also facilitates the denition of boundary restricted vari-
ables within FEniCS, a feature necessary for dealing in our
case with the surface concentration. We note that the surface
chemicalpotentialis tied with the denition of the corre-
sponding bulk quantity, but the surface concentration is not.

4.6 FEniCS implementation details

Although many documents [11,40,45]provide FEniCS
implementation details, it is still not trivial to deal with sur-
face kinematics using FEniCS as several surface quantities
have a rank deciency. For educational purposes, we review a
few important mathematical denitions of surface quantities,
and then we provide their corresponding FEniCS denitions.

The surface unit tensor is dened byI = I−N⊗N, which
can be interpreted as surface (idempotent) projection ten-
sor, and surface deformation gradient can be obtained from
surface projection of bulk deformation gradientF = FI. Sim-
ilarly, the surface gradient is obtained by surface projection
of the bulk gradient∇ Xμ = ∇XμI.

1 N = FacetNormal ( mesh )
2 I_bulk = Identity (3)
3 I_surf = I_bulk - outer (N , N )
4 F_surf = dot ( F_bulk , I_surf )
5 grad_mu_surf = dot ( grad ( mu ) , I_surf )

Note thatthe surface unittensorI is absentfrom the
(principal) normal component N ⊗ N; as a result,the sur-
face projection always leads to a rank deciency,and we
cannot perform the inverse operations for the surface quanti-
ties. Nevertheless, they possess an inverse in the generalized
sense, i.e.,F−1 :=IF −1 andC−1 :=IC −1I.

6 F_surf_inv = dot ( I_surf , inv ( F_bulk ) )
7 C_surf_inv = dot ( I_surf , dot ( C_bulk ,

I_surf ) )
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In addition, we cannot perform the determinant operations
for the surface quantities due to rank deciency. We have the
alternative way of using Nanson’s formula to obtain the deter-
minant of surface quantities, i.e.,J = detF := |cofFN|.

8 A_surf = dot ( cofac ( F_bulk ) ,N )
9 J_surf = sqrt ( dot ( A_surf , A_surf ) )

5 Numerical examples
To study the performance of the suggested framework,we
analyze the transient responses for two initial boundary value
problems involving bulk and surface poroelasticity of hydro-
gels: (1) free contraction of a cube with smooth edges and (2)
uniaxial tension of a cube with sharp edges. In both cases the
edge length of the cubes is 10−3m. In the following numeri-
cal study, we take the initial swelling ratio at λ0 = 3.215, and
the Flory interaction parameter at χ = χ = 0.2. At room
temperature kBT = 4 × 10−21J/mol, and the representative
value of the volume and area per molecule are  = 10−28m3

and = 10−19m2. In the absence of solvent molecules, the
dry network has shear moduli of N kBT = 4 × 104N/m2,
which gives N  = 10−3 and NH = 10 3 [2]. The char-
acteristic dimension and time scales are set as H = 10−3m
and τ= 1.0 sec.Withoutloss of generality,we prescribe
the following values for the parametersβ = 1.0,γ = 1.0,
κ = 10−3 andD/D = 1.0.

For robustness ofthe numericalprocedure,we follow
a two-stage process.We initialize from a homogeneously
swollen state, with initial homogeneous swelling stretch λ0,
neglecting elastic surface energy contributions.In the rst
stage, we ramp the surface energyγ linearly, from zero to its
prescribed value, for the time interval t /τ ∈ [0.0, 1.0]. This
time interval is signicantly smaller compared to the time the
system needs for equilibration. Then in the second stage, we
exponentially increase the time steps t /τ until equilibrium
is attained, while holding the value of the surface energyγ
xed.

In Fig. 1, we illustrate the distinction between the dry net-
work as the reference state (stress-free conguration) and the
free-swollen network as the initial state. In cases of homo-
geneous swelling at the initial state, this initial conguration
can be characterized by the initial deformation gradients F0
andF0, which arise due to the initial free-swelling with a
swelling ratio of λ0:

F0 = λ0I and F0 = λ0I (49)

It is importantto emphasize thatourapproach does not
employ a decomposition of the deformation gradientin a
manner similar to elastoplasticity,where separate constitu-
tive assumptions are often made for individual components

of the decomposition. While it is possible to decompose the
deformation gradient using F = FF0 for a direct relationship
between the initial and current states, with Frepresenting the
deformation gradient of the current state relative to the free-
swelling state [32], the deformation at the free swelling state
(initial state) is chosen based on a homogeneous stretch λ0,
and from that point the deformation ensues.

The initialchemicalpotentialμ0 is derived by equat-
ing the stress expression from Eq.(33) to zero using the
free swelling stretch λ0, as outlined in previous works [31,
32]. This approach allows us to establish the initial chemical
potential under the conditions of stress-free swelling,

N


1
λ0

− 1
λ3

0


+ ln


1 − 1

λ3
0


+ 1

λ3
0

+ χ
λ6

0
= μ0 (50)

We can obtain the initial free-swelling stretch λ0 = 3.215
by setting the immersed condition, μ0 = 0.0 [31]. We can
also obtain the initial normalized surface concentration by
numerically solving the normalized constitutive relation of
Eq. (29d), which yields the initial value,C0 ≈ 9.3673. It is
important to note that the boundary of swollen hydrogel is
assumed to be impermeable for the cases studies here, which
is formulated by the ux boundary condition,J p = 0 (see
Eq. 14). That is, the species on the surface are not allowed
to migrate into the exterior (environment). We note that for
immersed conditions, we would need to assume local equi-
librium instantaneously on the surface which would override
the surface diffusion mechanism.

To investigate the numerical stability when time step is
small (t→ 0), the block Jacobian matrix in Eq. (48) can
be reduced to

∂N
∂d


di

=

⎡
⎢⎣

Kuu Kuμ KuC

K μu K μμ K μC

K Cu K Cμ K CC

⎤
⎥⎦

≈

⎡
⎢⎣

Kuu Kuμ KuC

K μu 0 K μC

K Cu K Cμ K CC

⎤
⎥⎦ (51)

whereK μμis proportionalto time step (t ), and it
approaches zero atthe shorttime limit.This indicates the
saddle point problem structure inherently,which is known
to lead to numerical oscillations; however, as the time pro-
gresses in the transient process, the parabolic nature of the
diffusion equations regularizes the problem (see [58] Chap-
ter 3 for the details of the saddle point problem of 3 × 3 block
matrices). It is worth noting that this type of oscillations for
the bulk poroelasticity problem, stemming from the inf-sup
problem are known to be aleviated by several approaches,
including the choice of Taylor–Hood spaces (as shown for
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Fig. 2 Temporal sequence of
the chemical potential during
the free contraction of cubes

Fig. 3 Temporal sequence of
the bulk contraction during the
free contraction of cubes

the nonlinear problem in [13]).Here we have also chosen
a Taylor–Hood space between the displacement and chemi-
cal potential, but also between the displacement and surface
concentration.

5.1 Free contraction of a cube with smooth edges

In this example,we rstinvestigate the surface and bulk
poroelastic effects on a hydrogel cube. The cube is consid-

ered to be castin a fully swollen state,and then released
in an environmentin which itis free to deform,butwith
which it cannot exchange solvent (J p = 0). For the nite
element implementation of the free contraction of cubes, we
use 3063 tetrahedral elements. The two-stage solution pro-
cedure detailed above is followed here.

We plot the temporal sequence of the nite element simu-
lation for the chemical potential, bulk concentration, surface
concentration, and surface ux in Fig. 2, 3, 4 and 5, respec-
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Fig. 4 Temporal sequence of
the surface concentration during
the free contraction of cubes

Fig. 5 Temporal sequence of
the surface ux during the free
contraction of cubes

tively,where allthe values are normalized.We remove a
quarter of the domain from the images of chemical potential
in Fig. 2 and bulk concentration in Fig. 3 to show the con-
tour plot on two sections of the interior along with the eld
on the surface. The surface ux in Fig. 5 is shown on only
one face of the cube for visualization purposes. Images are
taken at normalized time t /τ = 0.0, 1.0, 8.4, 7.8 × 104 in
the clockwise,which are denoted by Step 1,2,3 and 4 in
the following discussion. In Step 1 of Figs. 2 to 5, the cubes

are atthe initialstate by a homogeneous swelling stretch,
λ0 = 3.215. It is noteworthy that the cube is taken to have
smooth edges (a case with sharp edges will be discussed in
the following example).

Step 2 of Figs. 2 to 5 corresponding to the time steps that
the linearly ramping of the surface energyγ are included.
This is for time t /τ = 1.0 which is signicantly smaller (4
orders of magnitude) compared to the equilibration time. We
note that the current interpolation scheme leads to unstable
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Fig. 6 Surface energy drives the species migration between in bulk and
on surface. a The numbers of species in bulk and on surface are tracked
with respect to the normalized time. b The change of volume and sur-
face area are tracked with respect to the normalized time. During the
surface energy ramping (t /τ < 100), the bulk is gaining the species,
and the volume increases, while the surface is losing the species and the
surface area decreases. While surface energy is being xed (t /τ ≥ 100),

the species still migrate from the surface into the bulk due to chemi-
cal potential. At equilibrium (t /τ ∼ 1.6 × 105), there is no migration
between the bulk and the surface.We note thatthe totalnumber of
species is constant at all times, and the volume increase of bulk is iden-
tical to the sum of the volume of species molecules moving into the
bulk,i.e.,V (J − 1)dV = 

V
C − C0

dV due to the incompress-
ibility condition of Eq. (26)

results if the ramping time is signicantly shorter, pointing
to the need for the developmentof a more advanced sta-
bilization scheme in the future.This pathology might be a
consequence of the three-eld formulation.As the surface
energy increases, the elastocapillary length becomes larger
than the characteristic dimension H ; as a result, the surface
effects become dominant that the geometry becomes almost
spherical. In Step 2 of Fig. 2, the chemical potential is hetero-
geneous due to the deformation driven by surface energy. In
Step 2 of Figs. 3 and 4, the distribution of the bulk concentra-
tion on boundary is distinct from the surface concentration,
and has notevolved as rapidly.This is owing to the fact
that the species migration in bulk is slower than the one on
surface, a specic modeling choice to highlight the lack of
volumetric constraints for surface diffusion. However, in the
equilibrium state, as shown in Step 4 of Figs. 3 and 4, their
distributions are similar on the surface.

On top of surface and bulk diffusion, in this system there
is an exchange of species between the surface and the bulk,
as captured in the strong form of the balance law for Eq. (14).
The species exchange between bulk and surface is easily
tracked by accounting for the molecular incompressiblity
condition of Eq. (26), indicating that the change of volume
of the bulk is the same as the totalvolume of the species
migrating from bulk to surface. In Fig. 6, we track the nor-
malized total species population in bulk and on surface at
all time steps by integrating the normalized concentrations
over the bulk and the surface accordingly.We can observe

the species migration between t /τ = 0.0 and 7.8×104while
the total number of species is conserved. In Step 2 of Fig. 4,
the surface concentration is high near the smoothened vertex
of the cube because the deformation at that location is high
compared to the facet,which subsequently leads to higher
chemical potential and species migration. In Step 2 of Fig. 5,
the surface diffusion is mainly directed from the edges to the
interior of the facet. The direction of the surface diffusion is
governed by the surface deformation and chemical potential
(see Eq. 41).

Beyond Step 2, and for the rest of the transient response
the surface energy (γ = 1) is maintained at the same level,
and we exponentially ramp the time steps towards equilib-
rium. The deformation of the cubes is small beyond the initial
surface energy ramping, but the concentration (especially in
the bulk) signicantly changes,driven by gradients of the
chemicalpotential.In Step 3 of Figs. 3 and 4,we can see
the diffusion in bulk and on surface, and the species migrate
toward the interior of the facetof the cubes.In Step 4 of
Fig. 2,the simulation reaches the equilibrium state,which
is conrmed by the homogeneous chemicalpotential.the
distribution of the bulk concentration on the boundary is
similarto the surface concentration,as shown in Step 4
of Figs. 3 and 4.In Fig. 6,we can observe the signicant
migration between bulk and surface during ramping the sur-
face energy (t /τ< 1), butthe migration between bulk
and surface is negligible with surface energy being xed
(1 < t/τ ∼ 7.8 × 104).
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Fig. 7 Temporal sequence of
the chemical potential during
the tension of cubes

Fig. 8 Temporal sequence of
the bulk contraction during the
tension of cubes

Fig. 9 Temporal sequence of
the surface concentration during
the tension of cubes
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Fig. 10Temporal sequence of
the surface ux during the
tension of cubes

5.2 Uniaxial tension of a cube with sharp edges

In this example,we rstinvestigate the surface and bulk
poroelastic effects on a hydrogelcube subjectto external
load.Similar to the previous example the cube is consid-
ered to be cast in a a fully swollen state, and released in an
environment with which it cannot exchange solvent, but in
this case it is subject to displacement controlled loading. The
two-stage solution procedure detailed above is followed here
as well.The lateral surfaces at x (t= 0) = ±H /2 are the
clamped boundaries, and the others are free. For the nite ele-
ment implementation of the tension of cubes, we use 11,039
tetrahedral elements. In this case, the displacement boundary
conditions at lateral surfaces, are ramped linearly from zero
in the same timeframe thatramping of the surface energy
takes place.

In this case external mechanical loading along with surface
and bulk energy contributions together dictate the transient
response of the system.The other conditions are the same
as in the previous example of Sect. 5.1. We note that for this
example, we have taken a cube geometry with sharp corners.
We plot the temporal sequence of nite element simulations
for the chemical potential, bulk concentration, surface con-
centration,and surface ux in Figs. 7 to 10,respectively,
where allthe values are normalized.The surface ux in
Fig. 10 is shown on only one face of the cube for visualization
purposes.Images are taken at normalized time t /τ = 0.0,
1.0, 5.4 × 102, 4.1 × 106 in the clockwise, which are denoted
by Step 1, 2, 3 and 4 in the following discussion.

In Step 1 of Figs. 7 to 10, the cubes are at the initial state
by a homogeneous swelling stretch, λ0 = 3.215. In Step 2 of
Figs. 7 to 10, the cubes are deformed by the surface energy
and stretch, after the initial load and surface energy ramping.
The cubes are initially clamped at lateral sides, and we lin-
early ramp the surface energyγ = 1 and stretch ε = 68.9%

between t /τ = 0.0 and 1.0.In Step 3 of Figs. 7 to 10,we
maintain the surface energy and the stretch, and we exponen-
tially ramp the time-step size towards equilibrium. In Step 4
of Figs. 7 to 10, the simulation approaches the equilibrium
state. Through the second example, we can observe that sur-
face concentration is distinctfrom the bulk concentration
evaluated on the boundary.

Unlike the previous example in Sect. 5.1, the cube at initial
state has the sharp corners to investigate the impact of sharp
geometric features to the numerical scheme. We can observe
an oscillation of the surface concentration near the edges of
the cube in Fig. 9, which is partially regularized with time,
reminiscent of the enforcement of an initial condition in a
heat conduction problem.This originates from the weakly
enforced continuity condition in Eq. (14d), which states that
the net surface ux on the boundary curve (between the adja-
cent surface elements) is always balanced. Of course, this can
easily be resolved (as in the previous example), where sharp
features can be smoothened at the expense of computational
cost owing to a ner non-structured mesh. Alternative, one
could embark on deriving an appropriate stabilization scheme
for this. We do not consider the impact of these initial oscil-
lations to be signicant to the transient response, similar to
imposing discontinuous chemical potential boundary (with
respect to the initial condition) for swelling of hydrogels [13].
Again, this might be specic to the three-eld formulation,
and a two-eld formulation could also alleviate the issue.

6 Conclusion
A continuum multiphysics formulation and corresponding
nite element implementation has been presented to account
for bulk and surface nonlinear poroelasticity in hydrogels.
The governing equations for the response of a continuum
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body have been presented, and the general constitutive rela-
tions are derived in a thermodynamically-consistent manner,
which is subsequently specialized for hydrogels.The pro-
posed nonlinear theory is numerically solved through the
mixed nite element method by employing the open-source
nite element framework FEniCS.In addition,we provide
FEniCS implementation details that could be important for
problems where surface kinematics are of interest.

In our study, we assumed that the curve and vertex effects
and corresponding thermodynamic contributions [54], such
as curve elasticity and diffusion in this context, are consid-
ered to be negligible compared to the bulk and surface effects.
However, in cases involving contact, such as multiple hydro-
gel contacts,interfacialeffects and curve thermodynamics
would become important and should be considered for more
accurate analyses, as demonstrated in previous works [37, 53,
54]. For the specic scenarios we investigated, the coupling
of bulk and surface poroelasticity was the primary focus,
allowing us to gain valuable insights into the multiphysics
phenomena withoutthe added complexity ofconsidering
curve and vertex thermodynamics contributions.

Two numerical examples are investigated to understand
the effect of coupling bulk and surface poroelasticity. In the
rst example, where a cube with smoothened geometric fea-
tures is investigated (see Figs. 2 to 6), we probe the variation
of concentration,surface ux,and change of volume and
surface area along with the chemical potential, which follow
accounting for a uid-like surface energy for the soft solid.
As a result of the transient procedure and species exchange
between bulk and surface, a smooth cube-like object is grad-
ually transformed into an almostsphericalone.From this
observation, one may expect that the volume of the cube is
decreased. Interestingly, the result is the opposite, as shown
in Fig. 6. It implies that the species collectively migrate from
the surface into the bulk because the volume increase of bulk
is identical to the volume of total species moving into the
bulk; consequently, the volume of the cube rather increases
in spite of the surface area decreasing. This result showcases
that the multiphysical complication could play an important
role in understanding the response of softsolids in length
scales that surface effects dominate.

In the second example (see Figs. 7 to 10), we further inves-
tigate the response of a cube with sharp features,under a
external load, while still accounting for a uid-like surface
energy. Although the distributions of species concentration in
bulk and on the surface are similar on the boundary in the rst
example (see Figs. 3 and 4), the second example showcases
that the pathways of species migrations can be signicantly
different (see Figs. 8 and 9). In this example, we choose the
same mobility constant in bulk and on the surface as the sim-
plest case, but this result still provides an important insight
into hydrogel-based applications at small scales. For exam-

ple,one may use the distinct migration mechanism for the
advanced design of hydrogel-based sensors and actuators.

Even though we focus on hydrogels in this work, the gen-
eral framework and nite element implementation developed
here can allow studying several problems for solids as well in
mechanobiology, where diffusion processes in the bulk and
on the surface are coupled with the elastic response. One may
adoptour numericalframework,butdifferentconstitutive
relations mustbe specialized for studying other materials.
One specic example that the authors plan to pursue is the
modeling of morphogenic processes in tissue mechanics and,
more specically modeling of contractile microtissues [38,
39, 49], where cells apply forces and contract the extracel-
lular matrix (ECM), but at the same time can diffuse within
the bulk of the ECM but also on its periphery,having sig-
nicant implications in problems like wound healing. In this
paper, we report numerical issues that can arise due to sev-
eral reasons and propose approaches to alleviate them. For the
authors’ future work, it would also be interesting to extend
our modelto consider growth mechanisms to accountfor
surface morphology in evolving naturalsystems,such as
encountered during tumor growth.
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Appendix A: Derivation of weak form of
species balance
Staring form Eq. (14a),



V
Ċ δμ dV +



V
(∇ X · J) δμ dV = 0 (A1)

By applying the product rule and divergence theorem [29],
and then substituting Eq. (14b) into Eq. (A1),



V
Ċ δμ dV −



V
J · ∇ Xδμ dV

+


S
̇C δμ dS +



S

∇ X ·J δμ dS = 0 (A2)
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Fig. 11The convergence study was performed with respect to different
numbers of elements (N ele) and normalized time for cube-contraction
simulation.a The diameters in the x-direction are tracked over nor-

malized time for four differentnumbers of elements.b The relative
error with respect to normalized time is shown, with reference values
obtained from the simulation using N ele = 4414 elements

where the last term in Eq. (A2) can be rewritten by product
rule and surface divergence theorem,



S

∇ X ·J δμ dS = −


S
J · ∇ Xδμ dS

+


L

J · Nδμ dL (A3)

where the second term in the right-hand side of Eq. (A3) is
assumed to be zero. By substituting Eq. (A3) into Eq. (A2),



V
Ċ δμ dV −



V
J · ∇ Xδμ dV

+


S
̇C δμ dS −



S
J · ∇ Xδμ dS = 0 (A4)

This equation corresponds to Eq. (34b) in the manuscript.

Appendix B: Convergence study on cube-
contracting example
We perform theconvergencestudy to demonstratethe
simulation results and mesh resolution (see Fig. 11) on cube-
contracting example in Sect. 5.1. During the surface energy
ramping phase (t/τ < 100), the bulk gains species, leading to
a rapid increase in normalized diameters. While the surface
energy is xed (t /τ ≥ 100), the species continue to migrate
from the surface into the bulk due to the chemical potential,
resulting in a gradual increase in normalized diameter. The
diameters stop increasing once the chemical potentials reach
equilibrium (t /τ ∼ 1.6 × 105). It is important to note that the
normalized diameters at multiple normalized times approach
the reference values. Here we conrm a convergence of the
solution following a global deformation metric.
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