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Abstract

We describe how the quadratic Chabauty method may be applied to determine the set of rational points

on modular curves of genus g > 1whose Jacobians have Mordell–Weil rank g. This extends our previous
work on the split Cartan curve of level 13 and allows us to consider modular curves that may have few

known rational points or nontrivial local height contributions at primes of bad reduction. We illustrate

our algorithms with a number of examples where we determine the set of rational points on several

modular curves of genus 2 and 3: this includes Atkin–Lehner quotients X+
0 (N) of prime level N , the

curveXS4(13), as well as a few other curves relevant to Mazur’s Program B. We also compute the set of

rational points on the genus 6 non-split Cartan modular curve X+
ns(17).

1. Introduction

In this paper, we describe the current state of quadratic Chabauty–based algorithms for the resolution of Diophan-

tine equations arising from modular curves. Here we consider the usual modular curves associated to congruence

subgroups of SL2(Z), as well as Atkin–Lehner quotients thereof.

Recall the motivating question of the subject: let E be an elliptic curve over a number fieldK . What are the possible

ways for the Galois groupGal(K/K) to act on the group of torsion points ofE? Equivalently, what are the conjugacy

classes of subgroups of GL2(Z/NZ) arising as images of the mod N Galois representation ρE,N?

By a theorem of Serre [Ser72], ifE is an elliptic curve without complex multiplication, then for all primesN ≫ 0, the
representation ρE,N is surjective. Serre’s uniformity question [Ser72] asks whether this can be made uniform overQ:

is there anN0 such that, for all primesN > N0, ifE/Q is an elliptic curve without complexmultiplication, then ρE,N

is surjective? By a classification of maximal subgroups of GL2(Z/NZ), this amounts to determining elliptic curves

whose modN Galois representation is contained in a Borel subgroup, the normaliser of a split Cartan subgroup, the

normaliser of a non-split Cartan subgroup, or an ‘exceptional’ subgroup (such that the projective image is S4, A4, or
A5).

Mazur’s Program B [Maz77] asks for all of the possible Galois actions on torsion subgroups of elliptic curves without

complex multiplication. This question includes Serre’s uniformity question but is more general. From a Diophantine

perspective, it roughly amounts to determining the rational points on all modular curves.

Rouse and Zureick-Brown [RZB15] settled this in the context of 2-primary torsion and very recently, with Suther-

land [RSZB21], studied this in the context of ℓ-primary torsion for other primes ℓ. For each prime, this produces a
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finite number of curves, the determination of whose rational points would resolve the ℓ-primary part of Mazur’s

question. In §5.1 and §5.3 we compute the rational points on four modular curves XS4(13), X
+
ns(17), X11, and X15

arising in Mazur’s Program B. In particular, we show the following:

Theorem 1.1. We have#XS4(13)(Q) = 4. One of these points is a CM point, corresponding to discriminantD = −3.
The other three are exceptional, with corresponding j-invariants listed in §5.1.

Here we call a non-cuspidal rational point exceptional if it does not correspond to an elliptic curve with complex

multiplication. The curve XS4(13) has genus 3. This completes the classification of elliptic curves E/Q and prime

level N > 0 such that ρE,N is contained in an exceptional subgroup.

We also determine the rational points on X+
ns(17), the non-split Cartan modular curve of level 17, which is a genus

6 curve:

Theorem 1.2. We have#X+
ns(17)(Q) = 7 and all of these points are CM , corresponding to discriminants−3,−7,−11,

−12,−27,−28,−163.

Theorems 1.1 and 1.2 complete the classification of the possible 13-adic and 17-adic images of Galois.

Moving beyond torsion points of elliptic curves over Q, another interesting problem in the Diophantine geometry

of modular curves is the determination of the set of rational points on the Atkin–Lehner quotient

X+
0 (N) := X0(N)/⟨wN ⟩

of the modular curve X0(N). In [Gal02], Galbraith asks whether, for all primes N ≫ 0, the only rational points on

X+
0 (N) are cusps or CM points. From a moduli perspective, this amounts to finding quadratic Q-curves that are

N -isogenous to their conjugates. Dogra and Le Fourn [DF21] proved that the quadratic Chabauty setX+
0 (N)(Qp)2

is finite whenever the genus of X+
0 (N) is larger than one. Hence it is natural to ask whether the methods of this

paper can be used to give an algorithm for computingX+
0 (N)(Qp)2 for anyN . In fact, in the range ofN we consider,

finiteness of X+
0 (N)(Qp)2 follows from a criterion appearing in earlier work of Siksek [Sik17]. Our computations

described in §5.2 prove the following result.

Theorem 1.3. The only prime values N such that the curve X+
0 (N) is of genus 2 or 3 and has an exceptional rational

point are N = 73, 103, 191. In particular for prime N , there are no exceptional rational points on curves X+
0 (N) of

genus 3.

All rational points in Theorem 1.3 had already been found by Galbraith [Gal99].

Remark 1.4. These computationswere recently extended significantly byAdžaga, Arul, Beneish, Chen, Chidambaram,

Keller, and Wen [AAB
+
21]. They use the quadratic Chabauty method described in this paper to determine the set of

rational points on all curvesX+
0 (N) of genus 4,5 and 6 and prime levelN . Arul andMüller [AM] also compute the ra-

tional points onX+
0 (125) using the same method. Adžaga, Chidambaram, Keller, and Padurariu [ACKP] use several

techniques, including quadratic Chabauty, to determine the set of rational points on the hyperelliptic Atkin–Lehner

star quotient curves X∗
0 (N).

Going further, one may wonder what the potential applications of these algorithms are to non-modular curves. The
main stumbling block in attempting such a generalisation is our running assumption on the Mordell–Weil rank

and Picard number of the Jacobian (see §2.1). Since a generic curve has Picard number one, it is not clear how

often one should expect a genus g curve with Mordell–Weil rank g to satisfy the quadratic Chabauty hypothesis.

Nevertheless, there are other interesting curves where one would expect to get some mileage out of such algorithms.

The most obvious examples are (Atkin–Lehner quotients of) Shimura curves. In particular, determining the set of

rational points on the (infinitely many) curves XD/⟨wD⟩, in the notation of Parent–Yafaev [PY07], would resolve a

conjecture of Clark [Cla03] (Parent and Yafaev determine the rational points for an infinite family of Shimura curves

whose Jacobian contains a rank zero isogeny factor).
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2. Quadratic Chabauty: Theory

We give a brief overview of the quadratic Chabauty method. A more complete exposition can be found in [BBB
+
21],

and we refer the reader to [BD18, BDM
+
19] for more precise details and proofs. Our description is in terms of Galois

representations and filtered ϕ-modules, but we note that recently, Edixhoven and Lido [EL21] gave a geometric

version of quadratic Chabauty, which they used to determine the set of rational points on the bielliptic modular

curve X0(129)/⟨w3, w43⟩ of genus 2. Duque-Rosero, Hashimoto, and Spelier [DRHS] have related this approach to

the one presented here and used this to give algorithms for geometric quadratic Chabauty for hyperelliptic curves.

Besser, Müller, and Srinivasan [BMS] have also given an alternative approach to the quadratic Chabauty method

based on a new construction of p-adic heights on abelian varieties via p-adic Arakelov theory.

An early version of the method appeared in work of Kim [Kim10, BKK11], where Massey products were used to

construct a locally analytic function, vanishing on the set of integral points of an elliptic curve of rank 1. These func-
tions were interpreted as height functions, extending the method, in Balakrishnan–Besser [BB15] and Balakrishnan–

Besser–Müller [BBM16]. It was extended to its current form in Balakrishnan–Dogra [BD18], where a systematic use

of Nekovář’s theory of p-adic heights suggested a streamlined approach towards a very general class of curves al-

lowing an abundance of geometric correspondences. It was carried out to determine the set of rational points on

X+
s (13), the split Cartan curve of level 13, in [BDM

+
19].

Remark. This method fits into the vastly more general framework developed by Kim [Kim05, Kim09], elaborating

on the idea of studying rational points on curves through path torsors of the étale fundamental group, suggested

by Grothendieck’s section conjecture. The approach discussed here represents an effective way to make this theory

computable and applicable to a variety of examples. It is, however, important to note that different quotients of

the fundamental group have been successfully used for this purpose, see for instance [BD21]. Finally, although we

restrict our attention to the base field Q, suitable versions exist over number fields, see [BD18, BD21, BBBM21].

2.1 Rational points and global heights.

Consider a smooth projective curve XQ of genus g ⩾ 2 whose Jacobian J has rank r = g. We also assume that the

abelian logarithm induces an isomorphism

log : J(Q)⊗Qp → H0(XQp ,Ω
1)∨ (2.1)

and that X(Q) is non-empty, so we may choose a base point b in X(Q). Suppose that the Néron–Severi rank

rkZNS(J) is at least 2, so that there exists a nontrivial class

Z ∈ Ker (NS(J) −→ NS(X) ≃ Z) .

As explained in Balakrishnan–Dogra [BD18, Lemma 3.2], we can attach to any such choice of Z a suitable quotient

UZ of theQp-pro-unipotent fundamental group ofXQ̄, which via a twisting construction by path torsors, gives rise
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to a certain family of Galois representations

X(K) −→ {GK → GL2g+2(Qp)} / ∼
x 7−→ A(x) := AZ(b, x)

where K ∈ {Q,Qp} and GK is the absolute Galois group of K . We refer the reader to [BD18, §5.1] for the details

of this construction (in particular for the equivalence relation), and merely recall here that with respect to a suitable

choice of basis, the representation A(x) is lower triangular, of the form

g ∈ GK 7−→

 1
α(g) ρV (g)
γ(g) β(g) χp(g)

 (2.2)

where

ρV : GK −→ GL2g(Qp)

is a frame for the Galois action on the p-adic étale homology V = H1
ét(XK ,Qp)

∨
, and χp : GK → Q×

p is the

p-adic cyclotomic character. Representations of this form, which admit a GK-stable filtration with graded pieces

Qp(1), V,Qp, are referred to as mixed extensions, see [BDM+
19, §3.1].

The theory of p-adic heights due to Nekovář [Nek93, §2] attaches to any mixed extensionM a p-adic height h(M).
When applied to the family of mixed extensions A(x), this results in a map

h : X(Q) −→ Qp.

The algebraic properties of this map lie at the heart of the quadratic Chabauty method. Most notably, the method

relies on the following two facts:

– The p-adic height is a bilinear function of the pair of cohomology classes ([α], [β]) associated to the vectors

appearing in (2.2).

– It decomposes as a sum of local height functions hv defined locally at every finite place v.

2.2 Local decomposition.
We now discuss in more detail the decomposition of the global p-adic height h described above, as a sum of local

height functions

hv : X(Qv) −→ Qp.

The nature of these local height functions is as follows:

(i) The case v ̸= p: It follows from Kim–Tamagawa [KT08, Corollary 0.2] that the function hv has finite image, in

the sense that there exists a finite set Υv such that

hv : X(Qv) −→ Υv ⊂ Qp.

(ii) The case v = p: The map hp is locally analytic and has a simple description in terms of linear algebra data of

the filtered ϕ-module

M(x) :=
(
A(x)⊗Qp Bcris

)GQp ,

whereBcris is Fontaine’s crystalline period ring. A crucial point in the method of quadratic Chabauty is that the

definition of the family of Galois representationsA(x) comes from amotivic quotient of the fundamental group

of X , and non-abelian p-adic Hodge theory yields an analogous de Rham realisation in the form of a filtered

connection (M ,∇) on X with a Frobenius structure, together with an isomorphism of filtered ϕ-modules

x∗M ≃ M(x)

(see [BDM
+
19, §5]). We have a pair of elements π1(M(x)) and π2(M(x))∨(1) of H0(XQp ,Ω)

∨
associated to

the filtered ϕ-module M(x), via the isomorphism

Ext1Fil,ϕ(Qp,H
1
dR(XQp)

∨) ≃ H0(XQp ,Ω)
∨.
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2.3 Finiteness.

The decomposition h =
∑

v hv can be used to leverage the bilinear nature of h against the properties of the functions

hv . By (1) in §2.2, we know that there exists a finite set Υ = ΥZ ⊂ Qp such that

h(x)− hp(x) ∈ Υ (2.3)

for any x in X(Q). In Section 3, we describe how the terms in this equation may be computed explicitly.

– The set Υ is given by {
∑

v ϵv : ϵv ∈ Υv}, where the sum is over primes of bad reduction, and Υv is the set of

values of hv(x) for x ∈ X(Qv). For v ̸= p, the map hv is made more explicit in §3.1

using the results of Betts–Dogra [BD19] to compute Υv when a regular semi-stable model X is known. The

map hv factors through the reduction map to the irreducible components of the special fibre of X .

– The map hp may be computed using [BDM
+
19, §§4,5], where it is explained how the universal properties of the

bundle M rigidify the (known) structures on the graded pieces, enough to allow us to compute them explicitly,

see §3.2.

– Using the isomorphism (2.1), we may view the global height as a pairing

h : H0(XQp ,Ω
1)∨ ⊗H0(XQp ,Ω

1)∨ −→ Qp.

Using global information, such as an abundance of global points x ∈ X(Q) if available, we can solve for the

height pairing. This is discussed in §3.3, where we also explain what to do when too few rational points are

available.

Via the above, the map h may be extended to a bilinear map

h : X(Qp) → Qp ; x 7→ h(π1(A(x)), π2(A(x))∨(1)) . (2.4)

The resulting map

ρ = h− hp : X(Qp) −→ Qp (2.5)

is known to be Zariski dense on every residue disk. We call ρ a quadratic Chabauty function, and we write ρZ if we

want to emphasise the dependence on Z . Hence (2.3) implies that X(Q) is finite. Moreover, the computable nature

of the quantities involved in (2.3), discussed at length in the next section, allows us to explicitly determine a p-adic
approximation of the finite set

{x ∈ X(Qp) : h(x)− hp(x) ∈ Υ} ⊃ X(Q) .

As explained in [BD18, Proposition 5.5], this finite set contains the Chabauty–Kim setX(Qp)2. In particular, a proof

that this set equals X(Q) gives a verification of Kim’s conjecture [BDCKW18, Conjecture 3.1] for the curve X (we

refer the reader to [BDCKW18, Definition 2.7] for the definitions of the set X(Qp)2).

3. Quadratic Chabauty: Algorithms

In this section, we discuss the computation of the three ingredients outlined above:

(i) The local height function hv for v away from p, which is described in §3.1 using the techniques in Betts–Dogra

[BD19], given a regular semi-stable model at v.

(ii) The height function hp, whose computation using the techniques of [BDM
+
19] is described in §3.2

(iii) The determination of the global height pairing h, described in §3.3 using rational divisors as input in the absence
of a supply of rational points on the curve.

Our contribution in this paper lies mainly in (1) and (3), which reflect general features of the method of quadratic

Chabauty that were not needed for the curveX+
s (13) treated in [BDM

+
19]. In addition, we discuss some computa-

tional techniques to further automate the method of quadratic Chabauty to work for a wide class of modular curves.

5



Jennifer S. Balakrishnan, Netan Dogra, J. Steffen Müller, Jan Tuitman and Jan Vonk

This includes the Mordell–Weil sieve, which is used to attempt to further refine the finite set of local points in the

output to the true set of rational points X(Q).

Remark 3.1. The global height depends on the choice (which we fix henceforth) of

– a nontrivial continuous idèle class character χ : A×
Q/Q× −→ Qp ramified at p;

– a splitting s : VdR/Fil
0VdR −→ VdR of the Hodge filtration, where

VdR = Dcris(V ) = H1
dR(XQp)

∨ .

We also fix differentials ω0, . . . , ω2g−1 of the second kind whose classes form a symplectic basis of H1
dR(XQp) with

respect to the cup product, such that ω0, . . . , ωg−1 generate H
0(XQp ,Ω

1).

3.1 Local heights away from p

Let ℓ ̸= p and let F be an endomorphism of J whose classZ lies inKer (NS(J) → NS(X)). In [BD19], a description

of the map

hℓ : X(Qℓ) −→ H1(Gℓ, UZ) −→ H1(Gℓ,Qp(1)) −→ Qp

associated to F and χ is given, in terms of harmonic analysis on the reduction graph in the sense of Zhang [Zha93].

To explain the result, we introduce some notation. Over some finite extension K/Qℓ, the curve X admits a regular

semistable model Xreg/OK , and a stable model Xst/OK . Let Γreg and Γst denote the dual graphs of the special

fibres of these models. Recall that the dual graph of the special fibre is by definition the graph
1
whose vertices

are the irreducible components of the special fibre, and whose edges are the singular points of the special fibre. The

endpoints of an edge e are defined to be the irreducible components containing the point (by semistability, a singular

point e lies on at most two irreducible components). By regularity, we have a reduction map

red: X(Qℓ) −→ V (Γreg)

from X(Qℓ) to the vertices of the dual graph Γreg.

The definition is the natural one: given x ∈ X(Qℓ), there is a unique extension to an OK-section x ∈ Xreg(OK).
Let k be the residue field ofOK . By regularity, the specialisation of x to k lies on a unique irreducible component of

Xreg,k.

We may give Γreg and Γst the structure of rationally metrised graphs (i.e. graphs whose edges e have associated

lengths ℓ(e) ∈ Q>0) by defining the length of an edge e to be i(e)/r, where i is the intersection multiplicity of the

corresponding singular point and r is the ramification degree of K/Qℓ.

Choose an orientation of the edges of Γ := Γst, so that each e ∈ E(Γ) has a source s(e) and target t(e) in V (Γ). We

define the (rational) homology of Γ, H1(Γ) ⊂ QE(Γ), to be the kernel of the map

s− t : QE(Γ) → QV (Γ),

where QE(Γ) and QV (Γ) are the free Q-vector spaces generated by E(Γ) and V (Γ) respectively.

Define ΓQ to be the set of points on Γ whose distance from a vertex is rational: formally,

ΓQ = ⊔e∈E(Γst)
{e} × ([0, ℓ(e)] ∩Q)/ ∼ ,

where the equivalence relation is that (e1, 1) ∼ (e2, 0) whenever t(e1) = s(e2). Since Xreg is obtained from Xst by

taking each singular point (corresponding to an edge e) and blowing up i(e) times, we have an inclusion V (Γreg) ⊂
ΓQ (in the terminology of [BD19, 3.7.1], we may view Γreg as a rational subdivision of Γst). In this way we can think

of the reduction map red as a map fromX(K) to ΓQ, see [BD19, Definition 1.3.1]. The rationally metrised graph we

obtain is independent of the choice of extension over whichX acquires stable reduction [CR91, Proposition 2.6], and

1

Here we follow the convention that graphs are allowed multiple edges between two vertices, and loops (i.e. an edge whose endpoints are

equal).
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in fact there is an equivalent definition of ΓQ as the limit of the dual graphs of special fibres of regular semistable

models of XL over all finite extensions L ofK (see [CR93, §2]).

In [BD19, Lemma 12.1.1], a map

jΓ : ΓQ → Qp

is defined such that hℓ = c · jΓ ◦ red, where c is a constant. The map jΓ is defined in terms of the Laplacian operator

associated to Γst, which we now define. We say a function

ΓQ → Qp

is piecewise polynomial if on each edge it is the restriction of a polynomial function Q → Qp. As in [BD19, Def-

inition 7.2.2], we define the Laplacian ∇2(g) of a piecewise polynomial function g : ΓQ → Qp to be the formal

sum

−
∑

e∈E(Γ)

g′′(xe) · e+
∑

v∈V (Γ)

(
∑

s(e)=v

g′(0)−
∑

t(e)=v

g′(1)) · v.

Here we write the function g restricted to the edge e as a polynomial in Qp[xe] for notational simplicity, where xe
is the inclusion from the edge e, thought of as a line segment [0, ℓ(e)] ∩Q, into Q. Hence we have

∇2(g) ∈
⊕

e∈E(Γ)

Qp[xe] · e⊕
⊕

v∈V (Γ)

Qp · v .

The Laplacian is linear on piecewise polynomial functions, and its kernel consists of constant functions. Thus g is

uniquely determined by ∇2(g) and its value at one point.

In [BD19], an explicit construction is given of a piecewise polynomial function that corresponds, via red, to the local
height function we wish to compute. Recall that F is an element of End(J)⊗Qp whose image in NS(J) lies in the

kernel of NS(J) → NS(X), and b ∈ X(Q) is a rational point.

Theorem 3.2 [BD19, Theorem 1.1.2, Lemma 12.1.1, and Corollary 12.1.3]. Let Γ be the dual graph ofX corresponding
to a regular semi-stable model of X over OK , where K/Qℓ is a finite extension. Let red: X(Qℓ) → V (Γ) be the
reduction map. For an irreducible componentXw of the special fibre of the regular semistable model, let Vp(Xw) denote
theQp-Tate module of its Jacobian. The morphism jΓ is the unique piecewise polynomial function

jΓ : ΓQ → Qp

satisfying jΓ(red(b)) = 0 and ∇2(jΓ) = µF , where

µF :=
∑

e∈E(Γ)

1

ℓ(e)
e∗F (π(e)) · e+ 1

2

∑
w∈V (Γ)

Tr(F |Vp(Xw)) · w.

Here, the morphism π is by definition the orthogonal projection

QE(Γ) → H1(Γ,Q)

with respect to the pairing e · e′ = δee′ on QE(Γ), and e∗ is the functional QE(Γ) → Q projecting onto the e
component. Recall (e.g. [SGA7, 12.3.7]) that Vp(X) admits a GK-stable filtration

Vp(X) = W0Vp(X) ⊃ W1Vp(X) ⊃ W2Vp(X) ⊃ W3Vp(X) = 0,

and we have isomorphisms of GK-representations

grW0 Vp(X) ≃ H1(Γ)⊗Qp,

grW1 Vp(X) ≃ ⊕w∈V (Γ)Vp(Xw),

grW2 Vp(X) ≃ H1(Γ)
∗ ⊗Qp(1).

The action of F on Vp(X) preserves this filtration since it is a morphism of Galois representations, and hence induces

an action of F on the weight −1 part of Vp(X), which is isomorphic to ⊕wVp(Xw). Although the action of F need

7
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not respect the direct sum decomposition, the decomposition

End(⊕wVp(Xw)) ≃ ⊕w1,w2Hom(Vp(Xw1), Vp(Xw2))

implies that we can define Tr(F |Vp(Xw)) as the trace of the End(Vp(Xw))-component of F .

To determine the possible local heights, it suffices to compute the action of F on H1(Γ) and on Vp(Xv). In this

paper, we do not discuss methods for the algorithmic computation of the action of F on H1(Γ), but algorithms for

these computations in the case when the curveX is hyperelliptic will be discussed in forthcoming joint work of the

first, second and fifth authors with David Corwin, Sachi Hashimoto, Benjamin Matschke, Oana Padurariu, Ciaran

Schembri, and Tian Wang.

As we explain in Section 5.4, one can sometimes use partial information deduced from Theorem 3.2 to determine the

possible local heights without computing the action of F on H1(Γ) (for example, if one has enough rational points

on X that are suitably independent in J(Q) and ΓQ).

Example 3.3. One example for which this strategy succeeds is the curve C188/Q defined by the equation y2 =
x5 − x4 + x3 + x2 − 2x+ 1, as described in Example 5.18. This curve does not have semistable reduction overQ2.

OverK = Q2[
3
√
2], we find a regular semistable model Xreg whose special fibre consists of two genus 1 curves that

do not intersect and a genus 0 curve intersecting both of them transversely in a unique point each.We did not manage

to obtain this information using any of the existing software packages for computing regular or semistable models,

such as Magma’s RegularModel or the SageMath package MCLF 2
) Therefore we computed this model by

hand, using a standard (but tedious) sequence of blow-ups.

Hence the metric graph Γreg is a line segment and the image of C188(Q2) in ΓQ consists of three points on this line.

The two edges of Γreg both have length 1/3. In this case, since Γ has trivial homology, the function jΓ is affine linear,

so it is uniquely determined by evaluating it at two distinct points. We use this to compute the rational points on

C188 in Example 5.18.

3.2 Local heights at p

We discuss the local height component

hp : X(Qp) −→ Qp ,

which appeared in [BDM
+
19, §5]. Recall that hp is a locally analytic function, described in terms of the filtered

ϕ-module M(x) discussed in §2.2. Concretely, we may find two unipotent isomorphisms

λ⋆(x) : Qp ⊕ VdR ⊕Qp(1)
∼−→ M(x), for ⋆ ∈ {ϕ,Fil}

where λϕ
respects the Frobenius action and λFil

respects the Hodge filtration, which with respect to a suitable basis

for M(x) may be represented in (1 + 2g + 1)-block matrix form as

λϕ(x) =

 1 0 0
αϕ 1 0
γϕ β⊺

ϕ 1

 , λFil(x) =

 1 0 0
αFil 1 0
γFil β⊺

Fil 1

 (3.1)

(see [BDM
+
19, §5.3] and [BDM

+
19, §4.5] respectively). The isomorphism λϕ

is uniquely determined, whereas λFil

is only well-defined up to the stabiliser of the Hodge filtration Fil0. A suitable choice gives αFil = 0.

The splitting s of theHodge filtration (see Remark 3.1) defines idempotents s1, s2 onVdRwith images s(VdR/Fil
0VdR)

and Fil0VdR respectively, with respect to which the local height at p is

hp(x) = γϕ − γFil − β⊺
ϕ · s1(αϕ)− β⊺

Fil · s2(αϕ) (3.2)

by [BDM
+
19, Equation (17)].

2

MCLF can be used to show that there is a semistable model with three components, two of genus 1 and one of genus 0. It also lists equations

for their function fields, but this information does not suffice for our purposes.
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In [BDM
+
19] we outline a method to compute these quantities explicitly as functions of the local point x inX(Qp),

which exploits the existence of the connection (M ,∇) discussed in §2.2. The Hodge filtration and Frobenius struc-

tures of this bundle are characterised by suitable universal properties, discussed at length in [BDM
+
19, §§4–5]. We

have made the algorithms for the computation of hp more general and streamlined and have added a precision anal-

ysis in Section 4 but did not make further contributions to this part of the method beyond what is already contained

in loc. cit.

3.3 The global height pairing

One key step in the construction of a quadratic Chabauty function is to write the global height pairing h in terms of

a basis of the space of bilinear pairings on H0(XQp ,Ω
1)∨. In [BDM

+
19], we had as a working hypothesis that our

curve X had sufficiently many rational points, in the following sense: For x ∈ X(Qp), the Galois representation

A(x) can be projected onto H1
f (GT , V ) (respectively H1

f (GT , V
∗(1))), where GT is the maximal quotient of GQ

unramified outside T = {p} ∪ {bad primes for X}. With respect to the dual basis ω∗
0, . . . , ω

∗
g−1, the image is the

vector α (respectively β) in (2.2). Both of these cohomology groups are isomorphic, under our running assumptions,

to H0(XQp ,Ω
1)∨, so we obtain

π(A(x)) = (π1(A(x)), π2(A(x))) ∈ H0(XQp ,Ω
1)∨ ×H0(XQp ,Ω

1)∨ .

Suppose that we can find a basis ofH0(XQp ,Ω
1)∨⊗H0(XQp ,Ω

1)∨ consisting of elements of the form π(AZ(b, x)),
where the Z are cycles on J pulling back to degree 0 cycles on X , and the x are rational points on X . Then we can

compute the coefficients of h in terms of the dual basis by evaluating hp(AZ(b, x)) (and, if necessary, hℓ(AZ(b, x))
for primes ℓ ̸= p). With this choice of basis, the extension of h to a locally analytic function h : X(Qp) → Qp is

immediate.

The number of required rational points can be reduced byworkingwith symmetric heights that areEnd(J)-equivariant.
By the latter we mean that h(f(x), y) = h(x, f(y)) for all f ∈ End(J), using (2.1). This holds if the splitting s of the
Hodge filtration on VdR commutes with End(J) and has the property that ker(s) is isotropic with respect to the cup

product (see [Nek93, §4.11] and [BD21, §4.1]). For instance, if p is a prime of ordinary reduction for the Jacobian, then

the height associated to the unit root splitting (see Remark 3.15) is symmetric and End(J)-equivariant. Henceforth
we shall assume that s satisfies these assumptions, and we say that X has sufficiently many rational points if the
approach outlined above succeeds.

3.3.1 Heights on the Jacobian If our curve does not have sufficiently many rational points in the above sense, then,

in light of (2.1), it is natural to solve for the height pairing using rational points on the Jacobian. In this case, we do

not have an algorithm at our disposal to compute h using Nekovář’s construction, but we can use the equivalence

between this construction and that of Coleman and Gross [CG89], proved by Besser [Bes04]. In the case when the

curve is hyperelliptic and given by an odd degree model over Qp (but see Remark 3.7), we can further use the

algorithm of Balakrishnan–Besser [BB12, BB21]. In the discussion that follows, we will assume that we are in this

situation. We will also assume that we know g independent points on the Jacobian.

Recall from Remark 3.1 that we have fixed a a continuous idèle class character χ : A×
Q/Q× −→ Qp ramified at p

and a splitting s : VdR/Fil
0VdR −→ VdR of the Hodge filtration on VdR = H1

dR(XQp)
∨ . The latter corresponds to a

subspace W ⊂ H1
dR(XQp), complementary to the image of H0(XQp ,Ω

1). With respect to these choices, Coleman

andGross define the local p-adic height pairinghv(D1, D2) ∈ Qp at a finite prime v for divisorsD1, D2 ∈ Div0(XQv)
with disjoint support. The local pairing is bi-additive, and we have hv(D1, D2) = χv(f(D2)) if D2 = div(f) is
principal. For v ̸= p, the pairing hv is also symmetric; hp is symmetric if and only if W is isotropic with respect to

the cup product pairing, which we will assume from now on. Moreover, forD1, D2 ∈ Div0(X)with disjoint support,
only finitely many hv(D1, D2) := hv(D1 ⊗Qv, D2 ⊗Qv) are nonzero. Therefore h :=

∑
v hv defines a symmetric

bilinear pairing h : J(Q)× J(Q) → Qp (see [CG89, §6]).

If we have algorithms to compute the local height pairings, we can solve for the global height pairing in terms of the

9
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basis of symmetric bilinear pairings on J(Q)⊗Qp defined by

gij(D,E) :=
1

2
(log(D)(ωi) log(E)(ωj) + log(D)(ωj) log(E)(ωi)) , 0 ⩽ i ⩽ j ⩽ g − 1 . (3.3)

Since we can express π1(A(x)) and π2(A(x)) in terms of the dual basis {ω∗
i }, we can compute gij(π(A(x))) for

x ∈ X(Qp) (with the obvious abuse of notation) and extend h to a locally analytic function h : X(Qp) → Qp.

It remains to discuss the computation of the local heights. ForD1, D2 ∈ Div0(XQp) with disjoint support, the local

height is the Coleman integral certain differential with residue divisor Res(ωD1) = D1 and cp is a constant so that

c−1
p χp extends to a branch Q×

p → Qp of the p-adic logarithm; the Coleman integral is taken with respect to this

branch. The differential ωD1 is normalised with respect to the splitting s using

a homomorphism

Ψ: T (Qp)/Tl(Qp) → H1
dR(X),

from T (Qp) the group of differentials of the third kind with integer residues on X quotiented by Tl(Qp) the group

of logarithmic differentials
df
f with f ∈ Qp(X)∗, as in the algorithm below. We restrict to degree zero divisors of the

form P − Q where P,Q are non-Weierstrass points in X(Qp) that do not reduce to a Weierstrass point in X(Fp)
since we will need to compute Coleman integrals between P,Q, and our implementation assumes that these points

are in non-Weierstrass disks and defined over Qp.

Algorithm 3.4 The local height hp(D1, D2) at p of the global p-adic height [BB12].
Input:

– Hyperelliptic curve X/Qp, given by an affine model y2 = f(x), where f ∈ Zp[x] is squarefree of degree

2g + 1 > 2

– Prime p > 2g − 1 of good reduction

– Choice of isotropic subspaceW ofH1
dR(XQp), complementary to the subspace of regular 1-formsH0(XQp ,Ω

1)

– DivisorsD1 = P −Q,D2 = R−S, where P,Q,R, S are non-Weierstrass points inX(Qp) that do not reduce
to a Weierstrass point in X(Fp), and R,S do not lie in the residue disks of P,Q.

Output: The local height hp(D1, D2) at p of the Coleman–Gross global p-adic height.

(i) Choose ω a differential in T (Qp) with Res(ω) = D1.

(ii) Solve for the coefficients bi of Ψ(ω) =
∑2g−1

i=0 biωi ∈ H1
dR(X) by computing residues, as in [BB12, §5.2]. Then

Ψ(ω)−
∑g−1

i=0 biωi ∈ W . Let

ωD1
:= ω −

g−1∑
i=0

biωi.

(iii) Set α := ϕ∗(ω)− p(ω). Use Frobenius equivariance of the map Ψ (and the matrix of Frobenius computed with

respect to the basis {ωi} of H1
dR(X)) to compute

Ψ(α) = ϕ∗Ψ(ω)− pΨ(ω) .

(iv) Let β be a 1-form with Res(β) = (R)− (S). Compute Ψ(β).

(v) Compute

hp(D1, D2) :=

∫
D2

ωD1 =

∫ R

S

(
ω −

g−1∑
i=0

biωi

)
,

where ∫ R

S
ω =

1

1− p

Ψ(α) ∪Ψ(β) +
∑

A∈X(Cp)

ResA

(
α

∫
β

)
−
∫ S

ϕ(S)
ω −

∫ ϕ(R)

R
ω

 ,

see [BB12, Remark 4.9].
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Remark 3.5. Note that in the last step above,
∫ S
ϕ(S) ω and

∫ ϕ(R)
R ω are tiny integrals, that is, Coleman integrals between

points in the same residue disk. Such integrals may be computed merely using a uniformising parameter at any point

in the residue disk. The computation

∑
A∈X(Cp)

ResA
(
α
∫
β
)
will, in most cases, require working over various

extension of Qp to pick up all contributions at all poles (see [BB12, Remark 4.10]).

Remark 3.6. If our hyperelliptic curve X does not admit an odd degree model over Q, we may choose our prime p
such that X has an odd degree model over Qp and compute local heights at p on this model. This follows from the

fact that Ψ(φ∗ω) = φ∗(Ψ(ω)) for φ an isomorphism of curves and ω a differential of the third kind.

Remark 3.7. In his thesis [Gaj22], Gajović has improved Algorithm 3.4 and extended it to even degree models of

hyperelliptic curves.

The local height at a prime ℓ ̸= p is defined in terms of intersection theory. We can extend D1 and D2 to divisors

D1 and D2 on a regular model ofXQℓ
so that both Di have trivial intersection multiplicity with all vertical divisors;

then by [CG89, Proposition 1.2], we have

hℓ(D1, D2) = −(D1 · D2)χp(ℓ) .

3.4 Mordell–Weil sieving

The idea of the Mordell–Weil sieve, originally due to Scharaschkin [Sch99], is to deduce information on rational

points on X via the intersection of the images of X(Fv) and J(Q) in J(Fv) (or suitable quotients) for several

primes v of good reduction. It is often applied to verify that X(Q) = ∅, but it can also be combined with p-adic
techniques to compute X(Q) when there are rational points.

We review the basic idea, which is straightforward. Making the sieve perform well in practice is a different matter;

see [BS10] for an elaborate discussion of the issues one encounters and detailed strategies. For ease of exposition,

we assume that J(Q) is torsion-free and that we have generators P1, . . . , Pr of J(Q). LetM > 1 be an integer and

let S be a finite set of primes of good reduction for X . Then the diagram

X(Q) //

��

J(Q)/MJ(Q)

αS,M

��∏
v∈S X(Fv)

βS,M

//
∏

v∈S J(Fv)/MJ(Fv)

is commutative. In the situation of interest to us, the horizontal maps are induced by our choice of base point b ∈
X(Q).

In our work, we use the Mordell–Weil sieve in two ways. On the one hand, we apply it to show that for a fixed prime

p, a given residue disk inX(Qp) does not contain a rational point. To this end, we setM = M ′ · p for some suitable

auxiliary integerM ′
, and we choose S to consist of primes ℓ so that gcd(#J(Fℓ),#J(Fq)) is large for some prime

divisors q | pM ′
. We can then hope that the image of the reduction of the disk under

∏
βS,M does not meet the

image of the map

∏
αS,M .

On the other hand, we use the sieve to show for fixed M > 1 that a given coset of MJ(Q) does not contain the

image of a point in X(Q) under the Abel–Jacobi map P 7→ [P − b]. Suppose a point P ∈ X(Qp) is given to finite

precision pN . If P is rational, then there are integers a1, . . . , ag such that

[P − b] = a1P1 + · · ·+ agPg.

Via the abelian logarithm, we compute a tuple (ã1, . . . , ãg) ∈ Z/pNZ satisfying ai ≡ ãi (mod pN ) for all i ∈
{1, . . . , g}. To show that P is not rational, it suffices to show that the corresponding coset of pNJ(Q) does not
contain the image of such a point.

In our implementation, we have not tried to optimise the interplay between quadratic Chabauty and the Mordell–

Weil sieve. Such an optimisation is discussed in [BBM17, §7]. Let us only note here that we may combine quadratic
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Chabauty information coming from several primes, and that we can enhance that information using an auxiliary

integerM ′
similar to the above. Another account of combining quadratic Chabauty with the Mordell–Weil sieve can

be found in [BBB
+
21, §6.7].

Remark 3.8. All examples in this paper

satisfy r = g = rkZNS(J), resulting in at least two independent locally analytic functions vanishing in X(Q) for
the g > 2 examples. Since we expect that their common zero set is precisely X(Q) (or that there is a geometric

reason for the appearance of any additional p-adic solutions), we do not expect to require the sieve. Indeed, we only
had to apply the sieve for curves of genus 2. For these examples, we always required only one prime for the quadratic

Chabauty computation; we chose this prime in such a way as to simplify the sieving.

3.5 Implementation and scope

We have implemented the algorithms described in this section in the computer algebra system Magma [BCP97]. Our

code is freely available at [BDM
+
]. It extends the code used for X+

s (13) in [BDM
+
19] and can be used to recover

that example. It is applied to new examples, as discussed in §5.

We begin by summarising our discussion so far and describe the general procedure to determine the finite setX(Qp)2
as it would apply to the modular curve X attached to a general congruence subgroup, and Atkin–Lehner quotients

thereof. In this generality, several steps cannot be easily automated, so we discuss the extent to which our imple-

mentation has automated the procedure, and point out which steps require additional action from the user. See

Example 5.3 for a fairly detailed worked example.

Our techniques are built on prior work of Tuitman on computing the action of Frobenius on rigid cohomology

[Tui17]. We recall some of the underlying structures present in Tuitman’s work and a set of assumptions on these

auxiliary structures.

Suppose our modular curve X/Q is given by a (possibly singular) plane model Q = 0 with Q(x, y) ∈ Z[x, y] a
polynomial that is irreducible and monic in y. Let dx and dy denote the degrees of the morphisms x and y, respec-
tively, from X to the projective line. Let ∆(x) ∈ Z[x] denote the discriminant of Q with respect to the variable

y. Moreover, define r(x) ∈ Z[x] to be the squarefree polynomial with the same zeroes as ∆(x), in other words,

r = ∆/(gcd(∆, d∆dx )).

Definition 3.9. LetW 0 ∈ GLdx(Q[x, 1/r]) andW∞ ∈ GLdx(Q[x, 1/x, 1/r]) denote matrices such that, if we denote

b0j =

dx−1∑
i=0

W 0
i+1,j+1y

i and b∞j =

dx−1∑
i=0

W∞
i+1,j+1y

i

for all 0 ⩽ j ⩽ dx − 1, then

(i) [b00 , . . . , b
0
dx−1] is an integral basis for Q(X) overQ[x],

(ii) [b∞0 , . . . , b∞dx−1] is an integral basis for Q(X) overQ[1/x],

where Q(X) denotes the function field of X . Moreover, let W ∈ GLdx(Q[x, 1/x]) denote the change of basis matrix
W = (W 0)−1W∞.

Assumption 3.10 [Tui17, Assumption 1].

(i) The discriminant of r(x) is contained in Z×
p .

(ii) If we denote b0j =
∑dx−1

i=0 W 0
i+1,j+1y

i
and b∞j =

∑dx−1
i=0 W∞

i+1,j+1y
i
for all 0 ⩽ j ⩽ dx − 1, and if we let

Fp(x, y) be the field of fractions of Fp[x, y]/(Q), then:

(a) The reduction modulo p of [b00 , . . . , b
0
dx−1] is an integral basis for Fp(x, y) over Fp[x].

(b) The reduction modulo p of [b∞0 , . . . , b∞dx−1] is an integral basis for Fp(x, y) over Fp[1/x].
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(iii) W 0 ∈ GLdx(Zp[x, 1/r]) and W∞ ∈ GLdx(Zp[x, 1/x, 1/r]).

(iv) Denote:

R0 = Zp[x]b
0
0 + . . .+ Zp[x]b

0
dx−1,

R∞ = Zp[1/x]b
∞
0 + . . .+ Zp[1/x]b

∞
dx−1.

For a ring R, let Rred denote the reduced ring obtained by quotienting out by the nilradical. Then the discrim-

inants of the finite Zp-algebras (R0/(r(x)))red and (R∞/(1/x))red are contained in Z×
p .

Remark 3.11. These conditions imply that the curve X has good reduction at p.

Algorithm 3.12 Quadratic Chabauty for modular curves.
Input:

– A modular curve X/Q with Mordell–Weil rank r = g and rkZNS(J) > 1, and for which the image of J(Q)
in H0(XQp ,Ω

1)∨ has rank g.

– A covering of X by affine opens that are birational to a planar curve cut out by an equation that is monic in

one variable, has p-integral coefficients and satisfies Assumption 3.10. (See §3.5.1.)

– A prime p of good reduction such that the Hecke operator Tp generates End
0(J).

– For all primes ℓ that are not of potentially good reduction, the local height functionsX(Qℓ) → Ker(NS(J) →
NS(X))∗Qp

, computed using Theorem 3.2. (See §3.5.3.)

– A starting precision n.

– A height bound B.

Output: An approximation to a finite set containing the set of pointsX(Qp)2, computed to precision n′ ⩽ n or FAIL.

(i) Compute the set X(Q)known of points in X(Q) with height bounded by B.

(ii) Compute an integral symplectic basis for H1
dR(XQ) or return FAIL.

(iii) Compute the action of Frobenius on H1
dR(XQp) using Tuitman’s algorithm [Tui16, Tui17]. Use the Eichler–

Shimura relation to compute the matrix of the action of the Hecke operator Tp on H1
dR(XQp).

(iv) Compute a splitting of the Hodge filtration that is equivariant for the action of End(J) in the sense of §3.3.

(v) Compute thematrices of a basisZ1, . . . , ZrkNS(J)−1 ofKer (NS(J) → NS(X)) acting onH1
dR(XQp), see §3.5.2.

(vi) Let A := ∅. For each Zi, compute the associated heights:

(a) For each affine patch, do the following:

(i) Compute the functions λFil
from (3.1) using [BDM

+
19, §4].

(ii) Compute the functions λϕ
from (3.1) using [BDM

+
19, §5].

(b) Solve for the height pairing, either using a large enough supply of known rational points P1, . . . , Pn on

X , if possible, or by computing the Coleman–Gross height pairing on r independent points in J(Q). (See
§3.5.4.) If this is unsuccessful, return FAIL.

(c) Compute solutions of the function(s) coming from Zi or return FAIL if there has been too much precision

loss to determine these solutions.

(d) Check that the solutions are simple. If there is a non-simple solution corresponding to a point inX(Q)known,

return FAIL. Else, add to the set A the solutions that (simultaneously) satisfy the(se) function(s).

(vii) Return A.

Remark 3.13. We assume that we know a priori that the Mordell-Weil rank of the Jacobian is equal to the genus of

the curve. For modular curves, by Gross–Zagier–Kolyvagin–Logachev this amounts to checking that the associated

eigenforms have analytic rank one (see e.g. [DF21, §7]). For hyperelliptic curves, it is sometimes simpler to carry out

a two-descent.
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Remark 3.14. Note that if the algorithm fails due to a loss of precision, it may be possible to remedy this by increasing

the starting precision. One place where increasing precision may not work is if the p-adic logarithm does not induce

an isomorphism J(Q)⊗Qp ≃ H0(XQp ,Ω
1)∨, even though the rank of J(Q) is g. For the Atkin-Lehner quotients

X+
0 (N), the weak Birch–Swinnerton-Dyer conjecture implies J(Q) always generates H0(XQp ,Ω

1)∨ (see [DF21,

Lemma 7]). In general, if r = g and the Zariski closure of J(Q) is J , then a conjecture of Waldschmidt [Wal11,

Conjecture 1] (an analogue of the Leopoldt conjecture for abelian varieties) implies that the p-adic logarithm is

always an isomorphism. In theory, if one knew that J gave a counterexample to Waldschmidt’s conjecture, and

r = g, then one could simply apply the Chabauty–Coleman method. However, a priori it could happen that J gave

a counterexample but there was no way of verifying this by a computation to finite p-adic precision. Another place
where increasing precision will not help is if there are multiple roots in Step (vi(c)). However, we only expect this to

happen for geometric reasons.

One can have r > g for the curves X+
0 (N) with N prime, even though X+

0 (N)(Qp)2 is always finite when the

genus is greater than one [DF21]. However the smallest genus for which this happens is g = 206 (with N = 5077),
so the r = g hypothesis is not the main restriction to the scope of our algorithms for this family of curves.

Remark 3.15. In the case when p is a prime of ordinary reduction for the Jacobian, one may take the splitting of the

Hodge filtration given by the unit root subspace, that is, the unit root eigenspace of Frobenius ϕ acting on H1(XQp).
Given a basis {η1, . . . , η2g} ofH1(XQp), where η1, . . . , ηg are holomorphic, a basis for the unit root eigenspace mod

pn is given by {(ϕ∗)nηg+1, . . . , (ϕ
∗)nη2g}.

Remark 3.16. In this paper, we do not discuss algorithms for computing the input of the local height functions as

maps from Qℓ-points to Qp-linear functionals on Ker(NS(J) → NS(X)). In Section 5 we give examples where

this function can be nontrivial, and where X(Q) can still be determined using quadratic Chabauty. There are two

procedures we illustrate for doing this. In Section 5.4, we calculate regular semistable models at bad primes and

have a sufficient supply of rational points (and sufficiently simple dual graphs) to reconstruct the functions jℓ from
Theorem 3.2 using evaluation of p-adic local heights at known rational points. In Section 5.5, although we know

a regular semistable model “abstractly,” we do not know the relation between the stable model (at the bad prime

17) and the model we use for p-adic calculations. This, together with the relative paucity of known rational points,

makes it infeasible to apply the first procedure. Instead, we use extra information about the action of inertia on the

stable model, together with Theorem 3.2 to identify a subspace of line bundles in Ker(NS(J) → NS(X)) for which
the associated local heights vanish.

To further determine the subset of rational pointsX(Q) from the finite set of points produced by our algorithm, we

carry out the Mordell–Weil sieve. In practice it may happen (see below) thatX(Q) is returned by the algorithm, but

this is typically not the case when X has genus two.

3.5.1 Affine patches Most of the examples discussed in Section 5 are either hyperelliptic curves or smooth plane

quartics. As demonstrated in Section 5.5, our code is sometimes able to treat more general examples. Our implemen-

tation was designed to take as input a plane affine patch Y : Q(x, y) = 0 of a modular curve X/Q satisfying the

requirements in §2.1 and a prime p of good reduction. It returns all rational points onX in affine residue disks where

the lift of Frobenius constructed in [Tui16, Tui17] is defined. Note that we do not require Y to be smooth, but we

need Q to be monic with p-integral coefficients.

We can sometimes find an affine patch Y having the convenient property that all rational points on X must be

among the points returned by running our algorithm on Y . If no such Y is found, then we need to find two suitable

affine patches such that every rational point onX is contained in at least one patch. For smooth plane quartics, our

implementation includes an algorithm that automates this process for convenience of the user. For other curves, this

step is left to the user.

3.5.2 The Néron–Severi classes Zi Under the assumption that Tp generates the endomorphism ring of the Jacobian,

which we made for convenience above, one may proceed precisely as in [BDM
+
19, §6.4] to determine a nontrivial

14
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class

Z ∈ Ker (NS(J) −→ NS(X)) .

Indeed, the matrix Ap of the Hecke operator Tp acting on H1
dR(XQp) is easily determined from the matrix of Frobe-

nius Fp (which is already a byproduct of the algorithms for the local height at p), by the Eichler–Shimura relation:

Tp = Fp + pF−1
p .

Under our assumption, the matrices of the classes Zi acting on H1
dR(XQp) may then be computed as linear combi-

nations of powers of Ap.

Remark 3.17. This is the only part of our algorithm specific to modular curves, since it relies on the Eichler–Shimura

relation. It should however be noted that this is mainly a matter of convenience adopted for the purpose of automa-

tion. More generally, for a smooth projective curve X/Q satisfying the assumptions of §2.1, one could find p-adic
approximations of the action of the nontrivial classes Zi on H1

dR(XQp) using just p-adic linear algebra. Indeed, the
space of correspondences which are symmetric under the Rosati involution and induce endomorphisms of trace zero

on the Tate module maps under the cycle class into the intersection of the Fil1 and ϕ = p subspaces of

ker
(
∧2H1

dR(XQp)
∪−→ H2

dR(XQp)
)
. (3.4)

In fact, by the Tate conjecture, the rank of the space of (crystalline) cohomology classes of such correspondences over

Fp is equal to the dimension of the ϕ = p subspace of (3.4), and by the p-adic Lefschetz-(1,1) theorem of Berthelot

and Ogus [BO83, §3.8] such a correspondence over Fp lifts to Qp if and only if its cycle class lies in Fil1. Note that
the dimension of the space of correspondences symmetric under the Rosati involution need not equal the dimension

of ∧2H1
dR(XQp)

ϕ=p ∩Fil1, as was erroneously claimed in [BDM
+
19, Lemma 4.5], since the rank of the intersection

of a Z-lattice with aQp-subspace may be less than the dimension of the intersection with theQp-subspace it spans.

However, if one knows a set of generators of a finite index subgroup of End(J) in advance (e.g. using algorithms for

rigorous computation of the endomorphism algebra of the Jacobian [CMSV19])) then one can use this to compute

the classes of generators in cohomology.

Therefore the assumption that Tp generates the endomorphism algebra could be circumvented in this step with a

little work, although it is used in the computation of the local heights away from p, see below. When the assumption

is not satisfied, our implementation throws an error, urging the user to try a different choice of prime p.

3.5.3 The local heights away from p This step requires an explicit knowledge of a semi-stable model of the modular

curveX , as well as a description of the action of Zi on the concomitant cohomological structures in order to be able

to apply Theorem 3.2. It is clear that a full automation of this step, starting from a set of defining equations for X ,

falls outside the scope of our implementation.

Semi-stable models for modular curves are known in many cases, see for instance the recent work of Edixhoven–

Parent [EP21]. In practice, one can also often use the SageMath toolbox MCLF 3
due to Rüth and Wewers to

compute such models. The main advantage of having computed the Zi in §3.5.2 as combinations of powers of Tp is

that this makes it easier to compute the quantities appearing in Theorem 3.2. Even though we see no way to fully

automate this step, we hope to convince the reader of its practicality by working it out for the genus 2 curves C188

and C161 in Examples 5.18 and 5.19.

3.5.4 The global height pairing If there are not sufficiently many rational points on the curve to solve for the height

pairing, we instead compute the local heights hv in the sense of Coleman and Gross, see §3.3.1. For hyperelliptic

curves X/Qp of odd degree, hp(D1, D2) can be computed using an algorithm due to Balakrishnan–Besser [BB12,

BB21]. Based on earlier SageMath code due to Balakrishnan, we have implemented this in Magma for divisorsD1

and D2 that split over Qp, have support contained in disjoint residue disks and for which no points in the support

3https://github.com/MCLF/mclf
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reduce to Weierstrass points mod p. To compute the local heights hℓ for ℓ ̸= p, we rely on Magma’s implementation

of an algorithm for local canonical heights on hyperelliptic curves described by Holmes and Müller [Hol12, Mül14].

An algorithm for general curves was given by van Bommel, Holmes and Müller [vBHM20].

To solve for the height pairing, we need to find representatives for r independent points in J(Q) that satisfy the

assumptions mentioned above. Our implementation is currently restricted to genus 2 curves, since this step was only

necessary for such curves, but a generalisation to higher genus hyperelliptic curves would be straightforward.

Remark 3.18. The code is currently restricted to the base field K = Q. To extend it to more general number fields,

one would need to combine these algorithms with those used in [BD18] for imaginary quadratic fields in certain

cases, or for general number fields, with those in [BBBM21].

4. Precision analysis

In this section, we bound the loss of absolute p-adic precision that may occur in our computations by bounding

the valuations of the error terms. We also estimate the valuations of the power series expansion of the quadratic

Chabauty function ρ and use this to bound the precision of its roots.

We keep the notation used in the previous sections. Recall from (2.5) that ρ = h− hp, where

– h is the global p-adic height defined in (2.4);

– hp is the local component of h, discussed in §2.2.

By (3.2), the local height hp satisfies

hp(x) = γϕ − γFil − β⊺
ϕ · s1(αϕ)− β⊺

Fil · s2(αϕ) ,

where the Hodge filtration of the filtered ϕ-moduleM(x) :=
(
AZ(b, x)⊗Qp Bcris

)GQp
discussed in §2.2 is encoded

by βFil and γFil and αϕ,βϕ and γϕ encode the Frobenius structure of M(x).

We will bound the loss of precision in the computation of the Hodge filtration in §4.1, and we do the same for the

Frobenius structure in §4.2. In §4.3, we bound the precision loss for the global height computation. In the final part of

this section, §4.4 we bound the valuation of the coefficients of the expansion of ρ in a residue disk, andwe discuss how
this may be used to provably determine the roots of ρ to a certain precision. This section relies heavily on [BDM

+
19,

Sections 4,5].

4.1 Hodge filtration

Wefirst bound the loss of precision in Steps (ii)–(v) of Algorithm 3.12. For simplicity, we restrict to one classZ ; the ex-

tension to rkNS(J)−1 such classes is immediate. LetY/Q be an affine open subset ofX , birational to a curve given by

an equation that satisfies Assumption 3.10. We may compute an integral, symplectic basisω = (ω0, . . . , ω2g−1) of de
Rham cohomology overQ exactly, and extend this to an integral basis ofH1

dR(Y ) via differentials (ω2g, . . . , ω2g+d−2)
of the third kind. Using such a basis, we may compute the action of the Frobenius operator F onH1

dR(X/Qp) to any
desired p-adic precision using Tuitman’s algorithm [Tui16, Tui17], from which we obtain the action of the Hecke

operator Tp = F + pF−1
on H1

dR(X/Qp) by Eichler–Shimura. The inversion of F results in a finite and com-

putable loss of precision, which the code takes into account. This results in an algorithm that returns the action of

the correspondence Z correctly modulo pn for some n ⩾ 1 that is returned by the algorithm.

Using this, we may compute a matrix Λ with entries in H0(Y,ΩYQ
), of the form

Λ := −

 0 0 0
ω 0 0
η ω⊺Z 0



16
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such that d+Λ extends to a flat connection onX . From this, we may compute γFil and βFil from (3.1). We recall from

[BDM
+
19, §4] that the defining properties of η, the βFil and γFil are as enumerated below. For x ∈ (X −Y )(Q), we

let tx denote a parameter, and Ωx denote the vector of formal integrals of the basis differentials ωi:

dΩx,i = ωi ∈ Q[[tx]].

(i) The first g entries of βFil are zero, and the last g are given by a vector bFil of constants specified below.

(ii) η is a linear combination of ω2g, . . . , ω2g+d−2, unique by [BDM
+
19, Lemma 4.10] such that

dΩ⊺
xZΩx − η (4.1)

has vanishing residues at all x ∈ (X − Y )(Q).

(iii) bFil and γFil ∈ O(Y ) are the unique solutions to the equation γFil(b) = 0 and

gx + γFil − b⊺
FilN

⊺Ωx −Ω⊺
xZNN⊺Ωx ∈ L[[tx]] (4.2)

for all x ∈ (X − Y )(Q), where gx ∈ Q[[tx]] is defined to be the formal integral of dΩ⊺
xZdΩx − η and N is the

block 2g × g matrix with top block zero and lower block a g × g identity matrix.

Given our basisω, we may calculateΩx to any given tx-adic precision. Note that to solve (4.1), we only need to know
Ωx modulo tmx

x , wheremx is the maximum of the order of the poles of the entries ofΩx. Similarly, to solve for γFil
and bFil in (4.2), we need only compute the principal parts ofΩx andΩ

⊺
xZNN⊺Ωx. Hence given the above we may

calculate η, γFil and bFil to precision pn−2ν
, where ν is minus the minimum of the valuations of the tix coefficients

of the entries of Ωx, for i ⩽ mx.

4.2 Frobenius-equivariant splitting

We now bound the loss of precision in the computation of the Frobenius-equivariant splitting

λϕ(x) =

 1 0 0
αϕ(b, x) 1 0
γϕ(b, x) β⊺

ϕ(b, x) 1


from (3.1) for x ∈ X(Qp)∩]U [ where U is an open of YFp on which we have an overconvergent lift of Frobenius.

This computation is the content of [BDM
+
19, §5].

The first step is to find the Frobenius structure on the filtered ϕ-module M(b). By [BDM
+
19, §5.3.2], the inverse of

the Frobenius structure is given by a matrix

G ∈ (H0(]Y [, j†OY ))
(2g+2)×(2g+2)

such that

ΛϕG+ dG = GΛ, (4.3)

where j†OY is the overconvergent structure sheaf on the tube ]Y [.

Compared to [BDM
+
19, §5.3.2], we give a slightly more detailed account of the algorithm to find G. We first apply

the algorithms in [Tui16, Tui17] (see [BT20, Algorithm 2.18]) to compute the action of Frobenius on H1
rig(X ⊗Qp)

as

ϕ∗ω = Fω + df (4.4)

for a matrix F ∈ M2g(Qp) and a column vector f with entries in H0(]Y [, j†OY ), uniquely determined by the

condition that f(b0) = 0, where b0 is the Teichmüller point in the disk of b.

Next, we define a vector of functions g0 := −F TZf . Then, the differential

ξ := (ϕ∗ωT )Zf + (ϕ∗η − pη)− gT
0 ω (4.5)

17
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is of the second kind, and therefore the reduction algorithms inH1
rig(Y ) from [Tui16, Tui17] can be applied to compute

a vector of constants c ∈ Q2g
p and a function H4 ∈ H0(]Y [, j†OY ) such that

cTω + dH = ξ. (4.6)

Hence the function g := g0 + c satisfies

dg⊺ = df⊺ZF and dH = ω⊺F ⊺Zf + df⊺Zf − g⊺ω + ϕ∗η − pη ,

and we normalise H by requiring that H(b0) = 0. The matrix

G =

 1 0 0
f F 0
H g⊺ p

 (4.7)

then satisfies (4.3).

4.2.1 Frobenius-equivariant splitting for Teichmüller points Suppose that x0 ∈ X(Qp)∩]U [ is a Teichmüller point.

As described in [BDM
+
19, §5.3.2], the Frobenius-equivariant splitting of M(x0) is given by

λϕ(x0) =

 1 0 0
(I − F )−1f 1 0

1
1−p

(
g⊺(I − F )−1f +H

)
g⊺(F − p)−1 1

 (x0) . (4.8)

The loss of precision in the computation of f and F is estimated in [Tui17]. Hence it is easy to bound the precision

loss in the computation of λϕ(x0) using the following result.

Proposition 4.1. Suppose that the entries of the matrix G and a point P ∈ X(Qp)∩]U [ are accurate to n digits of
precision. Then G(P ) is also accurate to n digits of precision.

Our proof of Proposition 4.1 is somewhat similar, but more involved than the proofs in [BT20, §4], where the loss of

precision in the evaluation of f and of single Coleman integrals is estimated. We may expand

ξ =
∑
j∈Z

(
dx−1∑
k=0

wj,k(x)

r(x)j
b0k

)
dx

r
. (4.9)

The hardest part of the proof of Proposition 4.1 is to find lower bounds on the valuation of the coefficients wj,k,

which we now describe. Let e0 (resp., e∞) be the maximum of the ramification indices of the map x : X → P1
with

respect to our chosen model at points lying in affine (resp., infinite) disks.

Lemma 4.2. There is a constant κ such that for all j, k we have

ordp(wjk) ⩾

{ ⌊
j
p

⌋
+ 1− logp(je0) + κ, j ̸= 0

κ, j = 0.
(4.10)

Proof. Looking at the constituent parts of (4.5), we start with (ϕ∗ωT )Zf . We write

(ϕ∗ωT )i =
∑
j1∈Z

dx−1∑
k1=0

d
(i)
j1,k1

(x)

rj1
b0k1

 dx

r
.

Then ordp(d
(i)
j1,k1

) ⩾ ⌊ j1p ⌋+ 1 by [Tui17, Proof of Proposition 4.9]. We have

fi = fi,0 + fi,∞ + fi,end ,

4

The functionH is denoted h in [BDM
+
19], but we chose a different notation to avoid confusion with the global height, which is also denoted

by h.
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where fi,0, fi,∞ and fi,end correspond to the three reduction steps (2), (3) and (4) in the reduction algorithm from [Tui17],

summarised in [BT20, Algorithm 2.18]. By equations (1), (3) and (4) of [BT20], there are µ1, λ1 ⩾ 0 such that

fi,0 =
∞∑

j2=1

dx−1∑
k2=0

c
(i)
j2,k2

(x)

rj2
b0k2

 ,

fi,∞ =

dx−1∑
k3=0

µ1∑
l=0

e
(i)
k3,l

xlb0k3 , fi,end =

dx−1∑
k4=0

λ1∑
m=0

u
(i)
k4,m

xmb0k4 .

Equation (2) of [BT20] implies the lower bound ordp(c
(i)
j2,k2

) ⩾
⌊
j2
p

⌋
+ 1− logp⌊j2e0⌋. Let

κ(i) := min({0, ordp(e(i)k3,l
)} ∪ {ordp(u(i)k4,m

)}) and κ1 := min
i
{κ(i)}. (4.11)

Without loss of generality, the matrix Z has p-integral entries. Hence every (Zf)i is of the form

(Zf)i =
∞∑

j2=0

dx−1∑
k2=0

g
(i)
j2,k2

(x)

rj2
b0k2 (4.12)

where for all k2, we have

ordp(g
(i)
j2,k2

) ⩾

{⌊
j2
p

⌋
+ 1− logp⌊j2e0⌋ , if j2 > 0

κ1 , if j2 = 0 .
(4.13)

Let us now consider, for each i,

(
ϕ∗ωT

)
i
(Zf)i =

∑
j1∈Z

dx−1∑
k1=0

d
(i)
j1,k1

rj1
b0k1

 ∞∑
j2=0

dx−1∑
k2=0

g
(i)
j2,k2

rj2
b0k2

 dx

r

=
∑

j=j1+j2∈Z, j1∈Z, j2⩾0

1

rj

 ∑
k=k1+k2, ki∈{0,...,dx−1}

(
d
(i)
j1,k1

g
(i)
j2,k2

)
b0k

 dx

r

=:
∑
j∈Z

(
1

rj

dx−1∑
k=1

τjkb
0
k

)
dx

r
.

We distinguish two cases: If j2 > 0 then

ordp(d
(i)
j1,k1

g
(i)
j2,k2

) ⩾

⌊
j1
p

⌋
+ 1 +

⌊
j2
p

⌋
+ 1− logp(j2e0) ⩾

⌊
j

p

⌋
+ 1− logp((j − 1)e0). (4.14)

If j2 = 0, then ordp(d
(i)
j1,k1

g
(i)
j2,k2

) ⩾
⌊
j1
p

⌋
+ 1 + κ1. Together, we obtain

ordp(τjk) ⩾

⌊
j

p

⌋
+ 1− logp((j − 1)e0) + κ1. (4.15)

The next term to consider in (4.5) is ϕ∗η − pη, where η is constructed in [BDM
+
19, §4]. Let κ2 denote the p-adic

valuation of the vector of coefficients of η in terms of the basis differentials ω2g, . . . , ω2g+2−d (see [BDM
+
19, §4.1]).

Write

ϕ∗η − pη =
∑
j∈Z

(
dx−1∑
k=0

sjk(x)

rj
b0k

)
dx

r
.
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Then the sjk satisfy ordp(sjk) ⩾ κ2 +
⌊
j
p

⌋
+ 1 if j ̸= 0 and ordp(s0k) ⩾ κ2 + 1, so

ordp(sjk) ⩾ κ2 +

⌊
j

p

⌋
+ 1 for all j . (4.16)

For the final summand gT
0 ω in (4.5) note that since F has p-integral entries, every (F TZf)i has an expansion as

in (4.12). Because ωi is integral for all i, the lower bounds in (4.13) remain valid for gT
0 ω. The proof of Lemma 4.2

follows from this and from (4.14) and (4.15) upon setting κ = min{κ1, κ2}.

We now estimate the precision loss that can occur during the application of the reduction algorithm from [Tui17]

to the differential ξ. Our proof is similar to the proof of [Tui17, Prop 4.9], which estimates the precision loss in the

reduction of F ∗(ωi). Suppose that ξ is correct to n digits of p-adic precision. First consider terms in (4.9) with j > 0.
It follows from (4.10) that j − p logp(je0) ⩽ pm − pκ (note that κ ⩽ 0). By [Tui17, Prop 3.7], the precision loss

at pole order j during the reduction at finite points is at most ⌊logp(jmaxe0)⌋ , where jmax is the largest integer j
such that j − p logp(je0) ⩽ pn − pκ . As in the proof of [Tui17, Prop 4.9], this might introduce small poles above

∞, but by the same reasoning as in op. cit., the reduction of these poles leads to a loss of precision bounded by

⌊logp(−(ord∞W−1) + 1)e∞⌋. We set

g1(n) := ⌊logp(jmaxe0)⌋+ ⌊logp(−(ord∞W−1) + 1)e∞⌋ .

If we write

ξ =

(
dx−1∑
i=0

αi(x, x
−1)b∞i

)
dx

r
and m∞ = −min

i
{ord∞αi − deg(r) + 1} ,

then the loss of precision during the reductions above infinity (where j ⩽ 0) is bounded by g2 := ⌊logp(m∞e∞)⌋ .

Hence we have shown the following:

Lemma 4.3. Suppose that ξ is correct to n digits of precision. Then c andH are correct to n−max{g1(n), g2} digits of
precision.

Proof of Proposition 4.1. Similar to the fi, we may decompose H as H = H0 +H∞ +Hend, corresponding to steps

(2), (3) and (4), respectively, in [BT20, Algorithm 2.18]. By the above, the reduction above finite points introduces a

denominator of valuation at most logp(je0) for pole order j, therefore we have

H0 =
∑
j⩾1

dx−1∑
k=0

cjk(x)

rj
b0k , where ordp(cjk) ⩾

⌊
j

p

⌋
− 2 logp(je0) + κ . (4.17)

Recall that the matrix G is defined in (4.7). There is no loss of precision when evaluating f(P ) by [BT20, Prop.

4.5]. By our assumption that F and Z are p-integral, there is no precision loss when evaluating g0(P ). Using the

bounds (4.17), the proof of [BT20, Prop. 4.5] shows that H(P ) is accurate to n digits of precision as well. Since

g = g0 + c, the proposition follows.

4.2.2 Frobenius-equivariant splitting for general points Forx ∈ X(Qp)∩]U [, not necessarily Teichmüller, the Frobenius-

equivariant splitting λϕ(x) ofM(x) is given by 1 0 0∫ x0

x
ω 1 0∫ x0

x
η +

∫ x

x0
ω⊺Zω

∫ x0

x
ω⊺Z 1

 ·

 1 0 0∫ b

b0
ω 1 0∫ b

b0
η +

∫ b

b0
ω⊺Zω −

∫ b

b0
ω⊺Z 1

 · λϕ(x0), (4.18)

where x0 is the Teichmüller point in the disk of x. The first two matrices in (4.18) correspond to parallel transport

of Λ from x to x0 and from b0 to b, respectively.
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For the local height hp(A(x)), we need the Frobenius-equivariant splitting λ
ϕ(x) both for fixed x and for x varying

inside a residue disk. We start by bounding the valuations of the coefficients of power series expansions of the

differentials in the parallel transport matrices of Λ in terms of a local coordinate t at a fixed affine point y0 ∈
X(Qp)∩]U [. By assumption, the entries of the expansions of ω and ω⊺Z all have integral coefficients, so their

integrals have entries whose i-th coefficient has valuation ⩾ −ordp(i). Therefore, we have

ω(t)⊺Z

∫
ω(t) =

∑
i⩾1

ait
i , where ordp(ai) ⩾ −⌊logp(i)⌋ . (4.19)

It follows that ∫
(ω(t)⊺Z

∫
ω(t)) =

∑
i⩾1

bit
i , where ordp(bi) ⩾ −2⌊logp(i)⌋ . (4.20)

By construction, the coefficients of η in terms of ω2g, . . . , ω2g+d−2 are polynomials in x. Define di(η) to be the

valuation of the ith coefficient if i is smaller than the maximum of the degrees of these coefficients and 0 otherwise.

Then the ith coefficient of the integral of η has valuation ⩾ −ordp(i) − di(η). Hence, the ith coefficient of every

expansion of the parallel transport matrix in t has valuation at least

φ(i) := −⌊logp(i)⌋+min{di(η),−⌊logp(i)⌋} . (4.21)

For definite parallel transport from y0 to another Qp-point y1 in the same residue disk, we need to evaluate the

integrals above. Suppose that y0, y1, and the coefficients of the expansions ofω and η are correct to n digits of p-adic
precision, and suppose that the expansions are truncated modulo tl. Let

ν1 := 1 + min
i⩾l

{i− ⌊logp(i+ 1)⌋} and ν2 := n+ min
0⩽i⩽l−1

{i− ⌊logp(i+ 1)⌋} .

Then

∫ y1
y0

ωj and

∫ y1
y0

(Zω)j are correct to min{ν1, ν2} digits by [BT20, Prop. 4.1]. The proof of [BT20, Prop. 4.1]

requires that the differential we integrate has integral coefficients. Amodification of this proof yields that the integral∫ y1
y0

η is correct to min{ν ′1, ν2} digits, where ν ′1 = 1 + mini⩾l{i − ⌊logp(i + 1)⌋ − di(η)}. A similar modification

shows that the double integral

∫ y1
y0

ω⊺Zω is correct tomin{ν ′′1 , ν ′2} digits, where ν ′′1 = 1+mini⩾l{i−2⌊logp(i+1)⌋}
and

ν ′2 = n− ⌊logp(n)⌋+ min
0⩽i⩽l−1

{1− ⌊logp(i+ 1)⌋} .

Hence we obtain the following:

Lemma 4.4. The parallel transport matrix from y0 to y1 is correct to min{ν ′1, ν ′′2 , ν ′2} digits of precision.

Using (4.18), we can finally bound the loss of precision in the computation of λϕ(x) for fixed points x ∈ X(Qp)∩]U [
by combining Lemma 4.4 and Proposition 4.1.

4.3 Global heights

We now discuss the possible precision loss in the computation of the global height h. In Step (vi(b)) of Algorithm 3.12

we solve for d1, . . . , dg such that

h =
∑
i

diΨi (4.22)

in terms of a basis {Ψi} of bilinear pairings onH0(XQp ,Ω
1)∨ by evaluating h and theΨi. Recall that our method for

determining the coefficients depends onwhether there are sufficiently many rational points onX in the sense of §3.3.

If this is the case, meaning that we can use a basis of consisting of π(AZ(b, x)) for rational points x ∈ X(Q)∩]U [,
then we need to compute hp(AZ(b, z) and π(AZ(b, x)), and then apply simple linear algebra. The precision loss in

the computation hp(AZ(b, x)) has already been bounded and π(AZ(b, x)) can be obtained directly from the same

data (see [BBB
+
21, Equation (41)]). The loss of precision in the linear algebra computations is easy to detect in

practice, so we do not bound it explicitly here.
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In the other case, the basis Ψi is given in terms of products of abelian integrals. As mentioned above, the loss of

precision in their computation is estimated in [BT20]. It remains to discuss precision loss in the computation of

Coleman–Gross local heights hp(D1, D2), where D1, D2 are divisors in Div0(X)(Qp) for X a hyperelliptic curve

subject to the hypotheses of Algorithm 3.4; see [BB12, §6.2] for further details. Choosing ω in Step (1) can be done

up to the precision of the points in the support of the divisor D1. To compute Ψ(ω) and ωD1 to O(pn) in Step (2),

see Section 5.2 and Section 6.2.3 of [BB12]: one needs to compute the local coordinates (x(t), y(t)) at infinity, with
x(t) to precision t2(2g−1)

and y(t) to precision t2g−1
, where these t-adic estimates are made based on the maximal

pole order in the basis of H1
dR(X). Step (4) proceeds similarly to this step as well.

In Step (5), the tiny integrals are computed as in [BB12, §6]. In previous steps, we wroteΨ(α) andΨ(β) asQp-linear

combinations of the basis elements ofH1
dR(X), up to precisionO(pn). Note that the hypothesis that p > 2g−1 is to

ensure that the cup product matrix has entries that are p-integral, so no precision loss comes from the cup product

matrix.

Finally, for

∑
A∈X(Cp)

ResA
(
α
∫
β
)
, we consider the cases of A a non-Weierstrass point (where we describe the

computation in the annulus of A) versus A Weierstrass (where we have just one contribution, at the Weierstrass

point). If A ̸= (0, 0) is a Weierstrass point, we compute the local coordinate (x(t), y(t)) at A to precision t2pn−p−1

(see the corrected Proposition 6.5 in [BB21]) so that ResA(α
∫
β) is computed to n digits of p-adic precision.

Nowwe consider the non-Weierstrass poles of α. For the annulus of a non-Weierstrass poleA, the generic situation is

handled by [BB12, Corollary 6.4]. By [BB12, Remark 4.10], we consider all A ∈ {Pi, Qj}i,j where x(Pi) corresponds
to a root of an irreducible factor of xp − x(P ) (and similarly where x(Qj) corresponds to a root of an irreducible

factor of xp−x(Q)). For these i, j, we compute

∫ Pi

P β and

∫ Qj

Q β and trace down toQp. We suppose P ∈ X(Qp) has

precision O(pn). Fixm and suppose β is computed to tdim at Pi, where di = [Qp(Pi) : Qp]. Let πi be a uniformiser

of Qp(Pi). Note that P is known to din πi-adic digits, and suppose that Pi is known to ni πi-adic digits. Then the

πi-adic precision of

∫ Pi

P β is at least min{ni, din, ⌊dim + 1⌋ − logp(dim + 1)}. We similarly repeat this for Q and

the corresponding Qj . Hence
∑

AResA(α
∫
β), where the sum is over all non-Weierstrass poles A of α, is correct

to p-adic precision

min
i,j

{ni, din, ⌊dim+ 1⌋ − logp(dim+ 1), nj , djn, ⌊djm+ 1⌋ − logp(djm+ 1)} ,

where we consider the corresponding i, j for all Pi and all Qj .

4.4 Coefficients of the quadratic Chabauty function and root finding

The previous results of this section bound the loss of precision in the computation of the quadratic Chabauty function

ρ = h − hp. Let D ⊂ X(Qp)∩]U [ be a residue disk and let x0 be the Teichmüller point in D. We now bound the

valuations of the coefficients of the expansion of ρ in D and show how to provably compute its roots to desired

precision.

In our algorithm, we fix a point x1 ∈ D, and we compute the Frobenius-equivariant splitting λϕ(x) onD as a power

series in a local coordinate t in x1 by first computing λϕ(x1) from λϕ(x0) and then multiplying this by the parallel

transport matrix from x1 to x. To bound the valuations of the coefficients of the entries of λϕ(x),

we first compute

c1 := ordp(λ
ϕ(x1))

using Lemma 4.4. By the above, we find that the ith coefficient of every entry of the expansion of λϕ(x) has valuation
at leastφ(i)+c1. We use this to bound the valuations of the coefficients of the local height hp. Recall from §3.3 that we

use a height with respect to an End(J)-equivariant splitting of the Hodge filtration; let vspl be the smallest valuation

of the coefficients of this splitting in terms of our basis ω. We denote by ordp(γFil) the smallest valuation in the

coefficients of the rational function γFil, and we set

c2 := min{0, vspl, ordp(βFil), vspl + ordp(βFil)} .
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Lemma 4.5. Let

hp(x(t)) =
∑
i⩾0

hit
i

be the expansion of hp on the residue disk D in the local parameter t. Then we have

ordp(hi) ⩾ min{ordp(γFil), φ(i) + c2}. (4.23)

Proof. This follows from the discussion above and from (3.2), which expresses hp(x) in terms of λFil(x) and λϕ(x).

We set c3 := mini{ordp(di)}, where the di are the coefficients in (4.22). Let i0 ⩾ 0 be such that

−⌊logp(i)⌋ ⩽ min

{
di(η),

⌊
ordp(βFil)

2

⌋
,

⌊
ordp(γFil)− c2

2

⌋}
for all i ⩾ i0. Then we have φ(i) = −2⌊logp(i)⌋+ c1 for all i ⩾ i0. This proves the following:

Proposition 4.6. Let

ρ(t) =
∑
i⩾0

ρit
i

be the expansion of the quadratic Chabauty function ρ = h− hp on D. If i ⩾ i0, then we have

ordp(ρi) ⩾ −2⌊logp(i)⌋+ c1 +min{c2, c3}.

Together with Proposition 4.6, the following result allows us to provably determine the roots of ρ to any desired

precision.

Lemma 4.7. Suppose F (x) =
∑

i⩾0 Fix
i ∈ Qp[[x]] is such that there are integers k,m, n satisfying

min{ordp(Fi) + i : i ⩾ 0} = k

and

max{i ⩾ 0 : ordp(Fi) + i = n} < m,

and furthermore that F has at most d roots in the closed disk {ordp(x) ⩾ 1}. Then the roots of F in the ball {ordp(x) ⩾
1} can be determined, with multiplicity, to precision (n− k)/d, by computing F0, . . . , Fm−1 modulo pn.

Proof. By our assumptions, F (px) lies in pkZp[[x]]− pk+1Zp[[x]]. Hence the power series G(x) := p−kF (px) lies in
Zp[[x]] − pZp[[x]]. Furthermore, by our assumptions, for any α ∈ Zp, the positive slopes of the Newton polygon of

G(x+ α) are uniquely determined by the firstm coefficients. If G(x) is congruent modulo pn−k
to a polynomialH

in Zp[x] with a root α ∈ Zp of multiplicity e, then the valuation of the first e coefficients of G(x + α) must be at

least n− k. Since G(x+ α) has degree ⩽ m mod pn−k
and has at least one coefficient of valuation zero, we deduce

that the Newton polygon of G(x+ α) must contain a segment of slope ⩾ (n− k)/d of length at least e.

Remark 4.8. In practice, we usually apply this with d = 1, by recentering and rescaling our power series so that there
is only one root in the ball {ordp(x) ⩾ 1} (and because in practice the power series do not typically have repeated

roots). Hence most loss of precision occurs from k being large, rather than d.

5. Examples

In this section, we apply our techniques to compute the rational points on

– the exceptional modular curve XS4(13) (see §5.1);

– all curves X+
0 (N) of genus 2 and 3 for which N is prime and the rational points were not previously known

(see §5.2);
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– two genus 2 curves of interest in Mazur’s Program B (see §5.3);

– two genus 2 curves with Jacobian ofGL2-type that have nontrivial local height contributions away from p (see
§5.4);

– the non-split Cartan curve X+
ns(17) (see §5.5).

For the computations, we used our Magma implementation. The code used for the examples, along with log files,

can be found in the folder Examples at [BDM
+
].

5.1 The exceptional curve XS4(13)

Recall that for a prime ℓ ⩾ 5, any proper subgroup of GL2(Fℓ) is conjugate to a subgroup of a Borel subgroup, the

normaliser of a Cartan subgroup, or an “exceptional” subgroup with projective image isomorphic to S4, A4, or A5.

The field of definition of the modular curves attached to the exceptional subgroups is the unique quadratic subfield

Q(
√
±ℓ) of the cyclotomic field Q(ζℓ), with the exception of the curves XS4(ℓ) for ℓ ≡ ±3 (mod 8), which are

defined over Q. For such values of ℓ, we would therefore like to determine XS4(ℓ)(Q).

Serre [Ser72] shows by a monodromy argument that such tetrahedral modular curves have no points defined over

Qℓ when ℓ is large enough, and in particular he obtains

XS4(ℓ)(Q) = ∅, if ℓ > 13.

The curves XS4(3) and XS4(5) are both of genus zero, and contain a unique rational cusp. Ligozat [Lig77] showed

that XS4(11) is an elliptic curve of conductor 112 whose Mordell–Weil group is trivial, where the unique rational

point is CM, corresponding to discriminantD = −3. This leaves only the curveXS4(13), which has genus 3. In fact,

this curve is the last remaining modular curve of level 13n whose rational points have not been determined.

Usingmodular symbols algorithms, Banwait–Cremona [BC14] show that the curveXS4(13) is a smooth plane quartic

whose canonical model is given by

4x3y − 3x2y2 + 3xy3 − x3z + 16x2yz − 11xy2z+

5y3z + 3x2z2 + 9xyz2 + y2z2 + xz3 + 2yz3 = 0.

Furthermore, they exhibit the following four rational points

{(1 : 3 : −2) , (0 : 0 : 1) , (0 : 1 : 0) , (1 : 0 : 0)} ⊆ XS4(13)(Q) ,

where the rational point (0 : 0 : 1) corresponds to an elliptic curve with CM by the order of discriminant D = −3,
and the three other rational points correspond to non-CM elliptic curves overQwith projective mod 13 image equal

to S4, whose j-invariants are given by

j =
24 · 5 · 134 · 173

313
j = − 212 · 53 · 11 · 134

313

j =
218 · 33 · 134 · 1273 · 1393 · 1573 · 2833 · 929

513 · 6113
.

The Jacobian ofXS4(13) is isogenous to that ofX
+
s (13), so it is absolutely simple and has Mordell–Weil rank 3 over

Q by the results of [BDM
+
19, §6]. The curve has potential good reduction at p = 13, as can be seen, for instance,

using the Sage toolbox MCLF.

We determine the set of rational points on the curve XS4(13) using quadratic Chabauty with p = 11 for the affine

patches

y4 + (18x+ 9)y3 + (160x2 + 176x+ 52)y2 + (560x3 + 832x2 + 384x+ 48)y

+ 192x4 + 512x3 + 384x2 + 64x = 0
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and

y4 + (9x+ 9)y3 + (52x2 + 72x+ 36)y2 + (48x3 + 240x2 + 208x+ 64)y

+ 64x3 + 192x2 − 64x = 0.

The computation is analogous to the computation of X+
s (13)(Q) in [BDM

+
19]. The Hecke operator T11 generates

the Hecke algebra, as can be verified, for instance, by checking the analogous statement forX+
s (13). Hence we may

construct suitable cycles Z1, Z2 from T11 and its square, respectively. The set of common zeroes of the resulting

quadratic Chabauty functions consists precisely of the known rational points, so we obtain Theorem 1.1.

In order to solve for the height pairing, we use the 4 known rational points and the cycleZ1, so the resulting function

automatically vanishes there. However, since the cycles Z1 and Z2 are independent, and Z2 is not used to solve for

the height, the vanishing of the resulting function in the rational points provides a check for the correctness of our

code.

Remark 5.1. Since the Jacobian of XS4(13) is isogenous to that of X+
s (13), even if there were not enough rational

points on XS4(13) to solve for the height pairing, one could instead solve for it using X+
s (13).

5.2 The Atkin–Lehner quotients X+
0 (N)

For a positive integer N , consider the Atkin–Lehner involution wN acting on the modular curve X0(N). Then the

quotient

X+
0 (N) := X0(N)/⟨wN ⟩

is a smooth projective curve defined overQ whose non-cuspidal points classify unordered pairs {E1, E2} of elliptic
curves admitting an N -isogeny between them. The study of rational points on these curves is also important in

an ongoing research program aiming to compute quadratic points on the modular curves X0(N); see, for instance,
recent work of Box [Box21]. Among the rational points, we distinguish between cusps, CM-points and exceptional
points, those which are neither cusps nor CM points. The exceptional points correspond to quadratic Q-curves

without CM.

In this section, we restrict to prime values N such that X+
0 (N) has genus 2 or 3. Galbraith [Gal96] has computed

models for all these curves (and many more) by finding relations in the vector space spanned by the newforms of

level N and weight 2 that are invariant under wN . Up to conjugation, there is a unique such newform.

By work of Ogg, for prime level N , the curve X+
0 (N) has genus 2 if and only if

N ∈ {67, 73, 103, 107, 167, 191} . (5.1)

It has genus 3 if and only if

N ∈ {97, 109, 113, 127, 139, 149, 151, 179, 239} . (5.2)

Models for all these curves were communicated to us by Elkies; one can also find such models in Galbraith’s the-

sis [Gal96] or by using the Magma command X0NQuotient.

Via a search for small rational points, Galbraith [Gal99] found exceptional rational points on X+
0 (N) for N =

73, 91, 103, 191 (genus 2) and N = 137, 311 (genus 4). The latter examples disproved an earlier conjecture of Elkies

that there are no exceptional rational points on non-hyperelliptic X+
0 (N) for prime level N . In [Gal02], Galbraith

also finds an exceptional point onX+
0 (125) and conjectures that there are no further exceptional points on modular

curves X+
0 (N) of genus 2 ⩽ g ⩽ 5.

Together with [BBB
+
21] and [Gal96], our computations described below prove Theorem 1.3. We first check that

for level N as in (5.1) and (5.2) the curves X+
0 (N) satisfy the requirements to apply our algorithm. The Jacobian

J+
0 (N) of X+

0 (N) has real multiplication over Q, so the Picard number is at least g. Using Magma we computed

the L-function of the corresponding newforms to show that the analytic rank is g, so the work of Gross–Zagier and

Kolyvagin–Logachev proves that the rank of J(Q) is exactly g. For the genus 2 examples, we also applied two-descent

on J+
0 (N), as implemented in Magma, to have an independent check.
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The curves X+
0 (N) have good reduction away from N , but in contrast to X+

ns(13) and XS4(13), they do not have

potentially good reduction atN . Nevertheless, the following result implies that when applying quadratic Chabauty,

there are no nontrivial contributions to the height away from p.

Lemma 5.2. There is a regular semi-stable modelX+
0 (N) ofX+

0 (N) overZN whose special fibre has a unique irreducible
component. In particular, the local height hN is trivial on X+

0 (QN ).

Proof. If N = 2, 3 the result is readily checked. When N > 3 the Atkin-Lehner quotient of the model X0(N) for
X0(N) over SpecZ constructed by Deligne–Rapoport [DR73] is shown by Xue [Xue09] to be regular and semi-stable.

Its special fibre at N is a projective line, with an ordinary double point for every conjugate pair of supersingular

j-invariants in FN2\FN . It follows from Theorem 3.2 that hN is trivial.

Finally, we checked for all N in (5.1) and in (5.2) that the Jacobian is absolutely simple by finding a prime q of good
reduction such that JFq is absolutely simple, using the criterion of Howe and Zhu [HZ02, Proposition 3].

5.2.1 Genus 2 In [BBB
+
21], the rational points onX+

0 (N) forN = 67, 73, 103were computed. Using a combination

of quadratic Chabauty and the Mordell–Weil sieve, it is shown there thatX+
0 (67)(Q) contains no exceptional points

and that the sets X+
0 (73)(Q) and X+

0 (103)(Q) both contain one pair of exceptional points each, with respective

j-invariants (see [Gal99, Table 1])

j = (81450017206599109708140525± 14758692270140155157349165 ·
√
−127)/274,

j = (35982263935929364331785036841779200

±669908635472124980731701532753920 ·
√
5 · 577.

The remaining prime level genus 2 curvesX+
0 (107),X+

0 (167), andX+
0 (191) are more challenging, because they do

not have sufficiently many rational points in the sense of §3.3 to solve for the height pairing, so we need to compute

heights between divisors. In all cases, the quadratic Chabauty function ρ = h − hp has p-adic zeroes that do not

come from a rational point; to verify this, we apply the Mordell–Weil sieve.

Example 5.3. We discuss our computations for the example X := X+
0 (107) in some detail.

We look for a prime p of good reduction such that

– there is a uniqueQp-rational Weierstrass disk, and it does not contain known rational points,

– the Hecke operator Tp generates the Hecke algebra, and

– p is suitable for the Mordell–Weil sieve.

For p = 61, the first two conditions are satisfied; moreover, we have

J(F229) ≃ Z⧸(4 · 61)Z× Z⧸(4 · 61)Z ,

and since J(F61) ≃ Z/(31 · 151)Z has quite smooth order, 61 is a suitable prime. We now go through the steps in

Algorithm 3.12, applied to X .

Step (i) The model

y2 = −3x6 − 4x5 − 2x4 + 2x3 + 5x2 + 2x+ 1 =: f(x),

of X has 6 small rational points of exponential height at most 1000, given by {(0,±1), (±1,±1)}. It also has no

Q61-adic points at infinity, so that we only need to run our algorithm for one affine patch. We fix the base point

b = (0,−1).

Steps (ii, iii) are exactly as in [BDM
+
19].

Step (iv): We may use the unit root splitting, since p = 61 is ordinary. (See Remark 3.15.)
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Step (v): Using Step (iii), we find for

Z = Z1 = (Tr(T61) · I4 − 4T61)C
−1 =


0 2/3 −2 4

−2/3 0 4 2
2 −4 0 0
−4 −2 0 0

 , (5.3)

that

Z =
∑
i,j

Zijωi ⊗ ωj ∈ H1
dR(X/Q61)⊗H1

dR(X/Q61)

corresponds to a nontrivial cycle Z ∈ ker(NS(J) −→ NS(X)) where C is the standard symplectic matrix of

dimension 2g and ω is the basis found in Step (ii).

Step (vi(a)): The Hodge filtration for Z is given by γFil = −4x − 4 and βFil = 0. After computing the Frobenius

structure, we obtain a power series expansion of the function x 7→ h61(A(x)) on all residue disks ofX(Q61), except
for the disks at infinity and the unique Weierstrass disk containing points that reduce to (31, 0).

Step (vi(b)): The points P,Q ∈ J(Q) with respective Mumford representations (x2 + x, 1) and (x2 + 1, 2x − 1)
generate a subgroup of J(Q) of index 2. To solve for the height pairing via §3.3.1, we need divisor representatives

with support in distinct non-Weierstrass residue disks. Let E be the degree 2 divisor on X cut out by the functions

x2 + 1 and 2x− 1 and let E′
be its image under the hyperelliptic involution. We set

D1 = (0, 1) + (−1, 1)− div0(x− 1), D′
1 = (0,−1) + (−1,−1)− div0(x− 7)

D2 = E − div0(x− 7), D′
2 = E′ − div0(x− 1) .

Then we have h(P,Q) =
∑

v hv(D1, D2) and

h(P, P ) = −
∑
v

hv(D1, D
′
1) , h(Q,Q) = −

∑
v

hv(D2, D
′
2) .

The divisors above all split overQ61, sowe can compute the height pairingsh61(D1, D2),h61(D1, D
′
1) andh61(D2, D

′
2),

working on amonic odd degreemodel overQ61. UsingMagma’s implementation of the algorithmdescribed in [Mül14],

we also find ∑
ℓ̸=61

hℓ(D1, D
′
1) = −2 log61 2 + 2 log61 3− log61 7 ,∑

ℓ̸=61

hℓ(D1, D2) = 2 log61 2− 2 log61 3 + log61 7,∑
ℓ̸=61

hℓ(D2, D
′
2) = 3 log61 2− log61 5 ,

and we conclude that

h = α00g00 + α01g01 + α11g11 ,

where

α00 = 58 · 61−1 + 19 + 2 · 61 + 43 · 612 +O(613)

α01 = 43 · 61−1 + 48 + 44 · 61 + 41 · 612 +O(613)

α11 = 49 · 61−1 + 13 + 55 · 61 + 2 · 612 +O(613) ,

and the gij are defined in (3.3).

Steps (vi(c)) – (vii): Combining the functions resulting from Steps (vi(a)) and (vi(b)), we find a power series expansion

of the quadratic Chabauty function

ρ = h− h61 : X(Q61) → Q61
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in all affine non-Weierstrass disks. By Lemma 5.2, the local heights hℓ(A(x)) are trivial for ℓ ̸= 61, so Υ = {0} and

all rational points are zeroes of ρ. We find that ρ indeed vanishes on the known rational points, and that these are

simple zeroes of ρ.

In addition, ρ vanishes to multiplicity 1 on 82 points in X(Q61) that do not appear to be rational. As described

in §3.4, these yield cosets of 612J(Q), and our implementation of the Mordell–Weil sieve shows that the image of

these cosets does not intersect the image ofX(F229) inside J(F229)/61
2J(F229). Hence these additional zeroes do

not come from a rational point.

Recall that there are no Q61-rational points at infinity, so it only remains to show that there are no rational points

in the Weierstrass disk. To this end, we show that for

S = {41, 83, 641, 1697, 4057, 10853},

the image of the reduction of this disk does not intersect

im(βS, 2·61) ⊂
∏
v∈S

J(Fv)⧸MJ(Fv)
,

whereM = 2#J(F61) and β2,61 :
∏

v∈S X(Fv) →
∏

v∈S J(Fv)/MJ(Fv) is induced by the Abel-Jacobi map with

respect to b and the canonical surjections.

This completes the proof that#X(Q) = 6. According to Galbraith [Gal96], these points are all cusps or CM-points.

Example 5.4. We were able to prove that the curve

X+
0 (167) : y2 = x6 − 4x5 + 2x4 − 2x3 − 3x2 + 2x− 3

only contains the four obvious rational points {(−1,±1),∞±} ; these are all cusps or CM by Galbraith [Gal96]. In

our computation, we use our quadratic Chabauty algorithm for p = 7 and the Mordell–Weil sieve, following the

same strategy as in Example 5.3. The verification that the additional solutions of the resulting p-adic functions are
not rational was the most challenging Mordell–Weil sieve computation we encountered in our work; it required the

auxiliary integer 5 · 11 · 19 and the set of good primes

S = {3, 5, 19, 29, 31, 67, 263, 281, 283, 769, 1151, 2377, 3847, 4957, 67217}.

Example 5.5. A model for X+
0 (191) is given by

y2 = x6 + 2x4 + 2x3 + 5x2 − 6x+ 1 .

Weuse quadratic Chabauty for p = 31 togetherwith theMordell–Weil sieve exactly as above to show thatX+
0 (191)(Q) =

{(0,±1), (2,±11),∞±}.Galbraith (see [Gal99, Table 1]) has shown that (2,−11) is exceptional, with corresponding
j-invariant

j =2891249511562231668955764266428063102082570956800000

± 64074939271375546714155254091066566840131584000
√
61 · 229 · 145757 .

5.2.2 Genus 3 We apply our algorithm to show that the rational points on the curves X+
0 (N) for N as in (5.2)

are precisely the ones already found by Galbraith. All curves in our list are non-hyperelliptic and they have the

convenient feature that they have sufficiently many rational points, so no heights on divisors need to be computed.

We always find two independent cycles in ker(NS(J) −→ NS(X)), and, as expected, the common zero set of the

corresponding functions consists precisely of the rational points found by Galbraith.

Theorem 5.6. Let N be a prime such that X+
0 (N) has genus 3. Then the rational points on X+

0 (N) are as below. In
particular, all rational points are either cusps or CM-points, with discriminant ∆.

Example 5.7. A model for X+
0 (97) is given by

zx3 + (−y2 + zy)x2 + (−y3 − zy2 − z3)x+ (zy3 + z2y2) = 0.
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Using our algorithm for p = 5, we find that the rational points are as follows:

∆ cusp −3 −4 −8 −11 −12 −16 −27 −43 −163
Point (1 : 0 : 0) (−2 : 1 : 1) (−1 : 0 : 1) (0 : 0 : 1) (0 : 1 : 0) (0 : −1 : 1) (1 : 0 : 1) (1 : 1 : 1) (−1 : 1 : 0) (5 : 3 : 2)

Example 5.8. A model for X+
0 (109) is given by

zx3 + (zy + z2)x2 + (−y3 − zy2 − z3)x+ (−zy3 − 3z2y2 − 2z3y) = 0.

Using our algorithm for p = 29, we find that the rational points are as follows:

∆ cusp −3 −4 −7 −12 −16 −27 −28 −43
Point (1 : 0 : 0) (−2 : 1 : 2) (0 : −2 : 1) (0 : −1 : 1) (0 : 1 : 0) (0 : 0 : 1) (−1 : −1 : 1) (−2 : 1 : 1) (1 : −1 : 1)

Example 5.9. A model for X+
0 (113) is given by

zx3 + (−y2 − z2)x2 + (y3 + z3)x+ (−2z2y2 + z3y) = 0.

Using our algorithm for p = 17, we find that the rational points are as follows:

∆ cusp −4 −7 −8 −11 −16 −28 −163
Point (1 : 0 : 0) (2 : 2 : 1) (0 : 1 : 0) (1 : 1 : 1) (1 : 1 : 0) (0 : 0 : 1) (0 : 1 : 2) (5 : 3 : 1)

Example 5.10. A model for X+
0 (127) is given by

zx3 + (−y2 − 3z2)x2 + (y3 − z2y + 4z3)x+ (2zy3 − 3z2y2 + 3z3y − 2z4) = 0.

Using our algorithm for p = 11, we find that the rational points are as follows:

∆ cusp −3 −7 −12 −27 −28 −43 −67
Point (1 : 0 : 0) (5 : 3 : 2) (2 : 1 : 1) (1 : 1 : 0) (1 : 0 : 1) (0 : 1 : 1) (0 : 1 : 0) (4 : 2 : 1)

Example 5.11. A model for X+
0 (139) is given by

zx3 + (−y2 + zy)x2 + (−y3 − 2zy2 − 3z2y − z3)x+ (y4 + zy3 + z2y2 + z3y) = 0.

Using our algorithm for p = 19, we find that the rational points are as follows:

∆ cusp −3 −8 −12 −19 −27 −43
Point (1 : 0 : 0) (4 : −3 : 1) (0 : 0 : 1) (0 : −1 : 1) (1 : −1 : 1) (1 : 0 : 1) (−1 : 0 : 1)

Example 5.12. A model for X+
0 (149) is given by

zx3 − y2x2 + (y3 + zy2 − 2z2y − z3)x+ (−y4 + zy3 + z2y2 − z3y) = 0.

Using our algorithm for p = 11, we find that the rational points are as follows:

∆ cusp −4 −7 −16 −19 −28 −67
Point (1 : 0 : 0) (−1 : 0 : 1) (0 : 1 : 1) (1 : 0 : 1) (0 : 0 : 1) (0 : −1 : 1) (2 : 2 : 1)

Example 5.13. A model for X+
0 (151) is given by

zx3 + (−2zy + z2)x2 + (−y3 + 2zy2)x+ (−zy3 + 3z2y2 − z3y − 2z4) = 0.

Using our algorithm for p = 19, we find that the rational points are as follows:

∆ cusp −3 −7 −12 −27 −28 −67 −163
Point (1 : 0 : 0) (−2 : −2 : 1) (0 : 1 : 0) (0 : 2 : 1) (1 : 1 : 1) (2 : 3 : 2) (1 : 0 : 1) (3 : 2 : 1)

Example 5.14. A model for X+
0 (179) is given by

zx3 + (−2zy − z2)x2 + (−y3 − zy2 − 2z2y − z3)x+ (−zy3 + z3y) = 0.

Using our algorithm for p = 17, we find that the rational points are as follows:

∆ cusp −7 −8 −11 −28 −163
Point (1 : 0 : 0) (0 : −1 : 1) (0 : 1 : 0) (0 : 0 : 1) (0 : 1 : 1) (−2 : 2 : 1)

Example 5.15. A model for X+
0 (239) is given by

zx3 + (−y2 + zy + z2)x2 + (−y3 − zy2 − z2y)x+ (y4 + 3zy3 + 2z2y2 + z3y) = 0.

Using our algorithm for p = 13, we find that the rational points are as follows:

∆ cusp −7 −19 −28 −43
Point (1 : 0 : 0) (−1 : 0 : 1) (0 : 0 : 1) (1 : −2 : 1) (1 : −1 : 1)
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5.3 Genus 2 curves in Mazur’s Program B

In this section, we determine the rational points on two genus 2 curves that were communicated to us by David

Zureick-Brown. They arise in the work of Rouse, Sutherland, and Zureick-Brown [RSZB21] on Mazur’s Program B

as modular curves XH = X(25)/H , where Γ(25) ⊂ H ⊂ GL2(Z5). Both curves have the following properties:

– They each have two rational points of exponential height at most 1000, good reduction away from 5, and

potentially good reduction at 5.

– Their Jacobians have real multiplication, no rational torsion and Mordell–Weil rank 2; they are both absolutely

simple.

– The Galois action on the 2-torsion field is A5, which is too large for an elliptic curve Chabauty computation.

We prove that #XH(Q) = 2 for each curve XH using quadratic Chabauty and the Mordell–Weil sieve, similar to

the computation of X+
0 (107)(Q) described in detail in Example 5.3.

Example 5.16. A suitable affine model of the curve X11 is given by

X11 : y
2 = −35x6 + 310x5 − 675x4 + 750x3 − 450x2 + 140x− 15.

As in Example 5.3, we found the rather large prime p = 61 to be the most convenient one for our computations. We

determine the height pairing on the Jacobian using divisors as in §3.3.1. The quadratic Chabauty function ρ has 62

solutions in addition to the rational ones. Applying the Mordell–Weil sieve with the primes 7, 29, 257 and 3457, we

show that these are in fact not rational; to prove non-existence of rational points in the unique Weierstrass disk, we

sieve with the primes 31, 61 and 191. This shows that X11(Q) = {(1,±5)}.

Example 5.17. We use the model

X15 : y
2 = 5x6 − 50x4 − 150x3 + 25x2 + 90x+ 25

with small rational points (0,±5). Againwe run quadratic Chabauty for a fairly large prime, namely p = 71, resulting
in 78 additional zeroes in X(Q71) that we show to be non-rational by sieving with the primes 7, 43, 83, 101, and
1399. There is an additional final sieving to show there are no rational points in the Weierstrass disk. We conclude

that X15(Q) = {(0,±5)}.

5.4 Two curves with nontrivial local heights away from p

We compute the rational points on two genus 2 curves C188 and C161 considered in [FLS
+
01]. In both cases, the

Jacobian of CN is an optimal quotient of J0(N), so it has real multiplication and Picard number 2. The Mordell–Weil

ranks are both 2 as well, and the rational torsion subgroup is trivial. In [FLS
+
01] empirical evidence was presented

that the full conjecture of Birch and Swinnerton-Dyer holds for both Jacobians. The curves themselves have good

reduction away from N .

So far, all curves whose rational points were computed via quadratic Chabauty had trivial contributions away from

p, except for the bielliptic examples in [BD18, BD21]. However, for those examples it was possible to find the local

contributions away from p by relating them to local heights on the elliptic quotients. In the examples presented here,

we compute these contributions using Theorem 3.2. As discussed in §3.1, we do not have a general algorithm for

the action induced by an endomorphism on étale cohomology. Nevertheless, we show below that we can sometimes

derive sufficient information from Theorem 3.2 to pin down the local contributions precisely, by computing the local

heights at p = 3 for the known rational points and by exploiting the bilinearity of the global height pairing.

We include these examples to illustrate the practicality of our algorithms. However, we note that the rational points

on both curves can be computed by combining covering collections with elliptic curve Chabauty. For C188 this was

pointed out to us by Nils Bruin, and for C161, this computation is due to Bars, González, and Xarles [BGX21].

Example 5.18. We first consider the genus 2 curve

C188 : y
2 = x5 − x4 + x3 + x2 − 2x+ 1 . (5.4)
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Over Z47, it has a regular semistable model whose special fibre is a curve of genus 1 with a node, so h47 is trivial by
Theorem 3.2. However, as we shall see, there are nontrivial contributions to the local height at 2.

The integral points on C188 overQ(
√
−3) were computed in [BBBM21, Example 6.5]. In the present work, we show

that

C188(Q) = {(0,±1), (1,±1), (−1,±1), (2,±5), (4,±29),∞}. (5.5)

For our computations, we use the good ordinary prime p = 3, the base point b = (1, 1), and a cycle Z constructed

from the Hecke operator T3 as in (5.3).

Recall from Example 3.3 that there is a regular semistable model over K = Q2(
3
√
2) and that the corresponding

metric graph Γreg is a line segment. The two genus one vertices w0 and w1 have pre-images

U0 := {P ∈ C188(Q2) : ord2(x(P )) > 0} , U1 := {P ∈ C188(Q2) : ord2(x(P )) = 0},

respectively. The set U2 := {P ∈ C188(Q2) : ord2(x(P )) < 0} maps to the midpoint w2 of the line segment.

Since the function jΓ from Theorem 3.2 is affine linear and vanishes at w1, there is a constant κ such that for all

x ∈ C188(Q2) we have

h2(A(P )) = m(P ) · κ,
where

m(P ) =


2, when x(P ) is divisible by 2,

0, when x(P ) is a 2-adic unit,

1, when x(P ) is non-integral.

One could determine κ by further computing the trace of Z acting on the cohomology of the two genus one curves

in the special fibre of the regular model described in Example 3.3. In this example, we can determine κ by computing

local heights at p, as there is a unique choice of κ such that

h3(A(P )) +m(P ) · κ

satisfies the bilinearity properties of a global height. We can reduce the determination of κ to linear algebra by

computing h3(A(P )) and the values of a basis of the space of End0(J)-equivariant bilinear pairings for 3 = g + 1
rational points P ∈ X(Q). We find κ = 4

3 logp(2).

To finish the computation of the rational points, we first solve for the zeroes of the quadratic Chabauty function ρ on
the affine patch (5.4). In order to deal with the Weierstrass disk at infinity, we move the point at infinity to (0, 0) and
repeat the computation for the resulting affine patch. We then apply the trick described in [BDM

+
19, §5.5], changing

the base point and reducing the computation of the Frobenius structure to the computation of Coleman integrals.

We find that ρ vanishes on the known rational points and that it vanishes on 13 additional Q3-points to precision

35. Upon noticing that J(F43) ≃ (Z/54Z)2, we show that the reductions of the corresponding cosets of 27J(Q) do
not meet the image of C188(F43) in J(F43)/27J(F43). This suffices to prove (5.5).

Example 5.19. The curve C161 has an affine equation

y2 = x6 + 2x4 + 6x3 + 17x2 + 18x+ 5 = (x3 − 2x2 + 3x+ 5)(x3 + 2x2 + 3x+ 1).

As discussed in [BGX21], this is in fact a model for the modular curve X∗
0 (161) = X0(161)/⟨w7, w23⟩. The curve

has ten small rational points (
1

4
,±209

64

)
, (−1,±1), (1,±7),

(
1

2
,±35

8

)
,∞±. (5.6)

Anticipating the need to use the Mordell–Weil sieve, we choose the prime p = 29 and the cycle Z corresponding to

the endomorphism 4T29 − Tr(T29)I4.

The bad primes are 7 and 23. At both of these primes, the stable model has special fibre a genus zero curve with

two double points. One can show this, for instance, using the program genus2reduction due to Qing Liu,
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now contained in Pari/GP or Sage. This (or Magma’s RegularModel package) also shows that the model

over Z23 defined by the given equation is regular. Indeed, the 23-adic valuation of the discriminant is 2; therefore

both singular points (2, 0) and (11, 0) on the reduction modulo 23 define regular points on this model. Hence the

given equation defines a regular semistable model over Z23, and all of the Q23 points lie on a common irreducible

component of a minimal regular model over Z23, so the height contribution at this prime is zero by Theorem 3.2.

At 7, the discriminant has valuation 4, so the model defined by the given equation is not regular. The singular

points on the special fibre are (1, 0) and (4, 0). Blowing up once in both of these yields a semistable regular model

whose special fiber consists of two genus 0 curves w1 and w2 that do not intersect and another genus 0 curve w0

which reduces to the smooth locus of the stable model and which intersects w1 and w2 transversely in two points

each, e1 and e2 and e3 and e4 respectively. This information can also be obtained from genus2reduction or

RegularModel.

w1 w0 w2

e1

e2

e3

e4

Figure 1: Dual graph of the minimal regular model of C161 at ℓ = 7.

The corresponding dual graph is shown in Figure 1. We choose an orientation by designating w0 as the source of e1
and e3 and as the target of e2 and e4. The points

(
1
4 ,±

209
64

)
, (−1,±1),∞± listed in (5.6) reduce to the componentw0.

The points (1,±7) reduce to w1 and the points
(
1
2 ,±

35
8

)
reduce to w2. We may again use Theorem 3.2 to determine

the possible values of h7(P ), without computing the action of our chosen correspondence on H1(Γ). Note that in
this case, the homology H1(Γ) is generated by γ1 = e2 + e1 and γ2 = e3 + e4 respectively. Since Z is trace zero

on H1(Γ), with respect to this basis, the corresponding endomorphism must be of the form

(
a b
c −a

)
. Then, by

Theorem 3.2, the measure µZ is simply given by
a
2 (γ1− γ2), since both edges have length 2. The image ofX(Q7) in

Γ consists of the three vertices w0, w1, and w2 and hence if we take the basepoint (
1
4 ,

209
64 ) reducing to w0, the values

of jΓ are simply a, 0,−a. We solve for a using a 29-adic computation similar to the previous example, and we find

that a = −4. Finally, we apply the Mordell–Weil sieve with M = 4 · 293 and primes 199, 373, 463 to show that the

only 29-adic points in the zero set of ρ modulo 293 are the rational points listed in (5.6). This proves that these are

indeed the only rational points on C161.

5.5 The nonsplit Cartan modular curve X+
ns(17)

The modular curve

X := X+
ns(17)

attached to the normaliser of the non-split Cartan subgroup of level 17 has genus 6. By [DF21, §5.3], the rank of

J+
ns(17)(Q) is also 6. The set of rational pointsX(Q) can be determined without computing local heights at the bad

prime 17, even though these contribute nontrivially when determiningX(Qp)2, by choosing the correspondence Z
carefully.

The curve X has a semistable model X over W (F17)[ϖ] with ϖ = (1 + ζ17)
1/9

, where W (F17) is the ring of Witt

vectors of F17, described by Edixhoven–Parent [EP21]. Its special fibre has two irreducible components

C1 : y2 = x(x9 + a), a ∈ F
×
17,

C2 : z2 = w(w3 + b), b ∈ F
×
17,
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which have genus 4 and 1, respectively. They are smooth and intersect transversely in two points, so that the Jacobian

has toric rank 1. The inertia subgroup I ⊂ GQ17 acts via automorphisms on the special fibre of this model, and the

stabiliser of the set of irreducible components is contained in µ18(F172) = ⟨ζ⟩, where the root of unity ζ18 = 1 acts
on the components by

ζ : (x, y) 7−→ (ζ4x, ζ2y),
ζ : (z, w) 7−→ (ζ12z, ζ6w).

The resulting operator [ζ] on the cohomology of these curves has characteristic polynomial

det
(
1− t[ζ] : H1(C1,Qp)

)
= (t2 + t+ 1)(t6 + t3 + 1),

det
(
1− t[ζ] : H1(C2,Qp)

)
= (t2 + t+ 1).

Since the Hecke action on the cohomology of X is defined over Q, it must commute with the action of inertia, and

therefore the irreducible Hecke modules of the Jacobian up to isogeny must be contained in the submodules coming

from the toric part (dimension 1) and the parts where the operator [ζ] is of order 3 (dimension 2) and of order 9
(dimension 3). By the work of Chen and Edixhoven–de Smit [Che00, EdS00] the Jacobian of X admits an isogeny

to the new part of the Jacobian ofX+
0 (172) equivariant for the anemic Hecke algebra. The new part of the Jacobian

of X+
0 (172) decomposes up to isogeny into irreducible factors M1 × M2 × M3 of dimensions 1, 2, 3 respectively,

where M1,M2,M3 are killed by the Hecke operators

M1 : (T2 + 1) = 0,
M2 : (T 2

2 + T2 − 3) = 0,
M3 : (T 3

2 − 3T2 + 1) = 0.

If we set M = (T2 + 1)(T 2
2 + T2 − 3), we find that Z = M and Z = 2M3 + 3M2

are nontrivial trace zero

correspondences that induce the zero endomorphisms onH1(Γ,Q) and the cohomology of C2, so that Theorem 3.2

implies that µF = 0, and hence the 17-adic height vanishes:

h17(AZ(x)) = 0, for all x ∈ X(Q17).

In fact, starting from any generator T of the Hecke algebra (like T = T2 above), one easily computes two linearly

independent trace zero correspondences Z ∈ Z[T ] that act trivially on the dual graph and the cohomology of C2,

which therefore likewise ensures the triviality of the associated 17-adic height.

To put these observations into action, we choose p = 31 and use the model ofX found byMercuri and Schoof [MS20,

§6] as an intersection of six quadrics inP5
. Our strategy for finding a suitable singular plane curve model largely fol-

lows [AAB
+
21]: To find amodelwith small coefficients, we use theMagma functionGenus6PlaneCurveModel,

and then apply an automorphism of P2
to ensure that there are two rational points at infinity (this speeds up the

computation of the Hodge filtration (see [BDM
+
19, Section 4]) where one passes to a number field over which the

divisor at infinity splits completely). We obtain a singular plane curve model Q(x, y) = 0, where

5 ·Q(x, y) = 5y6 + (24x+ 12) y5 +
(
−495x2 − 543x− 153

)
y4+(

−1472x3 − 2814x2 − 1719x− 337
)
y3+(

−1686x4 − 4875x3 − 4761x2 − 1902x− 263
)
y2+(

−540x5 − 2082x4 − 2952x3 − 1875x2 − 535x− 56
)
y+

188x6 + 534x5 + 567x4 + 284x3 + 70x2 + 7x.

The fact thatT31 generates theHecke algebra can be checked from the LMFDB page for newforms of weight two, level

289, trivial character and Atkin–Lehner eigenvalue one [LMFDB]. We compute two correspondences Z ∈ Z[T31] as
above, and obtain a pair of power series in each residue disk, whose common zeroes to precisionO(3120) correspond
to the rational points{(

−4

9
,
1

9

)
,

(
−2

3
,−1

3

)
,

(
−1

2
,
1

2

)
, (0, 0), (−1, 0),∞1,∞2

}
⊂ X(Q)
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where∞1 and∞2 are the points (1 : −1 : 0) and (1 : −1
5 : 0). Therefore, this must be the full set of rational points

X(Q). These were already found by Mercuri–Schoof [MS20, §6]; they are all CM points and the corresponding

discriminants are −3,−7,−11,−12,−27,−28,−163. This proves Theorem 1.2.

Remark 5.20. It would be interesting to use the techniques of this paper to compute the rational points on X+
ns(19).

Mercuri and Schoof [MS20, §7] found a model for this curve as well. Nevertheless, we were unable to find a plane

affine equation for this curve and a prime p, satisfying Assumption 3.10, such that it is feasible to carry out Algo-

rithm 3.12. Difficulties arose in computing a basis of H1
dR(XQp) due to the large degrees of the field extensions we

encountered when applying the algorithms in [Tui17, §3].
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