

Microscale strain concentrations in tissue-engineered osteochondral implants are dictated by local compositional thresholds and architecture

Byumsu Kim^a, Terri-Ann N. Kelly^b, Hyung Jin Jung^b, Olivia S. Bean^b, Sarindr Bhumiratana^b, Nikolaos Boukla^a, Itai Cohen^f, Lawrence J. Bonassar^{a,d,*}

^a Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, United States

^b EpiBone, Brooklyn, NY, United States

^c Department of Physics, Cornell University, Ithaca, NY, United States

^d Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, United States

ARTICLE INFO

Keywords:

Osteochondral Grafts

Tissue Engineering

FTIR

Digital Image Correlation

Cartilage Micromechanics

Biofabrication

ABSTRACT

Tissue-engineered osteochondral implants manufactured from condensed mesenchymal stem cell bodies have shown promise for treating cartilage defects. Notably, such manufacturing techniques have shown to successfully recapture the bulk mechanical properties of native cartilage. However, the relationships among architectural features, local composition, and micromechanical environment within tissue-engineered cartilage from cell-based aggregates remain unclear. Understanding such relationships is crucial for identifying critical parameters that can predict in vivo performance. Therefore, this study investigated the relationship among architectural features, composition, and micromechanical behavior of tissue-engineered osteochondral implants. We utilized fast-confocal microscopy combined with a strain mapping technique to analyze the micromechanical behavior under quasi-static loading, as well as Fourier Transform Infrared Spectroscopy to analyze the local compositions. More specifically, we investigated the architectural features and composition distributions generated from tissue maturation with macro- and micro-level strain distributions. The results showed that under compression, cell-based aggregates underwent deformation followed by body movement, generating high local strain around the boundaries. Here, local aggrecan concentration was low and local collagen concentration was high. By analyzing the micromechanics and composition at the single aggregate length scale, identified a strong threshold relationship between local strain and composition. Notably, at the aggrecan concentration below 0.015 arbitrary unit (A.U.) and the collagen concentration above 0.15 A.U., constructs experienced greater than three-fold increase in compressive strain. Overall, this study suggests that local compositional features are the primary driver of the local mechanical environment in tissue-engineered constructs, providing insight into potential quality control parameters for manufacturing tissue-engineered constructs.

1. Introduction

For the last three decades, various tissue engineering approaches have been investigated to regenerate cartilage defects. Scientists and engineers have utilized numerous biomaterials, ranging from synthetic scaffolds to biofabrication methods, as well as biofabrication methods, ranging from injection molding to 3D printing. Multiple in vitro cartilage tissue constructs have shown that functionally competent tissue-engineered constructs can be manufactured regardless of specific biofabrication methods (Kock et al., 2012; Little et al., 2011; Patel et al., 2019). Despite the tremendous success in cartilage biofabrication, the mechanical performance in vivo remains a major hurdle for the field (see Fig. 1). Notably, the Food and Drug Administration guidance in the past three decades suggests that the mechanical properties of the engineered constructs should be measured prior to implantation as they could

* Corresponding author at: Meinig School of Biomedical Engineering, Sibley School of Mechanical and Aerospace Engineering, 149 Weill Hall, Cornell University, Ithaca, NY 14853, United States.

E-mail address: lb244@cornell.edu (L.J. Bonassar).

affect the success of the implantation (Center for Biologics Evaluation and Research, 2019). Interestingly, multiple studies have shown that the macro mechanical properties are strongly correlated to the overall composition of the tissue-engineered constructs (Johnstone et al., 2013; Kim et al., 2011; Mohan et al., 2014). Notably, osteochondral tissue engineering technology, the engineered tissue suggesting composition as a potential destructive parameter to predict mechanical properties (Kim and Bonassar, 2023; Rotter et al., 2002; Vunjak-Novakovic et al., 1999). However, to date, no tissue-engineered cartilage constructs have been able to replicate all mechanical properties of native tissue at multiple scales (Gritsch et al., 2015; Little et al., 2011; Patel et al., 2019).

One of the challenges of replicating the mechanical properties of native cartilage tissue arises from the fact that the architectural and compositional distribution of tissue-engineered cartilage constructs do not match native tissue. Regardless of the biomaterials or fabrication methods, tissue-engineered cartilage constructs have extremely different architectural and compositional features compared to native and tissue-engineered cartilage (Crawford et al., 2012; Kon et al., 2012; Nurmukhametov et al., 2021). Previous studies have shown that collagen scaffolds have compressive instabilities that are not observed in native tissue (Kim et al., 2023, 2022). More importantly, such local compositional thresholds are shown to have a strong correlation to the probability of instability or the tissue-engineered cartilage constructs (Middenden et al., 2017). In addition, studies have shown that this local mechanical behavior is predictive of cell death in native and tissue-engineered cartilage constructs (Bartell et al., 2015; Kim et al., 2023). These studies collectively indicate that identifying and monitoring the local composition and mechanical behavior of tissue-engineered cartilage is critical for determining the quality of the tissue-engineered cartilage.

Recent advances in a variety of scaffolding technologies, pellet and micromass culture systems have demonstrated to be a unique architectural feature as well as cartilage matrix containing collagen and aggrecan. Remarkably, engineered cartilage tissue from CMBs have comparable bulk mechanical properties to that of native cartilage (Bhumiratana and Vunjak-Novakovic, 2015). Notably, the architecture of tissue grown from combining CMBs is distinct from native cartilage. During the culture, CMBs integrate with each other and generate unique architectural features as well as cartilage matrix containing collagen and aggrecan. Remarkably, engineered cartilage tissue from CMBs have comparable bulk mechanical properties to that of native cartilage (Bhumiratana and Vunjak-Novakovic, 2015). Notably, the architecture of tissue grown from combining CMBs is distinct from native cartilage. During the culture, CMBs integrate with each other and generate

As such, the objective of this study was to investigate the relationship among the architecture, local composition, and local micromechanical thresholds are shown to have a strong correlation to the probability of instability or the tissue-engineered cartilage constructs (Middenden et al., 2017). In addition, studies have shown that this local mechanical behavior is predictive of cell death in native and tissue-engineered cartilage constructs (Bartell et al., 2015; Kim et al., 2023). These studies collectively indicate that identifying and monitoring the local composition and mechanical behavior of tissue-engineered cartilage is critical for determining the quality of the tissue-engineered cartilage.

Recent advances in a variety of scaffolding technologies, pellet and micromass culture systems have demonstrated to be a

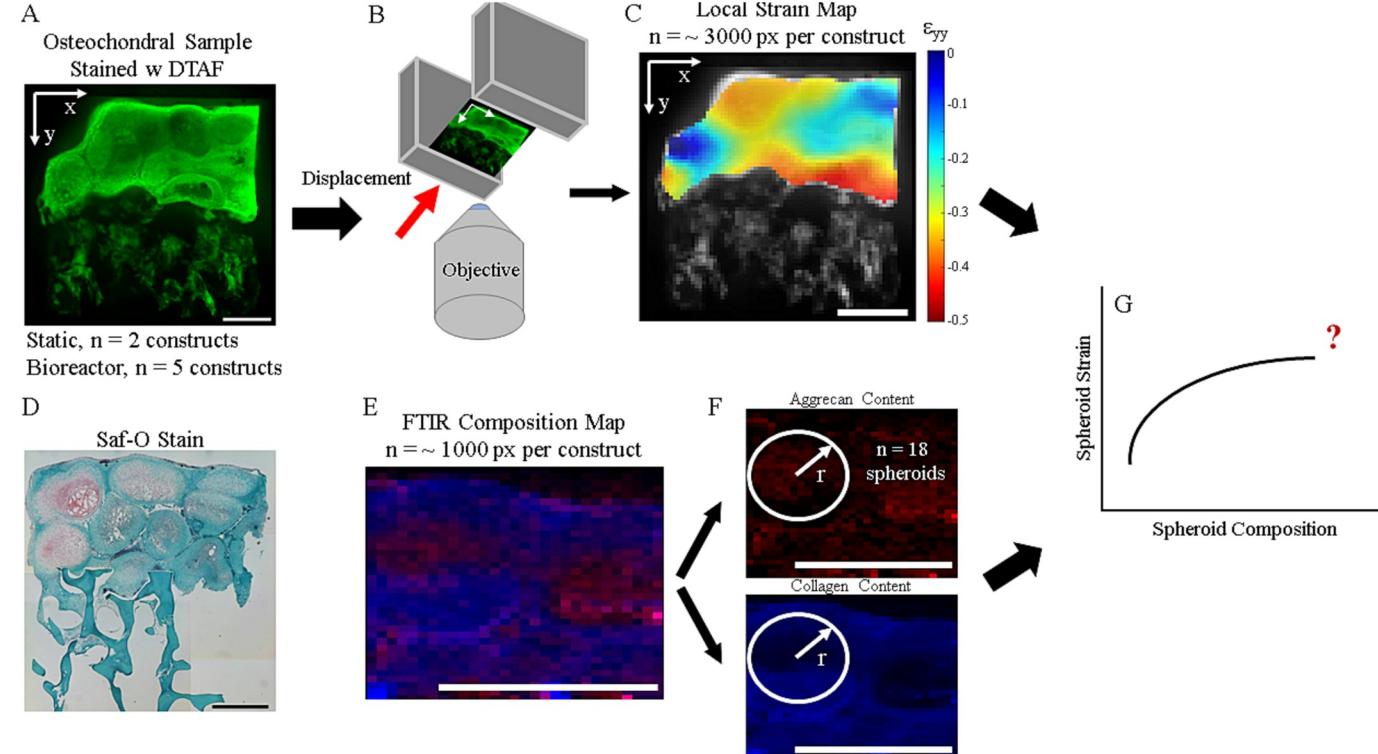


Fig. 1. Experimental and analysis methods for tissue-engineered osteochondral implants. A. Engineered osteochondral samples are manufactured using static and perfusion & loading culture conditions. Constructs were loaded in Tissue Deformation Imaging Stage and axially compressed. B. The compressive mechanical behavior of the samples was recorded. C. From the compression video, local strain was analyzed. D. Saf-O stain reveals heterogenous compositional distribution of the osteochondral implant. E. The compositional distribution was quantified using Fourier Transform Infrared Spectroscopy. F. The composition data was linearly decomposed to aggrecan and collagen concentration and analyzed radially per spheroid basis. G. The relationship between radial composition and radial strain was found.

2. Materials and methods

2.1. Tissue-engineered osteochondral construct preparation

Constructs were obtained from EpiBone Inc. using a modified version of a previously described method (Bhumiratana et al., 2014).

Constructs were fabricated with bone marrow derived mesenchymal stem cell based CMBs, differentiated in chondrogenic media containing ascorbic acid and transforming growth factor- β 3, cultured in two different conditions: static-culture (static) and perfusion with dynamic loading bioreactor culture (bioreactor). The bioreactor applied cyclic compression for 11 days (10% compression, 1 Hz, 3 h/day) during a 28-day culture period with continuous media perfusion through the bioreactor. These culture methods were utilized to generate different constructs. A total of 7 constructs, static and 5 bioreactor, were generated. Each construct was bisected. One half was used for micromechanical environment analysis while the other half was used for Fourier Transformation Infrared Spectroscopy (FTIR) to analyze local composition of the construct.

2.2. Micromechanical environment analysis

The local mechanical responses of each construct were measured using a previously established protocol (Buckley et al., 2010, 2008). Briefly, each bisected construct was stained with 5-dichlorotriazinyl-aminofluorescein (14 μ g/mL of dimethyl-oxide Molecular Probes, Grand Island, NY) for 30 min, washed in PBS for 20 min, and mounted between two parallel plates of a tissue deformation imaging stage (TDIS).

We observed that the three-dimensional (3D) mechanical behaviors (Video 3 and 4) dominate the micromechanical behavior when the constructs were compressed past 10% of the cartilage thickness to remove the effects from the 3D behavior. We chose to analyze the micromechanical environment at 10% imposed compression.

2.3. Fourier transformation infrared spectroscopy

FTIR data analysis was conducted using a previously established protocol (DiDomenico et al., 2019; Middendorf et al., 2020; Silverstein et al., 2014).

2.4. CMB size, radial strain, and composition analysis

Each CMBs are individually manufactured from the same cell source and used together to form cartilage tissue. Therefore, we treated each CMB as an individual sample to quantify the architectural features. We measured the size of the CMBs in ImageJ based on the undeformed 10% imposed strain. A total of 47 CMB radii ($n = 19$ static, $n = 28$ bioreactor) were measured by fitting a circle on each CMB.

Since we observed that the radial local composition corresponds to the radial local strain, we calculated the radial average and standard deviation of local strain and composition from the center of each CMB.

2.5. Statistical analysis

A two-sample t-test was conducted to compare the average radii and compositions. A two-sample Kolmogorov-Smirnov test was conducted to compare the overall composition and strain distributions. We used a two-way analysis of variance to compare the radial composition and strain. To identify the aggrecan and collagen concentrations, we conducted an analysis of covariance (ANCOVA) in regression to compare the two linear regression models. p -values < 0.05 were considered statistically significant. Coefficient of variation was calculated as the standard deviation divided by the average of the local strain data.

multiplied by 100.

3. Results

3.1. CMB size and compositional distribution

Previous studies have suggested that CMBs mature and integrate with time. We have utilized two culture conditions, static and bioreactor, to mimic temporal development of the cartilage. Bioreactor CMBs had an average radius (65.0 μ m) that was more than two times larger than that of static CMBs (27.5 μ m, Fig. 2A, $p < 0.001$). Qualitatively, static CMBs appeared to be less integrated with each other while bioreactor CMBs were well integrated (Video 1 and 2). Overall, both constructs. These culture methods were utilized to generate different qualitative and quantitative architectural data showed that bioreactor tectures and local composition. A total of 7 constructs, static and 5 CMBs were better integrated than static CMBs.

To measure how CMB maturity impacted local composition, we utilized FTIR to analyze the compositional distributions. The aggrecan concentration distributions of both static and bioreactor constructs had no statistical difference (Fig. 2B and C, $p > 0.34$). However, the mean aggrecan concentration was almost two times higher in bioreactor constructs (0.016 A.U.) compared to the static constructs (0.0095 A.U., $p < 0.0001$, Appendix B). The collagen concentration had no difference in distributions between the two culture conditions (Fig. 2D and E, $p > 0.28$). Static constructs had concentration peaks at 0.03 and 0.19 A.U., while bioreactor constructs had peaks at 0.02 A.U. and 0.1 A.U. However, the mean collagen concentration of static constructs (0.144 A.U.) was higher than the bioreactor constructs (0.124 A.U., $p < 0.0001$). Overall, our data suggests that the main driver of local composition difference at various stages of maturation is aggrecan concentrations.

3.2. Micromechanical environment of osteochondral constructs under compression

We utilized TDIS and fast-conformal microscopy to investigate how architectural and compositional differences affect micromechanical behavior. Confocal images captured at various compression levels revealed that poorly integrated CMBs may become separated at the boundaries (Fig. 3A). Such separation led the CMBs to experience heterogeneous local axial strain ranging from 0.5 compressive strain to 0.5 tensile strain (Fig. 3B). Notably, tensile strain was concentrated around the boundaries. This data indicates that the boundary is more compliant than the center, resulting in larger deformational behavior.

We observed that the CMB separation dominated the local micro-environment at 20% imposed strain. Based on these results, we decided to conduct the micromechanical environment analysis at 10% imposed strain. The local strain distributions of the osteochondral constructs at 10% imposed strain were plotted as histograms. Notably, 27% of the static constructs experienced tensile strain, while only 10% of the bioreactor constructs experienced tension (Fig. C and D), which indicates poor integration among CMBs or static constructs. Furthermore, the coefficient of variation of the static constructs (-1.98) was almost two times higher than that of the bioreactor constructs (-1.04). However, there was no difference between the two local axial strain distributions ($p > 0.22$).

In general, the bioreactor constructs had larger regions that experienced lower shear strain compared to the static constructs (Fig. 3E and F). The average local shear of the static constructs (0.03) was higher than that of the bioreactor constructs (0.02, $p < 0.0001$), which also indicates poor integration among the static CMBs. However, static and bioreactor constructs had the same coefficient of variation (0.82), and there was no statistical difference between the two local shear strain distributions ($p > 0.91$). Overall, our local strain distribution data showed that the static constructs experienced a higher local shear strain and shear strain due to poor integration compared to the bioreactor constructs.

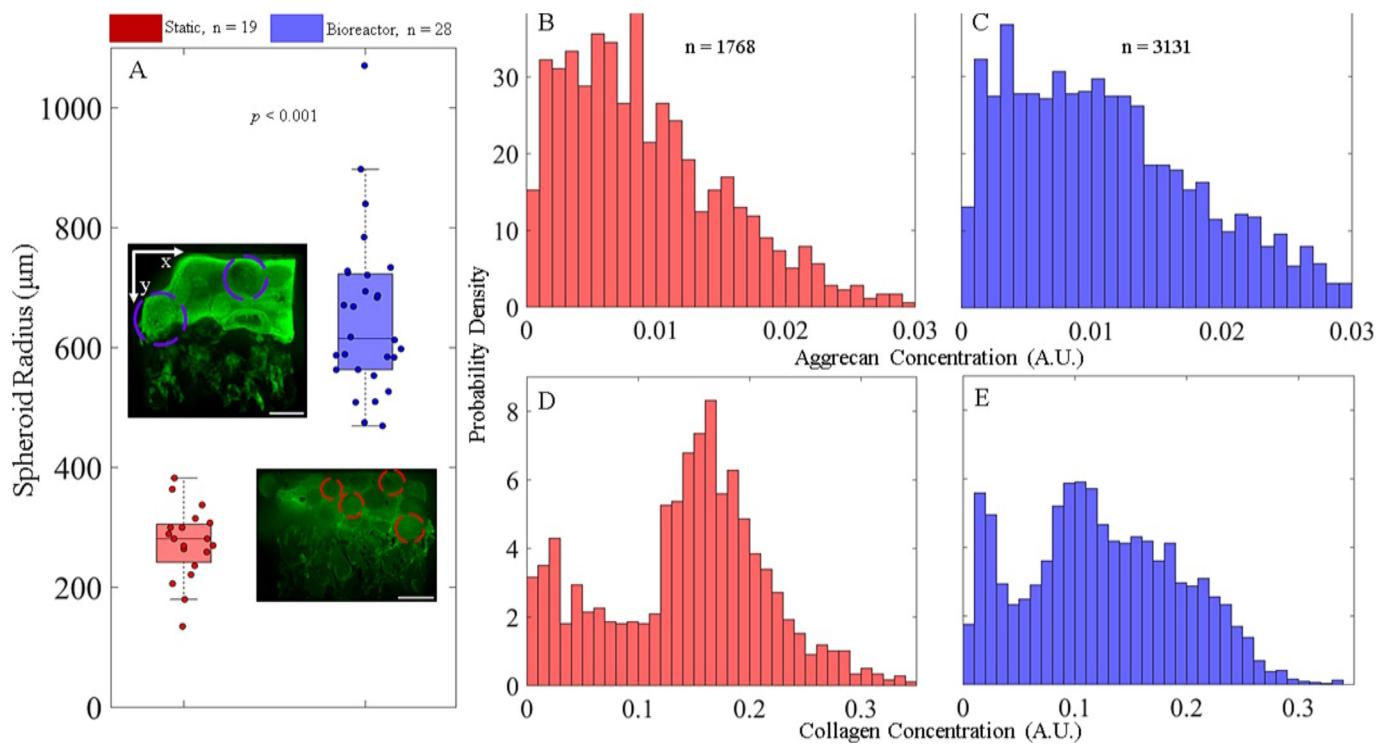


Fig. 2. Architectural features and compositional distribution of osteochondral implants. A. Per-union & loading samples had larger spheroids compared to static samples. B. Aggrecan concentration distribution o→ static samples. C. Aggrecan concentration distribution o→ per-union samples. D. Collagen concentration distribution o→ static samples. E. Collagen concentration distribution o→ per-union samples.

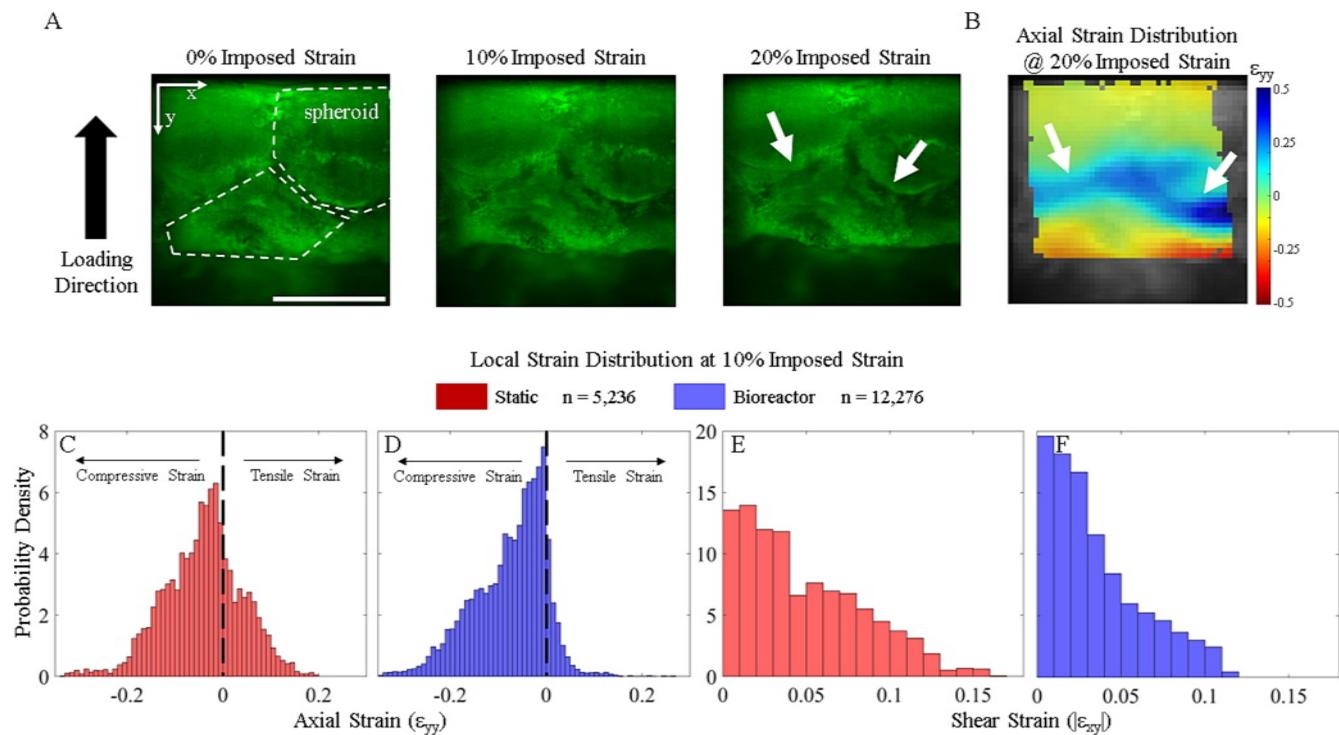


Fig. 3. Local mechanical behavior of osteochondral implants. A. Compression-induced spheroid separation was observed through a series of confocal micrographs. B. High tensile strain indicates spheroid separation. C. Axial strain distribution o→ static samples. Almost 30% o→ the static samples experienced tensile strain. D. Axial strain distribution o→ per-union samples. Only 10% o→ the per-union samples experienced tensile strain. E. Shear strain distribution o→ static samples. F. Shear strain distribution o→ per-union samples. Larger portion o→ the per-union samples experienced lower shear strain.

3.3. Radial composition and strain distribution analysis

Based on our observations, we developed an analytical framework in the context of the structure-function relationship of CMBs. We analyzed each CMB as an individual unit structure by calculating radial average local strain and composition data. The radial aggrecan concentration distribution (Fig. A) showed that, on average, bioreactor CMBs had higher aggrecan concentration compared to static CMBs ($p < 0.0001$). Both bioreactor and static CMBs had aggrecan concentration of 0.015 A.U. at the center of the CMBs ($r = 0 \mu\text{m}$) and decreased towards the boundary. The aggrecan concentration in bioreactor CMBs increased up to a radius of 100 μm and decreased linearly, while the static CMBs' concentration decreased early throughout the radius. The radial collagen concentration distribution (Fig. 4B) showed that static CMBs had higher collagen concentrations than bioreactor CMBs ($p < 0.0001$). At the center, static CMBs had a collagen concentration of 0.15 A.U. and increased linearly towards the boundary, while bioreactor CMBs had 0.1 A.U. at the center and increased linearly. However, there was no statistical difference ($p = 0.33$). The strain norm was negatively correlated with aggrecan concentration at any given radius between static and bioreactor CMBs ($p > 0.73$).

The radial analysis of construct mechanics revealed that static CMBs had higher overall local compressive and shear strain than bioreactor CMBs (Fig. 4C and D, $p < 0.0001$). While there was no difference in local compressive strain with a sigmoidal regression to identify the compressive strain at any given radius ($p > 0.74$), static CMBs showed significantly higher shear strain than bioreactor CMBs at the boundary (250 μm to 300 μm , $p < 0.01$). The average strain norm of static CMBs was generally higher than that of bioreactor CMBs, there was no statistical significance between the two types of CMBs (Fig. 4E, $p > 0.05$). Our radial analysis indicated that bioreactor CMBs had relatively high local aggrecan concentrations at the radial edge, which were accompanied by lower levels of local compressive strain and strain norm. In contrast, static CMBs experienced significantly higher levels of local strain. More interestingly, local shear strain in bioreactor CMBs was most likely due to the poor integration and lower aggrecan concentration.

3.4. Local composition and strain correlation

Our observation in the radial analysis qualitatively indicated a correlation between the local composition distribution and mechanical behavior, which led us to investigate the correlation between the two actors. Our ANCOVA analysis showed that the CMB maturation level does not affect the correlation among radial compressive strain, strain norm, and compositions (Fig. 5A and C, $p > 0.15$). Therefore, we pooled the data from static and bioreactor CMBs. Local aggrecan concentration had a significant correlation with all local strain components ($p < 0.05$). The local compressive strain displayed a clear non-linear behavior and appeared to have an aggrecan concentration threshold, which was modeled by using a sigmoidal curve (Fig. 5A, $R^2 = 0.93$). Compressive strain sharply decreased in regions with aggrecan concentrations higher than 0.015 A.U. Such non-linear behavior was also present in local shear strain, which increased sharply in regions with aggrecan concentration higher than 0.015 A.U. However, bioreactor CMBs showed a weak linear correlation ($R^2 = 0.33$). The strain norm was negatively correlated with aggrecan concentration (Fig. 5C).

Local collagen concentration had significant correlation with all components in both types of CMBs ($p < 0.0001$), except the shear strain ($p > 0.15$). Local compressive strain with a sigmoidal regression to identify the compressive strain at any given radius ($p > 0.74$), static CMBs showed significantly higher shear strain than bioreactor CMBs (Fig. 5D, $R^2 = 0.91$). Compressive strain sharply decreased in regions with collagen concentrations lower than 0.15 A.U. The local shear strain increased sharply in regions with collagen concentration higher than 0.15 A.U (Fig. 5E, $R^2 = 0.90$). However, bioreactor CMBs had a weak linear correlation ($R^2 = 0.14$). The strain norm was positively correlated with the collagen concentration (Fig. 5F, $R^2 = 0.83$). Overall, our analysis showed that local compositions in tissue-engineered cartilage were highly correlated with the other hand, static CMBs experienced significantly higher levels of local strain. More interestingly, local shear strain in bioreactor CMBs was not well correlated with composition, most likely due to the influence of construct architecture and maturation.

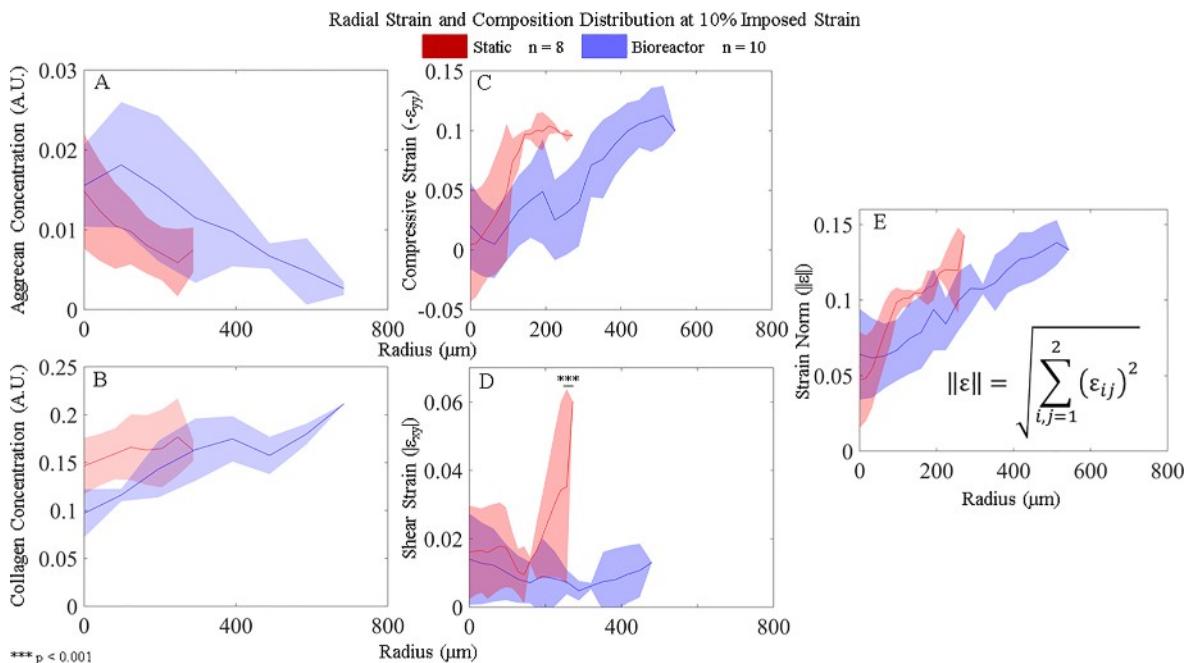


Fig. 4. Radial compositional and local strain distribution of spheroids. A. Radial aggrecan concentration distribution. Perfusion spheroids had higher aggrecan concentration throughout the radius compared to static spheroids. B. Radial collagen concentration distribution. Static spheroids had consistently higher collagen concentration throughout the radius. C. Radial compressive strain distribution. Static spheroids experienced steeper slope compared to perfusion spheroids. D. Radial shear strain distribution. Static spheroids experienced significantly higher shear strain at the edge compared to perfusion samples. E. Radial strain norm distribution. In general, static spheroids experienced higher strain norm throughout the radius compared to perfusion spheroids.

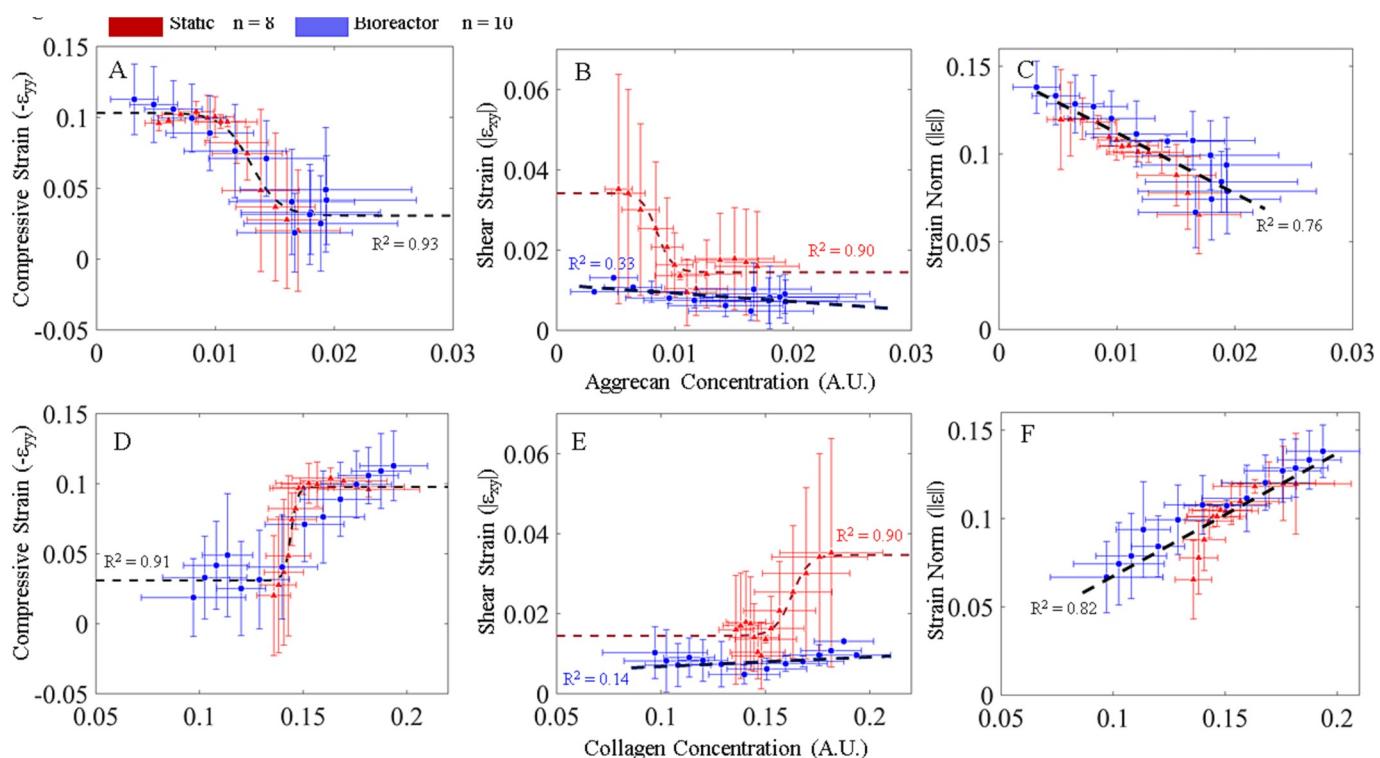


Fig. 5. Relationship between radial strain and composition. A. Local compressive strain had a strong threshold relationship with local aggrecan concentration. Local shear in static spheroids had a strong threshold relationship with aggrecan concentration. Perfusion spheroids had a weak linear correlation. C. Local strain norm has a strong linear relationship with local aggrecan concentration. D. Local compressive strain had a strong threshold relationship with local collagen concentration. E. Local shear in static spheroids had a strong threshold relationship with local collagen concentration. Perfusion spheroids had a weak linear correlation. F. Local strain norm has a strong linear relationship with local collagen concentration.

4. Discussion

In this study, we identified the relationship among the micro-mechanical environment, local composition, and construct architecture in tissue-engineered osteochondral implants. We utilized various methods, DIC, and FTIR to understand how composition and architectural features contribute to the local mechanics. Specifically, we investigated how local strain was influenced by local compositions, as well as the CMB integration. Culture method had a significant influence on the construct maturity manifested by the CMB size and compositional distributions. Under load, regions with high collagen concentration experienced higher compressive and shear strains while regions with high aggrecan concentration experienced lower strains. The relationship between the local compositions and strains was highly non-linear. Overall, these results showed that (i) local composition is directly linked to the local micromechanical environment, (ii) a local compositional threshold exists for local strain, and (iii) architectural features have a significant influence on the micromechanical environment of tissue-engineered cartilage.

Tissue maturation had a profound effect on the construct architecture. We observed that the average bioreactor CMB radius (600 μ m) was two times larger than that of static CMBs (Fig. 2 A), which is consistent with previous findings in CMB maturation (Bhumiratana and Vunjak-Novakovic 2015). In addition, bioreactor constructs had a higher average aggrecan concentration and lower collagen concentration compared to static constructs (Fig. 2, Appendix B). Such an increase in aggrecan concentration through bioreactor culture was rigorously shown in previous investigations in both native and tissue-engineered cartilage (Kim and Bonassar 2023; Mauck et al., 2000). However, to the best of our knowledge, the level of integration among CMBs and the resulting architectural features due to the tissue maturation have never been observed before.

Compositional gradient on the length scale of 10–100 μ m dominated the micromechanics of the constructs (Fig. 3 C, D, E, and F, Appendix C, D, E, and F). Under compression, static constructs experienced higher tensile and shear strains compared to bioreactor constructs. Local tensile and shear strains indicate that CMBs are being separated (Fig. 3 A and B). We believe these phenomena arose from the interaction between trabecular bone and cartilage, as well as the 3D architecture of the constructs. Under compression, the stiffer trabecular bone compressed and penetrated the softer cartilage tissue, creating a rotational effect. Such rotational effect caused the CMBs to separate along the boundaries. We believe this phenomenon is largely due to the material properties of the trabecular bone and cartilage. The displacement of the trabecular bone was vertical (y axis movement) and the rotational effect (rotation about x axis) on the tissue-engineered cartilage caused by the displacement was the main driver of the high tensile strain. Overall, these data show that both architectural features and local composition influence the micro-mechanical environment of tissue-engineered osteochondral constructs.

These architectural features, compositional distribution, and mechanical behaviors appear to be periodic at the scale of the CMBs. Therefore, we decided to treat each CMB as a unit structure and conducted a radial analysis (Fig. 4 and Appendix G, H, I, and J). The local aggrecan concentrations of bioreactor CMBs were consistently higher compared to the static CMBs at any given radius (Fig. 4 A). Such aggrecan distribution mostly caused static CMBs to have higher average compressive strain (Fig. C). On the other hand, the local collagen concentrations of bioreactor CMBs were lower than those of static CMBs (Fig. 4 B). Despite the higher collagen concentration, static

CMBs experienced higher local shear, especially at the boundary (Fig. 10). This could impact local mechanical environment (Kim et al., 2021; Puetzer et al., 2021; D. We believe that this phenomenon arises from the interplay between shear and local shear, which is controlled by the local compositional distribution and the architectural features of the foliation in this study.

osteochondral constructs under compression. The CMBs underwent a combination of rigid body rearrangement and deformation due to decomposition of the high aggrecan concentration at the center of the CMBs. Due to the relationships between body rearrangement, the shear strain at the radial edge increased. This approach provided tremendous insight into the behavior of CMBs more pronounced in static constructs due to the poor macroscale mechanical behavior of tissue-engineered cartilage and bul integration among CMBs despite the relatively high collagen concentration. These results highlight the significant influence of the architectural features on the micromechanical behavior of tissue-engineered cartilage. Previous studies in tissue-engineered cartilage mechanics and compositional targets or biofabrication. However, recent studies have indicated that the architectural features and micromechanical environment are more important for cell viability in both native and tissue-engineered cartilage (Kim et al., 2023, 2022; Middendorf et al., 2020, 2019).

We registered local radial strain and composition to understand the relationship on a CMB-by-CMB basis (Fig. 5, Appendix K, L, M, O, P, Q, R, S, and T). Our observation in periodic compositional distribution and micromechanical behavior was reflected as a strong relationship between the two actors (Fig. 5). Local aggrecan and collagen concentrations existed for local compressive strain (Fig. 5 A and D). Local composition and architecture influenced local aggrecan and collagen concentrations on mechanical failure. Overall, our data suggest that achieving saturation thresholds existed for preventing local aggrecan and collagen concentrations of 0.01 A.U. and 0.15 A.U. and 0.15 A.U. on mechanical failure in tissue-engineered cartilage constructs. Such a compressive strain started to decrease sharply. Such a threshold behavior was also present in local shear strain or static CMB constructs.

Interestingly, this compositional threshold was previously observed → or buckling in tissue-engineered cartilage manufactured using collagen I. **CRedit authorship contribution statement** **sca** → **olds (Middendorf et al., 2020, 2017)**. This indicates that compositional thresholds exist → or micromechanical behaviors in tissue- Byumsu Kim: . Terri-Ann N. Kelly: Writing – review & editing,

engineered cartilage regardless of specific bio-abrication methodsProject administration, Methodology, Investigation. Hyung Jin Jung: .

Interestingly, such a compositional threshold—or local shear did not exist in bioreactor CMRs (Fig. 5 B and E). This phenomenon most likely methodology (Sardine Pbumiratana; Writing, review & editing; SU).

exist in bioreactor CMBS (Fig. 3 B and E). This phenomenon most likely arises due to the high level of integration, highlighting the influence of the architectural features on local mechanical behavior. Our data collectively show that architectural features can influence the local mechanical behavior of tissue-engineered osteochondral constructs. More importantly, micromechanical behavior is heavily influenced by local composition.

Our findings have implications beyond this specific biofabrication process for producing tissue-engineered osteochondral grafts. See Declaration of Competing Interest

→ree tissue-engineered cartilage is often manufactured from micromass culture or pellet culture techniques (Ahrens et al., 1977; Denker et al., 1995; Kronemberger et al. 2020; Markway et al. 2010; Yeung et al., 2019; Zhang et al. 2004). Furthermore drug delivery techniques or osteoarthritis treatment use microspheres (Conaghan et al., 2018; Eswaramoorthy et al. 2012; Han et al., 2021; Li et al., 2022, 2021). The authors declare the following financial interests/personal relationships which may be considered as potential competing interests: TAN Kelly, Hyung Jin Jung, Olivia S. Beane, and Sarindr Bhumiratana are full-time employees of EpiBone.

Upon implantation or injection to ~~occur~~ cartilage ~~de-~~ects, these engineered constructs and microspheres will likely experience relative mechanical motion and local failures similar to what we observed in this study. Such local failure can reduce the survivability of the cells within the construct (Bartel et al., 2015; Kim et al., 2023) and hinder integration with the native cartilage tissue. Our findings provide insight into *in vivo* mechanical failure modes and parameters that may be used to prevent failures in tissue engineering and drug delivery techniques that utilize spheroid geometry.

The limitations of this study arise from conducting a two-dimensional analysis to explain 3D behavior. Under compression, tissue-engineered osteochondral constructs display complicated 3D behavior beyond 10% imposed strain (Video 3 and 4). Such 3D deformation can hinder the accurate measurement of two-dimensional local strain measurements through DIC. In this study, we did not analyze the local strain beyond 10% imposed strain to avoid any potential influence from the 3D deformation. In addition, we utilized unconstrained compression for this study. Once implanted, the osteochondral constructs can experience various boundary conditions ranging from unconstrained compression to confined compression. Such boundary conditions can impact the micromechanical environment of the constructs. Nonetheless, the overall relationships among local composition, architectural features, and micromechanical behavior are expected to remain consistent. Previous studies have suggested collagen alignment, orientation, and density are key factors in determining the mechanical behavior of tissue-engineered constructs. The limitations of this study arise from conducting a two-dimensional analysis to explain 3D behavior. Under compression, tissue-engineered osteochondral constructs display complicated 3D behavior beyond 10% imposed strain (Video 3 and 4). Such 3D deformation can hinder the accurate measurement of two-dimensional local strain measurements through DIC. In this study, we did not analyze the local strain beyond 10% imposed strain to avoid any potential influence from the 3D deformation. In addition, we utilized unconstrained compression for this study. Once implanted, the osteochondral constructs can experience various boundary conditions ranging from unconstrained compression to confined compression. Such boundary conditions can impact the micromechanical environment of the constructs. Nonetheless, the overall relationships among local composition, architectural features, and micromechanical behavior are expected to remain consistent. Previous studies have suggested collagen alignment, orientation, and density are key factors in determining the mechanical behavior of tissue-engineered constructs.

~~and~~ Declaration of Competing Interest

cromass
al., The authors declare the following financial interests/personal relationships which may be considered as potential competing interests: TAN Kelly, Hyung Jin Jung, Olivia S. Beane, and Sarindr Bhumiratana are full-time employees of EpiBone.

Acknowledgments

This work made use of the Cornell Center for Materials Research Shared Facilities which are supported through the NSF MRSEC program (DMR-1719875). This study was partially funded by NSF CMMI 21129776, NSF CMMI 1927197, NSF DMR 1807602, and ARML T0080.

Supplementary data to this article

[org/10.1016/j.jbiomech.2023.111882](https://doi.org/10.1016/j.jbiomech.2023.111882).

► References local

Atrens, P.B., Solursh, M., Reiter, R.S., 1977. Stage-related capacity → or limb chondrogenesis in cell culture. *Develop. Biol.* 60, 69–82. [https://doi.org/10.1016/0012-1606\(77\)90110-5](https://doi.org/10.1016/0012-1606(77)90110-5).

Bartell, L.R., Fortier, L.A., Bonassar, L.J., Cohen, I., 2015. Measuring microscale strain fields in articular cartilage during rapid impact reveals thresholds → or chondrocyte death and a protective role → or the superficial layer. *J Biomed. Eng.* 48. <https://doi.org/10.1016/j.jbiomech.2015.05.035>.

Bhumiratana, S., Eton, R.E., Oungoulian, S.R., Wan, L.Q., Ateshian, G.A., Vunjak-Novakovic, G., 2014. Large, stratified, and mechanically → unctional human cartilage grown in vitro by mesenchymal condensation. *Proc. Natl. Acad. Sci. U.S.A.* 111, 6940–6945. <https://doi.org/10.1073/pnas.1324050111>.

Bhumiratana, S., Vunjak-Novakovic, G., 2015. Engineering physiologically sti → and stratified human cartilage by → using condensed mesenchymal stem cells. *Methods*,

Adv. Methods Tissue Eng. Regenerative Med. 84, 109. <https://doi.org/10.1016/j.jymeth.2015.03.016>.

Buckley, M.R., Gleghorn, J.P., Bonassar, L.J., Cohen, I., 2008. Mapping the depth dependence of shear properties in articular cartilage. *J. Biomech.* 41, 2430–2437. <https://doi.org/10.1016/j.jbiomech.2008.05.021>.

Buckley, M.R., Bergou, A.J., Fouchard, J., Bonassar, L.J., Cohen, I., 2010. High-resolution cartilage: the current status. *Cell Tissue Res.* 347, 613–627. <https://doi.org/10.1007/s11340-022-00853-7>.

Buckley, M.R., Bergou, A.J., Fouchard, J., Bonassar, L.J., Cohen, I., 2010. High-resolution spatial mapping of shear properties in cartilage. *J. Biomech.* 43, 796–800. <https://doi.org/10.1016/j.jbiomech.2009.10.012>.

Center for Biologics Evaluation, 2019. Preclinical Assessment of Investigational Cellular and Gene Therapy Products (No. FDA-2012-D-1038). FDA.

Chang, S.C.N., Tobias, G., Roy, A.K., Vacanti, C.A., Bonassar, L.J., 2003. Tissue Engineering of Autologous Cartilage or Cranio-oral Reconstruction by Injection Molding. *Plast. Reconstr. Surg.* 112, 793. <https://doi.org/10.1097/01.PRS.0000069711.31021.94>.

Chu, C.R., Coutts, R.D., Yoshioka, M., Harwood, F.L., Monosov, A.Z., Amiel, D., 1995. Articular cartilage repair using allogeneic perichondrocyteseeded biodegradable porous poly(lactic acid) (PLA): A tissue-engineering study. *J. Biomed. Mater. Res.* 29, 1147–1154. <https://doi.org/10.1002/jbm.820290915>.

Cigan, A.D., Roach, B.L., Nims, R.J., Tan, A.R., Albro, M.B., Stoker, A.M., Cook, J.L., Vunjak-Novakovic, G., Hung, C.T., Ateshian, G.A., 2016. High seeding density of human chondrocytes in agarose produces tissue-engineered cartilage approaching native mechanical and biochemical properties. *J. Biomech.* 49, 1909–1917. <https://doi.org/10.1016/j.jbiomech.2016.04.039>.

Conaghan, P.G., Cohen, S.B., Berenbaum, F., Lu-kin, J., Johnson, J.R., Bodick, N., 2018. Brief Report: A Phase IIb Trial of a Novel Extended-Release Microsphere Formulation of Triamcinolone Acetonide for Intraarticular Injection in Knee Osteoarthritis. *Arthritis Rheumatol.* 70, 204–211. <https://doi.org/10.1002/art.40364>.

Crawford, D.C., DeBerardino, T.M., Williams, R.J.I., 2012. NeoCart, an Autologous Cartilage Tissue Implant, Compared with Micro-tissue or Treatment of Distal Femoral Cartilage Lesions: An FDA Phase-II Prospective, Randomized Clinical Trial After Two Years. *JBJS* 94, 979. <https://doi.org/10.2106/JBJS.K.00533>.

Crawford, D.C., Heveran, C.M., Cannon, W.D., Foo, L.F., Potter, H.G., Md, T., Heveran, M., Dilworth Cannon, W., Foong Foo, L., Potter, H.G., 2009. An Autologous Cartilage Tissue Implant NeoCart for Treatment of Grade III Chondral Injury to the Distal Femur. *The American Journal of Sports Medicine* 37, 1334–1343. Doi: 10.1177/0363545509333011.

Denker, A.E., Nicoll, S.B., Tuan, R.S., 1995. Formation of cartilage-like spheroids by micromass cultures of murine C3H10T1/2 cells upon treatment with transforming growth factor- β 1. Differentiation 59, 25–34. <https://doi.org/10.1046/j.1432-0436.1995.5910025.x>.

DiDomenico, C.D., Kaghazchi, A., Bonassar, L.J., 2019. Measurement of local diffusion and composition in degraded articular cartilage reveals the unique role of surface-acematuration of sca-old-ree cartilage tissue analogs. *J. Biomech.* 82, 38–45. <https://doi.org/10.1016/j.jbiomech.2018.10.019>.

Eswaramoorthy, R., Chang, C.-C., Wu, S.-C., Wang, G.-J., Chang, J.-K., Ho, M.-L., 2012. Sustained release of PTH(1-34) from PLGA microspheres suppresses osteoarthritis progression in rats. *Acta Biomater.* 8, 2254–2262. <https://doi.org/10.1016/j.actbio.2012.03.015>.

Griffith, D.J., Bonnevie, E.D., Lachowsky, D.J., Hart, J.C.A., Sparks, H.D., Moran, N., Matthews, G., Nixon, A.J., Cohen, I., Bonassar, L.J., 2015. Mechanical characterization of matrix-induced autologous chondrocyte implantation (MACI®) grafts in an equine model at 53 weeks. *J. Biomech.* 48, 1944–1949. <https://doi.org/10.1016/j.jbiomech.2015.04.010>.

Guo, T., Lembong, J., Zhang, L.G., Fisher, J.P., 2017. Three-Dimensional Printing Articular Cartilage: Recapitulating the Complexity of Native Tissue. *Tissue Eng. B Rev.* 23, 225–236. <https://doi.org/10.1089/ten.teb.2016.0316>.

Han, Y., Yang, J., Zhao, W., Wang, H., Sun, Y., Chen, Y., Luo, J., Deng, L., Xu, X., Cui, W., Zhang, H., 2021. Biomimetic injectable hydrogel microspheres with enhanced lubrication and controllable drug release for the treatment of osteoarthritis. *Biomater.* 6, 3596–3607. <https://doi.org/10.1016/j.bioactmat.2021.03.022>.

Johnstone, B., Alini, M., Cucchiari, M., Dodge, G., Eglin, D., Gulik, F., Madry, H., Mata, A., Mauck, R., Semino, C., Stoddart, M., 2013. Tissue engineering of articular cartilage repair – the state of the art. *eCM* 25, 248–267. Doi: 10.22203/eCM.v025a18.

Jutila, A.A., Zignego, D.L., Schell, W.J., June, R.K., 2015. Encapsulation of Chondrocytes in High-Strength Agarose Microenvironments for In Vitro Modeling of Osteoarthritis. *Biotechnol. Ann. Biomed. Eng.* 43, 1132–1144. <https://doi.org/10.1007/s10439-014-1183-5>.

Kim, B., Bonassar, L.J., 2023. Understanding the Influence of Local Physical Stimuli on Chondrocyte Behavior. In: Connizzo, B.K., Han, L., Sah, R.L. (Eds.), *ElectromechanoBiology of Cartilage and OsteoArthritis: A Tribute to Alan Grodzinsky on His 75th Birthday*, Advances in Experimental Medicine and Biology, Springer International Publishing, Cham, pp. 31–44. https://doi.org/10.1007/978-3-031-25588-5_2.

Kim, B., Bouklas, N., Cohen, I., Bonassar, L.J., 2023. Instabilities Induced by Mechanical Loading Determine the Viability of Chondrocytes Grown on Porous Scaffolds. *J. Biomech.* 111591. <https://doi.org/10.1016/j.jbiomech.2023.111591>.

Kim, J., Boys, A.J., Estroff, L.A., Bonassar, L.J., 2021. Combining TGF- β 1 and Mechanical Anchoring to Enhance Collagen Fiber Formation and Alignment in Tissue-Engineered Menisci. *ACS Biomater. Sci. Eng.* 7, 1608–1620. <https://doi.org/10.1021/acsbiomaterials.0c01791>.

Kim, M., Krate, J.J., Volk, A.C., Pugarelli, J., Pleshko, N., Dodge, G.R., 2011. Characterization of a cartilage-like engineered biomass using a self-aggregating suspension culture model: Molecular composition using FT-IRIS. *J. Orthop. Res.* 29, 1881–1887. <https://doi.org/10.1002/jor.21467>.

Kim, B., Middendorf, J.M., Diamantides, N., Dugopolski, C., Kennedy, S., Blahut, E., Cohen, I., Bouklas, N., Bonassar, L.J., 2022. The Role of Buckling Instabilities in the Global and Local Mechanical Response in Porous Collagen Scaffolds. *Exp. Mech.* 32, 1–10. <https://doi.org/10.1007/s11340-022-00853-7>.

Kock, L., van Donkelaar, C.C., Ito, K., 2012. Tissue engineering of functional articular cartilage: the current status. *Cell Tissue Res.* 347, 613–627. <https://doi.org/10.1007/s11340-011-1243-1>.

Kon, E., Filardo, G., Martino, A.D., Marcacci, M., 2012. ACI and MACI. *J. Knee Surg.* 25, 17–22. <https://doi.org/10.1055/s-0031-1299651>.

Kronenberger, G.S., Matsui, R.A.M., Miranda, G. de A.S. de C. e, Granjeiro, J.M., Baptista, L.S., 2020. Cartilage and bone tissue engineering using adipose stromal/stem cells spheroids as building blocks. *World J. Stem Cells.* 12, 110–122. Doi: 10.4252/wjsc.v12.i2.110.

Li, J., Liu, N., Huang, Z., Wang, W., Hou, D., Wang, W., 2021. Intra-articular injection of loaded sPPI sustained-release microspheres inhibits osteoarthritis and promotes cartilaginous repairs. *J. Orthop. Surg. Res.* 16, 646. <https://doi.org/10.1186/s13018-021-02777-9>.

Li, B., Wang, F., Hu, F., Ding, T., Huang, P., Xu, X., Liang, J., Li, C., Zhou, Q., Lu, M., Deng, L., Guo, L., Cui, W., 2022. Injectable “nano-micron” combined gene-hydrogel microspheres for local treatment of osteoarthritis. *NPG Asia Mater.* 14, 1–15. <https://doi.org/10.1038/s41427-021-00351-7>.

Little, C.J., Bawolin, N.K., Chen, X., 2011. Mechanical Properties of Natural Cartilage and Tissue-Engineered Constructs. *Tissue Eng. B Rev.* 17, 213–227. <https://doi.org/10.1089/ten.teb.2010.0572>.

Markway, B.D., Tan, G.-K., Brooke, G., Hudson, J.E., Cooper-White, J.J., Doran, M.R., 2010. Enhanced Chondrogenic Differentiation of Human Bone Marrow-Derived Mesenchymal Stem Cells in Low Oxygen Environment Micropellet Cultures. *Cell Transplant.* 19, 29–42. <https://doi.org/10.3727/096368909X478560>.

Mauck, R.L., Soltz, M.A., Wang, C.C.B., Wong, D.D., Chao, P.-H.-G., Valhmu, W.B., Hung, C.T., Ateshian, G.A., 2000. Functional Tissue Engineering of Articular Cartilage Through Dynamic Loading of Chondrocyte-Seeded Agarose Gels. *C. J. Biomed. Eng.* 122, 252–260. <https://doi.org/10.1115/1.429656>.

Middleton, J.M., Shortkroff, S., Dugopolski, C., Kennedy, S., Siemiatkoski, J., Bartell, L.R., Cohen, I., Bonassar, L.J., 2017. In vitro culture increases mechanical stability of human tissue engineered cartilage constructs by prevention of microscale scarring and buckling. *J. Biomech.* 64, 77–84. <https://doi.org/10.1016/j.jbiomech.2017.09.007>.

Middendorf, J.M., Shortkroff, S., Dugopolski, C., Kennedy, S., Blahut, E., Cohen, I., Bonassar, L.J., 2020. Enhanced Chondrogenic Differentiation of Human Bone Marrow-Derived Mesenchymal Stem Cells in Low Oxygen Environment Micropellet Cultures. *Cell Transplant.* 19, 29–42. <https://doi.org/10.3727/096368909X478560>.

Murphy, B., Farran, A.J., Mauck, R.L., Dodge, G.R., 2014. Time-dependent functional tissue engineering of articular cartilage. *J. Biomed. Eng.* 122, 252–260. <https://doi.org/10.1115/1.429656>.

Murphy, B., Farran, A.J., Mauck, R.L., Dodge, G.R., 2014. Time-dependent functional tissue engineering of articular cartilage. *J. Biomed. Eng.* 122, 252–260. <https://doi.org/10.1115/1.429656>.

Murphy, B., Farran, A.J., Mauck, R.L., Dodge, G.R., 2014. Time-dependent functional tissue engineering of articular cartilage. *J. Biomed. Eng.* 122, 252–260. <https://doi.org/10.1115/1.429656>.

Murphy, B., Farran, A.J., Mauck, R.L., Dodge, G.R., 2014. Time-dependent functional tissue engineering of articular cartilage. *J. Biomed. Eng.* 122, 252–260. <https://doi.org/10.1115/1.429656>.

Murphy, B., Farran, A.J., Mauck, R.L., Dodge, G.R., 2014. Time-dependent functional tissue engineering of articular cartilage. *J. Biomed. Eng.* 122, 252–260. <https://doi.org/10.1115/1.429656>.

Murphy, B., Farran, A.J., Mauck, R.L., Dodge, G.R., 2014. Time-dependent functional tissue engineering of articular cartilage. *J. Biomed. Eng.* 122, 252–260. <https://doi.org/10.1115/1.429656>.

Murphy, B., Farran, A.J., Mauck, R.L., Dodge, G.R., 2014. Time-dependent functional tissue engineering of articular cartilage. *J. Biomed. Eng.* 122, 252–260. <https://doi.org/10.1115/1.429656>.

Murphy, B., Farran, A.J., Mauck, R.L., Dodge, G.R., 2014. Time-dependent functional tissue engineering of articular cartilage. *J. Biomed. Eng.* 122, 252–260. <https://doi.org/10.1115/1.429656>.

Murphy, B., Farran, A.J., Mauck, R.L., Dodge, G.R., 2014. Time-dependent functional tissue engineering of articular cartilage. *J. Biomed. Eng.* 122, 252–260. <https://doi.org/10.1115/1.429656>.

Murphy, B., Farran, A.J., Mauck, R.L., Dodge, G.R., 2014. Time-dependent functional tissue engineering of articular cartilage. *J. Biomed. Eng.* 122, 252–260. <https://doi.org/10.1115/1.429656>.

Murphy, B., Farran, A.J., Mauck, R.L., Dodge, G.R., 2014. Time-dependent functional tissue engineering of articular cartilage. *J. Biomed. Eng.* 122, 252–260. <https://doi.org/10.1115/1.429656>.

Murphy, B., Farran, A.J., Mauck, R.L., Dodge, G.R., 2014. Time-dependent functional tissue engineering of articular cartilage. *J. Biomed. Eng.* 122, 252–260. <https://doi.org/10.1115/1.429656>.

Murphy, B., Farran, A.J., Mauck, R.L., Dodge, G.R., 2014. Time-dependent functional tissue engineering of articular cartilage. *J. Biomed. Eng.* 122, 252–260. <https://doi.org/10.1115/1.429656>.

Murphy, B., Farran, A.J., Mauck, R.L., Dodge, G.R., 2014. Time-dependent functional tissue engineering of articular cartilage. *J. Biomed. Eng.* 122, 252–260. <https://doi.org/10.1115/1.429656>.

Murphy, B., Farran, A.J., Mauck, R.L., Dodge, G.R., 2014. Time-dependent functional tissue engineering of articular cartilage. *J. Biomed. Eng.* 122, 252–260. <https://doi.org/10.1115/1.429656>.

Murphy, B., Farran, A.J., Mauck, R.L., Dodge, G.R., 2014. Time-dependent functional tissue engineering of articular cartilage. *J. Biomed. Eng.* 122, 252–260. <https://doi.org/10.1115/1.429656>.

Murphy, B., Farran, A.J., Mauck, R.L., Dodge, G.R., 2014. Time-dependent functional tissue engineering of articular cartilage. *J. Biomed. Eng.* 122, 252–260. <https://doi.org/10.1115/1.429656>.

Murphy, B., Farran, A.J., Mauck, R.L., Dodge, G.R., 2014. Time-dependent functional tissue engineering of articular cartilage. *J. Biomed. Eng.* 122, 252–260. <https://doi.org/10.1115/1.429656>.

Murphy, B., Farran, A.J., Mauck, R.L., Dodge, G.R., 2014. Time-dependent functional tissue engineering of articular cartilage. *J. Biomed. Eng.* 122, 252–260. <https://doi.org/10.1115/1.429656>.

Murphy, B., Farran, A.J., Mauck, R.L., Dodge, G.R., 2014. Time-dependent functional tissue engineering of articular cartilage. *J. Biomed. Eng.* 122, 252–260. <https://doi.org/10.1115/1.429656>.

Murphy, B., Farran, A.J., Mauck, R.L., Dodge, G.R., 2014. Time-dependent functional tissue engineering of articular cartilage. *J. Biomed. Eng.* 122, 252–260. <https://doi.org/10.1115/1.429656>.

Murphy, B., Farran, A.J., Mauck, R.L., Dodge, G.R., 2014. Time-dependent functional tissue engineering of articular cartilage. *J. Biomed. Eng.* 122, 252–260. <https://doi.org/10.1115/1.429656>.

Murphy, B., Farran, A.J., Mauck, R.L., Dodge, G.R., 2014. Time-dependent functional tissue engineering of articular cartilage. *J. Biomed. Eng.* 122, 252–260. <https://doi.org/10.1115/1.429656>.

Murphy, B., Farran, A.J., Mauck, R.L., Dodge, G.R., 2014. Time-dependent functional tissue engineering of articular cartilage. *J. Biomed. Eng.* 122, 252–260. <https://doi.org/10.1115/1.429656>.

Murphy, B., Farran, A.J., Mauck, R.L., Dodge, G.R., 2014. Time-dependent functional tissue engineering of articular cartilage. *J. Biomed. Eng.* 122, 252–260. <https://doi.org/10.1115/1.429656>.

Murphy, B., Farran, A.J., Mauck, R.L., Dodge, G.R., 2014. Time-dependent functional tissue engineering of articular cartilage. *J. Biomed. Eng.* 122, 252–260. <https://doi.org/10.1115/1.429656>.

Murphy, B., Farran, A.J., Mauck, R.L., Dodge, G.R., 2014. Time-dependent functional tissue engineering of articular cartilage. *J. Biomed. Eng.* 122, 252–260. <https://doi.org/10.1115/1.429656>.

Murphy, B., Farran, A.J., Mauck, R.L., Dodge, G.R., 2014. Time-dependent functional tissue engineering of articular cartilage. *J. Biomed. Eng.* 122, 252–260. <https://doi.org/10.1115/1.429656>.

Murphy, B., Farran, A.J., Mauck, R.L., Dodge, G.R., 2014. Time-dependent functional tissue engineering of articular cartilage. *J. Biomed. Eng.* 122, 252–260. <https://doi.org/10.1115/1.429656>.

Murphy, B., Farran, A.J., Mauck, R.L., Dodge, G.R., 2014. Time-dependent functional tissue engineering of articular cartilage. *J. Biomed. Eng.* 122, 252–260. <https://doi.org/10.1115/1.429656>.

Murphy, B., Farran, A.J., Mauck, R.L., Dodge, G.R., 2014. Time-dependent functional tissue engineering of articular cartilage. *J. Biomed. Eng.* 122, 252–260. <https://doi.org/10.1115/1.429656>.

Murphy, B., Farran, A.J., Mauck, R.L., Dodge, G.R., 2014. Time-dependent functional tissue engineering of articular cartilage. *J. Biomed. Eng.* 122, 252–260. <https://doi.org/10.1115/1.429656>.

Murphy, B., Farran, A.J., Mauck, R.L., Dodge, G.R., 2014. Time-dependent functional tissue engineering of articular cartilage. *J. Biomed. Eng.* 122, 252–260. <https://doi.org/10.1115/1.429656>.

Murphy, B., Farran, A.J., Mauck, R.L., Dodge, G.R., 2014. Time-dependent functional tissue engineering of articular cartilage. *J. Biomed. Eng.* 122, 252–260. <https://doi.org/10.1115/1.429656>.

Murphy, B., Farran, A.J., Mauck, R.L., Dodge, G.R., 2014. Time-dependent functional tissue engineering of articular cartilage. *J. Biomed. Eng.* 122, 252–260. <https://doi.org/10.1115/1.429656>.

Murphy, B., Farran, A.J., Mauck, R.L., Dodge, G.R., 2014. Time-dependent functional tissue engineering of articular cartilage. *J. Biomed. Eng.* 122, 252–260. <https://doi.org/10.1115/1.429656>.

Murphy, B., Farran, A.J., Mauck, R.L., Dodge, G.R., 2014. Time-dependent functional tissue engineering of articular cartilage. *J. Biomed. Eng.* 122, 252–260. <https://doi.org/10.1115/1.429656>.

Murphy, B., Farran, A.J., Mauck, R.L., Dodge, G.R., 2014. Time-dependent functional tissue engineering of articular cartilage. *J. Biomed. Eng.* 122, 252–260. <https://doi.org/10.1115/1.429656>.

Murphy, B., Farran, A.J., Mauck, R.L., Dodge, G.R., 2014. Time-dependent functional tissue engineering of articular cartilage. *J. Biomed. Eng.* 122, 252–260. <https://doi.org/10.1115/1.429656>.

Murphy, B., Farran, A.J., Mauck, R.L., Dodge, G.R., 2014. Time-dependent functional tissue engineering of articular cartilage. *J. Biomed. Eng.* 122, 252–260. <https://doi.org/10.1115/1.429656>.

Murphy, B., Farran, A.J., Mauck, R.L., Dodge, G.R., 2014. Time-dependent functional tissue engineering of articular cartilage. *J. Biomed. Eng.* 122, 252–260. <https://doi.org/10.1115/1.429656>.

Murphy, B., Farran, A.J., Mauck, R.L., Dodge, G.R., 2014. Time-dependent functional tissue engineering of articular cartilage. *J. Biomed. Eng.* 122, 252–260. <https://doi.org/10.1115/1.429656>.

Murphy, B., Farran, A.J., Mauck, R.L., Dodge, G.R., 2014. Time-dependent functional tissue engineering of articular cartilage. *J. Biomed. Eng.* 122, 252–260. <https://doi.org/10.1115/1.429656>.

Murphy, B., Farran, A.J., Mauck, R.L., Dodge, G.R., 2014. Time-dependent functional tissue engineering of articular cartilage. *J. Biomed. Eng.* 122, 252–260. <https://doi.org/10.1115/1.429656>.

Murphy, B., Farran, A.J., Mauck, R.L., Dodge, G.R., 2014. Time-dependent functional tissue engineering of articular cartilage. *J. Biomed. Eng.* 122, 252–260. <https://doi.org/10.1115/1.429656>.

Murphy, B., Farran, A.J., Mauck, R.L., Dodge, G.R., 2014. Time-dependent functional tissue engineering of articular cartilage. *J. Biomed. Eng.* 122, 252–260. <https://doi.org/10.1115/1.429656>.

Murphy, B., Farran, A.J., Mauck, R.L., Dodge, G.R., 2014. Time-dependent functional tissue engineering of articular cartilage. *J. Biomed. Eng.* 122, 252–260. <https://doi.org/10.1115/1.429656>.

Murphy, B., Farran, A.J., Mauck, R.L., Dodge, G.R., 2014. Time-dependent functional tissue engineering of articular cartilage. *J. Biomed. Eng.* 122, 252–260. <https://doi.org/10.1115/1.429656>.

Murphy, B., Farran, A.J., Mauck, R.L., Dodge, G.R., 2014. Time-dependent functional tissue engineering of articular cartilage. *J. Biomed. Eng.* 122, 252–260. <https://doi.org/10.1115/1.429656>.

Murphy, B., Farran, A.J., Mauck, R.L., Dodge, G.R., 2014. Time-dependent functional tissue engineering of articular cartilage. *J. Biomed. Eng.* 122, 252–260. <https://doi.org/10.1115/1.429656>.

Murphy, B., Farran, A.J., Mauck, R.L., Dodge, G.R., 2014. Time-dependent functional tissue engineering of articular cartilage. *J. Biomed. Eng.* 122, 252–260. <https://doi.org/10.1115/1.429656>.

Murphy, B., Farran, A.J., Mauck, R.L., Dodge, G.R., 2014. Time-dependent functional tissue engineering of articular cartilage. *J. Biomed. Eng.* 122, 252–260. <https://doi.org/10.1115/1.429656>.

Murphy, B., Farran, A.J., Mauck, R.L., Dodge, G.R., 2014. Time-dependent functional tissue engineering of articular cartilage. *J. Biomed. Eng.* 122, 252–260. [https://doi.org/](https://doi.org/10.1115/1.429656)

and ultrastructural analysis in comparison with cartilage explants. *J. Anat.* 205, 229–237. <https://doi.org/10.1111/j.0021-8782.2004.00327.x>.