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A B S T R A C T

The ability to classify images is dependent on having access to large labeled datasets and testing on data
from the same domain of which the model was trained on. Classification becomes more challenging when
dealing with new data from a different domain, where gathering and especially labeling a larger image
dataset for retraining a classification model requires a labor-intensive human effort. Cross-domain classification
frameworks were developed to handle this data domain shift problem by utilizing unsupervised image-to-image
translation models to translate an input image from the unlabeled domain to the labeled domain. The problem
with these unsupervised models lies in their unsupervised nature. For lack of annotations, it is not possible to
use the traditional supervised metrics to evaluate these translation models to pick the best-saved checkpoint
model. This paper introduces a new method called Domain-knowledge Inspired Pseudo Supervision (DIPS)
which utilizes Gaussian Mixture Models and domain knowledge to generate pseudo annotations to enable
the use of traditional supervised metrics. This method was designed specifically to support cross-domain
classification applications contrary to other typically used metrics such as the Fréchet Inception Distance
(FID) which were designed to evaluate the model in terms of the quality of the generated image from a
human-eye perspective. DIPS outperforms state-of-the-art GAN evaluation metrics when selecting the optimal
saved checkpoint. Furthermore, DIPS showcases its robustness and interpretability by demonstrating a strong
correlation with truly supervised metrics, highlighting its superiority over existing state-of-the-art alternatives
The boiling crisis problem has been approached as a case study. The code and data to replicate the results
can be found on the official GitHub-repository1.
1. Introduction

Machine learning prediction and classification algorithms have been
a rapidly growing field in recent years, particularly with the signifi-
cant advancements in deep learning and computer vision technologies.
These advancements enabled prediction algorithms to become highly
efficient and accurate, making them applicable to a wide range of
applications in various domains such as tensile strength prediction of
polymers (Alhindawi and Altarazi, 2018; Altarazi et al., 2019), Critical
heat flux detection (Rassoulinejad-Mousavi et al., 2021; Al-Hindawi
et al., 2023), soil fertility classification (Padmapriya and Sasilatha,
023), and skin lesion classification (Omeroglu et al., 2023). For clas-
ification models to work optimally, there are several contingencies
o consider, one of which is having access to large, balanced, and
ccurately labeled datasets.
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(H. Hu), sunyg@ucmail.uc.edu (Y. Sun).
1 https://github.com/Hindawi91/DIPS

The limitations of these classification models become evident when
dealing with new data from a different domain. In such situations, gath-
ering a substantial dataset with labels and creating a new classifier from
the beginning may require significant time and resources which may
not always be practical, this problem is known in the field as the data
domain shift problem. This prompted the development of a branch of
machine learning called unsupervised domain adaptation (UDA), which
deals with the data domain shift problem in an unsupervised manner.
The specific classification problem described earlier falls under the UDA
umbrella and is generally referred to in the field of machine learning as
unsupervised cross-domain classification, which is the problem of train-
ing a classifier on a dataset from one domain and using it to predict a
dataset from a different domain without the labeling information. UDA
could be categorized into discrepancy-based, reconstruction-based, or
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adversarial-based UDA depending on the domain adaptation approach
used (Wang and Deng, 2018). Researchers used a variety of these
DA approaches to tackle the cross-domain classification problem, such
s transforming the original image into analogs in multiple related
omains, thereby learning features that are robust to variations across
omains (Ghifary et al., 2015), and aligning the distributions of the
omains using extracted features (Tzeng et al., 2017), or multiple
eatures representations (Zhu et al., 2019) to capture the information
rom different aspects. Such methods can handle domains with big
hifts between them, but in the case of domains with small shifts, the
ost spatial information during transformation might affect the results
egatively.
Recently, with the rise of Generative Adversarial Networks (GANs)

nd Unsupervised Image to Image (UI2I) translation models,
esearchers started investigating their utility in solving the cross-
omain classification problem. Image-to-image translation models, in
eneral, are used to convert an input image from one domain (e.g.,
orse images) to another domain (e.g., zebra images) using a generative
odel. Once trained, UI2I translation models can be used to transform
n input image from the source domain to the target domain by
nputting the image into the model and generating a synthetic output
mage in the target domain. This translation capability inspired a
umber of approaches that leverage GANs and UI2I models to address
he cross-domain classification problem.
For example, Deng et al. (2018) translated the source dataset to

he target domain and then trained a new model on the features of
he translated images. Xiang et al. (2020) synthesized a dataset and
fine-tuned the model using the synthesized dataset. Li et al. (2021)
tilized GANs and attention to leverage the information available from
he source domain to the target domain. Al-Hindawi et al. (2023) de-
eloped a framework using UI2I translation models that expanded the
lassification capability to include the target domain. Goel and Ganatra
2023) Proposed a framework that utilizes a guided transfer learning
pproach to select layers for fine-tuning, enhancing feature transfer-
bility, and minimizing domain discrepancies using JS-Divergence.
One of the main challenges in such unsupervised frameworks is

nowing which UI2I model to select/save during training (when to
top the training). If the model was not trained long enough, it will
nderfit the training data and produce poor results. In contrast, if the
odel was overtrained, it will overfit the training data and generate
oor results as well. Because of the unsupervised nature of UI2I models,
he standard supervised metrics that are used to validate supervised
odels during training (e.g., accuracy, AUC) are not available to be
sed without access to the labeling information. To overcome this issue,
uch frameworks depend on one of the most used metrics in eval-
ating unsupervised image-to-image translation models, the Frechet
nception Distance (FID) (Heusel et al., 2017). FID is a popular met-
ic for evaluating the quality of generated images in the context of
enerative Adversarial Networks (GANs) and other image synthesis
odels. However, like any metric, FID has its drawbacks and may
ot always be the best choice for evaluating the performance of a
articular model (Borji, 2022). Some of the general disadvantages of
ID are that the Gaussian assumption in FID calculation might not hold
n practice, the FID has high bias, and the sample size to calculate
ID has to be large enough (usually above 50k), otherwise it would
ead to an over-estimation of the actual FID (Borji, 2022). Moreover, it
s computationally expensive (Mathiasen and Hvilshøj, 2020). For the
pecific application of unsupervised cross-domain classification such as
he framework mentioned in Al-Hindawi et al. (2023), the FID was
elpful in selecting a relatively good model, but it had problems. Most
f the time it was not able to pick the best possible model; moreover,
he FID model ranking was not correlated with the true model ranking
ased on the true supervised classification metrics, making the model
election choice seem random and unexplainable. It was stressed in Al-
indawi et al. (2023) that there is a need for a framework to properly
2

ssess the validation datasets in order to improve the UI2I translation t
odel selection criteria in unsupervised cross-domain classification
odels. The reason why traditional GAN evaluation metrics such as
he FID are not suitable to support cross-domain classification is that
hey were not designed for that purpose, but rather were designed to
valuate the model in terms of the quality of the generated image from
human-eye perspective, and its ability to generate diverse results (not
alling into mode collapse). Moreover, they do not take advantage of
rior domain knowledge available in classification tasks such as the
umber of classes expected.
This work proposes a framework for evaluating UI2I translation
odels designed to support cross-domain classification applications
sing pseudo-supervised metrics. In this proposed approach, the Incep-
ion model is utilized to extract the features from the unlabeled target
ataset, but unlike other methods such as the Inception Score (IS) or
he FID, this approach utilizes an unsupervised clustering technique
nown as the Gaussian Mixture Models to create pseudo labels which
nable the use of standard supervised metrics. This methodology is
hown not only to outperform unsupervised metrics such as the FID, but
lso is highly correlated with the true supervised metrics and mimics
he monotonically decreasing behavior of their model ranking. This
emonstrates the robustness and explainability of the metric, unlike
he FID which is poorly correlated with the true supervised metrics
nd has inconsistent ranking order that is neither robust nor explain-
ble. To showcase the efficiency of the methodology, the boiling crisis
etection problem was used as an example. The boiling crisis, also
nown as critical heat flux (CHF), represents a formidable challenge
n the field of thermal engineering and is of paramount importance to
arious industrial processes, particularly in nuclear reactors, electronics
ooling, and power generation systems (Rassoulinejad-Mousavi et al.,
021). This phenomenon occurs when the rate of heat transfer from
heated surface to a boiling liquid abruptly deteriorates, leading

o a sudden increase in surface temperatures and potentially catas-
rophic consequences (Rassoulinejad-Mousavi et al., 2021). Resolving
he boiling crisis is critical as it can prevent the formation of va-
or film insulating the surface, thereby averting equipment damage,
eactor meltdowns, and ensuring the safety and efficiency of numer-
us technological applications (Rassoulinejad-Mousavi et al., 2021),
aking it a vital and urgent research frontier. Recent efforts were
edicated to alleviating this problem using machine learning tech-
iques (Rassoulinejad-Mousavi et al., 2021; Rokoni et al., 2022) and
ost recently (Al-Hindawi et al., 2023) developed a cross-domain
lassification framework using UI2I translation models to tackle this
roblem. Their work serves as a suitable case study for the method
roposed in this manuscript, especially since using an unreliable metric
uch as FID was one of the limitations. The same datasets used by the
uthors in Al-Hindawi et al. (2023) were also used in this work. Two
xperiments were conducted using the two publicly available datasets
𝐷𝑆1 and 𝐷𝑆2) by alternating the target and source datasets for each
xperiment (𝐷𝑆1 → 𝐷𝑆2 and 𝐷𝑆2 → 𝐷𝑆1).
To summarize the contribution of this manuscript:

• This work introduces a new framework for evaluating UI2I trans-
lation models using pseudo-supervised metrics. The framework
was designed specifically to support cross-domain classification.

• The introduced framework utilizes an unsupervised clustering
technique (GMM) to cluster the extracted features into 𝑁 clusters,
where 𝑁 is the number of classes known as a prior from domain
knowledge, and use these clusters as pseudo labels to enable the
use of standard supervised metrics.

• The framework not only outperforms unsupervised metrics such
as the FID, but is also highly correlated with the true supervised
metrics, robust, and explainable.

The rest of the manuscript is organized as follows, Section 2 dis-
usses relevant GAN-based I2I translation studies and related evalua-

ion frameworks. Section 3 describes the proposed framework and the
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Table 1
Strengths and weaknesses of common GAN evaluation metrics.
Metric Strengths Weaknesses

MMD

∙ Versatile metric applicable to various data
distributions.

∙ Not dependent on Inception model.
∙ Captures mode collapse and diversity.

∙ Choice of kernel function and hyperparameters
influence performance.

∙ Computationally expensive.
∙ Not designed for cross-domain classification.

KID
∙ Captures quality and diversity.
∙ Less sensitive to Inception model.
∙ More interpretable than FID.

∙ Depends on Inception model.
∙ Computationally expensive.
∙ Not designed for cross-domain classification.

IS
∙ Encourages visually appealing and diverse
images.

∙ Captures quality and diversity.

∙ Biased towards ImageNet.
∙ Sensitive to model parameters.
∙ Requires a large sample size.
∙ Insensitive to intra-class diversity
∙ Not interpretable.
∙ Does not compare source images with target
images.

∙ Not designed for cross-domain classification.

FID

∙ Correlates with human judgment.
∙ Captures quality and diversity.
∙ Relatively stable and consistent.
∙ Can detect intra-class mode collapse.

∙ Depends on Inception model.
∙ Not interpretabile.
∙ Not designed for cross-domain classification.
∙ Requires a large sample size.
∙ Biased towards ImageNet.
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analysis procedures used in the study. Section 4 details the conducted
experiments and Section 5 showcases and discusses the results. Finally,
he manuscript is concluded in Section 6, followed by a listing of the
ources cited afterward.

. Related work

This section is composed of two parts. The first part will briefly
iscuss the evolution of GANs in the literature and expand on their
tilization in both supervised and unsupervised image-to-image trans-
ation. The second part discusses the most common GAN evaluation
easures and compares their advantages and disadvantages.

.1. GANs and image-to-image translation

First introduced by Goodfellow et al. (2014), GANs consist of two
etworks, a generator and a discriminator that are trained together
or an overall objective of generating realistic synthetic data that
esembles a given dataset. The generator takes a random noise vector
s input and transforms it into synthetic data that aims to resem-
le the real dataset. The discriminator evaluates both the real and
he fake generated data samples and assigns scores indicating their
uthenticity. During training, the generator seeks to maximize these
cores, while the discriminator strives to correctly distinguish between
eal and fake data. This adversarial process continues iteratively until
he generator generates data that is indistinguishable from real data,
esulting in GANs capable of generating high-quality synthetic data
amples (Goodfellow et al., 2014).
The development of GANs has been the subject of numerous re-

earch papers and has led to the introduction of various variations
nd extensions of the original GAN architecture, such as Conditional
ANs (Mirza and Osindero, 2014), InfoGANs (Chen et al., 2016), Pro-
ressive GANs (Karras et al., 2017), and Wasserstein GANs (Arjovsky
t al., 2017). The first work to utilize GANs to solve the I2I translation
roblem was (Isola et al., 2017). In their pix2pix model, they used
onditional adversarial networks to learn the mapping from an input
mage to an output image, where the networks learn a loss function
o train this mapping. This method uses a ‘‘U-Net’’ based architecture
or the generator and a ‘‘PatchGAN’’ classifier for the discriminator.
ultiple efforts were spent to improve and build upon the pix2pix
odel and overcome its weaknesses. The major pitfall of the pix2pix
odel was that it was supervised. The training process required paired
mages in the training set for the model to learn the mapping 𝐺 ∶

→ 𝑌 . Thus, to solve this problem, Zhu et al. (2017) introduced
3

ycleGAN. The authors coupled the adversarial loss with an inverse
apping 𝐹 ∶ 𝑌 → 𝑋 and introduced a cycle consistency loss. The
bjective of this loss is to enforce 𝐹 (𝐺(𝑋)) ≈ 𝑋 and 𝐺(𝐹 (𝑌 )) ≈ 𝑌 .
similar approach was performed by Yi et al. (2017) and Kim et al.

2017) concurrently with cycleGAN. Building on these works, Choi
t al. (2018) introduced their StarGAN framework that simultaneously
rains multiple datasets with different domains using a single gener-
tor and discriminator pair. However, StarGAN tends to change the
mages unnecessarily during image-to-image translation even when no
ranslation is required (Rahman Siddiquee et al., 2019). To address this
ssue, Rahman Siddiquee et al. (2019) proposed the Fixed-Point GAN
FP-GAN) framework. This framework focused on identifying a minimal
ubset of pixels for domain translation and introduced fixed-point trans-
ation by supervising same-domain translation through a conditional
dentity loss and regularizing cross-domain translation through revised
dversarial, domain classification, and cycle consistency losses.

.2. GANs evaluation metrics

With the rapid rise of GANs and their use in various applications,
he need for evaluation metrics to assess these models became in-
reasingly critical. Traditional image evaluation measures such as the
eak-signal-to-noise ratio (PSNR) and the structural similarity index
easure (SSIM) were mainly designed to support tasks related to
mage compression and restoration where the image-to-image similar-
ty was of utmost importance. Thus, they focused on measuring the
imilarity between images and were not suitable for image synthesis
asks. Depending on the application, there are two main types of
AN evaluation measures currently used, qualitative and quantitative
easures. In this section, the focus will be on quantitative measures
ince the proposed work falls under that category. Currently, the most
ommon quantitative GAN evaluation measures are the IS (Salimans
t al., 2016), the FID (Heusel et al., 2017), the Maximum Mean Discrep-
ncy (MMD) (Gretton et al., 2008) and the Kernel Inception Distance
KID) (Bińkowski et al., 2018). This section discusses these metrics and
able 1 summarizes their strengths and weaknesses.

.2.1. Maximum Mean Discrepancy (MMD)
The Maximum Mean Discrepancy (MMD) is a statistical measure

sed to quantify the discrepancy between two probability distribu-
ions (Wynne and Duncan, 2022). It provides a way to assess the
issimilarity between samples drawn from different distributions and
s commonly used in machine learning and generative modeling to
ompare the distributions of real and generated data samples (Wilson
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et al., 2016; Li et al., 2015). The MMD measure is based on the idea
of comparing the means of feature representations of samples from
each distribution (Wynne and Duncan, 2022). By calculating the MMD,
it can be determined whether two sets of data come from the same
distribution or differ significantly (Wynne and Duncan, 2022). The
general formula for MMD can be found in Table 2. In this equation,
𝑀𝑀𝐷2

𝑢(𝑋, 𝑌 ) represents the squared unbiased MMD statistic between
𝑋 and 𝑌 . The variables 𝑚 and 𝑛 represent the numbers of samples in
distributions 𝑋 and 𝑌 , respectively. The variables 𝑥𝑖 and 𝑦𝑖 represent
ndividual samples from distributions 𝑋 and 𝑌 , respectively. 𝑘 denotes
he kernel function applied to samples from two distributions. The
quation consists of three main terms. The first term calculates the av-
rage kernel similarity between all pairs of samples within distribution
. The second term calculates the average kernel similarity between
ll pairs of samples within distribution 𝑌 . The third term calculates
he average kernel similarity between samples from distribution 𝑋 and
istribution 𝑌 . By comparing these three terms, the MMD quantifies the
iscrepancy or difference between the distributions 𝑋 and 𝑌 .
Main advantages of MMD is the ease of implementation and the rich

ernel based theory behind it, making it a versatile metric that can be
pplied to various types of data distributions. It is less dependent on the
pecific architecture of the feature extractor and can also capture both
he mode collapse and diversity of generated samples. It is however
ensitive to the choice of kernel function and can be computationally
xpensive for large datasets.

.2.2. Kernel Inception Distance (KID)
The KID metric is a method used for evaluating the quality and

iversity of generated images in the field of generative adversarial net-
orks (GANs). The KID utilizes the MMD metric introduced earlier to
easure the discrepancy between the features extracted from real and
enerated images using the InceptionV3 neural network. The general
athematical expression of the KID is listed in Table 2. where 𝑓𝑟𝑒𝑎𝑙 and
𝑓𝑎𝑘𝑒 represent the extracted features from real and fake images using
he inception model.
KID has multiple advantages. It enables a more objective evaluation

f GAN performance and it considers both the intra-class and inter-class
ariations of features, capturing the high-level semantics of images.
oreover, KID is model-agnostic and can be applied to evaluate GANs
rained with different architectures and datasets. However, the KID also
uffers from a number of disadvantages. It assumes that the Inception
etwork’s feature representations are sufficient to capture the quality
nd diversity of images even though it may not capture all aspects of
mage quality. It also does not capture lower-level image characteris-
ics, such as pixel-level details and spatial coherence; because it used
he extracted features in its calculations. Furthermore, the choice of the
ernel function in KID can heavily influence the metric.

.2.3. Inception Scores (IS)
The IS Eq. listed in Table 2. is a measure of the quality and diversity

f generated images, based on the KL divergence between the predicted
nd true class distributions of a pre-trained Inception network (Borji,
022; Treder et al., 2022). where E𝑥∼𝑝gen is the expectation over the
mages sampled from the generator, KL refers to the Kullback–Leibler
ivergence, 𝑝(𝑦) is the marginal distribution of class labels, and 𝑝(𝑦 ∣ 𝑥)
represents the conditional distribution of class labels 𝑦 given an input
image 𝑥.

Although used commonly, The IS has some downsides. The IS does
not capture intra-class diversity and lacks correlation with the human
judgment of image quality and may produce inconsistent results when
compared to human evaluations (Barratt and Sharma, 2018). Moreover,
it is insensitive to the prior distribution over labels (hence is biased
towards ImageNet dataset and Inception model), and is very sensitive
to model parameters and implementations (Borji, 2022). The IS also
4

requires a large sample size to be reliable. m
2.2.4. Fréchet Inception Distance (FID)
Similar to IS, the FID depends on the Inception model to gener-

ate its value, the difference, however, is that the FID calculates the
Wasserstein-2 (a.k.a Fréchet) distance between multivariate Gaussians
fitted to the embedding space of the Inception-v3 network of generated
and real images (Borji, 2022; Treder et al., 2022). The general mathe-
matical expression of the FID is listed in Table 2. In this equation, 𝜇𝑔
and 𝜇𝑟 represent the means of the feature maps of the generated images
and real images, respectively, and 𝐶𝑔 and 𝐶𝑟 represent the covariance
matrices of the feature maps of the generated images and real images,
respectively. 𝑇 𝑟 represents the trace operator, which sums the diagonal
elements of a matrix. Unlike IS, the FID is more consistent with human
inspection, is sensitive to minimal changes in the real distribution, and
can detect intra-class mode collapse (Borji, 2022). That being said, the
FID has shortcomings as well. For example, the Gaussian assumption in
FID calculation is not always valid, the FID has high bias, and requires
a large sample size (≥50𝑘 images) to be efficient (Chong and Forsyth,
2020).

Rahman Siddiquee et al. (2023) showed that the I2I model selected
by FID has a weak correlation with the target classification task; there-
fore, the I2I model selected by FID performs poorly on the classification
task. As a result, they proposed a pseudo-AUC metric for their anomaly
detection task. Although this work was inspired by their work, their
proposed pseudo-AUC metric cannot be applied directly to our task as
they had images partially annotated in their problem setting.

Despite these efforts and those of others, these metrics either fo-
cus solely on the diversity of the results, the image quality from a
human-eye perspective or require a portion of the target domain to
be partially annotated (as the case with the pseudo-AUC). A metric
or framework designed to support fully unsupervised cross-domain
classification frameworks has yet to emerge.

3. Methodology

This section describes the methodology behind the proposed metric.
The entire framework is summarized in both Fig. 1 and Algorithm 1.
As shown, the methodology is broken down into smaller parts and
described in detail in each sub-section as follows. Step 1 in Algorithm 1
(depicted in Part A) in Fig. 1 represents the source classification model
training, which is further explained in 3.1. Steps 2 and 3 in Algorithm
1 (depicted in Part B) in Fig. 1 represent the UI2I model training and
the cross-domain image translation process. Detailed explanation in
Sections 3.2 and 3.3 respectively. Finally, Steps 4 and 5 in Algorithm 1
depicted in Parts C and D) in Fig. 1 explain how the pseudo labels were
reated and incorporated to generate the proposed pseudo-supervised
etrics. Details are documented in Section 3.4. The demonstrated
igures in this section show only one of the experiments, which is
hen 𝐷𝑆1 is used as a source dataset and 𝐷𝑆2 as a target dataset
𝐷𝑆1 ←←→ 𝐷𝑆2). The same logic applies to the other experiment.

.1. Source classification model training

The source dataset is split into three subsets, training, validation,
nd testing. A classification model is then trained on the training set
or a pre-set number of iterations and the model is validated after
very epoch using the validation dataset. The model that scores the
est on the validation dataset is saved. Afterward, the best-saved model
s tested on the testing set for final evaluation. For the purpose of
hese experiments, a convolutional neural network (CNN) was used as
classifier, but the methodology is agnostic to the type of classification

odel used.
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Fig. 1. DIPS framework: part (A) in orange shows the classification model training, part (B) shows the UI2I model training and the image translation, part (C) shows the pseudo
label generation and part (D) shows the final pseudo metrics evaluation.
Algorithm 1: DIPS Algorithm
1 Step 1: Function train_source_classifier(𝑠𝑜𝑢𝑟𝑐𝑒_𝐷𝑆):
2 train model
3 save best model
4 source-DS classifier = best saved model
5 return source-DS classifier
6 Step 2: Function train_UI2I_model(𝑠𝑜𝑢𝑟𝑐𝑒_𝐷𝑆,𝑡𝑎𝑟𝑔𝑒𝑡_𝐷𝑆):
7 initialize models_list = [ ]
8 use source_DS and target_DS to train UI2I translation model
9 run training for 𝐼 iterations
10 save a checkpoint model every 𝑖 iterations
11 append saved checkpoint model to models_list
12 return models_list [𝑖-model, 2𝑖-model, ... , 𝐼-model]
13 Step 3: Function translate_target(𝑡𝑎𝑟𝑔𝑒𝑡_𝐷𝑆,𝑚𝑜𝑑𝑒𝑙𝑠_𝑙𝑖𝑠𝑡):
14 initialize translated_sets_list = [ ]
15 For each model in models_list:
16 translate target_DS to source domain using model
17 append translated images set to translated_sets_list
18 return translated_sets_list [𝑠𝑜𝑢𝑟𝑐𝑒_𝐷𝑆∗ − 𝑖, 𝑠𝑜𝑢𝑟𝑐𝑒_𝐷𝑆∗ − 2𝑖, ... , 𝑠𝑜𝑢𝑟𝑐𝑒_𝐷𝑆∗ − 𝐼]
19 Step 4: Function

generate_pseudo_labels(𝑡𝑎𝑟𝑔𝑒𝑡_𝐷𝑆,𝐺𝑀𝑀 ,𝐼𝑛𝑐𝑒𝑝𝑡𝑖𝑜𝑛_𝑚𝑜𝑑𝑒𝑙):
20 extract features from the target_DS
21 use GMM to cluster the data into 2 clusters
22 assign labels to clusters covering both possible scenarios:
23 Scenario 1: {cluster 1 = label 1, cluster 2 = label 2 }
24 Scenario 2: {cluster 1 = label 2, cluster 2 = label 1 }
25 return Pseudo_𝑦𝑡𝑟𝑢𝑒(scenario 1), Pseudo_𝑦𝑡𝑟𝑢𝑒 (scenario 2)
26 Step 5: Function pseudo_supervised_metrics(𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑒𝑑_𝑠𝑒𝑡𝑠_𝑙𝑖𝑠𝑡,Pseudo

𝑦𝑡𝑟𝑢𝑒,Source-DS classifier):
27 initialize models_results_list = [ ]
28 For each translated_set in translated_sets_list:
29 𝑦𝑝𝑟𝑒𝑑 = Source-DS_classifier(translated_set)
30 generate Pseudo metrics using 𝑦𝑝𝑟𝑒𝑑 and pseudo 𝑦𝑡𝑟𝑢𝑒 from scenario 1
31 generate Pseudo metrics using 𝑦𝑝𝑟𝑒𝑑 and pseudo 𝑦𝑡𝑟𝑢𝑒 from scenario 2
32 append best Pseudo metrics results to models_results_list
33 best_UI2I_model = best(models_results_list)
34 return best_UI2I_model

3.2. UI2I model training process

Fig. 2 summarizes the UI2I translation training process. In order for
enabling the source classification model to correctly classify images
from the target dataset; which is an unlabeled dataset coming from
a different domain that the source classification model has not seen
before, an unsupervised Image-to-Image (UI2I) translation Generative
Adversarial network (GAN) was employed to translate the images in
the target dataset from their domain to the source domain, so that
they look like images familiar to the source classification model. For
the purpose of demonstrating the methodology Fixed-Point GAN (FP-
GAN) (Rahman Siddiquee et al., 2019) was employed as the UI2I
translation model. FP-GAN was designed to support domain adaptation
5

by identifying a minimal subset of pixels for domain translation and has
shown superiority over other models in domain translation tasks. This
being said, the methodology is agnostic to the type of UI2I translation
model used. The UI2I translation model is trained for 𝐼 number of
iterations and a model is saved every 𝑖 iterations during training,
making a total of 𝐼∕𝑖 checkpoint models saved. Both 𝐼 and 𝑖 are
hyper-parameters that need to be tuned.

3.3. Cross-domain image translation process

Once the UI2I translation model training is complete, the framework
uses each of the saved i/I checkpoint models to translate the target
validation set from the target domain to the source domain as shown
in Fig. 3. This is done in order to evaluate which model is the best one
to be used in deployment.

3.4. Pseudo supervised metrics

The problem now is knowing which of these I/i UI2I translation
models to use for model deployment. Since the target dataset is unla-
beled, supervised metrics cannot be used to evaluate the validation set.
The go-to metric in I2I translation is either the Inception Score (IS) or
the Frechet Inception Distance (FID). The problem with these metrics is
that they do not guarantee the best model to be selected. To combat this
problem, this novel framework is introduced to generate pseudo-labels
for the target dataset before translation, which will eventually allow the
use of the traditional supervised metrics to evaluate the best model, as
demonstrated in Fig. 4. Any of the standard supervised metrics used for
classification could be used as a pseudo metric once the pseudo labels
were generated, but to demonstrate the methodology, the results are
showcased using both the balanced accuracy and the AUC metrics and
then compared against the IS, FID, KID, and MMD. The metrics used in
our experiments and their mathematical definition are listed in Table 2.

The method starts by using the pre-trained inception model to
generate features from the validation set of the target dataset prior
to translation. Once the features were extracted, the idea is to use a
clustering technique to separate the two classes of data, thus creating
pseudo labels which will allow using the traditional supervised metrics
to evaluate the models. The clustering technique adopted to perform
this task was GMMs. Using GMMs to cluster images and image features
has been widely adopted in the literature (Bakheet et al., 2023; Pu
et al., 2023; Hou et al., 2014; Kermani et al., 2015) for multiple reasons:
(1) GMMs are suitable for clustering tasks where the underlying data
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Fig. 2. UI2I training process.
Fig. 3. Image translation process.
Table 2
Metrics definitions.
Metric name Mathematical formulation

AUC = ∫ ∞
−∞ TPR(𝑡) ⋅ FPR

′(𝑡) 𝑑𝑡

Balanced accuracy = 1
2

(

TP
TP+FN + TN

TN+FP

)

FID = ‖𝜇𝑃 − 𝜇𝑄‖
2 + Tr(𝐶𝑃 + 𝐶𝑄 − 2(𝐶𝑃 ⋅ 𝐶𝑄)1∕2)

Inception score = exp
(

E𝑥
[

𝐷𝐾𝐿(𝑃 (𝑦|𝑥)∥𝑃 (𝑦))
])

MMD

= 1
𝑚(𝑚 − 1)

𝑚
∑

𝑖≠𝑗
𝑘
(

𝑥𝑖 , 𝑥𝑗
)

+ 1
𝑛(𝑛 − 1)

𝑛
∑

𝑖≠𝑗
𝑘
(

𝑦𝑖 , 𝑦𝑗
)

− 2
𝑚𝑛

𝑚
∑

𝑖=1

𝑛
∑

𝑗=1
𝑘
(

𝑥𝑖 , 𝑦𝑗
)

KID metric = 𝑀𝑀𝐷𝑝𝑜𝑙𝑦
(

𝑓real , 𝑓fake
)2

distribution is not well-defined or contains multiple subpopulations
such as the case with boiling images. (2) GMMs can provide robust
clustering results even in data consisting of high-dimensional features
such as image features. (3) GMMs allow the incorporation of prior
knowledge about the data distribution through the initialization of the
expected number of clusters. such as in the case of the CHF detection
problem. Thus, after extracting the features, a Gaussian Mixture Model
is used with a pre-set number of 𝑁 clusters, where 𝑁 is the number
of classes known from prior domain knowledge. This will group the
images into 𝑁 clusters which are used as pseudo labels (or pseudo-
classes) for the unlabeled data. For the purpose of the experiments
6

conducted in this work, the number of classes set by prior domain
knowledge is equal to two (𝑁 = 2).

Now that the pseudo labels are obtained, they could be used to
generate the pseudo-supervised metrics. For each translated validation
set of the target dataset, the source classification model is used to gener-
ate predictions. The generated predictions are then compared with the
pseudo labels using the traditional supervised metrics equations, thus
providing ‘‘pseudo’’ supervised metrics. Note that since it is unknown
which cluster represents which actual label (class), all possible scenar-
ios are explored. The average of the pseudo metric for all models is then
calculated for all scenarios, and the best-scoring scenario is adopted.
Finally, the best scoring model from the best scoring scenario is selected
for deployment. The pseudo metrics evaluation is described in Fig. 5.

It is worth mentioning that employing a pre-trained Inception model
for feature extraction has the potential of introducing bias towards the
ImageNET dataset. However, it is important to note that In contrast to
methods like FID which uses summarized statistics of the features in
their metric calculation making it more susceptible to the bias present
in the pre-trained model. DIPS does not use neither the features nor
their summarized statistics directly in metrics calculations. In DIPS
the features obtained from the Inception model are subjected to GMM
clustering. The objective here is to group similar features together
based on their underlying distribution in the data. GMM clustering
operates independently of the original dataset’s bias because it seeks
to identify patterns and relationships within the feature space, not
the dataset from which the features were extracted. Once the clusters
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are obtained through GMM, the Inception-extracted features are no
longer used for metric calculation. Instead, the clusters are relied on to
generate pseudo-labels. The subsequent metric calculations are based
on these pseudo-labels, not the original features. This step ensures that
the bias from the pre-trained Inception model is mitigated and does not
directly influence the generated metrics.

4. Experiment

4.1. The boiling crisis detection problem

Over the past few decades, the study of heat transfer mechanisms
has become a focal topic for researchers around the world. Heat transfer
mechanisms are critical in various industrial applications (Dirker et al.,
2019; Birbarah et al., 2020; El-Genk, 2012; Kandlikar, 2014; Fenech,
2013). One of the widely implemented heat transfer mechanisms is
boiling heat transfer, a mechanism that utilizes the latent heat of
the working fluid to dissipate a large amount of heat with minimal
temperature increase (Rassoulinejad-Mousavi et al., 2021). Despite its
ide application and the amount of effort spent studying boiling heat
ransfer, this mechanism comes with a dangerous drawback known as
he boiling crisis. The boiling crisis is the phenomenon where the heat
lux of boiling reaches a critical bound known as the Critical Heat Flux
CHF), after which the heating surface will be covered by a blanket
f continuous vapor layer that adversely affects heat dissipation by
epreciating the heat transfer coefficient (Al-Hindawi et al., 2023).
his is critically dangerous because the improper heat dissipation will
ead to a quick temperature upraise on the heater surface beyond
ts capability and eventually cause it to break down. Many efforts
7

m

ere dedicated to investigating the applicability of machine learning
lgorithms in CHF detection using a variety of techniques and data
ypes. Whether it was acoustic emissions (Sinha et al., 2021), optical
mages (Rokoni et al., 2022), thermographs (Ravichandran et al., 2021)
r whether it was using a variety of supervised learning algorithms,
ncluding support vector machine (Hobold and Silva, 2018), multilayer
erceptron (MLP) neural networks (Hobold and Silva, 2018), transfer
earning (Rassoulinejad-Mousavi et al., 2021), and most recently re-
earchers (Al-Hindawi et al., 2023) started using frameworks supported
y UI2I translation models to solve the cross-domain classification
roblem in boiling crisis detection such as the example used in this
ork to showcase our methodology.

.2. Dataset

In this work, two different pool boiling experimental image datasets
DS-1 and DS-2) were prepared, where both DS-1 and DS-2 were
enerated using publicly available videos (You, 2014; Minseok et al.,
014). Specifically, the video from which DS-1 was prepared shows a
ool boiling experiment performed using a square heater made of high-
emperature, thermally-conductive microporous coated copper where
he surface was fabricated by sintering copper powder. The square
eater had a surface area of ≈100 mm2 and the working fluid used
as water. All experiments were performed at a steady-state under
n ambient pressure of 1 atm. A T-type thermocouple was used for
emperature measurements. The resolution of the video frames was
12 × 480 pixels. The YouTube video from which DS-2 was prepared
hows a pool boiling experiment performed using a circular heater

ade of microporous-coated copper where the surface was fabricated
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Fig. 6. Representative images of bubble dynamics from source videos.
Table 3
Datasets summary.
DS Pre-CHF CHF

DS-1 5372 786
DS-2 1982 1233

by sintering copper powder. The circular heater had a diameter of
≈16 mm and the working fluid used was DI water. All experiments
were performed at a steady state under an ambient pressure of 50 kPa.
A T-type thermocouple was used for temperature measurements. The
resolution of the video frames was 1280 × 720 pixels.

Images for DS-1 and DS-2 were prepared by downloading the videos
from YouTube and extracting individual frames using a MATLAB code
via the VideoReader and imwrite functions. Recognizing duplicate
frames extracted from the YouTube videos, quality control was con-
ducted to remove the repeated images by calculating the relative
difference using the Structural Similarity Index (SSIM) value (Gao
et al., 2020) between two consecutive images where images with a
relative difference less than 0.03% were removed. This pre-processing
is important to ensure DL models were not biased by identical image
frames.

The images were categorized into two boiling regimes: (1) The criti-
cal heat flux regime (CHF), where a significant drop in the heat transfer
coefficient is observed due to a continuous vapor layer blanketing the
heater surface and (2) pre-CHF regime, where optimal heat transfer
coefficient is obtained and only discrete bubbles or frequent bubble
coalescence is observed before departure. Originally, DS-1 had a total
of 6158 images (786 CHF versus 5372 pre-CHF) and DS-2 had a total
of 3215 (1233 CHF versus 1982 pre-CHF). As seen, both data sets were
unbalanced. In each of the two experiments, only the training data for
the source dataset was balanced before use. The target dataset was not
balanced since the objective of this study is to introduce a framework
that utilizes unsupervised learning, that is, the labeling information of
the target datasets are assumed to be unavailable; Thus, impossible to
balance using traditional oversampling or undersampling techniques.
Table 3 shows the original number of images in each regime for each
dataset and Fig. 6 shows a visual representation of the images for each
dataset. The pixel intensity values in each image were normalized to fit
in the range [0,1] to ensure uniformity over multiple datasets during
deep learning training.

4.3. Framework pipeline

As depicted in Fig. 1, the proposed framework consists of four main
parts.
8

Table 4
Experiment settings.
Parameter Value

Image size 256 × 256
𝐶𝑑𝑖𝑚 1
Batch size 8
Number of workers 4
𝜆𝑖𝑑 0.1
Number of iterations (𝐼) 300,000
Checkpoint saving frequency (𝑖) 10,000
Learning rate for 𝐺 and 𝐷 0.0001
Number of 𝐷 updates per each G update 5
𝛽1 for Adam optimizer 0.5
𝛽2 for Adam optimizer 0.999
Data augmentation used Random horizontal flips

4.3.1. Source classification model training
To diversify the training, different architectures for the classification

model were used in each experiment. For the 𝐷𝑆1 → 𝐷𝑆2 experiment,
the same architecture in Al-Hindawi et al. (2023) was employed to train
the model. The architecture for that model is summarized in Fig. 7.
For the 𝐷𝑆2 → 𝐷𝑆1 experiment, the ResNet50 model architecture (He
et al., 2015) was employed. In both experiments, the data was split into
three subsets: a training set (80%), a validation set (10%), and a testing
set (10%). The models were trained for a total of 100 epochs and the
best model was saved and used in our pipeline.

4.3.2. UI2I translation model training
For the UI2I translation, the FP-GAN model was employed. The

model was trained using the same architectures for both the generator
and the discriminator as implemented by the authors (Rahman Sid-
diquee et al., 2019). Table 4 summarizes the hyperparameters chosen
for training the model and Table 5 summarizes the loss functions used
in the model.

4.3.3. Pseudo labels generation
The pseudo labels generation process utilizes the InceptionV3 model

which was pre-trained on the ImageNET dataset to extract the features
from the target DS images after being resized to the dimensions ex-
pected by the InceptionV3 model (299 × 299). Specifically, the features
were extracted using the ‘‘conv2d_93’’ intermediate layer of the model.
The extracted features were then clustered into two clusters using the
GMM provided by the Scikit-learn library. Other than the number of
clusters, the default settings set by the library were used for GMM. Two
possible scenarios are then formulated for the true labels (pseudo 𝑦 ):
𝑡𝑟𝑢𝑒
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Fig. 7. Architecture for the source classification model for the 𝐷𝑆1 → 𝐷𝑆2 experiment.
Table 5
Summary of the loss functions used in FP-GAN.
Equation Loss Definition

Eq. 1 𝐿𝑎𝑑𝑣 =
∑

𝑐∈{𝑐𝑥,𝑐𝑦} 𝐸𝑥,𝑐 [log(1 −𝐷𝑟∕𝑓 (𝐺(𝑥, 𝑐)))] + 𝐸𝑥[log𝐷𝑟∕𝑓 (𝑥)]

Eq. 2 𝐿𝑑𝑜𝑚𝑎𝑖𝑛 = 𝐸𝑥,𝑐𝑥[log𝐷𝑑𝑜𝑚𝑎𝑖𝑛(𝑐𝑥|𝑥)]

Eq. 3 𝐿𝑓𝑑𝑜𝑚𝑎𝑖𝑛 =
∑

𝑐∈{𝑐𝑥,𝑐𝑦} 𝐸𝑥,𝑐 [− log𝐷𝑑𝑜𝑚𝑎𝑖𝑛(𝑐|𝐺(𝑥, 𝑐))]

Eq. 4 𝐿𝑐𝑦𝑐 =
∑

𝑐∈{𝑐𝑥,𝑐𝑦} 𝐸𝑥,𝑐𝑥[‖𝐺(𝐺(𝑥, 𝑐), 𝑐𝑥) − 𝑥‖1]

Eq. 5 𝐿𝑖𝑑 = 𝐸𝑥,𝑐 [‖𝐺(𝑥, 𝑐) − 𝑥‖1] if 𝑐 = 𝑐𝑥; 0 otherwise

Eq. 6 𝐿𝐷 = −𝐿𝑎𝑑𝑣 + 𝜆𝑑𝑜𝑚𝑎𝑖𝑛𝐿𝑟𝑑𝑜𝑚𝑎𝑖𝑛

Eq. 7 𝐿𝐺 = 𝐿𝑎𝑑𝑣 + 𝜆𝑑𝑜𝑚𝑎𝑖𝑛𝐿𝑓𝑑𝑜𝑚𝑎𝑖𝑛 + 𝜆𝑐𝑦𝑐𝐿𝑐𝑦𝑐 + 𝜆𝑖𝑑𝐿𝑖𝑑

(a) cluster 1 = ‘‘Pre CHF’’ and cluster 2 = ‘‘CHF’’ and (b) cluster 1 =
‘‘CHF’’ and cluster 2 = ‘‘Pre CHF’’. The two scenarios are then used in
the final step.

4.3.4. Pseudo metrics evaluation
The labels for each of the translated datasets from the UI2I transla-

tion step are predicted (𝑦𝑝𝑟𝑒𝑑 using the same classification model from
Section 4.3.1. The ‘‘balanced accuracy score’’ and the ‘‘roc auc score’’
from the standard supervised metrics provided by Scikit-learn were
used to evaluate 𝑦𝑝𝑟𝑒𝑑 against the pseudo 𝑦𝑡𝑟𝑢𝑒 generated from each
scenario. The average of the pseudo metric for all 30 models is then
calculated for both scenarios, and the best-scoring scenario is adopted.
Finally, the best scoring model from the best scoring scenario is selected
for deployment.

5. Results and discussion

Once the pseudo metrics were generated, the models generated by
the FP-GAN training process can now be ranked according to these
metrics and the best model can now be selected. Any of the regular
metrics used for classification could be used as a pseudo metric once
the pseudo labels were generated, but to demonstrate the methodology,
the results are showcased using both the balanced accuracy and the
AUC metrics.

To demonstrate the effectiveness of the framework, three key as-
9

pects must be addressed. Firstly, it must be assessed whether the
proposed metric performs better than the current state-of-the-art GAN
evaluation metrics in the field, including FID, KID, IS, and MMD.
Secondly, it is essential to compare the proposed metric with the
ideal scenario, where true supervised metrics are calculated using the
actual labels. Finally, it should be examined how the proposed metric
correlates with the actual true metric when compared to how the
existing state-of-the-art metrics correlate with the actual true metric.
This section addresses these aspects in two ways. Firstly, each of the
saved checkpoint models is evaluated using the truly-supervised metric,
pseudo-supervised metric, FID, KID, IS, MMD (linear Kernel), and MMD
(Gaussian kernel). The models are then ranked according to each of the
competing metrics and are plotted against the true actual supervised
score of the ranked checkpoint models. In this comparison, each metric
is judged by how close it is to mimicking the ranking behavior of the
truly supervised metrics that had access to the annotations; thus al-
lowing for an objective evaluation of both the proposed metric and the
state-of-the-art metrics. The best metric is the one that could mimic the
monotonically decreasing behavior of the true ranking line. Secondly,
the true metric value is plotted against all the competing metrics and
multiple linear and non-linear correlation values were generated for
each plot, including R-squared, Pearson correlation, Spearman correla-
tion, and Kendall rank correlation. The rationale here is to showcase
the degree of correlation between the true supervised metric and all
the competing metrics. The higher the correlation the better the metric
is. The results in this section show that the proposed method not only
outperforms the state-of-the-art but also heavily resembles the true
ranking behavior of the true supervised metrics and is highly correlated
with the true supervised metrics.

Fig. 8 shows the models’ ranking results based on the true-
supervised balanced accuracy for all competing metrics in the exper-
iments ran with DS1 as a source Dataset (𝐷𝑆1 → 𝐷𝑆2). Fig. 9 shows
the models’ ranking results based on the true-supervised AUC for the
same experiment. Figs. 10 and 11 show the same plots but for the
(𝐷𝑆2 → 𝐷𝑆1) experiment where DS2 was used as the source dataset.
The 𝑥−𝑎𝑥𝑖𝑠 represents the model ranking according to that metric from
best to worst, while the 𝑦− 𝑎𝑥𝑖𝑠 represents the real metric value of the
ranked model. The ranking curve for the actual ranking will show a
monotonically decreasing behavior. In all the mentioned plots, the true

actual ranking is compared against (A) the pseudo-balanced accuracy
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Fig. 8. Models ranking results vs. the true balanced accuracy for (A) pseudo-balanced accuracy (ours), (B) FID, (C) KID, (D) IS, (E) MMD (linear kernel), and (F) MMD (gaussian
kernel) for the 𝐷𝑆1 → 𝐷𝑆2 experiment.
Fig. 9. Models ranking results vs. the true AUC for (A) pseudo-AUC (ours), (B) FID, (C) KID, (D) IS, (E) MMD (linear kernel), and (F) MMD (gaussian kernel) for the 𝐷𝑆1 → 𝐷𝑆2
experiment.
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(ours), (B) the FID, (C) the KID, D) the IS, (E) the MMD (linear kernel),
and (F) the MMD (gaussian kernel).

As seen from the figures, the pseudo metric ranking is consistent for
both the balanced accuracy and the AUC metrics while all the other
metrics show very inconsistent and random behavior and demonstrat-
ing that indeed none of these metrics are suitable for cross-domain
classification. The robustness of the pseudo metrics is more evident
when DS2 was used as a source dataset, even when the pseudo metrics
deviate from the original ranking, they still pick a model that is close
in terms of the actual metric value and returns to mimic the actual
ranking behavior. Table 6 shows the true balanced accuracy and AUC
esults of the picked model using each competing metric for both
xperiments. Again, the proposed metric demonstrate both consistency
nd superiority over other metrics. Even when the metric comes second
only by a value of 0.01) as in the case of the balanced accuracy for the
𝑆2 → 𝐷𝑆1 experiment, it still picks a very close model to the actual
est. Moreover, it shows how inconsistent the state-of-the-art metrics
re in cross-domain classification applications.
10
Fig. 12 shows the correlation results based on the true-supervised
alanced accuracy vs all competing metrics in the experiments ran with
S1 as a source Dataset (𝐷𝑆1 → 𝐷𝑆2). Fig. 13 shows the same only
sing true-supervised AUC for the same experiment. Similarly, Figs. 14
nd 15 show the correlations but for the (𝐷𝑆2 → 𝐷𝑆1) experiment
here DS2 was used as the source dataset. The 𝑥 − 𝑎𝑥𝑖𝑠 represents the
etric value while the 𝑦 − 𝑎𝑥𝑖𝑠 represents the real metric value. For
ach plot, the coefficient of determination (𝑅2), Pearson (𝑟), Spearman
𝜌), and Kendall (𝜏) correlations were calculated and presented on the
lot.
The results from Figs. 12 and 13 show that for both the pseudo

metrics there is an almost perfect correlation with the truly supervised
metrics for the 𝐷𝑆1 → 𝐷𝑆2 experiment. On contrast, all the other
competing metrics show weak to none existing correlation with either
the AUC or the balanced accuracy.

The results in Fig. 14 show that again the results for the pseudo
metric is strongly correlated with the truly supervised balanced accu-

racy in the 𝐷𝑆2 → 𝐷𝑆1 experiment, while again the other competing
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Fig. 10. Models ranking results vs. the true balanced accuracy for (A) pseudo-balanced accuracy (ours), (B) FID, (C) KID, (D) IS, (E) MMD (linear kernel), and (F) MMD (gaussian
ernel) for the 𝐷𝑆2 → 𝐷𝑆1 experiment.
Fig. 11. Models ranking results vs. the true AUC for (A) pseudo-AUC (ours), (B) FID, (C) KID, (D) IS, (E) MMD (linear kernel), and (F) MMD (gaussian kernel) for the 𝐷𝑆2 → 𝐷𝑆1
experiment.
Table 6
Competing metrics comparison (the best is in bold and the second best is underlined).
Exp Metric True Competing metrics

Pseudo (ours) FID KID IS 𝑀𝑀𝐷𝐿 𝑀𝑀𝐷𝐺

𝐷𝑆1 → 𝐷𝑆2
Bal. Acc. 0.96 0.96 0.75 0.50 0.52 0.50 0.41
AUC 1.00 0.99 0.78 0.15 0.71 0.15 0.39

𝐷𝑆2 → 𝐷𝑆1
Bal. Acc. 0.76 0.74 0.71 0.75 0.70 0.61 0.64
AUC 0.87 0.79 0.76 0.79 0.76 0.75 0.73
metrics show weak to none existing correlation with the truly super-
vised balanced accuracy. Although both the FID and KID showed some
improvement in the correlation values, this improvement is not to a
level that would qualify them as a suitable candidate for cross-domain
classification tasks and their performance remains far worse than that
of the pseudo metric.

The correlation performance of all metrics against the truly super-
vised AUC for the 𝐷𝑆2 → 𝐷𝑆1 experiment is shown to be poor in
ig. 15. However, the performance of the pseudo metric is still far
11
better than all the other metrics on all of the correlation measures.
One thing to note about this particular experiment is that while we
acknowledge the presence of a weak correlation between our pseudo
metric and the true metric, it is essential to highlight the uniqueness of
the results in this specific experiment. The true metric results for all 30
models demonstrated an exceptionally tight cluster (𝜇 = 0.77 and 𝑠𝑡𝑑 =
0.035). This consistency suggests that the models’ performances were
very close to one other according to the true metric. In such scenarios
where the true metric values are essentially constant across all models,
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Fig. 12. Correlations results of true balanced accuracy vs. (A) pseudo-balanced accuracy (ours), (B) FID, (C) KID, (D) IS, (E) MMD (linear kernel), and (F) MMD (gaussian kernel)
for the 𝐷𝑆1 → 𝐷𝑆2 experiment.
Fig. 13. Correlations results of true AUC vs. (A) pseudo-AUC (ours), (B) FID, (C) KID, (D) IS, (E) MMD (linear kernel), and (F) MMD (gaussian kernel) for the 𝐷𝑆1 → 𝐷𝑆2
xperiment.
h
o
b
l

A

orrelation measures may not be the most appropriate yardstick for
ssessing the worth of a metric; as in such cases, the performance
emains consistently similar irrespective of which checkpoint model is
hosen making the choice of the checkpoint model inconsequential in
erms of the true metric. This explains why the pseudo metric exhibited
n underperformance in this experiment.
The results from the correlation figures demonstrate yet again the

uperiority of the proposed metric over the state-of-the-art. Moreover,
hey also indicate that the proposed metrics are explainable since they
re highly correlated with the explainable true supervised metrics.
oreover, the results also demonstrate that none of the current state-of-
he-art metrics are consistent and they are uncorrelated with the true
etrics, making their decision unexplainable and unreliable to assess
I2I translation models for unsupervised cross-domain classification
asks and should not be utilized in such applications.
The pseudo-supervised metric developed in this work will make a
12

ajor impact on the boiling community. While many research groups
ave demonstrated visualization-based boiling regime classification
r boiling crisis detection using AI models, most of the studies are
ased on single datasets, leaving model generalizability a major chal-
enge (Hobold and Silva, 2018; Ravichandran and Bucci, 2019). As
explored in the authors’ previous work, a well-trained CNN model may
only lead to an accuracy of 0.4–0.5 when classifying new data sets that
are not included in the training (Rassoulinejad-Mousavi et al., 2021;
l-Hindawi et al., 2023). This accuracy can be improved using transfer
learning, where a small amount of labeled data from the new data
set are used to fine-tune pre-trained classifiers (Rassoulinejad-Mousavi
et al., 2021). UI2I using GAN does not require labeled data from the
new data sets but only leads to an accuracy of 0.75 when using state-of-
the-art metric (FID) to select the best-performing generator (Al-Hindawi
et al., 2023). The present work using the pseudo-supervised metric
can lead to a significantly higher balanced accuracy of 0.96 and thus
demonstrates that using UI2I with the pseudo-supervised metric, a pre-
trained boiling regime classifier can be adapted to any new boiling data
set without additional training or labeled data (see Fig. 16).
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𝐷

Fig. 14. Correlations results of true balanced accuracy vs. (A) pseudo-balanced accuracy (ours), (B) FID, (C) KID, (D) IS, (E) MMD (linear kernel), and (F) MMD (gaussian kernel)
for the 𝐷𝑆2 → 𝐷𝑆1 experiment.
Fig. 15. Correlations results of true balanced accuracy vs. (A) pseudo-AUC (ours), (B) FID, (C) KID, (D) IS, (E) MMD (linear kernel), and (F) MMD (gaussian kernel) for the
𝑆2 → 𝐷𝑆1 experiment.
6. Conclusion and future work

In this paper, a framework was introduced to evaluate UI2I transla-
tion models. The DIPS framework was designed specifically to support
cross-domain classification applications using pseudo-supervised met-
rics. To showcase the efficiency of the framework, the boiling crisis
detection problem was used as an example. The efficacy of the results
was demonstrated by conducting two experiments using two publicly
available datasets from different domains.

The proposed methodology was shown to not only outperform the
state-of-the-art unsupervised metrics but was also shown to be highly
correlated with the true supervised metrics, unlike the state-of-the-
art which were poorly correlated with the true supervised metrics
and were shown to be inconsistent. Moreover, it was displayed that
typical state-of-the-art GAN evaluation metrics which were designed
to evaluate models based on their ability to generate images that are
both diverse and realistic to the human eye are not suitable to support
cross-domain classification tasks as presented in the results section. In
13

almost all comparisons, the ranking provided by the pseudo metric was
superior to the state-of-the-art metrics and showed that it can mimic the
monotonically decreasing behavior of the true metric; thus providing
explainable and consistent results.

Although the proposed metric is showing great potential in evaluat-
ing UI2I translation models in cross-domain prediction frameworks, it
still has room for improvement and future work. For starters, the pro-
posed metric was only demonstrated to work in a binary classification
setting (𝑁 = 2). An important factor to consider in the case of multi-
class classification is that the problem becomes more computationally
expensive as the number of clusters 𝑁 increases. Specifically, in the
cluster assignment step of the framework, the number of possible sce-
narios is expected to increase exponentially. For future work, we plan
on addressing both of these issues by incorporating physics-assisted
labeling extracted from either a physical source such as acoustic sensors
mounted on the apparatus of the experiment, or extracted from the
images themselves such as the count and size of the blobs in the image
using computer vision segmentation techniques. Another issue is that
the framework is dependent on having prior domain knowledge to set

up the number of expected clusters 𝑁 that are later used as pseudo
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Fig. 16. Comparison of classification accuracy of CNN trained on DS-1 for classifying
the boiling regime of DS-2 with no translation, UI2I with FID, and UI2I with the
developed pseudo supervised metric (PSM).

labels. The method falls short in the case where no prior domain
knowledge is available about the expected number of labels. Again,
physics-assisted labeling extracted using segmentation could provide a
solution to this issue. Furthermore, the use of a pre-trained Inception
model for feature extraction introduces the potential for bias towards
the ImageNET dataset. Although DIPS takes measures to mitigate this
bias effect. it is important to acknowledge that there may still be
some residual influence from the pre-trained model. Lastly, the method
is strictly applicable to cross-domain classification problems and is
not suitable to address cross-domain regression problems where the
predicted value is continuous rather than discrete. If the data in the
source DS is instead labeled with quantifiable heat flux value, then
an interesting direction would be to explore the utilization of the
temporal factor to relate each frame from the target DS with the source.
Researchers are advised to study the mentioned issues and explore the
capability of this metric to expand on its potential beyond this work.
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