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Abstract—In this article, we propose a tractable family of
remainder-form mixed-monotone decomposition functions
that are useful for overapproximating the image set of non-
linear mappings in reachability and estimation problems.
Our approach applies to a new class of nonsmooth, discon-
tinuous nonlinear systems that we call either-sided locally
Lipschitz semicontinuous systems, which we show to be
a strict superset of locally Lipschitz continuous systems,
thus expanding the set of systems that are formally known
to be mixed-monotone. In addition, we derive lower and
upper bounds for the overapproximation error and show
that the lower bound is achieved with our proposed ap-
proach, i.e., our approach constructs the tightest, tractable
remainder-form mixed-monotone decomposition function.
Moreover, we introduce a set inversion algorithm that along
with the proposed decomposition functions can be used
for constrained reachability analysis and guaranteed state
estimation for continuous- and discrete-time systems with
bounded noise.

Index Terms—Nonlinear dynamical systems, reachabil-
ity analysis, mixed-monotonicity, one-sided decomposition
functions, ELLS systems.

I. INTRODUCTION

MONOTONICITY properties of systems have proven to be
very powerful and useful for analyzing and controlling

complex systems [1], [2]. Building upon this idea, it was shown
that certain nonmonotone systems can be lifted to higher dimen-
sional monotone systems that can be potentially used to deduce
critical information about the original system (see, e.g., [3], [4],
and [5]) by decomposing the system dynamics into increasing
and decreasing components. Systems that are decomposable in
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this manner are called mixed-monotone and are significantly
more general than the class of monotone systems.

Furthermore, mixed-monotonicity has also proven to be very
beneficial for system analysis and control. For instance, if mixed-
monotonicity holds, it can be concluded that the original system
has global asymptotic stability by proving the nonexistence
of equilibria of the lifted system, except in a certain lower
dimensional subspace [6], [7]. Moreover, forward invariant and
attractive sets of the original system can be identified [8] and
reachable sets of the original system can be efficiently overap-
proximated and used for state estimation and abstraction-based
control synthesis [8], [9], [10], [11]. However, the usefulness
of these system lifting techniques for the analysis and control
is highly dependent on the tightness of the decomposition ap-
proaches, their computational tractability [12], [13], and their
applicability to a broad class of systems; therefore, the capability
to compute or construct tractable and tight mixed-monotone
decomposition functions for a broad range of nonlinear, uncer-
tain, and constrained systems is of great interest and will have a
significant impact.

Literature review: Mixed-monotone decomposition functions
are generally not unique, hence several seminal studies have
addressed the issue of identifying and/or constructing appropri-
ate decomposition functions with somewhat different yet highly
related definitions and corresponding sufficient conditions for
mixed-monotonicity [7], [10], [12], [13], [14], [15]. In particular,
recent studies in [12] and [13] provided tight decomposition
functions for unconstrained discrete-time (DT) and continuous-
time (CT) dynamical systems, respectively, whose computability
rely on the global solvability of nonlinear optimization pro-
grams, which is only guaranteed in some specific cases, such
as when the vector field is Jacobian sign-stable (JSS), or when
all its stationary/critical points can be computed analytically. On
the other hand, the authors in [8], [14], [15], and [16] proposed
computable and constructive (but not necessarily tight) decom-
position functions for differentiable vector fields with known
bounds for the derivatives. Building on these frameworks, we
aim to obtain computable/tractable and tighter decomposition
functions for a broad class of nonsmooth, discontinuous systems.

Another relevant body of literature pertains to interval arith-
metic [17], [18], [19], [20], which has been successfully ap-
plied to problems in numerical analysis, set estimation, motion
planning, etc. Specifically, inclusion functions and variations
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thereof (e.g., natural, centered-form, and mixed-form inclu-
sions) that are based on interval arithmetic can be directly
related to decomposition functions and can similarly be used
for overapproximation of the ranges/image sets of functions and
for state observer designs [21], [22], [23], [24], [25]. In addition,
various properties of inclusion functions, such as their conver-
gence rates and the subdivision principle, have been studied
in [18]. Subsequent studies further introduced refinements of
interval overapproximations and set inversion algorithms that
can incorporate new sources of information about the system,
such as state constraints, measurements/observations, manufac-
tured redundant variables, and second-order derivatives, e.g.,
in [17], [21], [22], [23], and [24], which can be also benefi-
cial for decomposition function-based constrained reachability
and set-valued estimation problems that we consider in this
work.

Contribution: In this article, we introduce a class of mixed-
monotone decomposition functions whose construction is both
computationally tractable and tight for a broad range of DT
and CT nonsmooth and discontinuous nonlinear systems. The
proposed mixed-monotone decomposition functions are in the
remainder-form (based on the terminology in [18]), and we also
show that they result in difference of monotone functions, which
bear some resemblance with difference of convex functions in
DC programming that is also widely used in optimization and
state estimation problems, e.g., in [23] and [26].

Our work contributes to the literature on mixed-monotone de-
composition functions and more generally, inclusion functions
in multiple ways.

1) We introduce a class of remainder-form decomposition
functions that are tractable (i.e., computable in closed
form without an iterative algorithm), which to the best
of our knowledge is novel and unique to our work. Our
construction approach is proven to be the tightest for
this family of decomposition functions, which we also
show to include the methods in [8], [14], and [16], thus
generalizing and improving on them.

2) The proposed remainder-form decomposition functions
apply to a new broader class of discontinuous and non-
smooth nonlinear systems, which we call either-sided
locally Lipschitz semicontinuous (ELLS) systems, that
is proven in this article to be a strict superset of lo-
cally Lipschitz continuous (LLC) systems. This new sys-
tem class relaxes the (almost everywhere) smoothness,
bounded gradient, and continuity requirements and allows
nonsmooth vector fields with only one-sided bounded
Clarke Jacobians, including vector fields with countable
and finite-valued discontinuities (jumps). Since the class
of nonsmooth, discontinuous ELLS systems include dif-
ferentiable and LLC systems, our results are also novel
contributions to LLC and smooth systems.

3) We further show that the overapproximation of the image
sets of ELLS systems converges to the true tightest en-
closing interval at least linearly, when the interval domain
width goes to zero and moreover, a subdivision principle
applies for improving the enclosure of the range/image
set.

4) We introduce a novel set inversion algorithm based on
mixed-monotone decomposition functions as an alterna-
tive to SIVIA [17] and the refinement algorithm in [21],
which enables the design of algorithms for constrained
reachability and interval observers for systems with
known constraints, modeling redundancy, and/or sensor
measurements.

Moreover, it is noteworthy that the inclusion functions that are
computed based on mixed-monotone decomposition functions
can be used alongside any existing inclusion functions, where
the “best of them” (by virtue of an intersection property) is
chosen, since we observed that in general, no single inclu-
sion function consistently outperforms all others. Furthermore,
our proposed inclusion function can be directly and simply
integrated into existing set inversion, constrained reachability,
and interval observer algorithms, e.g., [17], [21], [27], without
much modifications. Finally, to demonstrate the effectiveness
of the proposed algorithms for decomposition function con-
struction and set inversion, we compare them with existing
inclusion/decomposition functions in the literature.

II. BACKGROUND AND PROBLEM FORMULATION

A. Notation

N, Na, Rnz , 0n and Rn×m denote the set of positive integers,
the first a positive integers, thenz-dimensional Euclidean space,
the zero vector in Rn, and the space of n by m real ma-
trices, respectively. Moreover, ∀z, z, z ∈ Rnz , z ≤ z ⇔ zi ≤
zi, ∀i ∈ Nnz , where zi denotes the ith element of z. Further,
IZ ! [z, z] ! {z ∈ Rnz |z ≤ z ≤ z} and d(IZ) ! ‖z − z‖∞
are called a closed interval/hyperrectangle in Rnz and the diam-
eter of IZ , respectively, where ‖z‖∞ ! maxi |zi| denotes the
!∞-norm of z ∈ Rnz . The set of all intervals in Rnz is denoted
by IRnz .

B. Definitions and Preliminaries

First, we briefly introduce some of the main concepts that we
use throughout the paper, as well as some important existing
results that will be used for comparisons and for deriving our
main results. We start by introducing decomposition and inclu-
sion functions and some of their typical instances.

1) Mixed-Monotonicity and Inclusion Functions:

Definition 1 (Mixed-monotonicity and decomposition func-
tions): [13, Def. 1], [14, Def. 4] Consider the dynamical system
with initial state x0 ∈ IX0 ! [x0, x0]

x+
t = f̃(xt, ut, wt) ! f(zt), (1)

where x+
t ! xt+1 if (1) is a DT system, and x+

t ! ẋt if (1) is a
CT system, f̃ : X × U ×W → Rnx is the vector field with state
xt ∈ X ⊂ Rnx , known input ut ∈ U ⊂ Rnu , and disturbance
inputwt ∈W ⊆ IW ! [w,w] ∈ IRnw . For ease of exposition,
we also define f : Z ! X ×W ⊂ Rnz → Rnx as in (1) that
is implicitly dependent on ut with the augmented state zt !
[x,t w,t ]

, ∈ Z .
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Suppose (1) is a DT system. Then, a mapping fd : Z × Z →
Rnx is a DT mixed-monotone decomposition function with
respect to f , if it satisfies the following conditions:

i) f is embedded on the diagonal of fd, i.e., fd(z, z) =
f(z),

ii) fd is monotone increasing in its first argument, i.e., ẑ ≥
z ⇒ fd(ẑ, z′) ≥ fd(z, z′), and

iii) fd is monotone decreasing in its second argument, i.e.,
ẑ ≥ z ⇒ fd(z′, ẑ) ≤ fd(z′, z).

Further, if (1) is a CT system, a mapping fd : Z × Z → Rnx

is a CT mixed-monotone decomposition function with respect
to f , if it satisfies the following conditions:

i) f is embedded on the diagonal of fd, i.e., fd(z, z) =
f(z),

ii) fd is monotone increasing in its first argument with
respect to “off-diagonal” arguments, i.e.,∀i ∈ Nnx , ẑj ≥
zj , ∀j ∈ Nnz , ẑi = zi = xi ⇒ fd,i(ẑ, z′) ≥ fd,i(z, z′),
and

iii) fd is monotone decreasing in its second argument, i.e.,
ẑ ≥ z ⇒ fd(z′, ẑ) ≤ fd(z′, z).

In addition, systems that admit mixed-monotone decomposi-
tion functions are called mixed-monotone systems.

Moreover, we extend the concept of decomposition functions
to one-sided decomposition functions via the following defini-
tion.

Definition 2 (One-sided decomposition functions): Consider
f : Z ⊂ Rnz → Rnx and suppose there exist two mixed-
monotone mappings fd, fd

: Z × Z → Rnx such that for any
z, z, z ∈ Z , the following statement holds:

z ≤ z ≤ z ⇒ f
d
(z, z) ≤ f(z) ≤ fd(z, z), (2)

where with a slight abuse of notation, we overload the notation
of f

d
(z, z) and fd(z, z) when (1) is a CT system to represent

the case with a fixed zi for the ith function fi. Then, fd and f
d

are called upper and lower decomposition functions for f over
IZ , respectively.

Based on the abovementioned definitions, the mixed-
monotone decomposition function fd is the special case when
the upper and lower decomposition functions coincide (z ≤ z ≤
z ⇒ fd(z, z)≤f(z)≤fd(z, z)). Moreover, one-sided decom-
position functions can be obtained from a family of (generally
nonunique) upper and lower decomposition functions via the
following result that slightly generalizes [28, Prop. 2] to make
it applicable to both DT and CT systems.

Corollary 1 (Intersection property): Suppose f
1
d, f

2
d, and

f1
d
, f2

d
are pairs of upper and lower decomposition functions for

f , respectively. Then,min{f1
d, f

2
d} and max{f1

d
, f2

d
} (i.e., their

intersection) are also upper and lower decomposition function
for f(·), respectively.

Proof: The proof is similar to the proof of [28, Prop. 2]. "
Further, we can slightly generalize the notion of embedding

system with respect to fd in [13, (7)], to the embedding system
with respect to f

d
, fd, through the following definition.

Definition 3 (Generalized embedding systems): For an n-
dimensional system (1) with any one-sided decomposition
functions f

d
and fd, its generalized embedding system is the

2n-dimensional system with initial condition
[
x,0 x,0

],

[
x+
t

x+
t

]
=




f
d

([
(xt)

, w,
],

,
[
(xt), w,

],)

fd

([
(xt), w,

],
,
[
(xt)

, w,
],)



 . (3)

Proposition 1 (State framer property): Suppose system
(1) with initial state x0 ∈ IX0 ! [x0, x0] has a unique
solution and is mixed-monotone with a generalized em-
bedding system (3) with respect to f

d
and fd. Then, for

all t ≥ 0, Rf (t, IX0) ⊂ IXt ! [xt, xt], where Rf (t, IX0) !
{φ(t, x0, w0:t) | x0 ∈ IX0 and wt ∈ IW, ∀t ≥ 0} is the reach-
able set at time t of (1) when initialized within IX0 and IXt !
[xt, xt] is the solution to the generalized embedding system (3).
Consequently, xt ≤ xt ≤ xt, ∀t ≥ 0, i.e., system (1) trajectory
is framed by IXt.

Proof: The proof for CT systems is similar to the proof in [29,
Prop. 3], whereas the DT result follows from repeatedly applying
its definition in (2). "

Definition 4 (Inclusion functions): [17, Ch. 2.4] Consider
a function f : Z ⊂ Rnz → Rnx . The interval function T f :
IRnz → IRnx is an inclusion function for f , if

∀IZ ∈ IRnz , f(IZ) ⊂ T f (IZ),

where f(IZ) is the true image set (or range) of f
for the domain IZ ∈ IRnz . The tightest enclosing in-
terval of f(IZ) is denoted by T f

O(IZ) ! [f true, f
true

] !
[minz∈IZ f(z),maxz∈IZ f(z)] ⊃ f(IZ); hence, it is the tight-
est inclusion function, i.e., T f

O(IZ) ⊆ T f (IZ). Further, with a
slight abuse of notation, we overload the notation of f(IZ) and
T f (IZ) when (1) is a CT system to represent fc(IZ) ⊂ Rnx

and T fc(IZ) ∈ IRnx , respectively, with fc,i(IZ) ! fi(IZc,i),
T fc
i (IZ) ! T f

i (IZc,i), and IZc,i ! {[z, z] ∈ IZ | [zj , zj ] =
IZj , ∀j 1= i, zi = zi = zi}, ∀i ∈ Nnx .

Next, inspired by the work in [18, Sec. 3], we introduce the
notion of remainder-form (additive) inclusion functions.

Definition 5 (Remainder-form (additive) inclusion functions):
Consider a function f : Z ∈ Rnz → Rnx . The interval function
T f
R : IRnz → IRnx is an additive (remainder-form) inclusion

function for f , if there exist two constituent mappings g, h :
Rnz → Rnx , such that for any IZ ∈ IRnz ,

f(IZ) ⊆ T f
R(IZ) ! g(IZ) + h(IZ),

where addition is based on interval arithmetic (cf. [17]).
The following observation relates the concept of decomposi-

tion functions to inclusion functions.
Proposition 2 (Decomposition-based inclusion functions):

Given any upper and lower decomposition functions fd and f
d

(or any decomposition function fd = fd = f
d
) for f ,

T fd(IZ) ! [f
d
(z, z), fd(z, z)]

satisfies f(IZ) ⊂ T fd(IZ) with IZ ! [z, z] (including over-
loading; cf. Definition 4). Consequently,T fd(IZ) is an inclusion
function (that is based on decomposition functions).

Proof: The results follow directly from Definitions 1–4. "
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As noted earlier, (mixed-monotone) decomposition functions
defined in Definition 1 are not unique. Hence, a measure of their
tightness is beneficial for comparing these functions.

Definition 6 (Tightness of decomposition functions): [13, Def.
2] A decomposition function f1

d for system (1) is tighter than
decomposition function f2

d , if for all z ≤ ẑ,

f2
d (z, ẑ) ≤ f1

d (z, ẑ) and f1
d (ẑ, z) ≤ f2

d (ẑ, z). (4)

Then, fO
d is tight, i.e., it is the tightest possible decomposition

function for f , if (4) holds with f1
d = fO

d and any other decom-
position function f2

d . Furthermore, we define the metric/measure
of tightness as the maximum dimensionwise Hausdorff distance
given by

q(f(IZ), T fd(IZ)) ! max
i∈Nnx

q̃(fi(IZ), T fdi (IZ)), (5)

where q̃(IX1, IX2) ! max{|x1 − x2|∞, |x1 − x2|∞} is the
Hausdorff distance between two real intervals IX1 =
[x1, x1] and IX2 = [x2, x2], both in IR [18]. Moreover, the
abovementioned tightest decomposition function T fd

O (IZ) !
[fO

d (z, z), fO
d (z, z)] satisfies q(f(IZ), T fd

O (IZ)) = 0.
Further, by Proposition 3, we can obtain inclusion functions

from existing decomposition functions for differentiable func-
tions in [14, Th. 2] and [8, Special Case 1], which can also be
shown to be equivalent to the one in [16, Prop. 2].

Proposition 3 (T fd
L inclusion functions): [14, Th. 2], [8,

Special Case 1], [16, Prop. 2] For any system in the form of
(1), suppose that f : Rnz → Rnx is differentiable and ∂fi

∂zj
(z) ∈

[aij , bij ], ∀z ∈ IZ! [z, z] ⊆ IRnz . Then, a DT or CT mixed-
monotone decomposition function fL

d = [fL
d,1 . . . f

L
d,nx

] with

respect tof and its corresponding inclusion functionT fd
L (IZ) =

[fL
d (z, z), f

L
d (z, z)] can be constructed as follows. For all i ∈

Nnx and j ∈ Nnz ,

fL
d,i(z, ẑ) = fi(ζ) + (αi − βi)(z − ẑ), (6)

with αi = [αi1, . . . ,αinz ], βi = [βi1, . . . ,βinz ] and

ζ = [ζ1, . . . , ζnz ]
,, where αij =

{
0, Cases1,3,4,5,
|aij |, Case2,

,

βij =
{
0, Cases1,2,4,5,
−|bij |, Case3,

, and ζj =
{
zj , Cases 1,2,5,
ẑj , Cases 3,4,

with

Cases 1 through 4 for DT, and Cases 1 through 5 for
CT systems. Moreover, the cases are defined as: Case
1 : aij ≥ 0, Case 2 : aij ≤ 0, bji ≥ 0, |aij | ≤ |bij |, Case
3 : aij ≤ 0, bij ≥ 0, |aij | ≥ |bij |, Case 4 : bij ≤ 0, and Case 5:
j = i.

Proposition 4 (Tight decomposition functions for mixed-
monotone systems): [12, Th. 2], [13, Th. 1] For any system in
the form of (1) and IZ ! [z, z], a tight (optimal) DT or CT
mixed-monotone decomposition function fO

d = [fO
d,1 . . . f

O
d,nx

]

and its corresponding tight inclusion function T fd
O (IZ) !

[fO
d (z, z), fO

d (z, z)] (i.e., T f
O(IZ) = T fd

O (IZ)) can be con-
structed as follows. If (1) is DT, then ∀i ∈ Nnx ,

fO
d,i(z, ẑ) =






min
ζ∈[z,ẑ]

fi(ζ) if z ≤ ẑ

max
ζ∈[ẑ,z]

fi(ζ) if ẑ ≤ z.
(7)

Moreover, if (1) is CT, then ∀i ∈ Nnx ,

fO
d,i(z, ẑ) =






min
ζ∈[z,ẑ],ζi=zi

fi(ζ) if z ≤ ẑ

max
ζ∈[ẑ,z],ζi=zi

fi(ζ) if ẑ ≤ z.
(8)

Remark 1: On the flip side, the DT mixed-monotone decom-
position functions can also be directly used as inclusion func-
tions; hence, the proposed decomposition functions can also be
relatively easily incorporated into existing analysis, estimation
and planning algorithms that are based on interval arithmetic,
e.g., [17], [18], [19], [20].

Although Proposition 4 provides theoretically tight decompo-
sition functions, it has some limitations in practice (see [29, Sec.
III] for a detailed discussion). For instance, exact closed-form
solutions to the nonlinear programs in (7) and (8) may not
always be available. With this in mind, we define the notion
of tractability of decomposition functions as follows.

Definition 7 (Tractable decomposition functions): fd, fd
are

computationally tractable/computable one-sided decomposition
functions for mapping f , if they can be constructed in a closed
form, i.e., with a finite number of elementary operations and
without differentiation nor an iterative procedure.

Corollary 2 (Tight and tractable decomposition functions for
JSS vector fields): Suppose f(·) is continuously differentiable
and JSS [14], i.e., ∀i ∈ Nnx , ∀j ∈ Nnz , J

f
ij(z) ! ∂fi

∂zj
(z) ≥ 0,

∀z ∈ IZ , or Jf
ij(z) ! ∂fi

∂zj
(z) ≤ 0, ∀z ∈ IZ . Then, the follow-

ing statements hold.
i) ∀i ∈ Nnx and ∀j ∈ Nnz , fi(·) is either monotonically non-

decreasing or monotonically nonincreasing in its jth argument
zj , over the entire domain IZ .

ii) The optimization programs in (7) and (8) can be tractably
and exactly solved by enumerating fi(·) at the vertices of IZ
(with fixed ζi = zi = xi for CT systems) and choosing the
corresponding optima.

Proof: The results are obtained in a straightforward manner
by applying Proposition 4 and basic calculus. "

We conclude this section by briefly introducing interval
arithmetic-based inclusion functions via Propositions 5 and 6.

Proposition 5 (Natural (T f
N ) inclusion functions): [17, Th.

2.2] Consider IZ ! [z, z] ∈ IRnz and f ! [f1, . . . , fnx ]
, :

Z ⊂ Rnz → Rnx , where each fj , j ∈ Nnx , is expressed as a
finite composition of the operators +,−,×, and /, and elemen-
tary functions (sine, cosine, exponential, square root, etc.). A
natural inclusion function T f

N : IRnz → IRnx for f is obtained
by replacing each real variable zi, i ∈ Nnz , by its corresponding
interval variable [zi] ! IZi = [zi, zi], and each operator or
function by its interval counterpart by applying interval arith-
metic (cf. [17, Ch. 2] for details).

Proposition 6 (Centered (T f
C) and mixed centered (T f

M )
inclusion functions): [17, Secs. 2.4.3–2.4.4] Let f !
[f1, . . . , fnx ]

, : Z ⊂ Rnz → Rnx be differentiable over
the interval IZ ! [z, z] ∈ IRnz . Then, the interval function

T f
C(IZ) ! f(m) + IJf

IZ(IZ −m)

is an inclusion function for f , called the centered inclusion func-
tion for f in IZ , where m ! z+z

2 , IJf
IZ is an interval Jacobian
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matrix with domain IZ such that Jf (z) ∈ IJf
IZ , ∀z ∈ IZ , and

Jf (z) is the Jacobian matrix of f at point z ∈ IZ . Moreover,

T f
M (IZ) ! [T f

M,i(IZ) . . . T f
M,nx

(IZ)],

with T f
M,i(IZ) ! fi(m) +

∑nz
j=1 (IJ

f
IZ1→j

)i,j(IZj −mj) for
all i ∈ Nnx , is also an inclusion function for f , called the mixed-
centered inclusion function. Furthermore, IZj ! [zj zj ], j ∈
Nnz , IZ1→j ! [IZ1 . . . IZj mj+1 . . .mnz ]

,, (IJf
IZ1→j

)i,j is

the (i, j)th element of the interval Jacobian matrix IJf
IZ1→j

with
domain IZ1→j , and zj , zj and mj are the j-th elements of the
vectors z, z and m, respectively.

2) Novel Class of Mixed-Monotone Systems: To describe
our modeling framework, we formally define a novel class of
nonsmooth systems, which we show to include a wide range of
nonlinearities and prove in Section III to be mixed-monotone.

Definition 8 (ELLS Systems): System (1) is ELLS at z ∈ Z ,
if there exists an open neighborhood Nz ⊂ Z of z, and for all
i ∈ Nnx , there exist vectors κi ! [κi1, . . . ,κinz ]

, ∈ Rnz with
nonzero elements (i.e., κij 1= 0, ∀j ∈ Nnz ) and constants ρi ∈
R, such that ∀z′, z′′ ∈ Nz ,

〈κi(fi(z′)−fi(z′′)), z′−z′′〉≤ ρi‖z′−z′′‖22, ∀i ∈ Nnx , (9)

where 〈·, ·〉 denotes the inner product operator. Further, if (9)
holds ∀i ∈ Nnx , we also call f an ELLS function on Z .

Note that (9) holds for a very broad range of nonlinear sys-
tems. Particularly, ELLS systems reduce to one-sided locally
Lipschitz systems,1 when nz = nx,κii > 0, ∀i, and (fi(z)−
fi(z′)(zij − z′ij)) has the same sign as κij , uniformly, ∀i 1=
j, z 1= z′, with Lipschitz constant

∑nx
i=1

ρi

κii
. Moreover, the class

of ELLS systems is a strict superset of the class of LLC systems2

and can even have finite-valued and countable discontinuities
(jumps), as shown in the following Proposition 7 and Corollary 3.

Proposition 7: An LLC system is also an ELLS system.
Moreover, the converse is not true. Consequently, the class of
LLC systems is a strict subset of the class of ELLS systems, i.e.,
LLC ! ELLS.

Proof: Suppose a system in the form of (1) is LLC.
Then, clearly each fi is also LLC with some ρ̃i.
Next, by applying the Cauchy–Schwartz inequality and
with each fi being LLC and any κi with nonzero ele-
ments, we have 〈κi(fi(z′)− fi(z)), z′ − z〉 ≤ ‖κi‖2|fi(z′)−
fi(z)|‖z′ − z‖2 ≤ ρi‖z′ − z‖22, where ρi ! ‖κi‖2ρ̃i.

To show that the converse is not true, we provide two coun-
terexamples: 1) Consider the semicontinuous3 “sign” function
s(x) = 0 if x < 0 and s(x) = 1 if x ≥ 0, which has a dis-
continuity at x = 0. First, note that s is not LLC at 0, since
given any open interval IV = (−r, r), r > 0, and any L > 0,
one can pick m > max( 1

Lr , 2), x1 = 1
mL ∈ IV , x2 = − 1

mL ∈
IV , and hence, |s(x1)− s(x2)| = 1 > L|x1 − x2| = L 2

mL =

1System (1) with nx = nz is one-sided LLC if for all z ∈ Z , there exist an
open neighborhoodNz ⊂ Z of z and a ρ ∈ R such that (f(z′)− f(z′′)),(z′ −
z′′) ≤ ρ‖z′ − z′′‖22, ∀z′, z′′ ∈ Nz .

2System (1) is LLC if for all z ∈ Z , there exist an open neighborhood Nz of
z and a ρ ≥ 0 such that ‖f(z′)− f(z′′)‖2 ≤ ρ‖z′ − z′′‖2, ∀z′, z′′ ∈ Nz .

3System (1) is upper or lower semicontinuous if for all z ∈ Z ,
lim supz′→z f(z

′) ≤ f(z) or lim infz′→z f(z
′) ≥ f(z), respectively.

2
m . On the other hand, we can show that s is ELLS at any x with
ρ = 0 and any κ < 0, as follows. Let z′, z′′ be arbitrarily picked
from an open neighborhood of x, and consider the following
three possible cases:

i) z′, z′′ < 0 or z′, z′′ > 0. In this case, the left-hand side of
(9) is zero and the right-hand side is nonnegative, and hence, the
inequality in (9) holds.

ii) z′ < 0 and z′′ > 0. In this case, s(z′)− s(z′′) = −1, z′ −
z′′ ≤ 0 and κ < 0. So, the left-hand side of (9) is nonpositive,
and the right-hand side is zero, and thus, the inequality in (9)
holds.

iii) z′ > 0 and z′′ < 0. In this case, s(z′)− s(z′′) = 1, z′ −
z′′ ≥ 0, and κ < 0. So, the left-hand side of (9) is nonpositive,
and the right-hand side is zero; thus, (9) holds.

2) Similarly, it can be shown that the continuous function
q(x) =

√
x if x ≥ 0 and q(x) = 0 if x < 0 is not LLC at x = 0,

since limx→0+
dq
dx (x) =∞, but is ELLS with ρ = 0 and any

κ < 0. "
Corollary 3: Upper or lower semicontinuous3 functions that

are LLC almost everywhere, except at a nonempty, countable
set of finite-valued discontinuities are ELLS but not LLC.

Proof: Since any finite-valued discontinuity (jump) can be
characterized using an appropriately scaled sign function, any
semicontinuous function that is LLC except at the discontinuities
can be rewritten as a sum of an LLC function and scaled sign
functions. Then, by the proof of Proposition 7 that sign functions
are ELLS, combined with the fact that LLC functions are ELLS
functions (with Clarke Jacobians that are bounded above and
below; cf. Corollary 4), by Proposition 7, any semicontinuous
function that is LLC almost everywhere except at the disconti-
nuities is ELLS, but is clearly not LLC. "

Next, we review a notion of generalized gradients used in
nonsmooth analysis in systems and control theory [30] when
vector fields of the systems are not necessarily differentiable.

Definition 9 (Clarke generalized directional derivatives):
[31, Ch. II] Given a function f : Z ⊆ Rnz → R,

f ↑C(z, v) ! lim sup
t→z,λ↓0

f(t+ λv)− f(t)

λ
= sup

ξ∈∂Cf(z)
ξ,v,

f ↓C(z, v) ! lim inf
t→z,λ↓0

f(t+ λv)− f(t)

λ
= inf

ξ∈∂Cf(z)
ξ,v (10)

are the (generalized) Clarke upper and lower directional deriva-
tives/gradients of f at z ∈ Z in the direction v ∈ Rnz , respec-
tively, where the set

∂Cf(z) ! {ξ ∈ Rnz |f ↓C(z, v) ≤ ξ
,v ≤ f ↑C(z, v)∀v ∈ Rnz}

is the Clarke subdifferential (set) of f at z ∈ Z .
Note that, by definition, f ↑C(z, v) and f ↓C(z, v) are the upper

and lower support functions of the set ∂Cf(z). Further, as shown
in [31, Appendix I], ∂Cf(z) for an LLC system is nonempty,
convex, and compact for all z ∈ Z , and consequently, at each
z ∈ Z , the Clarke directional derivatives are bounded in each
direction v. However, this does not hold in general for ELLS
systems. Nonetheless, by the following proposition, the Clarke
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directional derivatives in some specific directions are bounded
from above or from below.

Proposition 8: Suppose f : Z ⊆ Rnz → R is ELLS on Z ,
with κ = [κ1, . . . ,κnz ]

, ∈ Rnz and ρ ∈ R. Let ei, ∀i ∈ Nnz

denote the standard unit vector/basis in the ith coordinate di-
rection. Then, f ↑C(z, ei) is bounded from above, or f ↓C(z, ei) is
bounded from below. In particular, for i ∈ Nnz , if κi > 0, then
f ↑C(z, ei) ≤

ρ
κi

, and if κi < 0, then f ↓C(z, ei) ≥
ρ
κi

.
Proof: Setting z′ = z + λei in (9), where λ> 0 is sufficiently

small, we obtain κi(f(z + λei)− f(z))λ ≤ ρλ2. Then, divid-
ing both sides by κi 1= 0 and taking the lim sup if κi > 0, or
the lim inf if κi < 0, from both sides when λ→ 0+, imply that
f ↑C(z, ei) is bounded from above or f ↓C(z, ei) is bounded from
below, by ρ

κi
, respectively [cf. (10)]. "

Corollary 4: Consider the mapping f = [f1, . . . , fnx ]
, :

Z ⊂ Rnz → Rnx , where ∀i ∈ Nnx , fi is ELLS on Z , with
κi = [κi1, . . . ,κinz ]

, ∈ Rnz , and ρi ∈ R. We consider up-
per and lower Clarke Jacobian matrices of f at z ∈ Z ,
J
f
C(z)![(J

f
C(z))ij ], and Jf

C(z)![(Jf
C(z))ij ], with the upper

and lower partial Clarke derivatives at point z ∈ Z for each
i ∈ Nnx and j ∈ Nnz , respectively, defined as

(J
f
C(z))ij ! f ↑i,C(z, ej), (J

f
C(z))ij ! f ↓i,C(z, ej). (11)

Then, ∀(i, j) ∈ Nnx ×Nnz , either J
f
C(z)ij ≤

ρi

κij
(bounded

above) or Jf
C(z)ij ≥

ρi

κij
(bounded below), i.e., we cannot si-

multaneously have (J
f
C(z))ij =∞ and (Jf

C(z))ij = −∞.
Proof: The results follow from applying Proposition 8 in a

dimensionwise manner. "
Next, we provide a slight modification of the results in [31,

Prop. 1.12], which plays an important role in our main results
later and its proof goes precisely along the lines of the proof
of [31, Prop. 1.12].

Proposition 9: Let f : Z ⊆ Rnz → Rnx be decompos-
able into f = f1 + f2, where f1, f2 : Z ⊆ Rnz → R, and
fi, f1

i , f
2
i , ∀i ∈ Nnx , are ELLS. Then, ∀z ∈ Z, ∀i ∈

Nnx , and ∀j ∈ Nnz ,

(J
f
C(z))ij ≤ (J

f1

C (z))ij + (J
f2

C (z))ij

(Jf
C(z))i,j ≥ (Jf1

C (z))ij + (Jf2

C (z))ij .

Proof: The results follow from (11) and the facts that
f ↑C(z, v) ≤ f1↑

C (z, v) + f2↑
C (z, v) [31, Ch. II, Prop. 1.12]

and f ↓C(z, v) = −f
↑
C(z,−v) [31, Ch. II, Prop. 1.7], ∀z ∈

Z and ∀v ∈ Rnz . "
It is worth noticing that when f is differentiable, then

∇f(x) ∈ ∂Cf(x), and if f is continuously differentiable or
strictly differentiable, then ∂Cf(x) = {∇f(x)}.

Now, we are ready to explain the notion of Clarke Jacobian
sign-stability through the following definition, which is a gen-
eralization of Jacobian sign-stability in [14] (cf. Corollary 2).

Definition 10 (Clarke Jacobian sign-stability): A mapping
f : Z ⊂ Rnz → Rnx is called Clarke Jacobian sign-stable
(CJSS) over Z , if ∀z ∈ Z, ∀i ∈ Nnx , and ∀j ∈ Nnz ,

(J
f
C(z))ij ≤ 0 ∨ (or) (Jf

C(z))ij ≥ 0. (12)

Finally, we present an extension of Corollary 2, which we will
apply later in our derivations.

Proposition 10: Suppose f is ELLS and CJSS over IZ . Then,
∀i ∈ Nnx and ∀j ∈ Nnz ,fi is either monotonically nondecreas-
ing or monotonically nonincreasing in its jth argument zj , over
the entire domain IZ , and consequently, the optima of (7) and
(8) are attained at some vertices of IZ .

Proof: For i ∈ Nnx , consider any arbitrary z1 from the inte-
rior of IZ and construct z2 = z1 + λej ∈ IZ , for some small
enough λ > 0. Then, by an identical proof to [31, Ch. II, Th.
1.3], there exists a zθ ∈ IZ on the connecting line between
z1 and z2, such that λf ↓i,C(zθ, ej) = f ↓i,C(zθ, λej) ≤ fi(z2)−
fi(z1) ≤ f ↑i,C(zθ, λej) = λf ↑i,C(zθ, ej), where the equalities
hold by [31, Ch. II, Prop. 1.5]. Using this and the CJSS assump-
tion [cf. (12)], fi(z2) ≤ fi(z2) if f ↑i,C(z, λej) = (J

f
C(z))ij ≤ 0

holds for all z ∈ IZ (including z = zθ), and similarly, fi(z2) ≥
fi(z2) if f ↓i,C(z, λej) = (Jf

C(z))ij ≥ 0 holds for all z ∈ IZ (in-
cluding z = zθ). Hence, by moving along the coordinate direc-
tions, one can always increase or decrease each of the fi’s. Using
a similar argument, this result also holds for λ < 0. So, the opti-
mum for each fi is attained at some vertices of the interval IZ ."

C. Modeling Framework And Problem Statement

We consider constrained dynamical systems of the form

x+
t = f̃(xt, ut, wt) ! f(zt), µ(xt, ut) ! ν(xt) ∈ Yt, (13)

where x+
t = ẋt if (13) is a CT system and x+

t = xt+1 if (13)
is a DT system. xt ∈ X ⊂ Rnx is the state, ut ∈ U ⊂ Rnx is
the known input, and wt ∈W ⊆ IW ! [w,w] ∈ IRnw is the
augmentation of all exogenous inputs, e.g., bounded distur-
bance/noise and internal uncertainties, such as uncertain param-
eters, with known bounds w,w, while f : X × U ×W → Rnx

and µ : X × U → Rny are the nonlinear vector field and the
observation/constraint mapping, respectively, while Yt is the
known or measured time-varying constraint/observation set.
The mapping µ and the set Yt ⊆ [y

t
, yt] describe system con-

straints that can represent prior or additional knowledge about
the system states, e.g., sensor observations or measurements
with bounded noise, known state constraints, manufactured
constraints from modeling redundancy [25] (cf. Section VI-B
for an example), etc. For ease of exposition, we further define
f : Z ! X ×W ⊂ Rnz → Rnx and ν : X ⊂ Rnx → Rny as
in (13) that is implicitly dependent on ut with the augmented
state zt ! [x,t w,t ]

, ∈ Z . Further, we assume the following.
Assumption 1: The mappings f and ν are ELLS (cf. Defini-

tion 8) and have a countable number of (finite-valued) disconti-
nuities.

Note that it is straightforward to show that Assumption 1
implies that the vector field f is locally essentially bounded
(LEB), i.e., it is bounded on a bounded neighborhood of every
point, excluding a set of measure zero. This implies that there
exists a solution for (13) by [32, Prop. 3]. Moreover, if the ELLS
condition holds, κii > 0, ∀i, and (fi(z)− fi(z′)(zij − z′ij))
has the same sign as κij , uniformly, ∀i 1= j, z 1= z′, then the vec-
tor field is one-sided locally Lipschitz, and hence, (13) exhibits
a unique solution by [32, Corollary 1]. So Proposition 1, i.e.,
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the state framer property, will be applicable with any decompo-
sition functions, including the remainder-form decomposition
functions that will be introduced in Section III-A. Further, in
the even more general case that some of the κi’s are negative
where the uniqueness of solutions is not guaranteed, we can
still apply a weaker version of Proposition 1 that will be shown
later in Lemma 4 to hold for remainder-form decomposition
functions.

Assumption 2: For the mappings f and ν, there exist known
bounds on their Clarke Jacobian matrices, J

f
C , J

f
C ∈ {R ∪

±∞}nx×nz and J
ν
C , J

ν
C ∈ {R ∪±∞}ny×nx , that satisfy

((Jf
C(z))ij ≤ (J

f
C)ij <∞)∨((Jf

C(z))ij ≥ (Jf
C)ij > −∞)

((Jν
C(x))pq ≤ (J

ν
C)pq <∞)∨((Jν

C(x))pq ≥ (Jν
C)pq> −∞)

∀z ∈ IZ , ∀x ∈ IX , ∀i, q ∈ Nnx , ∀j ∈ Nnz , and ∀p ∈ Nny .
Under the abovementioned modeling framework and assump-

tions, this article seeks to find tight and tractable (i.e., com-
putable) remainder-form upper and lower decomposition func-
tions and their induced inclusion functions (cf. Definitions 2, 4,
and 5 and Proposition 2) as well as to develop set inversion al-
gorithms based on (mixed-monotone) decomposition functions.

Problem 1 (Decomposition functions): Suppose Assump-
tions 1 and 2 hold. Construct and quantify the tightness [via
the metric (5)] of remainder-form decomposition functions, by
solving the following subproblems.

1.1 Given an ELLS vector field f : Z ⊂ Rnz → Rnx , con-
struct a tractable family of mixed-monotone remainder-
form (i.e., additive) decomposition functions for f .

1.2 Derive lower and upper bounds for the tightness (quan-
tified via (5)) of the family of remainder-form decom-
position functions obtained in 1.1.

1.3 Find the tightest decomposition function(s) among the
family of remainder-form decomposition functions ob-
tained in 1.1 and compare them with the decomposition
function in [14] (cf. Proposition 3), and natural, cen-
tered and mixed-centered natural inclusions (cf. Propo-
sition 6).

Problem 2 (Set inversion algorithm): Suppose Assumptions
1 and 2 hold. Given a prior/propagated interval IX p

t ∈ IRnx ,
a constraint/observation function and set, µ(xt, ut) and Yt ⊆
[y

t
, yt] with known ut, develop an algorithm to find an interval

superset of all xt that are compatible with µ, [y
t
, yt], and IX p

t ,
i.e., to find the updated/refined interval IX u

t such that

{x ∈ IX p
t | µ(x, ut) ∈ [y

t
, yt]} ⊆ IX u

t ⊆ IX p
t . (14)

In the context of constrained reachability analysis and guar-
anteed state estimation (cf. Section V), the solution of the gener-
alized embedding system (cf. Definition 3) based on the decom-
position functions obtained from solving Problem 1 provides the
unconstrained reachable set (or propagated set), IX p

t , whereas
the set inversion algorithm in Problem 2 finds the constrained
reachable set (or updated set) IX u

t .

III. MAIN RESULTS

To address the aforementioned problems, we first describe
our proposed construction approach to find a tractable family

of mixed-monotone remainder-form decomposition functions.
Then, by characterizing their tightness, we can determine the
tightest decomposition function among the proposed family.
Further, we present a novel set inversion algorithm that serves as
an alternative and improves on existing approaches, e.g., SIVIA
in [17, Ch. 3]) and IG in [21, Algorithm 1]).

A. Remainder-Form Decomposition Functions

To solve Problem 1.1, we provide a constructive procedure for
computing the family of remainder-form decomposition func-
tions in a tractable manner (i.e., in closed-form). Intuitively, our
approach is based on the idea of decomposing each ELLS func-
tionf into the remainder/additive form, i.e.,f = g + h, such that
g is a CJSS function (cf. Definition 10; so that Proposition 10
applies) by “shifting” the Clarke directional gradients of f and
accounting for the “error” usingh. Since there are several “shift”
directions, we obtain a family of decomposition functions. Note
that the construction below is to be independently performed
for each dimension of the ELLS function f ; hence, without
loss of generality, we only consider a scalar ELLS function fi
throughout this subsection.

Theorem 1 (Family of remainder-form decomposition func-
tions): Consider an ELLS vector field fi : Z ⊂ Rnz → R and
suppose that Assumptions 1 and 2 hold. Then, fi admits a family
of mixed-monotone remainder-form decomposition functions
denoted as {fd,i(z, ẑ;m, h(·))}m∈Mi,h(·)∈HMi

, that is parame-
terized by a supporting vector m ∈Mi and an ELLS remainder
function h ∈ HMi , where

fd,i(z, ẑ;m, h) = h(ζm(ẑ, z)) + fi(ζm(z, ẑ))− h(ζm(z, ẑ))
(15)

with ζm(z, ẑ) = [ζm,1(z, ẑ), . . . , ζm,nz (z, ẑ)]
,, ∀j ∈ Nnz ,

ζm,j(z, ẑ) =

{
ẑj , if mj ≥ max((J

f
C)ij , 0)

zj , if mj ≤ min((Jf
C)ij , 0)

(16)

and the set of supporting vectors Mi is defined as

Mi ! {m ∈ Rnz | mj ≥ max((J
f
C)ij , 0) ∨

mj ≤ min((Jf
C)ij , 0) ∀j ∈ Nnz} (17)

if (13) is a DT system, and with

ζm,j(z, ẑ) =

{
ẑj , if mj ≥ max((J

f
C)ij , 0) ∨ j = i,

zj , if mj ≤ min((Jf
C)ij , 0) ∧ j 1= i,

(18)

Mi ! {m ∈ Rnz | mj ≥ max((J
f
C)ij , 0) ∨

mj ≤ min((Jf
C)ij , 0), ∀j ∈ Nnz , j 1= i,mi = 0},

(19)

if (13) is a CT system, whereas the set of remainder functions
HMi is the family of all ELLS remainder functions whose Clarke
subdifferential set over Z (cf. Definition 9) is a subset of Mi

and is given by

HMi !{h : Z → R | [Jh
C(z), J

h
C(z)] ⊆Mi ∀z ∈ Z}.

(20)
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Consequently, the resulting family of decomposition-based in-
clusion functions is given by

T
fd,i
m,m(IZ) ! [fd,i(z, z;m, h), fd,i(z, z;m, h)] (21)

for all m,m ∈Mi, and the corresponding h, h ∈ HMi .
Note that the small difference in the definitions of the set of

supporting vectors, M, for DT and CT systems in Theorem 1
originates from the subtle difference between the definitions of
decomposition functions for DT and CT systems (cf. Definition
1). To prove the abovementioned theorem, we first prove the
following lemma.

Lemma 1: Any remainder function h ∈ HMi [cf. (20)] is
CJSS and the function gi ! fi − h is also CJSS. Moreover, the
pair (gi,−h) is aligned, i.e., ∀j ∈ Nnz :

1) (J
gi
C (z))j ≤ 0 if and only if (Jh

C(z))j ≥ 0, or

2) (Jgi
C (z))j ≥ 0 if and only if (J

h
C(z))j ≤ 0.

Proof: Sincem ∈Mi, by construction ofMi [cf. (17), (19)],
h ∈ HMi is a CJSS function. Next, by applying Proposition 9
to gi ! fi − h, we know that ∀z ∈ Z, ∀j ∈ Nnz ,

(Jgi
C (z))j ≤ (Jf

C(z))ij − (Jh
C(z))j (22)

(J
gi
C (z))j ≥ (J

f
C(z))ij − (J

h
C(z))j . (23)

Then, since h ∈ HMi , according to (16)–(20), we consider the
following two cases (the case with mi = 0 for CT systems is
trivial):

1) ∀z ∈ Z, (Jh
C(z))j ≥ max((J

f
C)ij , 0) ≥ 0. Then, from

(22), we obtain ∀z ∈ Z, (Jgi
C (z))j ≤ 0⇒ (Jgi

C )j ≤ 0.

2) ∀z ∈ Z, (J
h
C(z))j ≤ min((Jf

C)ij , 0) ≤ 0. Then, from
(23), we have ∀z ∈ Z, (J

gi
C (z))j ≥ 0⇒ (J

gi
C )j ≥ 0.

The reverse can be similarly deduced. Finally, since (J
gi
C )j ≥

0 or (Jgi
C )j ≤ 0 holds, gi is CJSS by Definition 10. "

Remark 2: Since the pair (gi,−h) is aligned and fi = gi + h,
the proposed remainder-form decomposition function can also
be viewed as the decomposition of fi into a difference of mono-
tone functions, which is similar in spirit to difference of convex
functions in DC programming, e.g., [23] and [26].

Proof of Theorem 1: Armed by Lemma 1, we now prove that
(15) is mixed-monotone (cf. Definition 1). Having defined gi !
fi − h, (15) can be rewritten as

fd,i(z, ẑ;m, h) = h(ζm(ẑ, z)) + gi(ζm(z, ẑ)). (24)

First, it directly follows from (16) that ζm(z, z) = z and
fd,i(z, z;m, h) = fi(z). Hence, it remains to show that
fd,i(z, ẑ;m, h) is nondecreasing in z and nonincreasing in ẑ. To
do this, consider z, z̃, ẑ ∈ Z , where z̃ ≥ z. Let j0 ∈ Nnz , and
suppose case (i) in the proof of Lemma 1 holds for dimension
j0. Then, by the first case in (16),

ζm,j0(ẑ, z̃) = z̃j0 ≥ zj0 = ζm,j0(ẑ, z)

ζm,j0(z̃, ẑ) = ẑj0 = ζm,j0(z, ẑ). (25)

Next, we define z1 ∈ Z as follows: z1j0 = z̃j0 and z1j =
zj , ∀j 1= j0. Thus, z1 ≥ z, and by (25), ζm(z1, ẑ) = ζm(z, ẑ),
ζm,j(ẑ, z1) = ζm,j(ẑ, z), ∀j 1= j0, and ζm,j0(ẑ, z

1) ≥
ζm,j0(ẑ, z). Moreover, by case (i) in the proof of
Lemma 1 and Proposition 10, h is nondecreasing in the

dimension j0, and thus, h(ζm(ẑ, z1)) ≥ h(ζm(ẑ, z)) and
gi(ζm(z1, ẑ)) = gi(ζm(z, ẑ)). Then, it follows from (24) that
fd,i(z1, ẑ;m, h) ≥ fd,i(z, ẑ;m, h). Repeating this procedure
sequentially for all dimensions j for which case (i) in Lemma 1
holds (where τ is the size of this set), we obtain

fd,i(z
τ , ẑ;m, h) ≥ fd,i(z

τ−1, ẑ;m, h) ≥ · · ·

≥ fd,i(z
1, ẑ;m, h) ≥ fd,i(z, ẑ;m, h). (26)

Next, we consider the rest of the dimensions j′ that satisfy
case (ii) in Lemma 1. It follows from the second case in (16)
that for such a dimension j′0 ∈ Nnz ,

ζm,j′0
(ẑ, z̃) = ẑj′0 = ζm,j′0

(ẑ, zτ )

ζm,j′0
(z̃, ẑ) = z̃j′0 ≥ zτj′0 = ζm,j′0

(zτ , ẑ). (27)

Repeating a similar procedure as for case (i), we define
zτ+1 ∈ Z as follows: zτ+1

j′0
= z̃j′0 and zτ+1

j = zτj , ∀j 1= j ′0.
Thus, zτ+1 ≥ zτ , and by (25), ζm(ẑ, zτ+1) = ζm(ẑ, zτ ),
ζm,j(zτ+1, ẑ) = ζm,j(zτ , ẑ), ∀j 1= j ′0, and ζm,j′0

(zτ+1, ẑ) ≥
ζm,j′0

(zτ , ẑ). Moreover, by case (ii) in the proof of Lemma 1
and Proposition 10, gi is nondecreasing in the dimen-
sion j ′0, and thus, gi(ζm(zτ+1, ẑ)) ≥ gi(ζm(zτ , ẑ)), and
h(ζm(ẑ, zτ+1)) = h(ζm(ẑ, zτ )). Then, it follows from (24) that
fd,i(zτ+1, ẑ;m, h) ≥ fd,i(zτ , ẑ;m, h).

Repeating this procedure sequentially for all dimensions j for
which case (ii) in Lemma 1 holds, we obtain

fd,i(z
τ , ẑ;m, h)≤fd,i(z

τ+1, ẑ;m, h)≤ . . .≤fd,i(z̃, ẑ;m, h),

where the last term is fd,i(z̃, ẑ;m, h) since there exist only
two possible cases (i) or (ii) for each dimension. Combining
this and (26) yields fd,i(z̃, ẑ;m, h) ≥ fd,i(z, ẑ;m, h), which
means that fd,i is nondecreasing in its first argument. An almost
identical argument shows that fd,i is nonincreasing in its second
argument. Thus, fd,i is mixed-monotone. "

Theorem 1 mathematically introduces a family of decom-
position functions (cf. Definition 1), but the results are not
yet tractable (cf. Definition 7), since to build such a family,
we have to search over Mi [cf. (17) and (19)], which is an
unbounded and infinite set, as well as overHMi [cf. (20)], which
is an infinite-dimensional space of functions. To overcome this
problem, we propose tractable upper and lower decomposition
functions that only require a search over a finite set of sup-
porting vectors Mc

i ⊂Mi with the choice of linear remainder
functions h(ζ) = 〈m, ζ〉 = m,ζ, and prove that these tractable
decomposition functions are the tightest among the family of
decomposition functions in Theorem 1.

Theorem 2 (Tight and tractable remainder-form upper and
lower decomposition functions): Consider an ELLS vector field
fi : Z ⊂ Rnz → R and let Assumptions 1 and 2 hold. Then, the
tightest tractable (mixed-monotone) remainder-form upper and
lower decomposition functions with z ≥ ẑ are

fd,i(z, ẑ) = min
m∈Mc

fi(ζ
+
m) +m,(ζ−m − ζ+m),

f
d,i
(ẑ, z) = max

m∈Mc
fi(ζ

−
m) +m,(ζ+m − ζ−m), (28)
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where ζ+m ! ζm(z, ẑ) and ζ−m ! ζm(ẑ, z) with ζm(·, ·) defined
in (16) and the finite set of supporting vectors Mc

i defined as

Mc
i ! {m ∈ Rnz | mj = max((J

f
C)ij , 0) ∨

mj = min((Jf
C)ij , 0) ∀j ∈ Nnz}, (29)

if (13) is a DT system, and with

Mc
i ! {m ∈ Rnz | mj = max((J

f
C)ij , 0) ∨

mj = min((Jf
C)ij , 0) ∀j ∈ Nnz , j 1= i,mi = 0}

(30)

and ζm(·, ·) defined in (18) if (13) is a CT system.
Moreover, we call the resulting inclusion function for an inter-

val domain IZ = [z, z] the remainder-form inclusion function
T

fd,i
R ! [f

d,i
(z, z), fd,i(z, z)] (cf. Definition 5).

Remark 3: Note that for the special case of LLC functions,
Theorems 1 and 2 hold trivially by replacing generalized Clarke
Jacobians and their bounds with regular Jacobians. Thus, all re-
sults in this article for constructing tight and tractable remainder-
form decomposition functions also contribute to the literature
on LLC functions, where such decompositions have not been
considered before.

We will prove the above theorem in two steps with the help
of the following lemmas, where the two steps show that we can
restrict our search for the tightest upper and lower decomposition
functions to a finite set of supporting vectors and the set of
linear remainder functions, respectively, without introducing
any conservatism.

Lemma 2 (Finite set of supporting vectors): Suppose the
assumptions in Theorem 2 hold. Then, ∀z, ẑ ∈ Z , ∀h ∈ HMi

and for both opt ∈ {min,max},

opt
m∈Mi,h∈HMi

fd,i(z, ẑ;m, h) = opt
m∈Mc

i ,h∈HMi

fd,i(z, ẑ;m, h),

where fd,i(z, ẑ;m, h) is defined in (15), Mi in (17) or (19), Mc
i

in (29) or (30), and HMi in (20).
Proof: We consider m ∈Mi and construct m̃ ∈ Mc

i

as follows: for all j ∈ Nnz : m̃j = max((J
f
C)ij , 0) if

mj ≥ max((J
f
C)ij , 0) and m̃j = min((Jf

C)ij , 0) if mj ≤
min((Jf

C)ij , 0). Then, it can be easily verified from (16) that
∀z1, z2 ∈ Z, ζm(z1, z2) = ζm̃(z1, z2), and hence, by (15),
fd,i(z1, z2;m, h) = fd,i(z1, z2; m̃, h), ∀h ∈HMi . Hence, for
any m ∈Mi, there exists m̃ ∈Mc

i that admits an equivalent
decomposition function and correspondingly, the optimization
over Mi and Mc

i are equivalent. "
Lemma 3 (Linear remainder functions): Suppose the assump-

tions in Theorem 2 hold. Then, ∀z, ẑ ∈ Z, z ≥ ẑ,

min
m∈Mc

i ,h∈HMi

fd,i(z, ẑ;m, h)= min
m∈Mc

fi(ζ+m)+m,(ζ−m−ζ+m),

max
m∈Mc

i ,h∈HMi

fd,i(ẑ, z;m, h)= max
m∈Mc

fi(ζ−m)+m,(ζ+m−ζ−m),

(31)

where ζ+m ! ζm(z, ẑ) and ζ−m ! ζm(ẑ, z) with fd,i(z, ẑ;m, h)
being defined in (15), ζm(·, ·) in (16), Mc

i in (29) or (30), and
HMi in (20).

Proof: Consider any h ∈ HMi , m ∈Mi and from (15),

f+
d,i ! fd,i(z, ẑ;m, h) = fi(ζ

+
m) +∆hm, (32)

f−d,i ! fd,i(ẑ, z;m, h) = fi(ζ
−
m)−∆hm, (33)

where ∆hm ! h(ζ−m)− h(ζ+m). Then, by applying the Clarke
mean value theorem [31, Ch. II, Th. 1.3] to ∆hm, there exists
ξ ∈ [Jh

C , J
h
C ] ⊂Mi such that ∆hm = 〈ξ, (ζ+m − ζ−m)〉. Since

ξ ∈Mi, by (17) and (19), we know that ξj ≤ min((Jf
C)ij , 0)

or ξj ≥ max((J
f
C)ij , 0), ∀j ∈ Nnz (excluding j = i for CT

systems where ξj = 0).
Then, similar to the proof of Lemma 1, ∀j ∈ Nnx , we can

consider two cases corresponding to the two cases in (16).
i) ξj ≥ max((J

f
C)ij , 0) ≥ 0: From (16), ζ−m,j =

ζm,j(ẑ, z) = zj , ζ+m,j = ζm,j(z, ẑ) = ẑj , and zj ≥ ẑj ;
thus, we have ζ−m,j − ζ

+
m,j ≥ 0 and ξj(ζ

−
m,j − ζ

+
m,j) ≥

max((J
f
C)ij , 0)(ζ

−
m,j − ζ

+
m,j). Then, the minimum of f+

d,i

in (32) and the maximum of f−d,i in (33) are attained in (31)

when ξj = max((J
f
C)ij , 0) ∈ (Mc

i )j .
ii) ξj ≤ min((Jf

C)ij , 0) ≤ 0: From (16), ζ−m,j =

ζm,j(ẑ, z) = ẑj , ζ+m,j = ζm,j(z, ẑ) = zj , and zj ≥ ẑj ;
thus, we have ζ−m,j − ζ

+
m,j ≤ 0 and ξj(ζ

−
m,j − ζ

+
m,j) ≥

min((Jf
C)ij , 0)(ζ

−
m,j − ζ

+
m,j). Then, the minimum of f+

d,i

in (32) and the maximum of f−d,i in (33) are attained in (31)

when ξj = min((Jf
C)ij , 0) ∈ (Mc

i )j .
Finally, we can restrict our search to the class of linear re-

mainder functions h(ζ) = 〈m, ζ〉 = m,ζ with m ∈Mc
i , since

it can achieve the optima in (31). "
Proof of Theorem 2: First, by repeatedly applying Corollary 1

on all the decomposition functions in the family (15) and the
fact that the upper and lower decomposition functions can be
optimized independently, it can be seen that the tightest upper
and lower decomposition functions with z, ẑ ∈ Z, z ≥ ẑ are

fd,i(z, ẑ) = min
m∈Mi,h(·)∈HMi

fd,i(z, ẑ;m, h),

f
d,i
(ẑ, z) = max

m∈Mi,h(·)∈HMi

fd,i(ẑ, z;m, h).

Then, by Lemmas 2 and 3, we obtain the tractable and tight
upper and lower decomposition functions in (28). "

Theorem 2 guarantees that in order to obtain the tightest
possible decomposition function in the form of (15), it is suf-
ficient to only search over a finite set of supporting vectors
Mc

i and the class of linear remainder functions with (Clarke)
gradients from Mc

i , i.e., h(ζ) = 〈m, ζ〉 = m,ζ, ∀m ∈Mc
i ,

where the search space is the finite and countable setMc
i . Hence,

the optimal search for the tightest decomposition functions is
computable/tractable according to Definition 7.

Moreover, the result in Theorem 2 can be applied to each fi,
i ∈ Nnx , of the function f to obtain the tightest remainder-form
decomposition functions from the family of remainder-form
CJSS decomposition functions in (15). This is summarized
in Algorithm 1, which takes an interval domain IZ = [z, z],
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Algorithm 1: Remainder-Form Decomposition Functions.

1: function T fd
R (f, Jf

C , J
f
C , z, z)

2: Initialize: f
d
← −∞, fd ←∞;

3: for i = 1 to nx do
4: Compute Mc

i via (29) or (30);
5: for m ∈Mc

i do
6: for j = 1 to nz do
7: if mj = min((Jf

C)ij , 0) then
8: ζ+m,j ← zj ; ζ−m,j ← zj ;
9: else ζ+m,j ← zj ; ζ−m,j ← zj ;

10: end if
11: ζc+m,j ← ζ+m,j ; ζc−m,j ← ζ−m,j ;
12: end for
13: if (13) is a continuous-time system then
14: ζc+m,i ← zi; ζ

c−
m,i ← zi; mi ← 0;

15: end if
16: f

d,i
← min(f

d,i
, fi(ζ−m) +m,(ζ+m − ζ−m));

17: fd,i ← min(fd,i, fi(ζ
+
m) +m,(ζ−m − ζ+m));

18: end for
19: end for
20: return f

d
, fd;

21: end function

the function f and its Clarke Jacobians, J
f
C and Jf

C , as in-
puts, and outputs the remainder-form inclusion function T fd

R !
[f

d
(z, z), fd(z, z)] (cf. Definition 5). It is worth mentioning that

the computation of the tightest reminder-form mixed-monotone
decomposition function via Algorithm 1 requires n2

z function
evaluations, which may not scale well to high-dimensional func-
tions. To reduce computational burden, one may replace the set
Mc

i in (28) with a potentially fixed-size subsetM̃c
i ⊂Mc

i that can
be selected randomly or by empirically including “good” cases,
e.g., the case corresponding to [14, Th. 2], [8, Special Case 1]
(cf. Theorem 5) without losing the inclusion/framer property (cf.
Definition 4).

Further, note that a DT embedding system (3) has unique so-
lutions, whereas a CT embedding system (3) that is constructed
based on the decomposition functions (28) exhibits the existence
of solutions by [32, Prop. 3] and the fact that the vector fields in
(28) are LEB since they are pointwise summations of an LEB
vector field f and a linear remainder function h. So, the CT
remainder-form embedding system has a nonempty solution set.
Although this set (and the solution set of (1)) are not guaranteed
to be singletons for the most general CT ELLS systems, we
can still show through the following lemma that thanks to the
remainder-form decomposition functions, a weaker version of
the framer property in Proposition 1 holds.

Lemma 4: Suppose the assumptions in Theorem 2 hold. Then,
for any reachable set at time t ≥ 0of the CT system (1) initialized
at x0 ∈ IX0 ! [x0, x0], Rf (t, IX0), there exists IXt ! [xt, xt],
where [x,t x,t ]

, is in the solution set of the generalized em-
bedding system (3) constructed based on the remainder-form
decomposition functions (28) and Rf (t, IX0) ⊂ IXt.

Proof: With a slight abuse of notation, let xt ∈ Φx(x0, t)
denote a known (given) solution to (1), picked from its so-
lution set Φx(x0, t). Our strategy is to construct a [x,t x,t ]

,

that is guaranteed to be in the solution set of (3) and satisfies
xt ≤ xt ≤ xt, ∀t ≥ 0. To do so, given xt, consider the ordinary

differential equation

[ė,t ėt]
, = δ(et) (34)

with the initial values e0 ! [e,0 e,0 ]
, ! [(x0 − x0)

, (x0 −
x0),], ≥ 02n, where et ! [e,t e,t ]

, ∈ E ⊂ R2n, δi(et) !
fi(xt)− f

d,i
(xt − et, xt + et) for i = 1, . . . , n, and δi(et) !

fd,i(xt + et, xt − et)− fi(xt) for i = n+ 1, . . . , 2n denote
the augmented state and dimensionwise vector fields of (34),
respectively. Note that δ ! [δ,1 . . . δ,2n]

, is an ELLS mapping,
since by construction, f

d,i
, fd,i are pointwise summations of

ELLS and linear functions. Hence, by (9), for all i ∈ N2n and
all e′, e′′ ∈ E, there exist κi ∈ R2n,κij 1= 0, ρi ∈ R, such that
〈κi(δi(e′)− δi(e′′)), e′ − e′′〉 ≤ ρi‖e′ − e′′‖22. Expanding this,
in addition to setting e′′ = 02n and given that δi(02n) = fi(xt)−
f
d,i
(xt, xt) = fd,i(xt, xt)−fi(xt) = fi(xt)−fi(xt) = 0, we

obtain δi(e′)e′i + (κii − 1)δi(e′)e′i +
∑2n

j=1,j 1=i κijδj(e
′)e′j ≤

ρi‖e′‖22 for all e′ ∈ E and all i ∈ N2n. Consequently,
δi(e′)e′i ≤ ρ′i‖e′‖22 + ci, where ci ! supẽ∈E((1−
κii)δi(ẽ)ẽi −

∑2n
j=1,j 1=i κijδj(ẽ)ẽ). Summing up both sides

of the 2n inequalities returns 〈δ(e′), e′〉 ≤ c1‖e′‖22 + c2 for all
e′ ∈ E, where c1 ! ∑2n

i=1 ρi, c2 ! max(ε,
∑2n

i=1 c1)> 0, and
ε is a very small positive number. With this, the dynamical
system (34) satisfies the conditions in [33, Eq. (4)]. Moreover,
since decomposition functions are nondecreasing in their first
argument and nonincreasing in their second, for any ordered pair
of e1 ! [e1, e1,], ≤ e2 ! [e2, e2,],, e1i = e2i , i ∈ N2n, we
have f

d,i
(x− e1, x+ e1) ≤ f

d,i
(x− e2, x+ e2)⇒ δi(e1) =

f(x)− f
d,i
(x− e1, x+ e1) ≤ δi(e2) = f(x)− f

d,i
(x− e2,

x+ e2), i = 1, . . . , n, and also fd,i(x + e1, x− e1) ≤ fd,i

(x+ e2, x− e2) ⇒ δi(e1) = fi(x) + fd,i(x+ e1, x− e1) ≤
δi(e2) = fi(x) + fd,i(x+ e2, x− e2), i = n+ 1, . . . , 2n.
In other words, the conditions in [33, Eq. (5)] are also
satisfied. Further, by plugging “zero” initial values into
(34), we obtain [ė,t ė

,
t ]
, = 02n, which means that the

only possible solution is zero, i.e., Φe(0, t) = {0}, where
Φe(., t) denotes the solution set of (34). All of these
in addition to [33, Lemma 2] imply that there exists
e∗t ! [e∗,t e∗,t ], ∈ Φe(e0, t) such that 0n ≤ e∗t , 0n ≤ e∗t , for
all t ≥ 0. Consequently, xt ! xt − e∗t ≤ xt ≤ xt ! xt + e∗t .
By taking derivatives of all sides and (34), we obtain ẋt =
ẋt − ė∗t = f(xt)− f(xt) + f

d
(xt − e∗t , xt + e∗t) = f

d
(xt, xt)

and ẋt = ẋt + ė
∗
t = f(xt) + fd(xt + e∗t , xt − e∗t)− f(xt) =

fd(xt, xt). Hence, [x,t x,t ]
, belongs to the solution set of (3)."

B. Error Bounds

Next, we formally characterize the tightness of our pro-
posed family of remainder-form decomposition functions in
(15), where we use the Hausdorff distance-based tightness met-
ric/measure in (5). In particular, we derive lower and upper
bounds on the overapproximation error of the image set/range
of function f , where the lower bound is achievable by our tight
and tractable decomposition functions in Theorem 2.

Theorem 3 (Error bounds): Suppose that all the assumptions
in Theorem 1 are satisfied for each fi : Z ⊂ Rnz →
R, i ∈ Nnx . Let T f

O(IZ) ! [f true, f
true

] ! [minz∈IZ f(z),
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maxz∈IZ f(z)] = T fd
O (IZ) be the tightest enclosing interval

of the true image set/range of f over IZ = [z, z] ∈ IRnz (cf.
Definition 4), T

fd,i
m,m(IZ) ⊇ T fi

O (IZ), ∀i ∈ Nnx , given in
(21), be inclusion functions using the family of decomposition
functions in (15), and T fd

M (IZ) ⊇ T f
O(IZ) be any inclusion

function such that T
fd,i
M (IZ) = T

fd,i
m,m(IZ), ∀i ∈ Nnx , for

some m,m ∈Mi. Then, the following inequalities hold:

q
fd
(IZ) ≤ q(T fd

M (IZ), T f
O(IZ)) ≤ qfd(IZ) ≤ q̂fd(IZ),

(35)

with the tightness metric q([v, v], [w,w]) = maxi∈Nnx

max{|vi − wi|, |vi − wi|} defined in (5), and with the bounds
q
fd
(IZ) ! maxi∈Nnx

q
fd,i

(IZ), qfd(IZ) ! maxi∈Nnx
qfd,i

(IZ) and q̂fd(IZ) ! maxi∈Nnx
q̂fd,i(IZ), where for each

i ∈ Nnx ,

q
fd,i

(IZ) ! max

{
min

m∈Mc
i

∆1
i,m − f

true
i , f true

i
− max

m∈Mc
i

∆2
i,m

}

q̂fd,i(IZ) ! min
m∈Mc

i

∆3
i,m

qfd,i(IZ) ! min

{
min

m∈Mc
i

∆3
i,m, min

m∈Mc
i

∆3
i,m +∆4

i,m

}

with Mi and Mc
i in (17) and (29) or (19) and (30), respectively,

∆1
i,m ! fi(ζ

+
i,m) +∆3

i,m,∆2
i,m ! fi(ζ

−
i,m)−∆3

i,m

∆3
i,m ! hi(ζ

−
i,m)− hi(ζ

+
i,m),∆4

i,m ! fi(ζ
+
i,m)− fi(ζ

−
i,m)

(36)

as well as ζ+i,m ! ζi,m(z, z), ζ−i,m ! ζi,m(z, z) and ζi,m(., .) de-
fined in Theorem 1. Further, without loss of tightness (cf. Lemma
3), we can replace ∆3

i,m in (36) with ∆3
i,m ! m,(ζ−i,m−ζ

+
i,m),

whereas q
fd
(IZ) is attained by the upper and lower decompo-

sition functions (i.e., T fd
R ) in Theorem 2.

Proof: First, from (15), (21), and (36), we find

q̃(T
fd,i
m,m(IZ), T fi

O (IZ)) = max
{
∆1

i,m − f
true
i , f true

i
−∆2

i,m

}

≥ max

{
min

m∈Mc
i

∆1
i,m − f

true
i , f true

i
− max

m∈Mc
i

∆2
i,m

}
(37)

where the first inequality in (35) follows from independently
searching over Mc

i ⊂Mi to minimize each argument of the
maximization, as well as the fact that by Lemmas 2 and 3,
we can apply ∆3

i,m ! m,(ζ−i,m−ζ
+
i,m) and search only over

Mc
i ⊂Mi without any conservatism, and it can be verified that

by construction, the lower bound q
f
(IZ) is attained by the

decomposition functions in Theorem 2. To obtain the second and
third inequalities, we apply [18, Th. 4-(b)], which proved that for
any remainder-form inclusion functions with remainder function
ri(·) satisfying ri(IZ) ⊂ [ri, ri], q̃(WR

fd,i
(IZ), Vfi(IZ)) ≤

ri − ri holds. For the third inequality in (35), only hi is con-
sidered as the remainder function, whereas in the second in-
equality, both hi and gi ! fi − hi are considered as remainder
functions, separately, with the minimum chosen as the bound.
Moreover, since hi is CJSS, by (16), hi and hi are attained
at the corner points given by ζ−i,m and ζ+i,m, respectively, with

∆3
i,m ! hi − hi. Further, sincegi is aligned with−hi by Lemma

1, gi and g
i

are attained at the corner points given by ζ+i,m and
ζ−i,m, respectively, with ∆3

i,m +∆4
i,m ! gi − g

i
. "

The abovementioned result holds for both DT and CT systems
(with overloading described in Definition 4). Further, note that
lower bound q

f,d
(IZ) is attainable by T fd

R but since it is a

function of the unknown f
true

and f true, it cannot be computed.
Thus, its upper bounds qfd(IZ) and q̂fd(IZ) in (ii) that are

independent of f
true

and f true are more useful, e.g., as worst-
case function overapproximation error bounds in reachability
and robust control problems.

C. Convergence Rate and Subdivision Principle

In this section, we study the convergence rate of our proposed
T fd
R , i.e., the rate at which its approximation error goes to zero,

when the domain interval diameter d(IZ) shrinks. We show
that when using T fd

R , the error converges at least linearly, which
is also the convergence rate of natural inclusions T f

N [19, Ch.
6]. Further, we show that the subdivision principle introduced
in [20] can be applied to improve the convergence. We first
introduce the notion of convergence rate, inspired by [20],
and then, we present the convergence rate and the subdivision
principle for our proposed T fd

R .
Definition 11 (Convergence rate): An inclusion functionT f :

IRnz → IRnx for an ELLS vector field f : Z ⊂ Rnz → Rnx

has a convergence rate α > 0, if

q(T f (IZ), T f
O(IZ)) ≤ β d(IZ)α (38)

for some β > 0, where T f (IZ) is the interval overapproxima-
tion of the range of f over IZ (i.e., an inclusion function),
T f
O(IZ) is the tightest inclusion function (cf. Definition 4), q(·, ·)

is defined in (5) and d(IZ) ! ‖z − z‖∞.
Theorem 4 (Convergence rate and subdivision principle for

T fd
R ): The T fd

R inclusion function for any ELLS vector field
f : Z ⊂ Rnz → Rnx satisfies

q
fd
(IZ) = q(T fd

R (IZ), T f
O(IZ)) ≤ βf

Rd(IZ) (39)

for some βf
R > 0, with a convergence rate α = 1. Moreover,

applying the subdivision principle, we have

q(T fd
R (IZ; k), T f

O(IZ; k)) ≤ γfR
k

(40)

where IZ is subdivided into knz interval vectors IZ l, l ∈ Nknz

(i.e., with k divisions in each dimension such that d(IZ l
j) =

d(IZj)
k for j ∈ Nnz , l ∈ Nknz ), T fd

R (IZ; k) ! ⋃knz

l=1 T
fd
R (IZ l)

and T f
O(IZ; k) ! ⋃knz

l=1 T
f
O(IZ l).

Proof: For a linear remainder function h(z) = m,z with

m !
[
m1 . . . mnx

]
(cf. Lemma 3), q̂fd(IZ) in Theorem 3

can be upper bounded by triangle inequality by (39) with
βf
R = maxi∈Nnx

‖mi‖∞. Further, the proof of (40) follows the
same lines as the proof of [34, Th. 4.1]. "
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D. Set Inversion Algorithm

The remainder-form decomposition functions returned by
Algorithm 1 can be used with the generalized embedding system
in Definition 3 to overapproximate (unconstrained) reachable
sets of a dynamic system governed by the vector field f ,
which corresponds to the propagated/predicted sets in state ob-
servers/estimators. However, when additional state constraint in-
formation is available (e.g., sensor observations/measurements
in state estimation problems, known safety constraints from
system design and manufactured constraints from modeling
redundancy [21], [22], [23], [24], [25]), an additional set in-
version (also known as update or refinement) step will allow us
to take the advantage of the constraints to shrink the propagated
sets, i.e., to obtain a tighter subset of the propagated set that is
compatible/consistent with the given constraints. Further details
about the application of the reachable/propagated set and set
inversion algorithms will be described in Section V.

Formally, given the constraint/observation function µ(x, u)
in (13) with known u, a constraint/observation set Y with max-
imal and minimal values y, y (satisfying µ(x, u) ⊂ Y ⊆ [y, y])
and a prior (or propagated/predicted) reachable interval IX p =
[xp, xp], we wish to find an updated/refined interval IX u ⊆
IX p, such that (14) holds, i.e., to solve Problem 2. Finding
IX u in (14) is called the set inversion problem [17]. To the best
of our knowledge, existing set inversion algorithms/operators
either compute subpavings (i.e., unions of intervals) instead of an
interval using (conservative) natural inclusions (SIVIA [17, Ch.
3]) or are only applicable if relatively restrictive monotonicity
assumptions hold (IG [21, Algorithm 1]).

In this section, leveraging our proposed DT decomposition-
based inclusion functions for an ELLS function ν(x) ! µ(x, u)
with known u, i.e., T νd

R , we develop a novel set inversion
algorithm that solves Problem 2, which is summarized in Al-
gorithm 2. The main idea behind Algorithm 2 is based on
the observation that a candidate interval IΞ ! [ξ, ξ] ⊆ IX p

that satisfies T νd
R (IΞ) ∩ [y, y] = ∅ (i.e., if νd(ξ, ξ) > y or if

νd(ξ, ξ) < y) is incompatible/inconsistent with the set {x ∈
IX p | y ≤ µ(x, u) ≤ y} and can be eliminated/ruled out from
IX p, and thus shrinking IX u.

Using this idea, starting from the prior/propagated interval
and using bisection for each dimension, Algorithm 2 shrinks
the compatible interval from below and/or above if νd is strictly
greater than y or if νd is strictly smaller than y (cf. Lines 8
and 18). Repeating this procedure along with bisections with
a threshold ε, the candidate intervals that are determined to be
inconsistent with the constraint/observation set are ruled out.
Note that the ordering of the dimensions in the “for” loop on
Line 3 may have an impact on the tightness of the returned
interval IX u = [xu, xu] and so, it may be desirable to tailor the
order to the problem at hand, to randomize the order or to repeat
the algorithm with the previous IX u as IX p multiple times.

The following result shows that Algorithm 2 returns IX u =
[xu, xu] that satisfies (14), i.e., solves Problem 2.

Proposition 11: Suppose Assumptions 1 and 2 hold
and consider an ELLS constraint/observation function
ν : X ⊂ Rnx → Rnµ , where ν(x) ! µ(x, u) with known u, a
constraint/observation set Yt ⊆ [y

t
, yt] and a prior/propagated

Algorithm 2: Set Inversion Based on DT T νd
R .

1: function Set-Inv(ν, Jν
C , J

ν
C , x

p, xp, y, y, ε)
2: Initialize: xu ← xp, xu ← xp;
3: for i = 1 to nx do
4: ζ ← xu

i ; ζ ← xu
i ;

5: while ζ − ζ > ε do
6: ζm ← 1

2 (ζ + ζ); ξ ← xu; ξ ← xu; ξ
i
← ζm;

7: (νd, νd)← T νd
R (ν, Jν

C , J
ν
C , ξ, ξ); (Algorithm 1)

8: if (νd < y) ∨ (νd > y) ζ ← ζm; xu
i ← ζ; then

9: else ζ ← ζm;
10: end if
11: end while
12: ζ ← xu

i ; ζ ← xu
i ;

13: while ζ − ζ > ε do
14: ζm ← 1

2 (ζ + ζ); ξ ← xu; ξ ← xu; ξi ← ζm;
15: (νd, νd)← T νd

R (ν, Jν
C , J

ν
C , ξ, ξ); (Algorithm 1)

16: if (νd < y) ∨ (νd > y) ζ ← ζm; xu
i ← ζ; then

17: else ζ ← ζm;
18: end if
19: end while
20: end for
21: return xu, xu;
22: end function

interval IX p ! [xp, xp] ∈ IRnx . Then, the updated/refined
interval IX u ! [xu, xu] returned by Algorithm 2
satisfies (14).

Proof: Obviously, IX u ⊆ IX p (i.e., xp ≤ xu and xp ≥ xu)
by initialization and construction (cf. Lines 2, 9, and 19). Further,
we show that IX u ⊇ IX ∗ ! {x ∈ IX p | y ≤ ν(x) ≤ y}. To use
contradiction, suppose that it does not hold. Then, ∃ζ ∈ IX ∗
such that ζ /∈ IX u, i.e., ∃i ∈ Nnx such that ζi > xu

i or ζi < xu
i .

Without loss of generality, suppose the first case holds, i.e., ζi >
xu
i (the proof for ζi < xu

i is similar). Then, ζ ∈ [xm, xp], where
xm
i > xu

i and xm
i′ = xp

i′ , ∀i′ 1= i. Hence,

νRd (x
m, xp) ≤ ν(ζ) ≤ νRd (xp, xm), (41)

where νRd (·, ·) and νRd (·, ·) are the proposed upper and lower
remainder-form decomposition functions in Algorithm 1. On
the other hand, note that X u ∩ [xm, xp] = ∅; hence, the interval
[xm, xp] has been “ruled out” by Algorithm 2. In other words,
one of the “or” conditions in line 8 of Algorithm 2 must hold for
this interval, i.e., νRd (x

p, xm) < y ∨ νRd (x
m, xp) < y. Com-

bining this and (41), we obtain ν(ζ) < y ∨ µ(ζ) > y, which
contradicts with ζ ∈ IX ∗ (i.e., y ≤ ν(ζ) ≤ y). "

It is noteworthy that our set inversion algorithm can also
be used with any applicable inclusion functions (such as
T f
N , T f

C , T
f
M , T fd

L , T fd
O ) or the best of them (i.e., by indepen-

dently computing the reachable sets of all inclusion functions
and intersecting them; cf. Corollary 1) in place of T fd

R in Lines
7 and 17. On the other hand, the proposed T fd

R (as well as
T fd
L , T fd

O ) can also be directly used in place of or in combination
with natural inclusions within SIVIA [17, Ch. 3] to obtain
subpavings (i.e., a union of intervals).
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IV. COMPARISON WITH EXISTING INCLUSION FUNCTIONS

A. Comparison With the T fd
L Inclusion Function

In this section, we compare the performance of the proposed
T fd
R with T fd

L (cf. Proposition 3) through the following Theorem
5. We show that the decomposition function fL

d , introduced in
[8], [14], and [16] and recapped in Proposition 3, belongs to the
family of the remainder-form decomposition functions in (15),
and hence, T fd

L cannot be tighter than T fd
R that is the tightest

decomposition function that belongs to (15).
Theorem 5 (T fd

L versus T fd
R ): Suppose all the assumptions in

Theorem 1 hold. Then, the following statements are true.
i) fL

d belongs to the family of decomposition functions in (15),
i.e., for each i ∈ Nnx , a specific pair of mL

i ∈Mi and hL
i ∈

HMi corresponds to the decomposition function fL
d in [14, Th.

2], [16, Proposition 2], and [8, Special Case 1] (cf. Proposition
3).

ii) The optimal remainder-form decomposition function T f
R

is always tighter than (at least as good as) the inclusion function
T f
L , induced by the decomposition function fL

d .
Proof: To prove (i), consider a specific decomposition func-

tion from the family of remainder functions in (15) that is
constructed, for each i ∈ Nnx , with a supporting vector mL

i

and a linear remainder function hL
i (·) = 〈mL

i , ·〉 as follows:

(mL
i )j ={

min((Jf
C)ij , 0), if |min((Jf

C)ij , 0)| ≤ |max((J
f
C)ij , 0)|

max((J
f
C)ij , 0), if |max((J

f
C)ij , 0)| < |min((Jf

C)ij , 0)|
(42)

for all j ∈ Nnz . Clearly, mL
i ∈Mc

i ⊂Mi by its definition.
Furthermore, it is easy to observe that mL

i can be rewritten as

(mL
i )j =






0, if (aij ≥ 0) ∨ (bij ≤ 0) ∨ (j = i)

aij , if (aij < 0) ∧ (bij > 0) ∧ (|aij | ≤ |bij |)
bij if (aij < 0) ∧ (bij > 0) ∧ (|bij | ≤ |aij |)

(43)

where aij ! (Jf
Cij) and bij ! (J

f
C)ij . Recall that (aij ≥

0), (aij < 0) ∧ (bij > 0) ∧ (|aij | ≤ |bij |), (aij < 0) ∧ (bij >
0) ∧ (|bij | ≤ |aij |), (bij ≤ 0), and j = i (CT systems only)
correspond to Cases 1–5 in Proposition 3, respectively. Then,
by (42) and (43), we find that ζmL

i ,j(z, ẑ) in (16) coincides with
ζj in Proposition 3. Moreover, by (43),

hL
i (ζmL

i
(ẑ, z)) = 〈mL

i , ζmL
i
(ẑ, z)〉 =

Nnz∑

j=1

φij

hL
i (ζmL

i
(z, ẑ)) = 〈mL

i , ζmL
i
(z, ẑ)〉 =

Nnz∑

j=1

ψi
j (44)

where φij !






0, Cases 1,4,5,
aij ẑj ,Case 2,

bijzj , Case 3,

and ψi
j !






0, Cases 1,4,5,
aijzj ,Case 2,

bij ẑj , Case 3.

Consequently,

hL
i (ζmL

i
(ẑ, z))−hL

i (ζmL
i
(z, ẑ)) =

Nnz∑

j=1

φij−ψi
j =

Nnz∑

j=1

θij

where θij =






0, Cases 1, 4, 5,
aij(ẑj − zj), Case 2,

bij(zj − ẑj), Case 3.

Then, defining two

indicator functions αi,βi ∈ Rnz , where for all j ∈ Nnz , αi
j !{

0, Cases 1, 3, 4, 5,
|aij |, Case 2,

and βi
j !

{
0, Cases 1, 2, 4, 5,
−|bij |, Case 3,

θij

can be rewritten as θij = (αi
j − βi

j)(zj − ẑj), and hence,

hL
i (ζmL

i
(ẑ, z))−hL

i (ζmL
i
(z, ẑ)) =

Nnz∑

j=1

θij = 〈αi−βi, z− ẑ〉.

Finally, since ζmL
i
(z, ẑ) coincides with ζ in Proposition 3, by

(15), f i
d(z, ẑ;m

L
i , h

L
i ) = hL

i (ζmL
i
(ẑ, z)) + fi(ζmL

i
(z, ẑ))−

hi(ζmL
i
(z, ẑ)))=fi(ζ)+〈αi − βi, z − ẑ〉=fL

d,i(z, ẑ), where
fL
d,i(z, ẑ) is the decomposition function introduced in

Proposition 3 and is defined in (6).
ii) The result directly follows from (i) and Theorem 2. "
From the abovementioned, we know that T fd

L , which only
considers a specific mi ∈Mi for all i ∈ Nnx , cannot be tighter
than T fd

L , which considers all mi ∈Mi. Nonetheless, since
T fd
L requires less computation, it can still be useful for systems

with large dimensions, and can also be tighter than T f
N , T f

C ,
and T f

M (see Examples 1 and 2 in the following). Further, this
suggests that when computational resources are limited, it is
also possible to consider a strict subset of Mi on top of the
one in T fd

L to obtain a tighter decomposition function than T fd
L .

In addition, the abovementioned theorem indirectly proves that
T fd
L in Proposition 3 also applies to ELLS systems.

B. Comparison With T f
N , T f

C , and T f
M Inclusion

Functions

In this section, we compare the performance of interval
arithmetic-based natural inclusions and some of their modifica-
tions, i.e.,T f

N ,T f
C , andT f

M with the (DT)T fd
R , via computing the

overapproximation for the range of some example functions. It is
worth mentioning that we were not able to derive any theoretical
results that show the superiority of one over the others. In fact,
our simulation results showed that depending on the considered
function and its corresponding domain, one of them can be
tighter than the others in some cases and the opposite holds for
other cases. However, in some cases, reflected in the following
examples, T fd

R typically returns tighter intervals.
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1) Composition of Nonelementary Functions: In cases
where the considered vector field is not a composition of “el-
ementary functions” (e.g., simple monomials, sin, cos, mono-
tone functions, etc.), T f

N , T f
C , and T f

M are known to be hard
to compute and result in conservative overapproximations for
bounding the constituent functions that are often needed, which
lead to poor inclusion functions, i.e., large errors. In these cases,
it is most likely that T fd

R returns better bounds. The following
example describes one such function.

Example 1: Consider f(x) = x arctan (x2 − 2x+ 5),
which is composed of nonelementary functions, and an interval
domain IX = [1, 3]. In this case, T f

N , T f
C , T f

M , T fd
L , and T fd

R
return [−4.7124, 4.7124], [1.3258, 4.3393], [1.3187, 4.2475],
[1.2835, 2.9461], and [1.1760, 2, 7468], respectively, where the
final interval (corresponding to T fd

R ) is a subset of all others.
2) “Almost” Sign-Stable Functions: In cases where f can

be decomposed into a CJSS constituent and a relatively small
additive perturbation, T f

R will most likely return tighter bounds
than the bounds returned by T f

N , T f
C , and T f

M . For instance,
consider the following example.

Example 2: Consider f(x) = x3 − 0.1x, which is a mono-
tone increasing (and hence CJSS) function on its interval domain

IX = [−1, 3], except on the short interval [−
√

0.1
3 ,

√
0.1
3 ].

For this example, T f
N , T f

C , T f
M , T fd

L , and T fd
R return

[−8.9000, 27.0100], [−49.9000, 54.7000], [−49.9000, 54.7000],
[−1.0300, 26.0100], and [−1.0300, 26.0100], respectively,
where T fd

L and T fd
R are much tighter than T f

N , T f
C and T f

M .
3) Vector Fields With Several Additive Terms: It is also

well known in the literature that natural, centered, and mixed-
centered inclusions perform worse for the functions with many
additive terms, compared with the ones with fewer additive
terms [17], [19]. This is not necessarily true for the performance
of T fd

R . The following example illustrates this fact, where a
function with several additive terms is considered.

Example 3: Consider f(x) = x1x2x3 + x2
1x2 + x2

2x3 +
x2
3x1 + x2

1x3 + x2
3x2 + x2

2x1 + x3
1 + x3

2 + x3
3 with an interval

domain IX = [−2, 2]× [−2, 2]× [−2, 2]. Then, T f
N , T f

C ,
T f
M , T fd

L , and T fd
R return [−80, 80], [−76.45, 76.45],

[−73.62, 73.62], [−176, 176], and [−54.4, 54.4], respectively,
where the final interval from T fd

R is the tightest among all.
4) Existence of Closed-Form Decomposition Functions:

Finally, it is notable that our proposed T fd
R approach (and T fd

L )
enables us to find closed-form inclusion functions for a wide
class of vector fields. This can be analytically beneficial, e.g.,
in convergence analysis for reachable sets or stability analysis
in interval observer designs [35], [36]. This is in contrast to
natural, centered, and mixed-centered inclusions (and also T fd

O
in general), where a closed-form inclusion function for general
classes of functions, is often not available.

V. APPLICATIONS TO CONSTRAINED REACHABILITY ANALYSIS
AND GUARANTEED STATE ESTIMATION

Consider the following constrained bounded-error system:

x+
t = f(xt, ut, wt), µ(xt, ut) ∈ Yt (45)

where x+
t ! xt+1 if (45) is a DT system (with sampling

time δt) and x+
t ! ẋt if (45) is a CT system, xt ∈ Rnx with

x0 ∈ [x0, x0] and ut ∈ Rnu are state and known input signals,
wt ∈ [w,w] ∈ IRnw is a bounded process disturbance signals,
Yt ⊆ [y

t
, yt] ∈ IRny is the time-varying, and uncertain state

interval constraint and f : Rnx+nu+nw → Rnx , µ : Rnx+nu →
Rnµ are known vector fields. The following proposition shows
how to apply Algorithms 1 and 2, i.e., the mixed-monotone
remainder-form decomposition function construction and the
set inversion algorithms, to compute overapproximations of the
reachable sets/framers of the states for the system in (45).

Proposition 12: Consider the system (45) with initial
state x0 ∈ IX0 ! [x0, x0] and let f(zt) ! f̃(xt, ut, wt) and
ν(xt) ! µ(xt, ut) with zt ! [x,t w,t ]

, and known ut. Sup-
pose that Assumptions 1 and 2 hold and ε is a chosen
small positive threshold. Then, for all t ≥ 0, CRf (t, IX0) ⊂
IX u

t ! [xu
t , x

u
t ], where CRf (t, IX0) ! {φ(t, x0, wt) | x0 ∈

IX0, µ(xt, ut) ∈ Yt ⊆ [y
t
, yt] and wt ∈ IW, ∀t ≥ 0} is the

constrained reachable set at time t of (45) when initialized
within IX0 and IX u

t ! [xu
t , x

u
t ] is the solution to the following

constrained embedding system:

[
xp+
t

xp+
t

]
=




f
d

([
(xu

t )
, w,

],
,
[
(xu

t )
, w,

],)

fd

([
(xu

t )
, w,

],
,
[
(xu

t )
, w,

],)



,
[
xp
0

xp
0

]
=

[
x0

x0

]

(xu
t , x

u
t ) = SET-INV(ν, Jν

C , J
ν
C , x

p
t , x

p
t , yt, yt, ε)

where (f
d
(·, ·), fd(·, ·)) = T fd

R (f, Jf
C , J

f
C , ·, ·) is the DT or CT

decomposition-based inclusion function in Algorithm 1, and
the SET-INV function in Algorithm 2 is based on the DT
T νd
R (ν, Jν

C , J
ν
C , ·, ·) from Algorithm 1. Consequently, the con-

strained system state trajectory xt satisfies xu
t ≤ xt ≤ xu

t at all
times t.

Proof: The results directly follow from applying Propositions
1 and 2, Theorems 1 and 2, and Lemmas 3–11. "

Remark 4: It can be easily shown that the abovementioned
results also apply to guaranteed state estimation (with the stan-
dard propagation and update steps) by noticing that uncertain
observation functions yt = µ(xt, ut) + V vt can be written in
the form ofµ(xt, ut) ∈ Yt ! [yt − s, yt − s] in (45), where s =
V ⊕v − V Bv, s = V ⊕v − V Bv, V ⊕ ! max(V,0nv ) and V B !
V ⊕ − V , with0nv being a zero vector in Rnv [37]. In this setting,
[xp

t , x
p
t ] is the state interval from the prediction/propagation step

and [xu
t , x

u
t ] is the updated state interval after a measurement

update step. Further, if (45) is a sampled-data system, i.e., the
system dynamics is continuous and the observations are sampled
in DT, our proposed approach still directly applies with minor
modifications. The stability analysis of the guaranteed state esti-
mation approach and the synthesis of stable interval/set-valued
estimators are subjects of our future work.

VI. SIMULATIONS

In this section, we compare the performances of T f
N (natural

inclusions; cf. Proposition 5), T f
C , T

f
M (centered and mixed-

centered inclusions; cf. Proposition 6), T fd
L (decomposition

functions proposed in [14]; cf. Proposition 3),T fd
R (our proposed
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remainder-form decomposition function in Algorithm 1), T f
S1

(the first proposed bounding approach in [21, Theorem 1], if
applicable),T f

S2
(the second proposed approach in [21, Theorem

2], if applicable), and T fd
O (the tight decomposition functions

proposed in [12, Th. 2] for DT and in [13, Th. 1] for CT systems,
when computable; cf. Proposition 4) in computing the reachable
sets of several unconstrained and constrained dynamical systems
in the form of (13). Further, by the intersection property in
Corollary 1, we can also intersect the reachable sets of all appli-
cable inclusion functions (exceptT fd

O ) for comparison. Note that
we only compare methods in the literature that use first-order
(generalized) gradient information. The consideration of higher
order information is a subject of our future work.

Due to space limitations, only a subset of the simulation
examples are provided here. The readers are referred to the arXiv
version of this article [38] for the rest of the simulation examples.
In brief, for both CT and DT systems, our proposed T fd

R often
outperforms all applicable methods, except T fd

O (that is often
not computable), and the best of T f

N–T fd
R additionally provides

significant improvements. Moreover, the tightness of the ap-
proaches can be further improved with modeling redundancy and
when sensor observations and constraints are available (using the
set inversion approach in Section III-D).

A. Generic Transport Longitudinal Model

We consider NASA’s Generic Transport Model (GTM) [39],
a remote-controlled 5.5% scale commercial aircraft [40], with
the following main parameters: wing area S = 5.902 ft2, mean
aerodynamic chord c = 0.9153 ft, mass m = 1.542 slugs,
pitch axis moment of inertia Iyy = 4.254 slugs/ft2, air den-
sity ρ = 0.002375 slugs/ft3, and gravitational acceleration g =
32.17 ft/s2. The longitudinal dynamics of the GTM can be
described as the following CT dynamical system:

V̇t =
−Dt −mg sin(θt − αt) + Tx,t cosαt + Tz,t sinαt

m

α̇t = qt +
−Lt +mg cos(θt − αt)− Tx,t sinαt + Tz,t cosαt

mVt

q̇t =
Mt + Tm,t

Iyy
, θ̇t = qt (46)

where Vt, αt, qt, and θt are air speed (ft/s), angle of attack (rad),
pitch rate (rad/s), and pitch angle (rad), respectively. Moreover,
Tx,y (lbs), Tz,t (lbs), Tm,t (lbs–ft), Dt (lbs), Lt (lbs), and Mt

(lbs) denote the projection of the total engine thrust along the
body’s X-axis, the projection of the total engine thrust along
the body’s Z-axis, the pitching moment due to both engines, the
drag force, the lift force, and the aerodynamic pitching moment,
respectively, with their nominal values given in [41]. Defin-
ing xt ! [Vt αt qt θt], with x0 ∈ [147, 158]× [0.04, 0.05]×
[0.1, 0.2]× [0.04, 0.05], Fig. 1(a) depicts the reachable set ap-
proximations for x1,t and x2,t of the system (46). For this
system, T fd

O is not computable, since the stationary/critical
points of the vector fields cannot be obtained analytically, and as
shown in Fig. 1(a),T fd

R obtains a tighter overapproximation than
T f
N , T f

C , T f
M , and T fd

L , with the best of T f
N–T fd

R showing further
improvement.

Fig. 1. Upper and lower bounds on x1 and x2 in the GTM system
(Example F in [38]), when applying T f

N (−−), T f
C ( ), T f

M ( ), T f
L (#),

T fd
R ( ), the best of T f

N–T fd
R ( ), as well as the midpoint trajectory

( ). (a) GTM system without observations (46). (b) GTM system with
observations (46) and (47).

Next, we consider an additional set of measurements in the
form of a linear observation equation

yt = x1,t + x2,t − x3,t + vt, vt ∈ [−0.01, 0.01]. (47)

Then, applyingT f
N–T fd

R along with the set inversion approach in
Algorithm 2 to the constrained system (46) and (47), we observe
considerably tighter intervals for all approaches with observa-
tions [Fig. 1(b)] when compared with the approximations of the
reachable sets without observations [Fig. 1(a)].

VII. CONCLUSION

A tractable family of remainder-form mixed-monotone de-
composition functions was proposed in this article for a rela-
tively large class of nonsmooth, discontinuous systems called
ELLS systems that is proven to include LLC systems. We char-
acterized the lower and upper bounds for the overapproximation
errors when using the proposed remainder-form decomposition
functions to overapproximate the true range/image set of ELLS
nonlinear mappings, where the lower bound is achieved by
our proposed tight and tractable decomposition function, which
was further proven to be tighter than the ones introduced in
[8] and [14]. Further, a novel set inversion algorithm based on
decomposition functions was developed to further refine/update
the reachable sets when knowledge of state constraints and/or
when measurements are available, which can be applied for con-
strained reachability analysis and guaranteed state estimation for
bounded-error CT, DT, or sampled-data systems. Finally, the
effectiveness of our proposed mixed-monotone decomposition
functions was demonstrated using several benchmark examples.
In future work, we will consider higher order information about
derivatives of functions and a more principled way to design
modeling redundancy to further improve the tightness of de-
composition and inclusion functions. We will also extend our
proposed tools to perform reachability analysis with polytopes
and to compute inner and outerapproximations of reach-avoid-
stay and (controlled) invariant sets.
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