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ABSTRACT

We describe how the quadratic Chabauty method may be applied to determine the set of rational points
on modular curves of genus g > 1 whose Jacobians have Mordell-Weil rank g. This extends our previous
work on the split Cartan curve of level 13 and allows us to consider modular curves that may have few
known rational points or nontrivial local height contributions at primes of bad reduction. We illustrate
our algorithms with a number of examples where we determine the set of rational points on several
modular curves of genus 2 and 3: this includes Atkin-Lehner quotients X (V) of prime level N, the
curve Xg,(13), as well as a few other curves relevant to Mazur’s Program B. We also compute the set of
rational points on the genus 6 non-split Cartan modular curve X, (17).

1. Introduction

In this paper, we describe the current state of quadratic Chabauty—-based algorithms for the resolution of Diophan-
tine equations arising from modular curves. Here we consider the usual modular curves associated to congruence
subgroups of SLy(Z), as well as Atkin-Lehner quotients thereof.

Recall the motivating question of the subject: let E be an elliptic curve over a number field K. What are the possible
ways for the Galois group Gal(K / K) to act on the group of torsion points of E? Equivalently, what are the conjugacy
classes of subgroups of GL2(Z/NZ) arising as images of the mod /N Galois representation pg n?

By a theorem of Serre [Ser72], if F is an elliptic curve without complex multiplication, then for all primes N > 0, the
representation pg y is surjective. Serre’s uniformity question [Ser72] asks whether this can be made uniform over Q:
is there an Ny such that, for all primes N > Nj, if E/Q is an elliptic curve without complex multiplication, then pg x
is surjective? By a classification of maximal subgroups of GLy(Z/NZ), this amounts to determining elliptic curves
whose mod N Galois representation is contained in a Borel subgroup, the normaliser of a split Cartan subgroup, the
normaliser of a non-split Cartan subgroup, or an ‘exceptional’ subgroup (such that the projective image is Sy, A4, or
As).

Mazur’s Program B [Maz77] asks for all of the possible Galois actions on torsion subgroups of elliptic curves without
complex multiplication. This question includes Serre’s uniformity question but is more general. From a Diophantine
perspective, it roughly amounts to determining the rational points on all modular curves.

Rouse and Zureick-Brown [RZB15] settled this in the context of 2-primary torsion and very recently, with Suther-
land [RSZB21], studied this in the context of ¢-primary torsion for other primes /. For each prime, this produces a
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finite number of curves, the determination of whose rational points would resolve the ¢-primary part of Mazur’s
question. In §5.1 and §5.3 we compute the rational points on four modular curves Xg, (13), X;5(17), X711, and X35
arising in Mazur’s Program B. In particular, we show the following:

THEOREM 1.1. We have # Xs,(13)(Q) = 4. One of these points is a CM point, corresponding to discriminant D = —3.
The other three are exceptional, with corresponding j-invariants listed in §5.1.

Here we call a non-cuspidal rational point exceptional if it does not correspond to an elliptic curve with complex
multiplication. The curve Xg,(13) has genus 3. This completes the classification of elliptic curves £/Q and prime
level N > 0 such that pp y is contained in an exceptional subgroup.

We also determine the rational points on X,/(17), the non-split Cartan modular curve of level 17, which is a genus
6 curve:

THEOREM 1.2. We have #X(17)(Q) = 7 and all of these points are CM , corresponding to discriminants —3, —7, —11,
12,27, 28, —163.

Theorems 1.1 and 1.2 complete the classification of the possible 13-adic and 17-adic images of Galois.

Moving beyond torsion points of elliptic curves over Q, another interesting problem in the Diophantine geometry
of modular curves is the determination of the set of rational points on the Atkin-Lehner quotient

X (N) := Xo(N)/{wn)

of the modular curve Xy(N). In [Gal02], Galbraith asks whether, for all primes N >> 0, the only rational points on
X (N) are cusps or CM points. From a moduli perspective, this amounts to finding quadratic Q-curves that are
N-isogenous to their conjugates. Dogra and Le Fourn [DF21] proved that the quadratic Chabauty set X (N)(Q,)2
is finite whenever the genus of X (V) is larger than one. Hence it is natural to ask whether the methods of this
paper can be used to give an algorithm for computing X" (V)(Q,)2 for any N. In fact, in the range of N we consider,
finiteness of X (N)(Q,)2 follows from a criterion appearing in earlier work of Siksek [Sik17]. Our computations
described in §5.2 prove the following result.

THEOREM 1.3. The only prime values N such that the curve XJ(N) is of genus 2 or 3 and has an exceptional rational
point are N = 73,103, 191. In particular for prime N, there are no exceptional rational points on curves X" (N) of
genus 3.

All rational points in Theorem 1.3 had already been found by Galbraith [Gal99].

Remark 1.4. These computations were recently extended significantly by Adzaga, Arul, Beneish, Chen, Chidambaram,
Keller, and Wen [AAB™21]. They use the quadratic Chabauty method described in this paper to determine the set of
rational points on all curves X (IV) of genus 4,5 and 6 and prime level N. Arul and Miiller [AM] also compute the ra-
tional points on X(')" (125) using the same method. AdZzaga, Chidambaram, Keller, and Padurariu [ACKP] use several
techniques, including quadratic Chabauty, to determine the set of rational points on the hyperelliptic Atkin-Lehner
star quotient curves X (N).

Going further, one may wonder what the potential applications of these algorithms are to non-modular curves. The
main stumbling block in attempting such a generalisation is our running assumption on the Mordell-Weil rank
and Picard number of the Jacobian (see §2.1). Since a generic curve has Picard number one, it is not clear how
often one should expect a genus g curve with Mordell-Weil rank g to satisfy the quadratic Chabauty hypothesis.
Nevertheless, there are other interesting curves where one would expect to get some mileage out of such algorithms.
The most obvious examples are (Atkin-Lehner quotients of) Shimura curves. In particular, determining the set of
rational points on the (infinitely many) curves X /{wp), in the notation of Parent-Yafaev [PY07], would resolve a
conjecture of Clark [Cla03] (Parent and Yafaev determine the rational points for an infinite family of Shimura curves
whose Jacobian contains a rank zero isogeny factor).
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2. Quadratic Chabauty: Theory

We give a brief overview of the quadratic Chabauty method. A more complete exposition can be found in [BBB*21],
and we refer the reader to [BD18, BDM*19] for more precise details and proofs. Our description is in terms of Galois
representations and filtered ¢-modules, but we note that recently, Edixhoven and Lido [EL21] gave a geometric
version of quadratic Chabauty, which they used to determine the set of rational points on the bielliptic modular
curve X(129)/(ws, wa3) of genus 2. Duque-Rosero, Hashimoto, and Spelier [DRHS] have related this approach to
the one presented here and used this to give algorithms for geometric quadratic Chabauty for hyperelliptic curves.
Besser, Miiller, and Srinivasan [BMS] have also given an alternative approach to the quadratic Chabauty method
based on a new construction of p-adic heights on abelian varieties via p-adic Arakelov theory.

An early version of the method appeared in work of Kim [Kim10, BKK11], where Massey products were used to
construct a locally analytic function, vanishing on the set of integral points of an elliptic curve of rank 1. These func-
tions were interpreted as height functions, extending the method, in Balakrishnan-Besser [BB15] and Balakrishnan-
Besser—Miiller [BBM16]. It was extended to its current form in Balakrishnan-Dogra [BD18], where a systematic use
of Nekovai’s theory of p-adic heights suggested a streamlined approach towards a very general class of curves al-
lowing an abundance of geometric correspondences. It was carried out to determine the set of rational points on
XF(13), the split Cartan curve of level 13, in [BDM'19].

Remark. This method fits into the vastly more general framework developed by Kim [Kim05, Kim09], elaborating
on the idea of studying rational points on curves through path torsors of the étale fundamental group, suggested
by Grothendieck’s section conjecture. The approach discussed here represents an effective way to make this theory
computable and applicable to a variety of examples. It is, however, important to note that different quotients of
the fundamental group have been successfully used for this purpose, see for instance [BD21]. Finally, although we
restrict our attention to the base field Q, suitable versions exist over number fields, see [BD18, BD21, BBBM21].

2.1 Rational points and global heights.

Consider a smooth projective curve Xq of genus g > 2 whose Jacobian J has rank r = g. We also assume that the
abelian logarithm induces an isomorphism

log: J(Q) ® Q, — H°(Xq,, Q") (2.1)

and that X (Q) is non-empty, so we may choose a base point b in X (Q). Suppose that the Néron-Severi rank
rkzNS(J) is at least 2, so that there exists a nontrivial class

Z € Ker (NS(J) — NS(X) ~ Z).

As explained in Balakrishnan-Dogra [BD18, Lemma 3.2], we can attach to any such choice of Z a suitable quotient
Uz of the Q,-pro-unipotent fundamental group of X g, which via a twisting construction by path torsors, gives rise
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to a certain family of Galois representations
X(K) — {Gk — Glag2(Qp)}/ ~
x — A(z) :=Az(b,x)
where K € {Q,Q,} and G is the absolute Galois group of K. We refer the reader to [BD18, §5.1] for the details
of this construction (in particular for the equivalence relation), and merely recall here that with respect to a suitable
choice of basis, the representation A(x) is lower triangular, of the form
1
g€ Gk — |alg) pv(g) (2.2)
19)  Bl9)  xnl9)
where
pv: Grg — GLyg(Qp)

is a frame for the Galois action on the p-adic étale homology V' = Helt (X%, Qp)Y, and xp: Gx — Q) is the

p-adic cyclotomic character. Representations of this form, which admit a G g -stable filtration with graded pieces
Q,(1),V,Q,, are referred to as mixed extensions, see [BDM*19, §3.1].

The theory of p-adic heights due to Nekovai [Nek93, §2] attaches to any mixed extension M a p-adic height h(M).
When applied to the family of mixed extensions A(x), this results in a map
h: X(Q) — Q,.
The algebraic properties of this map lie at the heart of the quadratic Chabauty method. Most notably, the method
relies on the following two facts:
— The p-adic height is a bilinear function of the pair of cohomology classes ([a], [5]) associated to the vectors
appearing in (2.2).

— It decomposes as a sum of local height functions h, defined locally at every finite place v.

2.2 Local decomposition.

We now discuss in more detail the decomposition of the global p-adic height ~ described above, as a sum of local
height functions

hy: X(Qu) — Qp.
The nature of these local height functions is as follows:

(i) The case v # p: It follows from Kim-Tamagawa [KT08, Corollary 0.2] that the function h,, has finite image, in
the sense that there exists a finite set Y, such that

hy: X(Qu) — YTy C Q.

(ii) The case v = p: The map h,, is locally analytic and has a simple description in terms of linear algebra data of

the filtered ¢-module
G
M(I‘) = (A($) ®Qp Bcris) Qp R
where B,;s is Fontaine’s crystalline period ring. A crucial point in the method of quadratic Chabauty is that the
definition of the family of Galois representations A (x) comes from a motivic quotient of the fundamental group
of X, and non-abelian p-adic Hodge theory yields an analogous de Rham realisation in the form of a filtered
connection (.#,V) on X with a Frobenius structure, together with an isomorphism of filtered ¢-modules
x* M ~ M(x)

(see [BDM 19, §5]). We have a pair of elements 71 (M (z)) and mo(M (z))" (1) of H*(Xq,,2)" associated to
the filtered ¢-module M (x), via the isomorphism

EXtIITil,qS(QP’ Hig(Xq,)") ~ H'(Xq,,Q)".
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2.3 Finiteness.

The decomposition h = ), h,, can be used to leverage the bilinear nature of 1 against the properties of the functions
hy. By (1) in §2.2, we know that there exists a finite set T = Tz C Q,, such that

h(xz) —hp(z) € T (2.3)
for any x in X (Q). In Section 3, we describe how the terms in this equation may be computed explicitly.

— The set T is given by {> , €, : €, € T}, where the sum is over primes of bad reduction, and Y, is the set of
values of h,(z) for z € X(Q,). For v # p, the map h,, is made more explicit in §3.1
using the results of Betts—Dogra [BD19] to compute T, when a regular semi-stable model X" is known. The
map h, factors through the reduction map to the irreducible components of the special fibre of X

— The map h, may be computed using [BDM* 19, §§4,5], where it is explained how the universal properties of the
bundle .7 rigidify the (known) structures on the graded pieces, enough to allow us to compute them explicitly,
see §3.2.

— Using the isomorphism (2.1), we may view the global height as a pairing
h: H(Xq,,0")Y @ H)(Xq,,2")Y — Q,.

Using global information, such as an abundance of global points = € X (Q) if available, we can solve for the
height pairing. This is discussed in §3.3, where we also explain what to do when too few rational points are
available.

Via the above, the map h may be extended to a bilinear map
h: X(Qp) = Qi @ h(m(A(2)), ma(A(2))"(1)). (24)
The resulting map

p=h—hy: X(Q,) — Qp (2.5)

is known to be Zariski dense on every residue disk. We call p a quadratic Chabauty function, and we write pyz if we
want to emphasise the dependence on Z. Hence (2.3) implies that X (Q) is finite. Moreover, the computable nature
of the quantities involved in (2.3), discussed at length in the next section, allows us to explicitly determine a p-adic
approximation of the finite set

{z € X(Qp): h(x) — hy(x) € T} D X(Q).

As explained in [BD18, Proposition 5.5], this finite set contains the Chabauty-Kim set X (Q, ). In particular, a proof
that this set equals X (Q) gives a verification of Kim’s conjecture [BDCKW18, Conjecture 3.1] for the curve X (we
refer the reader to [BDCKW 18, Definition 2.7] for the definitions of the set X (Q))2).

3. Quadratic Chabauty: Algorithms

In this section, we discuss the computation of the three ingredients outlined above:

1 e local height function h, for v away from p, which is described in §3.1 using the techniques in Betts—Dogra

(i) The local height function A, f y fi hich is described in § ing the techniques in B Dog
[BD19], given a regular semi-stable model at v.

(ii) The height function h,, whose computation using the techniques of [BDM*19] is described in §3.2

(iii) The determination of the global height pairing h, described in §3.3 using rational divisors as input in the absence
of a supply of rational points on the curve.

Our contribution in this paper lies mainly in (1) and (3), which reflect general features of the method of quadratic
Chabauty that were not needed for the curve X (13) treated in [BDM™19]. In addition, we discuss some computa-
tional techniques to further automate the method of quadratic Chabauty to work for a wide class of modular curves.
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This includes the Mordell-Weil sieve, which is used to attempt to further refine the finite set of local points in the
output to the true set of rational points X (Q).

Remark 3.1. The global height depends on the choice (which we fix henceforth) of

— anontrivial continuous idéle class character y : Aa /Q* — Q, ramified at p;
- asplitting s: Vyr/ Fil°Vyr — Vgg of the Hodge filtration, where
Var = Dais(V) = H(liR(XQp)v :

We also fix differentials wy, . . ., wag—1 of the second kind whose classes form a symplectic basis of H} (X Q,) with
respect to the cup product, such that wy, ...,wy_1 generate HO(XQI07 Qby.

3.1 Local heights away from p

Let ¢ # p and let F' be an endomorphism of .J whose class Z lies in Ker (NS(JJ) — NS(X)).In [BD19], a description
of the map

he: X(Qe) — H' (G, Uz) — H'(G, Qp(1)) — Qp
associated to F' and x is given, in terms of harmonic analysis on the reduction graph in the sense of Zhang [Zha93].

To explain the result, we introduce some notation. Over some finite extension K /Qy, the curve X admits a regular
semistable model X,o;/Of, and a stable model Xy /Ok. Let I'1eg and I's; denote the dual graphs of the special
fibres of these models. Recall that the dual graph of the special fibre is by definition the graph ! whose vertices
are the irreducible components of the special fibre, and whose edges are the singular points of the special fibre. The
endpoints of an edge e are defined to be the irreducible components containing the point (by semistability, a singular
point e lies on at most two irreducible components). By regularity, we have a reduction map

red: X(Q) — V(I'ieg)
from X (Qy) to the vertices of the dual graph I'yg.

The definition is the natural one: given € X (Qy), there is a unique extension to an O -section & € Xyee(Ok).
Let k be the residue field of Ok. By regularity, the specialisation of = to k lies on a unique irreducible component of
Xreg,k-

We may give 'y and I'y; the structure of rationally metrised graphs (i.e. graphs whose edges e have associated
lengths /(e) € Q=) by defining the length of an edge e to be i(e)/r, where i is the intersection multiplicity of the
corresponding singular point and 7 is the ramification degree of K/Qy.

Choose an orientation of the edges of I' := I'y, so that each e € F(I") has a source s(e) and target t(e) in V(I"). We
define the (rational) homology of I', H1(I') C QE(I"), to be the kernel of the map

s—t: QE(T) — QV(D),
where QE/(I") and QV/(T") are the free Q-vector spaces generated by E(I") and V' (T") respectively.

Define I'q to be the set of points on I' whose distance from a vertex is rational: formally,

I'q = Ueerry){e} x ([0,4(e)]NQ)/ ~,

where the equivalence relation is that (e, 1) ~ (ea,0) whenever t(e;) = s(e2). Since Xjeq is obtained from Xy by
taking each singular point (corresponding to an edge e) and blowing up i(e) times, we have an inclusion V' (I';eg) C
I'q (in the terminology of [BD19, 3.7.1], we may view I';¢, as a rational subdivision of I';). In this way we can think
of the reduction map red as a map from X (K') to I'q, see [BD19, Definition 1.3.1]. The rationally metrised graph we
obtain is independent of the choice of extension over which X acquires stable reduction [CR91, Proposition 2.6], and

'Here we follow the convention that graphs are allowed multiple edges between two vertices, and loops (i.e. an edge whose endpoints are
equal).
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in fact there is an equivalent definition of I'q as the limit of the dual graphs of special fibres of regular semistable
models of Xy, over all finite extensions L of K (see [CR93, §2]).

In [BD19, Lemma 12.1.1], a map

jp: FQ — Qp
is defined such that hy = ¢ - jr ored, where c is a constant. The map jr is defined in terms of the Laplacian operator
associated to 'y, which we now define. We say a function

Fq = Q
is piecewise polynomial if on each edge it is the restriction of a polynomial function Q — Q,. As in [BD19, Def-
inition 7.2.2], we define the Laplacian V?(g) of a piecewise polynomial function g: I'q — Q, to be the formal

_ Z g//(xe).e+ Z (Z QI(O)— Z g'(l))~v.

ecE(T) veV(T) s(e)=v t(e)=v
Here we write the function g restricted to the edge e as a polynomial in Q,[z.] for notational simplicity, where z.
is the inclusion from the edge e, thought of as a line segment [0, £(e)] N Q, into Q. Hence we have

Vg e B Qlzd-c@ P Qp-v.
ecE() veV(T)

The Laplacian is linear on piecewise polynomial functions, and its kernel consists of constant functions. Thus g is
uniquely determined by V?(g) and its value at one point.

In [BD19], an explicit construction is given of a piecewise polynomial function that corresponds, via red, to the local
height function we wish to compute. Recall that F' is an element of End(J) ® Q, whose image in NS(.J) lies in the
kernel of NS(J) — NS(X), and b € X (Q) is a rational point.

THEOREM 3.2 [BD19, Theorem 1.1.2, Lemma 12.1.1, and Corollary 12.1.3]. LetI" be the dual graph of X corresponding
to a regular semi-stable model of X over O, where K/Qy is a finite extension. Let red: X (Qg) — V(I') be the
reduction map. For an irreducible component X, of the special fibre of the regular semistable model, let V,,(X,,) denote
the Q,-Tate module of its Jacobian. The morphism jr is the unique piecewise polynomial function

jF: FQ — Qp
satisfying jr(red(b)) = 0 and V2(jr) = pur, where
1, 1
ppi= Y e F(r(e) e+ 3 > Tr(FVp(Xw)) - w.

ecE(T) {(e) weV (T)

Here, the morphism 7 is by definition the orthogonal projection
QET) — Hi(T', Q)

with respect to the pairing € - ¢/ = d.r on QF(T'), and e* is the functional QE(I') — Q projecting onto the e
component. Recall (e.g. [SGA7, 12.3.7]) that V},(X) admits a G k-stable filtration

Vp(X) = WoV,(X) > WiV,(X) D WaVp(X) S WaVp(X) =0,
and we have isomorphisms of G i -representations
gty Vp(X) = Hi(T) @ Qp,
grl’ Vo (X) = @pev ) Vo (Xuw),
g1y Vp(X) = Hi(D)" © Qp(1).

The action of F' on V),(X) preserves this filtration since it is a morphism of Galois representations, and hence induces
an action of F on the weight —1 part of V,,(X), which is isomorphic to &,,V},(Xy,). Although the action of F' need
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not respect the direct sum decomposition, the decomposition
End(®uVp(Xw)) 2 Gy w, Hom (Vi (X, ), Vo (Xw,))
implies that we can define Tr(F|V,(X,,)) as the trace of the End(V,(X,))-component of F.

To determine the possible local heights, it suffices to compute the action of F' on H;(I') and on V,(X,). In this
paper, we do not discuss methods for the algorithmic computation of the action of F' on H; (I"), but algorithms for
these computations in the case when the curve X is hyperelliptic will be discussed in forthcoming joint work of the
first, second and fifth authors with David Corwin, Sachi Hashimoto, Benjamin Matschke, Oana Padurariu, Ciaran
Schembri, and Tian Wang.

As we explain in Section 5.4, one can sometimes use partial information deduced from Theorem 3.2 to determine the
possible local heights without computing the action of F' on H;(T") (for example, if one has enough rational points
on X that are suitably independent in J(Q) and I'g).

Example 3.3. One example for which this strategy succeeds is the curve C1gs/Q defined by the equation y? =
2% — 2% + 23 + 22 — 22 + 1, as described in Example 5.18. This curve does not have semistable reduction over Qs.
Over K = Q2[V/2], we find a regular semistable model X;; whose special fibre consists of two genus 1 curves that
do not intersect and a genus 0 curve intersecting both of them transversely in a unique point each. We did not manage
to obtain this information using any of the existing software packages for computing regular or semistable models,
such as Magma’s RegularModel or the SageMath package MCLF %) Therefore we computed this model by

hand, using a standard (but tedious) sequence of blow-ups.

Hence the metric graph I';¢, is a line segment and the image of C1g3(Q2) in I'q consists of three points on this line.
The two edges of I';; both have length 1/3. In this case, since I has trivial homology, the function jr is affine linear,
so it is uniquely determined by evaluating it at two distinct points. We use this to compute the rational points on
C1gs in Example 5.18.

3.2 Local heights at p
We discuss the local height component
hp: X(Qp) — Qp,

which appeared in [BDM 119, §5]. Recall that h,, is a locally analytic function, described in terms of the filtered
¢-module M (z) discussed in §2.2. Concretely, we may find two unipotent isomorphisms

N(z): Qpd Var @ Qp(1) — M(x), for x € {¢, Fil}

where \? respects the Frobenius action and A respects the Hodge filtration, which with respect to a suitable basis
for M (x) may be represented in (1 + 2g + 1)-block matrix form as

1 0 0 . 1 0 0
Ma)=| ap 1 0], Mgy = a1 0 (3.1)
Yo B 1 Wi Bpy 1

(see [BDM 19, §5.3] and [BDM 119, §4.5] respectively). The isomorphism \? is uniquely determined, whereas AF!
is only well-defined up to the stabiliser of the Hodge filtration Fil°. A suitable choice gives apj) = 0.

The splitting s of the Hodge filtration (see Remark 3.1) defines idempotents 51, s2 on Vg with images s(Vigr /Fil° VR )
and Fil°VyR respectively, with respect to which the local height at p is

hp(x) =7 — yri — By, - s1(ag) — By, - s2(xg) (3.2)
by [BDM ™19, Equation (17)].

*MCLF can be used to show that there is a semistable model with three components, two of genus 1 and one of genus 0. It also lists equations
for their function fields, but this information does not suffice for our purposes.



QUADRATIC CHABAUTY: ALGORITHMS AND EXAMPLES

In [BDM*19] we outline a method to compute these quantities explicitly as functions of the local point z in X (Q,,),
which exploits the existence of the connection (.#, V) discussed in §2.2. The Hodge filtration and Frobenius struc-
tures of this bundle are characterised by suitable universal properties, discussed at length in [BDM™19, §§4-5]. We
have made the algorithms for the computation of 7, more general and streamlined and have added a precision anal-
ysis in Section 4 but did not make further contributions to this part of the method beyond what is already contained
in loc. cit.

3.3 The global height pairing

One key step in the construction of a quadratic Chabauty function is to write the global height pairing / in terms of
a basis of the space of bilinear pairings on H?(X Q> Q')V. In [BDMT19], we had as a working hypothesis that our
curve X had sufficiently many rational points, in the following sense: For x € X(Q,), the Galois representation
A(z) can be projected onto H}(GT, V') (respectively H}(GT, V*(1))), where G is the maximal quotient of Gq
unramified outside 7' = {p} U {bad primes for X'}. With respect to the dual basis wg, . ..,w;_;, the image is the
vector « (respectively /3) in (2.2). Both of these cohomology groups are isomorphic, under our running assumptions,
to H'(Xq,, '), so we obtain

m(A(x)) = (m(A(z)), m2(A(z))) € HO(XQP,Ql)V X HO(XQP,Ql)V.

Suppose that we can find a basis of H'(Xq,, ') ® HY(Xq,, Q)" consisting of elements of the form 7(A (b, z)),
where the Z are cycles on J pulling back to degree 0 cycles on X, and the z are rational points on X. Then we can
compute the coefficients of % in terms of the dual basis by evaluating h,(Az(b, z)) (and, if necessary, hy(Az(b, x))
for primes ¢ # p). With this choice of basis, the extension of & to a locally analytic function h: X(Q,) — Q, is
immediate.

The number of required rational points can be reduced by working with symmetric heights that are End(.J)-equivariant.
By the latter we mean that h(f(z),y) = h(z, f(y)) forall f € End(J), using (2.1). This holds if the splitting s of the
Hodge filtration on Vgg commutes with End(.J) and has the property that ker(s) is isotropic with respect to the cup
product (see [Nek93, §4.11] and [BD21, §4.1]). For instance, if p is a prime of ordinary reduction for the Jacobian, then
the height associated to the unit root splitting (see Remark 3.15) is symmetric and End(.J)-equivariant. Henceforth
we shall assume that s satisfies these assumptions, and we say that X has sufficiently many rational points if the
approach outlined above succeeds.

3.3.1 Heights on the Jacobian If our curve does not have sufficiently many rational points in the above sense, then,
in light of (2.1), it is natural to solve for the height pairing using rational points on the Jacobian. In this case, we do
not have an algorithm at our disposal to compute h using Nekovai’s construction, but we can use the equivalence
between this construction and that of Coleman and Gross [CG89], proved by Besser [Bes04]. In the case when the
curve is hyperelliptic and given by an odd degree model over Q,, (but see Remark 3.7), we can further use the
algorithm of Balakrishnan-Besser [BB12, BB21]. In the discussion that follows, we will assume that we are in this
situation. We will also assume that we know ¢ independent points on the Jacobian.

Recall from Remark 3.1 that we have fixed a a continuous idéle class character x: Aa /Q* — Q, ramified at p

and a splitting s: Vyr /Fil°Vyr — Vg of the Hodge filtration on Vyg = H(liR(X Q,)" - The latter corresponds to a
subspace W C H}(Xq,), complementary to the image of H’(Xq,,Q"). With respect to these choices, Coleman
and Gross define the local p-adic height pairing h, (D1, D2) € Q, at a finite prime v for divisors D1, D2 € Div?(Xq,)
with disjoint support. The local pairing is bi-additive, and we have h,(D1, D3) = x,(f(D2)) if Dy = div(f) is
principal. For v # p, the pairing h, is also symmetric; h, is symmetric if and only if W is isotropic with respect to
the cup product pairing, which we will assume from now on. Moreover, for Dy, Do € Div®(X) with disjoint support,
only finitely many h, (D1, D2) := hy(D1 ® Qu, D2 ® Q) are nonzero. Therefore h := ), h, defines a symmetric
bilinear pairing h: J(Q) x J(Q) — Q, (see [CG89, §6]).

If we have algorithms to compute the local height pairings, we can solve for the global height pairing in terms of the
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basis of symmetric bilinear pairings on J(Q) ® Q,, defined by

1 .
9i3(D, ) := 3 (log(D)(wi) log(E)(w;) + log(D)(w;) log(E)(wi)) , 0<i<j<g—1. (33)
Since we can express 7 (A(z)) and m2(A(x)) in terms of the dual basis {w}, we can compute g;;(7(A(x))) for
x € X(Qp) (with the obvious abuse of notation) and extend h to a locally analytic function h: X(Q,) — Q,.

It remains to discuss the computation of the local heights. For Dy, Dy € Div®(X Q,) with disjoint support, the local
height is the Coleman integral certain differential with residue divisor Res(wp,) = D; and ¢, is a constant so that
Cp 1y, extends to a branch Q, — Q, of the p-adic logarithm; the Coleman integral is taken with respect to this
branch. The differential wp, is normalised with respect to the splitting s using

a homomorphism

U T(Qyp)/Ti(Qp) — Hyr(X),

from T'(Q,) the group of differentials of the third kind with integer residues on X quotiented by 7;(Q,) the group
of logarithmic differentials % with f € Q,(X)*, as in the algorithm below. We restrict to degree zero divisors of the
form P — @ where P, Q) are non-Weierstrass points in X (Q,) that do not reduce to a Weierstrass point in X (F,,)
since we will need to compute Coleman integrals between P, (), and our implementation assumes that these points
are in non-Weierstrass disks and defined over Q,,.

Algorithm 3.4 The local height h, (D1, D) at p of the global p-adic height [BB12].
Input:

- Hyperelliptic curve X/Q,, given by an affine model y?> = f(z), where f € Z,[z] is squarefree of degree
20+1>2

— Prime p > 2g — 1 of good reduction
— Choice of isotropic subspace W of H}p (X Q, ) complementary to the subspace of regular 1-forms HO(X, Q,> b

- Divisors Dy = P—(@Q, Dy = R— S, where P, @, R, S are non-Weierstrass points in X (Q)) that do not reduce
to a Weierstrass point in X (F,), and R, S do not lie in the residue disks of P, Q.

Output: The local height hy,(D1, D2) at p of the Coleman-Gross global p-adic height.

(i) Choose w a differential in 7'(Q,) with Res(w) = D;.
(ii) Solve for the coefficients b; of ¥ (w) = Z?ﬁgl biw; € Hix (X) by computing residues, as in [BB12, §5.2]. Then
U(w) — Ef:_ol biw; € W. Let

g—1
Wp, =W — E b;w;.
=0

(ili) Set v := ¢*(w) — p(w). Use Frobenius equivariance of the map ¥ (and the matrix of Frobenius computed with
respect to the basis {w;} of Hig (X)) to compute

V() = ¢"¥(w) = p¥(w).
(iv) Let 3 be a 1-form with Res(8) = (R) — (S). Compute ¥([3).
(v) Compute

where

see [BB12, Remark 4.9].

10
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Remark 3.5. Note that in the last step above, ff( gy W and [ }? (R) 4 are tiny integrals, that is, Coleman integrals between
points in the same residue disk. Such integrals may be computed merely using a uniformising parameter at any point
in the residue disk. The computation } , x(c,) Resa (a 1l ,8) will, in most cases, require working over various
extension of Q,, to pick up all contributions at all poles (see [BB12, Remark 4.10]).

Remark 3.6. If our hyperelliptic curve X does not admit an odd degree model over Q, we may choose our prime p
such that X has an odd degree model over Q;, and compute local heights at p on this model. This follows from the
fact that U(p*w) = ¢*(¥(w)) for ¢ an isomorphism of curves and w a differential of the third kind.

Remark 3.7. In his thesis [Gaj22], Gajovi¢ has improved Algorithm 3.4 and extended it to even degree models of
hyperelliptic curves.

The local height at a prime ¢ # p is defined in terms of intersection theory. We can extend D; and Ds to divisors
D; and D3 on a regular model of Xq, so that both D; have trivial intersection multiplicity with all vertical divisors;
then by [CG89, Proposition 1.2], we have

he(D1, D2) = —(D1 - Da)xp(£) -

3.4 Mordell-Weil sieving

The idea of the Mordell-Weil sieve, originally due to Scharaschkin [Sch99], is to deduce information on rational
points on X via the intersection of the images of X (F,) and J(Q) in J(F,) (or suitable quotients) for several
primes v of good reduction. It is often applied to verify that X (Q) = &, but it can also be combined with p-adic
techniques to compute X (Q) when there are rational points.

We review the basic idea, which is straightforward. Making the sieve perform well in practice is a different matter;
see [BS10] for an elaborate discussion of the issues one encounters and detailed strategies. For ease of exposition,
we assume that J(Q) is torsion-free and that we have generators Py, ..., P, of J(Q).Let M > 1 be an integer and
let S be a finite set of primes of good reduction for X. Then the diagram

X(Q) J(Q)/MJ(Q)

HUES X (Fy) m HUES J(Fy)/MJ(Fy)

is commutative. In the situation of interest to us, the horizontal maps are induced by our choice of base point b €
X(Q).

In our work, we use the Mordell-Weil sieve in two ways. On the one hand, we apply it to show that for a fixed prime
p, a given residue disk in X (Q,) does not contain a rational point. To this end, we set M = M’ - p for some suitable
auxiliary integer M’, and we choose S to consist of primes ¢ so that gcd(#J (F,), #J(F)) is large for some prime
divisors g | pM’. We can then hope that the image of the reduction of the disk under [ 85 s does not meet the
image of the map [ [ cvg ar-

On the other hand, we use the sieve to show for fixed M > 1 that a given coset of M J(Q) does not contain the
image of a point in X (Q) under the Abel-Jacobi map P — [P — b]. Suppose a point P € X (Q,) is given to finite
precision p'V. If P is rational, then there are integers a, . . ., ag such that

[P—b]:a1P1+---+ang.

Via the abelian logarithm, we compute a tuple (dy,...,a4) € Z/p"Z satisfying a; = a; (mod p™) for all i €
{1,...,g}. To show that P is not rational, it suffices to show that the corresponding coset of pVJ (Q) does not
contain the image of such a point.

In our implementation, we have not tried to optimise the interplay between quadratic Chabauty and the Mordell-
Weil sieve. Such an optimisation is discussed in [BBM17, §7]. Let us only note here that we may combine quadratic

11
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Chabauty information coming from several primes, and that we can enhance that information using an auxiliary
integer M’ similar to the above. Another account of combining quadratic Chabauty with the Mordell-Weil sieve can
be found in [BBB* 21, §6.7].

Remark 3.8. All examples in this paper

satisfy r = g = rkzNS(J), resulting in at least two independent locally analytic functions vanishing in X (Q) for
the g > 2 examples. Since we expect that their common zero set is precisely X (Q) (or that there is a geometric
reason for the appearance of any additional p-adic solutions), we do not expect to require the sieve. Indeed, we only
had to apply the sieve for curves of genus 2. For these examples, we always required only one prime for the quadratic
Chabauty computation; we chose this prime in such a way as to simplify the sieving.

3.5 Implementation and scope

We have implemented the algorithms described in this section in the computer algebra system Magma [BCP97]. Our
code is freely available at [BDM™]. It extends the code used for X (13) in [BDM*19] and can be used to recover
that example. It is applied to new examples, as discussed in §5.

We begin by summarising our discussion so far and describe the general procedure to determine the finite set X (Qy)2
as it would apply to the modular curve X attached to a general congruence subgroup, and Atkin—-Lehner quotients
thereof. In this generality, several steps cannot be easily automated, so we discuss the extent to which our imple-
mentation has automated the procedure, and point out which steps require additional action from the user. See
Example 5.3 for a fairly detailed worked example.

Our techniques are built on prior work of Tuitman on computing the action of Frobenius on rigid cohomology
[Tuil7]. We recall some of the underlying structures present in Tuitman’s work and a set of assumptions on these
auxiliary structures.

Suppose our modular curve X/Q is given by a (possibly singular) plane model @ = 0 with Q(z,y) € Z[z,y] a

polynomial that is irreducible and monic in y. Let d, and d, denote the degrees of the morphisms = and y, respec-

tively, from X to the projective line. Let A(z) € Z[x] denote the discriminant of () with respect to the variable

y. Moreover, define r(x) € Z[z] to be the squarefree polynomial with the same zeroes as A(x), in other words,

r = A/(ged(A, 22))

DEFINITION 3.9. Let W € GLy, (Q[z,1/r]) and W™ € GLg, (Q[z,1/x,1/7]) denote matrices such that, if we denote
dz—1 dz—1

0= Whijmy' and b° = WFay
i=0 i=0
forall0 < j < dp — 1, then

i) [ ,... ,ng_l] is an integral basis for Q(X) over Q[z],

(ii) [b§°, ..., b3 _ ] is an integral basis for Q(X) over Q[1/x],
where Q(X) denotes the function field of X. Moreover, let W € GL4_(Q[z,1/x]) denote the change of basis matrix
W = (WO)~lwee,
Assumption 3.10 [Tuil7, Assumption 1].

(i) The discriminant of r(x) is contained in Z;.

(ii) If we denote bY = Y=t WP, . 4yt and b = St Wr, Lyt forall 0 < j < dy — 1, and if we let
F,(x,y) be the field of fractions of F,[z, y]/(Q), then:

(a) The reduction modulo p of [b] ,...,b5 _,] is an integral basis for F,(,y) over F|z].
(b) The reduction modulo p of [b3°, ..., b7°_,] is an integral basis for F),(z, y) over Fy[1/z].

12
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(i) W° € GLqg, (Zp[z,1/7]) and W™ € GLy, (Zp[x,1/2,1/7]).

(iv) Denote:
RO =Zy[a]b)  +...+ Zpx]b] 4,
R =Zp[1/x]bg" + ... + Zp[1/2]b7 ;.

For aring R, let R,eq denote the reduced ring obtained by quotienting out by the nilradical. Then the discrim-
inants of the finite Z,-algebras (R°/(r(x)))rea and (R°/(1/x))ed are contained in Z;.

Remark 3.11. These conditions imply that the curve X has good reduction at p.

Algorithm 3.12 Quadratic Chabauty for modular curves.
Input:

- A modular curve X/Q with Mordell-Weil rank » = g and rkzNS(J) > 1, and for which the image of J(Q)
in H(Xq,, ") has rank g.

— A covering of X by affine opens that are birational to a planar curve cut out by an equation that is monic in
one variable, has p-integral coefficients and satisfies Assumption 3.10. (See §3.5.1.)

- A prime p of good reduction such that the Hecke operator 7, generates End®(J).

— For all primes / that are not of potentially good reduction, the local height functions X (Q;) — Ker(NS(J) —
NS(X))’(‘QP, computed using Theorem 3.2. (See §3.5.3.)

— A starting precision n.

— A height bound B.

Output: An approximation to a finite set containing the set of points X (Q), )2, computed to precision n’ < n or FAIL.

(i) Compute the set X (Q)known Of points in X (Q) with height bounded by B.
(i) Compute an integral symplectic basis for H}; (Xq) or return FAIL.
(iii) Compute the action of Frobenius on HéR(XQp) using Tuitman’s algorithm [Tuil6, Tuil7]. Use the Eichler—
Shimura relation to compute the matrix of the action of the Hecke operator 7}, on H: (Xq,).
p dR\-*Qp
(iv) Compute a splitting of the Hodge filtration that is equivariant for the action of End(.J) in the sense of §3.3.
(v) Compute the matrices of a basis Z1, ... , Zyng(s)—1 of Ker (NS(J) — NS(X)) acting on Hj, (Xq, ), see §3.5.2.
(vi) Let A := @. For each Z;, compute the associated heights:
(a) For each affine patch, do the following:
(i) Compute the functions A\F'! from (3.1) using [BDMT19, §4].
(ii) Compute the functions A? from (3.1) using [BDM*19, §5].
(b) Solve for the height pairing, either using a large enough supply of known rational points Py, ..., P, on
X, if possible, or by computing the Coleman—Gross height pairing on 7 independent points in J(Q). (See
§3.5.4.) If this is unsuccessful, return FAIL.
(c) Compute solutions of the function(s) coming from Z; or return FAIL if there has been too much precision
loss to determine these solutions.

(d) Check that the solutions are simple. If there is a non-simple solution corresponding to a point in X (Q)xnown»
return FAIL. Else, add to the set A the solutions that (simultaneously) satisfy the(se) function(s).

(vii) Return A.
Remark 3.13. We assume that we know a priori that the Mordell-Weil rank of the Jacobian is equal to the genus of
the curve. For modular curves, by Gross—Zagier—Kolyvagin-Logachev this amounts to checking that the associated

eigenforms have analytic rank one (see e.g. [DF21, §7]). For hyperelliptic curves, it is sometimes simpler to carry out
a two-descent.
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Remark 3.14. Note that if the algorithm fails due to a loss of precision, it may be possible to remedy this by increasing
the starting precision. One place where increasing precision may not work is if the p-adic logarithm does not induce
an isomorphism J(Q) ® Q, ~ H(Xq,, ")", even though the rank of J(Q) is g. For the Atkin-Lehner quotients
X (N), the weak Birch-Swinnerton-Dyer conjecture implies .J(Q) always generates H(Xq,, Q')" (see [DF21,
Lemma 7]). In general, if 7 = g and the Zariski closure of J(Q) is J, then a conjecture of Waldschmidt [Wal11,
Conjecture 1] (an analogue of the Leopoldt conjecture for abelian varieties) implies that the p-adic logarithm is
always an isomorphism. In theory, if one knew that J gave a counterexample to Waldschmidt’s conjecture, and
r = g, then one could simply apply the Chabauty—-Coleman method. However, a priori it could happen that J gave
a counterexample but there was no way of verifying this by a computation to finite p-adic precision. Another place
where increasing precision will not help is if there are multiple roots in Step (vi(c)). However, we only expect this to
happen for geometric reasons.

One can have r > g for the curves X (N) with N prime, even though X (N)(Q,)2 is always finite when the
genus is greater than one [DF21]. However the smallest genus for which this happens is ¢ = 206 (with N = 5077),
so the 7 = g hypothesis is not the main restriction to the scope of our algorithms for this family of curves.

Remark 3.15. In the case when p is a prime of ordinary reduction for the Jacobian, one may take the splitting of the
Hodge filtration given by the unit root subspace, that is, the unit root eigenspace of Frobenius ¢ acting on H' (X Q,)
Given a basis {11, . ..,m24} of H}(X Q, ), where 7y, ..., 1, are holomorphic, a basis for the unit root eigenspace mod
p" is given by {(¢*)"ng+1, .-, (¢")"2g }-

Remark 3.16. In this paper, we do not discuss algorithms for computing the input of the local height functions as
maps from Q-points to Q,-linear functionals on Ker(NS(J) — NS(X)). In Section 5 we give examples where
this function can be nontrivial, and where X (Q) can still be determined using quadratic Chabauty. There are two
procedures we illustrate for doing this. In Section 5.4, we calculate regular semistable models at bad primes and
have a sufficient supply of rational points (and sufficiently simple dual graphs) to reconstruct the functions j, from
Theorem 3.2 using evaluation of p-adic local heights at known rational points. In Section 5.5, although we know
a regular semistable model “abstractly,” we do not know the relation between the stable model (at the bad prime
17) and the model we use for p-adic calculations. This, together with the relative paucity of known rational points,
makes it infeasible to apply the first procedure. Instead, we use extra information about the action of inertia on the
stable model, together with Theorem 3.2 to identify a subspace of line bundles in Ker(NS(.JJ) — NS(X)) for which
the associated local heights vanish.

To further determine the subset of rational points X (Q) from the finite set of points produced by our algorithm, we
carry out the Mordell-Weil sieve. In practice it may happen (see below) that X (Q) is returned by the algorithm, but
this is typically not the case when X has genus two.

3.5.1 Affine patches Most of the examples discussed in Section 5 are either hyperelliptic curves or smooth plane
quartics. As demonstrated in Section 5.5, our code is sometimes able to treat more general examples. Our implemen-
tation was designed to take as input a plane affine patch Y: Q(z,y) = 0 of a modular curve X/Q satisfying the
requirements in §2.1 and a prime p of good reduction. It returns all rational points on X in affine residue disks where
the lift of Frobenius constructed in [Tuil6, Tuil7] is defined. Note that we do not require Y to be smooth, but we
need () to be monic with p-integral coefficients.

We can sometimes find an affine patch Y having the convenient property that all rational points on X must be
among the points returned by running our algorithm on Y. If no such Y is found, then we need to find two suitable
affine patches such that every rational point on X is contained in at least one patch. For smooth plane quartics, our
implementation includes an algorithm that automates this process for convenience of the user. For other curves, this
step is left to the user.

3.5.2 The Néron—Severi classes Z; Under the assumption that 7}, generates the endomorphism ring of the Jacobian,
which we made for convenience above, one may proceed precisely as in [BDM*19, §6.4] to determine a nontrivial
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class

Z € Ker (NS(J) — NS(X)).
Indeed, the matrix A, of the Hecke operator 7, acting on Hl (X Q,) is easily determined from the matrix of Frobe-
nius F), (which is already a byproduct of the algorithms for the local height at p), by the Eichler-Shimura relation:

T, = F, +pF, .

Under our assumption, the matrices of the classes Z; acting on H}p (X. Q,) may then be computed as linear combi-
nations of powers of A,

Remark 3.17. This is the only part of our algorithm specific to modular curves, since it relies on the Eichler-Shimura
relation. It should however be noted that this is mainly a matter of convenience adopted for the purpose of automa-
tion. More generally, for a smooth projective curve X/Q satisfying the assumptions of §2.1, one could find p-adic
approximations of the action of the nontrivial classes Z; on HéR(XQP) using just p-adic linear algebra. Indeed, the
space of correspondences which are symmetric under the Rosati involution and induce endomorphisms of trace zero
on the Tate module maps under the cycle class into the intersection of the Fil' and ¢ = p subspaces of

1mr(A2H5R@XQP)Ji>H§R@¥Q@0 . (3.4)

In fact, by the Tate conjecture, the rank of the space of (crystalline) cohomology classes of such correspondences over
F, is equal to the dimension of the ¢ = p subspace of (3.4), and by the p-adic Lefschetz-(1,1) theorem of Berthelot
and Ogus [BO83, §3.8] such a correspondence over F, lifts to Q,, if and only if its cycle class lies in Fil'. Note that
the dimension of the space of correspondences symmetric under the Rosati involution need not equal the dimension
of N2 Hg (X Qp)¢:p N Fil', as was erroneously claimed in [BDM*19, Lemma 4.5], since the rank of the intersection
of a Z-lattice with a Q,-subspace may be less than the dimension of the intersection with the Q,-subspace it spans.
However, if one knows a set of generators of a finite index subgroup of End(.J) in advance (e.g. using algorithms for
rigorous computation of the endomorphism algebra of the Jacobian [CMSV19])) then one can use this to compute
the classes of generators in cohomology.

Therefore the assumption that 7}, generates the endomorphism algebra could be circumvented in this step with a
little work, although it is used in the computation of the local heights away from p, see below. When the assumption
is not satisfied, our implementation throws an error, urging the user to try a different choice of prime p.

3.5.3 The local heights away fromp This step requires an explicit knowledge of a semi-stable model of the modular
curve X, as well as a description of the action of Z; on the concomitant cohomological structures in order to be able
to apply Theorem 3.2. It is clear that a full automation of this step, starting from a set of defining equations for X,
falls outside the scope of our implementation.

Semi-stable models for modular curves are known in many cases, see for instance the recent work of Edixhoven-
Parent [EP21]. In practice, one can also often use the SageMath toolbox MCLF * due to Riith and Wewers to
compute such models. The main advantage of having computed the Z; in §3.5.2 as combinations of powers of 7T}, is
that this makes it easier to compute the quantities appearing in Theorem 3.2. Even though we see no way to fully
automate this step, we hope to convince the reader of its practicality by working it out for the genus 2 curves Cgg
and Cj¢1 in Examples 5.18 and 5.19.

3.5.4 The global height pairing If there are not sufficiently many rational points on the curve to solve for the height
pairing, we instead compute the local heights &, in the sense of Coleman and Gross, see §3.3.1. For hyperelliptic
curves X/Q,, of odd degree, h,(D1, D2) can be computed using an algorithm due to Balakrishnan-Besser [BB12,
BB21]. Based on earlier SageMath code due to Balakrishnan, we have implemented this in Magma for divisors Dy
and Ds that split over Q,,, have support contained in disjoint residue disks and for which no points in the support

*https://github.com/MCLF/mclf
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reduce to Weierstrass points mod p. To compute the local heights h, for ¢ # p, we rely on Magma’s implementation
of an algorithm for local canonical heights on hyperelliptic curves described by Holmes and Miiller [Hol12, Miil14].
An algorithm for general curves was given by van Bommel, Holmes and Miiller [vBHM20].

To solve for the height pairing, we need to find representatives for r independent points in J(Q) that satisfy the
assumptions mentioned above. Our implementation is currently restricted to genus 2 curves, since this step was only
necessary for such curves, but a generalisation to higher genus hyperelliptic curves would be straightforward.

Remark 3.18. The code is currently restricted to the base field K = Q. To extend it to more general number fields,
one would need to combine these algorithms with those used in [BD18] for imaginary quadratic fields in certain
cases, or for general number fields, with those in [BBBM21].

4. Precision analysis

In this section, we bound the loss of absolute p-adic precision that may occur in our computations by bounding
the valuations of the error terms. We also estimate the valuations of the power series expansion of the quadratic
Chabauty function p and use this to bound the precision of its roots.

We keep the notation used in the previous sections. Recall from (2.5) that p = h — h,, where

— h is the global p-adic height defined in (2.4);

— hy is the local component of A, discussed in §2.2.
By (3.2), the local height h, satisfies
hp(z) = v — Yri — B; -s1(ag) — By - s2(g)

where the Hodge filtration of the filtered ¢-module M (z) := (Az(b,z) ®q, Beris) Y9 discussed in §2.2 is encoded
by By and vri) and oy, B4 and v4 encode the Frobenius structure of M ().

We will bound the loss of precision in the computation of the Hodge filtration in §4.1, and we do the same for the
Frobenius structure in §4.2. In §4.3, we bound the precision loss for the global height computation. In the final part of
this section, §4.4 we bound the valuation of the coefficients of the expansion of p in a residue disk, and we discuss how
this may be used to provably determine the roots of p to a certain precision. This section relies heavily on [BDM™ 19,
Sections 4,5].

4.1 Hodge filtration

We first bound the loss of precision in Steps (ii)-(v) of Algorithm 3.12. For simplicity, we restrict to one class Z; the ex-
tension to rkNS(.J)—1 such classes is immediate. Let Y/ Q be an affine open subset of X, birational to a curve given by
an equation that satisfies Assumption 3.10. We may compute an integral, symplectic basis w = (wo, . . .,wz4—1) of de
Rham cohomology over Q exactly, and extend this to an integral basis of Hj (Y') via differentials (wag, . . . , wag+d—2)
of the third kind. Using such a basis, we may compute the action of the Frobenius operator F' on HéR(X /Qp) to any
desired p-adic precision using Tuitman’s algorithm [Tuil6, Tuil7], from which we obtain the action of the Hecke
operator 7, = F + pF~! on H\;(X/Q,) by Eichler-Shimura. The inversion of F results in a finite and com-
putable loss of precision, which the code takes into account. This results in an algorithm that returns the action of
the correspondence Z correctly modulo p™ for some n > 1 that is returned by the algorithm.

Using this, we may compute a matrix A with entries in H°(Y, Qyq), of the form

0 0 0
A=—| w 0 0
n wi'Z 0
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such that d+ A extends to a flat connection on X. From this, we may compute yrj and By;; from (3.1). We recall from

[BDM ™19, §4] that the defining properties of 7, the By and g are as enumerated below. For z € (X —Y)(Q), we
let ¢, denote a parameter, and €2, denote the vector of formal integrals of the basis differentials w;:

dﬂxji =w; € Q[[tx]]

(i) The first g entries of By are zero, and the last g are given by a vector br; of constants specified below.

(ii) 7 is a linear combination of wa,, . . ., Way+4—2, unique by [BDM™19, Lemma 4.10] such that
n g g+ q y

AT ZQ, — (4.1)
: n

has vanishing residues at all z € (X — Y)(Q).
(iii) by and vy € O(Y) are the unique solutions to the equation gy (b) = 0 and

gz +yril — Ly NTQ, — QIZNNTQ, € L[t,] (4.2)

forall x € (X —Y)(Q), where g, € Q[t,] is defined to be the formal integral of d2] Zd€2, — n and N is the
block 2¢g X g matrix with top block zero and lower block a g X g identity matrix.

Given our basis w, we may calculate {2, to any given ¢,-adic precision. Note that to solve (4.1), we only need to know
2, modulo ¢7'*, where m,, is the maximum of the order of the poles of the entries of §2,. Similarly, to solve for ypj
and byj) in (4.2), we need only compute the principal parts of €2, and QT Z N NT€2,. Hence given the above we may
calculate 7, yr; and by to precision p" 2", where v is minus the minimum of the valuations of the t;i, coefficients
of the entries of 2, for i < my.

4.2 Frobenius-equivariant splitting
We now bound the loss of precision in the computation of the Frobenius-equivariant splitting

1 0 0
M(z)= | aub,x) 1 0
Yo(b,x)  B(bx) 1
from (3.1) for x € X(Q,)NJU[ where U is an open of Y, on which we have an overconvergent lift of Frobenius.
This computation is the content of [BDM™19, §5].

The first step is to find the Frobenius structure on the filtered ¢-module M (b). By [BDM ™19, §5.3.2], the inverse of
the Frobenius structure is given by a matrix

G € (H(JY] jTOy)) Bt Gor2)
such that
AyG +dG = GA, (4.3)
where jTOy is the overconvergent structure sheaf on the tube |Y.

Compared to [BDM 19, §5.3.2], we give a slightly more detailed account of the algorithm to find G. We first apply

the algorithms in [Tuil6, Tuil7] (see [BT20, Algorithm 2.18]) to compute the action of Frobenius on H}ig(X ® Qp)

as
¢*w = Fw + df (4.4)

for a matrix F' € M,(Q,) and a column vector f with entries in H(]Y[, /7Oy ), uniquely determined by the
condition that f(by) = 0, where by is the Teichmiiller point in the disk of b.

Next, we define a vector of functions gy := — F T 7f. Then, the differential

¢ = (¢*w) Zf + (¢"n — pn) — gj w (4.5)
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is of the second kind, and therefore the reduction algorithms in H%ig (Y) from [Tui16, Tuil7] can be applied to compute
a vector of constants ¢ € Q,%g and a function H* € HO(]Y[, jTOy) such that
c’w+dH =¢. (4.6)
Hence the function g := g + c satisfies
dg" =df7TZF and dH =W FTZf+df7Zf —g'w + ¢*n — pn,

and we normalise H by requiring that H(by) = 0. The matrix

1 0 0
G=| f F 0 (4.7)
H g p

then satisfies (4.3).

4.2.1 Frobenius-equivariant splitting for Teichmiiller points Suppose that 29 € X (Q,)N|U| is a Teichmiiller point.
As described in [BDM ™19, §5.3.2], the Frobenius-equivariant splitting of M () is given by

1 0 0
M (z0) = (I—F)"'f 1 0 | (x0). (4.8)
5 @I -F)'f+H) gl(F-p)"' 1
The loss of precision in the computation of f and F' is estimated in [Tuil7]. Hence it is easy to bound the precision

loss in the computation of A\?(z¢) using the following result.

PROPOSITION 4.1. Suppose that the entries of the matrix G and a point P € X (Q,)N|U] are accurate to n digits of
precision. Then G(P) is also accurate ton digits of precision.

Our proof of Proposition 4.1 is somewhat similar, but more involved than the proofs in [BT20, §4], where the loss of
precision in the evaluation of f and of single Coleman integrals is estimated. We may expand

§—§:(§f%”@w>“ (49)
B r(z)y K] e '

JE€Z \ k=0

The hardest part of the proof of Proposition 4.1 is to find lower bounds on the valuation of the coefficients w; j,
which we now describe. Let eg (resp., es) be the maximum of the ramification indices of the map x: X — P! with
respect to our chosen model at points lying in affine (resp., infinite) disks.

LEMMA 4.2. There is a constant  such that for all j, k we have

2] + 1108, jeo) + 5, j #0
K, 7 =0.

ord,(wj) = { (4.10)

Proof. Looking at the constituent parts of (4.5), we start with (¢*w’) Zf. We write

dy—1 (1)
e di g (2) dx
* TN Ji,k1 0
= Y (3 Gy ) i
J1€Z \k1=0

Then Ordp(dg‘?,h) > L%J + 1 by [Tuil7, Proof of Proposition 4.9]. We have
fi = fio+ fioo + fiend ;

*The function H is denoted h in [BDMJr 19], but we chose a different notation to avoid confusion with the global height, which is also denoted
by h.
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where f; o, fi 0o and f; enq correspond to the three reduction steps (2), (3) and (4) in the reduction algorithm from [Tui17],
summarised in [BT20, Algorithm 2.18]. By equations (1), (3) and (4) of [BT20], there are 1, A1 > 0 such that

o) dy— lc()()

J2,k2
fio=2_ | 2 =5 |
ri2

Jo=1 ko=0
d -1 M1 —1 )\1
M
fi,oo = § E ekg 1 bkg ) fz end = E E ’U,k4 mL b
=0 (=0 k4=0m=0

Equation (2) of [BT20] implies the lower bound ordp(cgi)’kQ) > L%J + 1 — log, | jaeo] . Let
k() = min({(),ordp(egg’l)} U {ordp(uéi)’m)}) and kp := miin{n(i)}_ (4.11)

Without loss of generality, the matrix Z has p-integral entries. Hence every (Zf); is of the form

x ol g (2)
(zf)i=>">" ””“2 0, (4.12)
72=0 k2=0
where for all ko, we have
: 21 41 —1log,|jaeo] , if jo >0
ordy(g\),) > %] o8pLiaeol , if Jo (4.13)
Gja ko e
K1, if jo=0.
Let us now consider, for each 7,
de—1 (;')k 00 dy— 1g i dx
* T _ J1,k1 10 Jj2,k2 0
(d) w )Z(Zf)l o Z Z ri1 bkl Z Z ri2
J1€Z \ k1=0 Jj2=0 ko=
1 0 0 0 dx
= 7 (d 71, k9 J2, k2) b 7
J ]1+]2€Z J1€Z, 5220 k=ki+ko, k; e{o, odz—1}
1 dy—1
.y (N 3 jkbk>
JEZ k=1
We distinguish two cases: If jo > 0 then
. ; j .
ordy(d\, gtV ) > {pJ +1+ {pJ +1 — log, (jaco) > M +1—log,((j — 1)eo). (4.14)
If jo = 0, then ord (d;zl)k1 j(?,@) > {%J + 1 + k1. Together, we obtain
ordy (Tjx) > L])J + 1 —log,((j — 1)eq) + A1. (4.15)

The next term to consider in (4.5) is ¢*n — pn, where 7 is constructed in [BDM 119, §4]. Let xo denote the p-adic
valuation of the vector of coefficients of 7 in terms of the basis differentials wag, . . ., wag42_4 (see [BDM 119, §4.1]).
Write

de
on—pn=> (Z SJ';E )b[)) df

jez \ k=0
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Then the s;, satisfy ordy(s;;) > K2 + [%J + 1if j # 0 and ordy(sox) = k2 + 1, so
ord,(sjx) = K2 + VJ + 1forallj. (4.16)
p

For the final summand gl w in (4.5) note that since F has p-integral entries, every (F Zf); has an expansion as
in (4.12). Because w; is integral for all 7, the lower bounds in (4.13) remain valid for gl w. The proof of Lemma 4.2
follows from this and from (4.14) and (4.15) upon setting x = min{r1, K2 }. O

We now estimate the precision loss that can occur during the application of the reduction algorithm from [Tui17]
to the differential £. Our proof is similar to the proof of [Tuil7, Prop 4.9], which estimates the precision loss in the
reduction of F™*(w;). Suppose that £ is correct to n digits of p-adic precision. First consider terms in (4.9) with j > 0.
It follows from (4.10) that j — plog,(jeo) < pm — pk (note that x < 0). By [Tuil7, Prop 3.7], the precision loss
at pole order j during the reduction at finite points is at most Uogp( Jmax€0)] , where jmay is the largest integer j
such that j — plog,(jeo) < pn — pr. As in the proof of [Tuil7, Prop 4.9], this might introduce small poles above
00, but by the same reasoning as in op. cit., the reduction of these poles leads to a loss of precision bounded by
[log, (—(ordec W ™1) + 1)ess ]. We set

g1(n) := [log, (jmaxeo) ] + [log,(—(0ordscW ™) + )ecc]

If we write

do—1
< d
&= (Z ai(x,x_l)bfo> Ta: and My = —min{ords; — deg(r) + 1},
i=0 ‘

then the loss of precision during the reductions above infinity (where j < 0) is bounded by g2 := [log,(mcc€0)] -

Hence we have shown the following:

LEMMA 4.3. Suppose that £ is correct to n digits of precision. Then ¢ and H are correct ton — max{g1(n), g2} digits of
precision.

Proof of Proposition 4.1. Similar to the f;, we may decompose H as H = Hy + Ho, + Hyq, corresponding to steps
(2), (3) and (4), respectively, in [BT20, Algorithm 2.18]. By the above, the reduction above finite points introduces a
denominator of valuation at most log,,(jeo) for pole order j, therefore we have
3~ ) j
ik .
Hy = Z Z ijg, where ordy(cji) > LOJ —2log,(jeo) + K. (4.17)
j=1 k=0

Recall that the matrix G is defined in (4.7). There is no loss of precision when evaluating f(P) by [BT20, Prop.
4.5]. By our assumption that /' and Z are p-integral, there is no precision loss when evaluating go(P). Using the
bounds (4.17), the proof of [BT20, Prop. 4.5] shows that H(P) is accurate to n digits of precision as well. Since
g = go + ¢, the proposition follows. O

4.2.2 Frobenius-equivariant splitting for general points For z € X (Q,)N]U[, not necessarily Teichmiiller, the Frobenius-
equivariant splitting A% (z) of M (x) is given by

1 0 0 1 0 0
( 7w 1 0)- Jon e 1 0] - A%(x0), (4.18)
1

Lon+ fwi2e [wTZ fbl;n"i'fbl:)szw _bewTZ 1

where z is the Teichmiiller point in the disk of x. The first two matrices in (4.18) correspond to parallel transport
of A from x to xg and from by to b, respectively.
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For the local height h,(A(x)), we need the Frobenius-equivariant splitting A’ (z) both for fixed = and for x varying
inside a residue disk. We start by bounding the valuations of the coefficients of power series expansions of the
differentials in the parallel transport matrices of A in terms of a local coordinate ¢ at a fixed affine point yy €
X (Qp)NJU[. By assumption, the entries of the expansions of w and wTZ all have integral coefficients, so their
integrals have entries whose i-th coefficient has valuation > —ord,(%). Therefore, we have

w(t)TZ/w(t) = Zaiti, where ord,(a;) > —|[log,(i)] . (4.19)

121

It follows that

/ (w(t)TZ / w(t)) = bit', where ordy(b;) > —2|log,(i)] . (4.20)
i>1
By construction, the coefficients of 7 in terms of wag, ..., wzg+4—2 are polynomials in . Define d;(7) to be the
valuation of the ith coefficient if ¢ is smaller than the maximum of the degrees of these coefficients and 0 otherwise.
Then the ith coefficient of the integral of 7 has valuation > —ord, (i) — d;(n). Hence, the ith coefficient of every
expansion of the parallel transport matrix in ¢ has valuation at least

(i) == —[log, (i) | + min{d;(n), —[log, ()]} - (4.21)

For definite parallel transport from yo to another Q,-point y; in the same residue disk, we need to evaluate the
integrals above. Suppose that g, y1, and the coeflicients of the expansions of w and 7 are correct to n digits of p-adic
precision, and suppose that the expansions are truncated modulo . Let
vy i=1+min{i — [log,(i +1)]} and vy :=n+ min {i— [log,(i+1)]}.
1>l 0<i<i-1
Then fyyol w; and f;{)l(Zw)j are correct to min{vy, v} digits by [BT20, Prop. 4.1]. The proof of [BT20, Prop. 4.1]
requires that the differential we integrate has integral coefficients. A modification of this proof yields that the integral
fjol 1 is correct to min{vy, vo} digits, where v{ = 1 4+ min;>;{i — [log,(i + 1)| — di(n)}. A similar modification
shows that the double integral fy‘l{; wTZw is correct to min{vy, vy } digits, where v{' = 14+min;>;{i—2[log,(i+1)]}
and
/

vy =n— [log,(n)] + min {1 — [log,(i+1)]}.

0<i<i—1
Hence we obtain the following:

LEMMA 4.4. The parallel transport matrix from yo to y1 is correct to min{vy, V5, v4} digits of precision.

Using (4.18), we can finally bound the loss of precision in the computation of A?(x) for fixed points x € X (Q,)N]U|
by combining Lemma 4.4 and Proposition 4.1.

4.3 Global heights

We now discuss the possible precision loss in the computation of the global height h. In Step (vi(b)) of Algorithm 3.12
we solve for dy, ..., d, such that

b= Z d;U; (4.22)

in terms of a basis {¥;} of bilinear pairings on H’(Xq,, Q2')" by evaluating h and the ¥;. Recall that our method for
determining the coefficients depends on whether there are sufficiently many rational points on X in the sense of §3.3.
If this is the case, meaning that we can use a basis of consisting of (A z(b, x)) for rational points x € X (Q)N]U]|,
then we need to compute hy,(Az(b, z) and 7(Az(b, z)), and then apply simple linear algebra. The precision loss in
the computation hy,(Az(b, x)) has already been bounded and 7(A z(b, z)) can be obtained directly from the same
data (see [BBB'21, Equation (41)]). The loss of precision in the linear algebra computations is easy to detect in
practice, so we do not bound it explicitly here.

21



JENNIFER S. BALAKRISHNAN, NETAN DOGRA, J. STEFFEN MULLER, JAN TUITMAN AND JAN VONK

In the other case, the basis V¥, is given in terms of products of abelian integrals. As mentioned above, the loss of
precision in their computation is estimated in [BT20]. It remains to discuss precision loss in the computation of
Coleman-Gross local heights h,(D1, D), where D1, Dy are divisors in Div?(X)(Q,) for X a hyperelliptic curve
subject to the hypotheses of Algorithm 3.4; see [BB12, §6.2] for further details. Choosing w in Step (1) can be done
up to the precision of the points in the support of the divisor D;. To compute ¥(w) and wp, to O(p") in Step (2),
see Section 5.2 and Section 6.2.3 of [BB12]: one needs to compute the local coordinates (z(t), y(t)) at infinity, with
z(t) to precision t229~1) and y(t) to precision t29~!, where these t-adic estimates are made based on the maximal
pole order in the basis of HJj (X). Step (4) proceeds similarly to this step as well.

In Step (5), the tiny integrals are computed as in [BB12, §6]. In previous steps, we wrote ¥(a) and W () as Q,-linear
combinations of the basis elements of H (X), up to precision O(p"). Note that the hypothesis that p > 2g — 1 is to
ensure that the cup product matrix has entries that are p-integral, so no precision loss comes from the cup product
matrix.

Finally, for ), X(C,) Resa (a i ﬁ), we consider the cases of A a non-Weierstrass point (where we describe the
computation in the annulus of A) versus A Weierstrass (where we have just one contribution, at the Weierstrass
point). If A # (0, 0) is a Weierstrass point, we compute the local coordinate (z(t),y(t)) at A to precision 2’7 —P~!
(see the corrected Proposition 6.5 in [BB21]) so that Res4(« [ ) is computed to n digits of p-adic precision.

Now we consider the non-Weierstrass poles of «. For the annulus of a non-Weierstrass pole A, the generic situation is
handled by [BB12, Corollary 6.4]. By [BB12, Remark 4.10], we consider all A € {P;, Q;}; ; where x(FP;) corresponds
to a root of an irreducible factor of 2P — x(P) (and similarly where 2(Q);) corresponds to a root of an irreducible
factor of 2P — x(Q)). For these i, j, we compute flfi [ and fgj 3 and trace down to Q,. We suppose P € X (Q,) has
precision O(p™). Fix m and suppose 3 is computed to t%™ at P;, where d; = [Q,(P;) : Q,)]. Let m; be a uniformiser
of Qp(Pz-). Note that P is known to d;n m;-adic digits, and suppose that P; is known to n; m;-adic digits. Then the
m;-adic precision of fffi B is at least min{n;, d;n, |d;m + 1] — log,(d;m + 1)}. We similarly repeat this for () and
the corresponding ;. Hence )~ , Res4(« [ ), where the sum is over all non-Weierstrass poles A of «, is correct
to p-adic precision
n?ijn{ni, din, [dim + 1] —log,(dim + 1),n;,djn, [djm + 1] — log,(djm + 1)},

where we consider the corresponding i, j for all F; and all ();.

4.4 Coefficients of the quadratic Chabauty function and root finding

The previous results of this section bound the loss of precision in the computation of the quadratic Chabauty function
p =h—hy.Let D C X(Qp)N|U[ be a residue disk and let zy be the Teichmiiller point in D. We now bound the
valuations of the coefficients of the expansion of p in D and show how to provably compute its roots to desired
precision.

In our algorithm, we fix a point 1 € D, and we compute the Frobenius-equivariant splitting A?(x) on D as a power
series in a local coordinate ¢ in 2 by first computing A?(z;) from A\?(z() and then multiplying this by the parallel
transport matrix from 1 to 2. To bound the valuations of the coefficients of the entries of A?(z),

we first compute

¢y := ordy(A?(21))
using Lemma 4.4. By the above, we find that the ith coefficient of every entry of the expansion of A?(x) has valuation
atleast (7)+c1. We use this to bound the valuations of the coefficients of the local height h,,. Recall from §3.3 that we
use a height with respect to an End(.J)-equivariant splitting of the Hodge filtration; let vsp be the smallest valuation

of the coefficients of this splitting in terms of our basis w. We denote by ord, (i) the smallest valuation in the
coefficients of the rational function gy, and we set

cg := min{0, vgp, ord, (Bril), vspt + ord,(Bri) } -

22



QUADRATIC CHABAUTY: ALGORITHMS AND EXAMPLES

LEMMA 4.5. Let

hp(a(t) = 3 hit!
120
be the expansion of h,, on the residue disk D in the local parametert. Then we have

ordy(h;) = min{ord, (i), ¢ (i) + c2}. (4.23)

Proof. This follows from the discussion above and from (3.2), which expresses h,(z) in terms of AF!!(x) and A?(z).
O

We set c3 := min;{ord,(d;)}, where the d; are the coefficients in (4.22). Let ¢9 > 0 be such that

—[log,,(i)] < min {di<77), \\OrdpéﬁFﬂ)J 7 {Ofdp(’rgﬂ) - C2J }

for all i > ig. Then we have (i) = —2|log,(i)| + c1 for all i > ig. This proves the following:

PrOPOSITION 4.6. Let
p(t) = pit’
120
be the expansion of the quadratic Chabauty function p = h — hy, on D. Ifi > ig, then we have

ord,(p;) = —2[log,(i)] + c1 + min{cy, c3}.

Together with Proposition 4.6, the following result allows us to provably determine the roots of p to any desired
precision.

LEmMA 4.7. Suppose F(z) = 3, Fiz' € Q] is such that there are integers k, m, n satisfying
min{ord,(F;) +i:i >0} =k
and
max{i > 0 : ord,(F;) + 1 =n} <m,

and furthermore that F' has at most d roots in the closed disk {ord,(x) > 1}. Then the roots of F'in the ball {ord,(z) >
1} can be determined, with multiplicity, to precision (n — k)/d, by computing Fy, . .., Fy,,—1 modulo p™.

Proof. By our assumptions, F(pz) lies in p*Z,[x] — p**1Z, [z]. Hence the power series G(z) := p~*F (pz) lies in
Z,[z] — pZ,[x]. Furthermore, by our assumptions, for any a € Z,, the positive slopes of the Newton polygon of
G(z + ) are uniquely determined by the first m coefficients. If G (z) is congruent modulo p" ¥ to a polynomial H
in Z,[x] with a root a € Z,, of multiplicity e, then the valuation of the first e coefficients of G(x + «) must be at
least n — k. Since G (x + a) has degree < m mod p"~* and has at least one coefficient of valuation zero, we deduce
that the Newton polygon of G(x + «) must contain a segment of slope > (n — k)/d of length at least e. O

Remark 4.8. In practice, we usually apply this with d = 1, by recentering and rescaling our power series so that there
is only one root in the ball {ord,(z) > 1} (and because in practice the power series do not typically have repeated
roots). Hence most loss of precision occurs from k being large, rather than d.

5. Examples

In this section, we apply our techniques to compute the rational points on

— the exceptional modular curve Xg, (13) (see §5.1);

— all curves X (V) of genus 2 and 3 for which N is prime and the rational points were not previously known
(see §5.2);
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— two genus 2 curves of interest in Mazur’s Program B (see §5.3);

— two genus 2 curves with Jacobian of GLa-type that have nontrivial local height contributions away from p (see
§5.4);
— the non-split Cartan curve X, (17) (see §5.5).

For the computations, we used our Magma implementation. The code used for the examples, along with log files,
can be found in the folder Examples at [BDM™].

5.1 The exceptional curve Xg, (13)

Recall that for a prime ¢ > 5, any proper subgroup of GL2(F/) is conjugate to a subgroup of a Borel subgroup, the
normaliser of a Cartan subgroup, or an “exceptional” subgroup with projective image isomorphic to Sy, A4, or As.
The field of definition of the modular curves attached to the exceptional subgroups is the unique quadratic subfield

Q(v/£{) of the cyclotomic field Q({,), with the exception of the curves Xg,(¢) for £ = £3 (mod 8), which are
defined over Q. For such values of ¢, we would therefore like to determine Xg, (£)(Q).

Serre [Ser72] shows by a monodromy argument that such tetrahedral modular curves have no points defined over
Q¢ when / is large enough, and in particular he obtains

Xs,(0)(Q) =0, if ¢>13.

The curves Xg,(3) and Xg, (5) are both of genus zero, and contain a unique rational cusp. Ligozat [Lig77] showed
that Xg,(11) is an elliptic curve of conductor 112 whose Mordell-Weil group is trivial, where the unique rational
point is CM, corresponding to discriminant D = —3. This leaves only the curve Xg, (13), which has genus 3. In fact,
this curve is the last remaining modular curve of level 13" whose rational points have not been determined.

Using modular symbols algorithms, Banwait—Cremona [BC14] show that the curve X, (13) is a smooth plane quartic
whose canonical model is given by

423y — 32%y% + 3xy® — 232 + 162%yz — 11lay? 2+
5y + 32222 + 92y2? + 22 4 a2 +2y2% = 0.

Furthermore, they exhibit the following four rational points
{(1:3:-2),(0:0:1),(0:1:0),(1:0:0)} C Xg,(13)(Q),

where the rational point (0 : 0 : 1) corresponds to an elliptic curve with CM by the order of discriminant D = —3,
and the three other rational points correspond to non-CM elliptic curves over Q with projective mod 13 image equal
to Sy, whose j-invariants are given by

, 24.5.134. 173 , 212.53.11-134
J = 33 J == 313

218.33.13%.1273.1393 - 1573 - 2832 - 929
513 . 6113 :

] =

The Jacobian of Xg, (13) is isogenous to that of X" (13), so it is absolutely simple and has Mordell-Weil rank 3 over
Q by the results of [BDM ™19, §6]. The curve has potential good reduction at p = 13, as can be seen, for instance,
using the Sage toolbox MCLF.

We determine the set of rational points on the curve Xg,(13) using quadratic Chabauty with p = 11 for the affine
patches

yt + (182 + 9)y> + (16022 + 1762 + 52)y* + (560> + 83222 4 384z + 48)y
+ 1922 + 51223 + 3842° + 642 = 0
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and

vt + (92 + 9)y> + (5222 4 72z + 36)y> + (4827 + 24022 + 208z + 64)y
+ 642> + 19222 — 64z = 0.

The computation is analogous to the computation of X" (13)(Q) in [BDM*19]. The Hecke operator T} generates
the Hecke algebra, as can be verified, for instance, by checking the analogous statement for X;"(13). Hence we may
construct suitable cycles Z1, Zs from T7; and its square, respectively. The set of common zeroes of the resulting
quadratic Chabauty functions consists precisely of the known rational points, so we obtain Theorem 1.1.

In order to solve for the height pairing, we use the 4 known rational points and the cycle Z1, so the resulting function
automatically vanishes there. However, since the cycles Z; and Z5 are independent, and Zs is not used to solve for
the height, the vanishing of the resulting function in the rational points provides a check for the correctness of our
code.

Remark 5.1. Since the Jacobian of X, (13) is isogenous to that of X (13), even if there were not enough rational
points on Xg, (13) to solve for the height pairing, one could instead solve for it using X (13).

5.2 The Atkin-Lehner quotients X (IV)

For a positive integer N, consider the Atkin-Lehner involution wy acting on the modular curve X((N). Then the
quotient

Xo (N) = Xo(N)/(wn)
is a smooth projective curve defined over Q whose non-cuspidal points classify unordered pairs { £'1, Eo} of elliptic
curves admitting an N-isogeny between them. The study of rational points on these curves is also important in
an ongoing research program aiming to compute quadratic points on the modular curves X(N); see, for instance,
recent work of Box [Box21]. Among the rational points, we distinguish between cusps, CM-points and exceptional

points, those which are neither cusps nor CM points. The exceptional points correspond to quadratic Q-curves
without CM.

In this section, we restrict to prime values IV such that X (V) has genus 2 or 3. Galbraith [Gal96] has computed
models for all these curves (and many more) by finding relations in the vector space spanned by the newforms of
level N and weight 2 that are invariant under wy. Up to conjugation, there is a unique such newform.

By work of Ogg, for prime level N, the curve X (N) has genus 2 if and only if
N € {67,73,103,107,167,191} . (5.1)
It has genus 3 if and only if
N € {97,109, 113,127, 139, 149, 151, 179, 239} . (5.2)

Models for all these curves were communicated to us by Elkies; one can also find such models in Galbraith’s the-
sis [Gal96] or by using the Magma command XONQuotient.

Via a search for small rational points, Galbraith [Gal99] found exceptional rational points on X (N) for N =
73,91,103, 191 (genus 2) and N = 137, 311 (genus 4). The latter examples disproved an earlier conjecture of Elkies
that there are no exceptional rational points on non-hyperelliptic X (V) for prime level N. In [Gal02], Galbraith
also finds an exceptional point on XS' (125) and conjectures that there are no further exceptional points on modular
curves X (N) of genus 2 < g < 5.

Together with [BBB™21] and [Gal96], our computations described below prove Theorem 1.3. We first check that
for level N as in (5.1) and (5.2) the curves X (V) satisfy the requirements to apply our algorithm. The Jacobian
Jo (N) of X (N) has real multiplication over Q, so the Picard number is at least g. Using Magma we computed
the L-function of the corresponding newforms to show that the analytic rank is g, so the work of Gross—Zagier and
Kolyvagin-Logachev proves that the rank of J(Q) is exactly g. For the genus 2 examples, we also applied two-descent
on J; (N), as implemented in Magma, to have an independent check.
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The curves X (N) have good reduction away from IV, but in contrast to X,%(13) and Xg, (13), they do not have
potentially good reduction at N. Nevertheless, the following result implies that when applying quadratic Chabauty,
there are no nontrivial contributions to the height away from p.

LEMMA 5.2. There is a regular semi-stable model X" (N) of X" (N) over Zy whose special fibre has a unique irreducible
component. In particular, the local height hy is trivial on X (Qn).

Proof. If N = 2,3 the result is readily checked. When N > 3 the Atkin-Lehner quotient of the model Xy(N) for
Xo(N) over SpecZ constructed by Deligne—Rapoport [DR73] is shown by Xue [Xue09] to be regular and semi-stable.
Its special fibre at IV is a projective line, with an ordinary double point for every conjugate pair of supersingular
j-invariants in F y2\F . It follows from Theorem 3.2 that hyy is trivial. O

Finally, we checked for all N in (5.1) and in (5.2) that the Jacobian is absolutely simple by finding a prime ¢ of good
reduction such that Jg,_ is absolutely simple, using the criterion of Howe and Zhu [HZ02, Proposition 3].

5.2.1 Genus2 In[BBBT21], the rational points on X (IV) for N = 67, 73, 103 were computed. Using a combination
of quadratic Chabauty and the Mordell-Weil sieve, it is shown there that X (67)(Q) contains no exceptional points
and that the sets X (73)(Q) and X (103)(Q) both contain one pair of exceptional points each, with respective
j-invariants (see [Gal99, Table 1])

§ = (81450017206599109708140525 + 14758692270140155157349165 - /—127) /274,
J = (35982263935929364331785036841779200
+669908635472124980731701532753920 - /5 - 577.

The remaining prime level genus 2 curves X (107), X, (167), and Xf (191) are more challenging, because they do
not have sufficiently many rational points in the sense of §3.3 to solve for the height pairing, so we need to compute
heights between divisors. In all cases, the quadratic Chabauty function p = h — h), has p-adic zeroes that do not
come from a rational point; to verify this, we apply the Mordell-Weil sieve.

Example 5.3. We discuss our computations for the example X := X (107) in some detail.

We look for a prime p of good reduction such that

— there is a unique Q)-rational Weierstrass disk, and it does not contain known rational points,
- the Hecke operator 7}, generates the Hecke algebra, and
— pis suitable for the Mordell-Weil sieve.

For p = 61, the first two conditions are satisfied; moreover, we have
J(Faz9) =%/ 61)2 % V(4 61)2

and since J(F¢1) ~ Z/(31 - 151)Z has quite smooth order, 61 is a suitable prime. We now go through the steps in
Algorithm 3.12, applied to X.

Step (i) The model

y? = —32% — 425 — 221 4 223 + 527 + 20 + 1 =: f(2),
of X has 6 small rational points of exponential height at most 1000, given by {(0,£1), (£1,41)}. It also has no
Qg1-adic points at infinity, so that we only need to run our algorithm for one affine patch. We fix the base point

b= (0,-1).

Step (iv): We may use the unit root splitting, since p = 61 is ordinary. (See Remark 3.15.)
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Step (v): Using Step (iii), we find for

0 2/3 —2 4
_ -2/3 0 4 2

7 =27y = (Te(Te1) - Iy — 4T51)C ™' = 2/ 40 ol (5.3)
-4 -2 0 0

that
Z =Y Zijw ®w; € Hip(X/Qe1) ® Hig (X/Qe1)
1]
corresponds to a nontrivial cycle Z € ker(NS(J) — NS(X)) where C is the standard symplectic matrix of
dimension 2g and w is the basis found in Step (ii).

Step (vi(a)): The Hodge filtration for Z is given by vrjj = —4x — 4 and Spj) = 0. After computing the Frobenius
structure, we obtain a power series expansion of the function = +— hg1(A(z)) on all residue disks of X (Qg1), except
for the disks at infinity and the unique Weierstrass disk containing points that reduce to (31, 0).

Step (vi(b)): The points P,Q € J(Q) with respective Mumford representations (¥? + z,1) and (2% + 1,2z — 1)
generate a subgroup of J(Q) of index 2. To solve for the height pairing via §3.3.1, we need divisor representatives
with support in distinct non-Weierstrass residue disks. Let E be the degree 2 divisor on X cut out by the functions
22 4 1 and 22 — 1 and let £ be its image under the hyperelliptic involution. We set

Dy =(0,1) + (—=1,1) — divg(z — 1), D} =(0,—1) + (=1,—1) —divo(z — 7)

Dy = F —divg(x — 7), Dj)=FE —divo(x —1).

Then we have h(P,Q) = >, hy(D1, D) and
h(P,P) ==Y hy(D1,D}), h(QQ)==>Y hy(Ds, Dj).

The divisors above all split over Qg1, so we can compute the height pairings hg1 (D1, D2), he1 (D1, D}) and hg1 (D2, D5),
working on a monic odd degree model over Qg;. Using Magma’s implementation of the algorithm described in [Mil14],
we also find

Z he(D1, Dy) = —2logg 2 + 2logg; 3 — loge; 7,

0#61

Z he(D1, D2) = 2logg; 2 — 2logg, 3 + logg, 7,
0#61

Z he(Da, Dy) = 3logg; 2 — logg, 5,

0#61

and we conclude that
h = apogoo + ao1901 + 11911,
where
g0 =58 - 6171 +19+2-61 +43-612 + O(61%)
g1 =43 - 6171 + 48 + 44 - 61+ 41 - 612 + O(61%)
11 =49-6171 +13+55-61+2-612 + 0(61%),
and the g;; are defined in (3.3).

Steps (vi(c)) — (vii): Combining the functions resulting from Steps (vi(a)) and (vi(b)), we find a power series expansion
of the quadratic Chabauty function

p=nh—he: X(Qe1) = Qo1
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in all affine non-Weierstrass disks. By Lemma 5.2, the local heights h/(A(z)) are trivial for £ # 61, so T = {0} and
all rational points are zeroes of p. We find that p indeed vanishes on the known rational points, and that these are
simple zeroes of p.

In addition, p vanishes to multiplicity 1 on 82 points in X (Qg1) that do not appear to be rational. As described
in §3.4, these yield cosets of 612.J(Q), and our implementation of the Mordell-Weil sieve shows that the image of
these cosets does not intersect the image of X (Fag9) inside J(Fa29)/612.J(Fa29). Hence these additional zeroes do
not come from a rational point.

Recall that there are no Qg -rational points at infinity, so it only remains to show that there are no rational points
in the Weierstrass disk. To this end, we show that for

S = {41, 83,641, 1697,4057, 10853},
the image of the reduction of this disk does not intersect

m(Ss,2.61) CH /Mj F,)

veES
where M = 2#J(F¢1) and B261: [[,cg X(Fo) = [[,cq J (Fv)/MJ(F,) is induced by the Abel-Jacobi map with
respect to b and the canonical surjections.

This completes the proof that # X (Q) = 6. According to Galbraith [Gal96], these points are all cusps or CM-points.
Example 5.4. We were able to prove that the curve
X$(167): y?* = 2% — 4a® 4 22% — 20% — 322 + 22— 3

only contains the four obvious rational points {(—1, £1), 0oy } ; these are all cusps or CM by Galbraith [Gal96]. In
our computation, we use our quadratic Chabauty algorithm for p = 7 and the Mordell-Weil sieve, following the
same strategy as in Example 5.3. The verification that the additional solutions of the resulting p-adic functions are
not rational was the most challenging Mordell-Weil sieve computation we encountered in our work; it required the
auxiliary integer 5 - 11 - 19 and the set of good primes

S ={3,5,19,29,31,67,263, 281,283,769, 1151, 2377, 3847, 4957, 67217 }.
Example 5.5. A model for X (191) is given by
P =204+ 22 + 223 + 522 — 6+ 1.

We use quadratic Chabauty for p = 31 together with the Mordell-Weil sieve exactly as above to show that X (191)(Q) =
{(0,%1),(2,£11), 0oy }. Galbraith (see [Gal99, Table 1]) has shown that (2, —11) is exceptional, with corresponding
j-invariant
J =2891249511562231668955764266428063102082570956800000
+ 64074939271375546714155254091066566840131584000v/61 - 229 - 145757 .

5.2.2 Genus 3 We apply our algorithm to show that the rational points on the curves X (N) for N as in (5.2)
are precisely the ones already found by Galbraith. All curves in our list are non-hyperelliptic and they have the
convenient feature that they have sufficiently many rational points, so no heights on divisors need to be computed.
We always find two independent cycles in ker(NS(J) — NS(X)), and, as expected, the common zero set of the
corresponding functions consists precisely of the rational points found by Galbraith.

THEOREM 5.6. Let N be a prime such that X, (N) has genus 3. Then the rational points on X (N) are as below. In
particular, all rational points are either cusps or CM-points, with discriminant A.

Example 5.7. A model for X (97) is given by
22 4+ (= + 2y)2® + (= — 2y® — 22z + (29° + 2%?) = 0.
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Using our algorithm for p = 5, we find that the rational points are as follows:

[ A ] cusp [ -3 [ —4 [ —8 [ —11 ] —12 [ —16 [ =27 ] —43 [ —163 ]
[ Point | (1:0:0) [ (=2:1:1) [ (=1:0:1) [ (0:0:1) | (0:1:0) [ (0:—1:1) [ (1:0:1) [ (A:1:1) | (=1:1:0) | (5:3:2) |

Example 5.8. A model for X (109) is given by
228 4 (zy 4+ 22) 2 + (= — 2% — 2%)x + (=21 — 32292 — 22%y) = 0.

Using our algorithm for p = 29, we find that the rational points are as follows:

[ A ] cusp [ -3 [ —4 [ -7 [ —12 —16 | —27 [ —28 [ —43 |
[Point | (1:0:0) [ (=2:1:2) [ (0:—=2:1) [ (0:—=1:1) [ (0:1:0) | (0:0:1) [ (=1:—-1:1) | (=2:1:1) | (1:-1:1) |

Example 5.9. A model for X (113) is given by
zad 4 (—y? = 222t + (P + 2 + (—22%% + 2By) = 0.

Using our algorithm for p = 17, we find that the rational points are as follows:

A& [ e [ -4 [ -7 [ -8 [ -1 [ ~-i6 [ -28 [ -1i63
[Point [ (1:0:0) | (2:2:1) | (0:1:0) [ (1:1:1) [ (1:1:0) [ (0:0:1) [ (0:1:2) [ (5:3:1) |

Example 5.10. A model for X (127) is given by
2x3 4 (—y? = 329)2® + (P — 22y + 423)x + (2213 — 32%2 + 323y — 221) = 0.

Using our algorithm for p = 11, we find that the rational points are as follows:

[ & cusp —3 — —12 —27 —28 —13 —67
[ Point | (1:0:0) [ (6:3:2) | (2:1:1) | (1:1:0) | (1:0:1) | (0:1:1) [ (0:1:0) | (4:2:1) |

Example 5.11. A model for X (139) is given by
22 4 (= + 2y)2? + (—y® — 2207 — 322y — 2z + (Y + 23 + 222 + By) = 0.

Using our algorithm for p = 19, we find that the rational points are as follows:

[ A ] cusp [ —3 [ -8 [ —12 [ —19 [ —27 ] —43 |
[ Point | (1:0:0) [ (4:—3:1) [ (0:0:1) [ (0:—1:1) | (1:—-1:1) | (1:0:1) | (=1:0:1) |

Example 5.12. A model for X (149) is given by
2ad — 22?4+ (P + 2y? — 2%y — A+ (—yt + 2P + 222 - Py) = 0.

Using our algorithm for p = 11, we find that the rational points are as follows:

A [ cusp [ —4 [ —7 [ —16 [ —19 [ —28 [ —67
[Point | (1:0:0) | (—1:0:1) | (0:1:1) | (1:0:1) [ (0:0:1) | (0:—-1:1D) | (z:2:1) |

Example 5.13. A model for X (151) is given by
2xd 4 (—2zy + 222 4 (=2 + 2297)x + (—2® + 3227 — 2By — 221) = 0.

Using our algorithm for p = 19, we find that the rational points are as follows:

A& | s ] —3 [ -7 [ -1z [ —2r | -8 [ -6t | —163 |
[ Point | (1:0:0) [ (=2:—2:1) | (0:1:0) [ (0:2:1) | (A:1:1) [ (2:3:2) | (1:0:1) [ 3:2:1) |

Example 5.14. A model for X (179) is given by
zad + (=2zy — 2H)a? + (= — 29 — 22%y — 23 + (=292 + 2Py) = 0.

Using our algorithm for p = 17, we find that the rational points are as follows:

[ & ] e ] —7 [ —8 | —11_ ] —28 | —163
[ Point | (1:0:0) [ (0:—=1:1) [ (0:1:0) | (0:0:1) [ (0:1:1) [ (=2:2:1) |

Example 5.15. A model for X (239) is given by
2x 4 (—y? + 2y + 222 4 (=P — 2y — 22y)x + (v 4 32% 4+ 2227 + 2By) = 0.

Using our algorithm for p = 13, we find that the rational points are as follows:

[ A ] cusp [ —7 [ —19 [ —28 [ —43
[Point | (1:0:0) [ (=1:0:1) [ (0:0:1) | (1:=-2:1) | (1:-1:1) |
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5.3 Genus 2 curves in Mazur’s Program B

In this section, we determine the rational points on two genus 2 curves that were communicated to us by David
Zureick-Brown. They arise in the work of Rouse, Sutherland, and Zureick-Brown [RSZB21] on Mazur’s Program B
as modular curves Xy = X (25)/H, where I'(25) C H C GL2(Zs). Both curves have the following properties:

— They each have two rational points of exponential height at most 1000, good reduction away from 5, and
potentially good reduction at 5.

— Their Jacobians have real multiplication, no rational torsion and Mordell-Weil rank 2; they are both absolutely
simple.

— The Galois action on the 2-torsion field is A5, which is too large for an elliptic curve Chabauty computation.

We prove that # X (Q) = 2 for each curve Xy using quadratic Chabauty and the Mordell-Weil sieve, similar to
the computation of X (107)(Q) described in detail in Example 5.3.

Example 5.16. A suitable affine model of the curve X1, is given by
X11: y? = —352% 4+ 3102° — 6752 + 75023 — 45022 + 140z — 15.

As in Example 5.3, we found the rather large prime p = 61 to be the most convenient one for our computations. We
determine the height pairing on the Jacobian using divisors as in §3.3.1. The quadratic Chabauty function p has 62
solutions in addition to the rational ones. Applying the Mordell-Weil sieve with the primes 7, 29, 257 and 3457, we
show that these are in fact not rational; to prove non-existence of rational points in the unique Weierstrass disk, we
sieve with the primes 31, 61 and 191. This shows that X;;(Q) = {(1,£5)}.

Example 5.17. We use the model
X15: y? =525 — 50z* — 15023 + 2522 4+ 90z + 25

with small rational points (0, £5). Again we run quadratic Chabauty for a fairly large prime, namely p = 71, resulting
in 78 additional zeroes in X (Q71) that we show to be non-rational by sieving with the primes 7,43, 83,101, and
1399. There is an additional final sieving to show there are no rational points in the Weierstrass disk. We conclude
that X15(Q) = {(0,+5)}.

5.4 Two curves with nontrivial local heights away from p

We compute the rational points on two genus 2 curves Cjgg and C1g1 considered in [FLST01]. In both cases, the
Jacobian of C'y is an optimal quotient of Jy(N), so it has real multiplication and Picard number 2. The Mordell-Weil
ranks are both 2 as well, and the rational torsion subgroup is trivial. In [FLST01] empirical evidence was presented
that the full conjecture of Birch and Swinnerton-Dyer holds for both Jacobians. The curves themselves have good
reduction away from V.

So far, all curves whose rational points were computed via quadratic Chabauty had trivial contributions away from
p, except for the bielliptic examples in [BD18, BD21]. However, for those examples it was possible to find the local
contributions away from p by relating them to local heights on the elliptic quotients. In the examples presented here,
we compute these contributions using Theorem 3.2. As discussed in §3.1, we do not have a general algorithm for
the action induced by an endomorphism on étale cohomology. Nevertheless, we show below that we can sometimes
derive sufficient information from Theorem 3.2 to pin down the local contributions precisely, by computing the local
heights at p = 3 for the known rational points and by exploiting the bilinearity of the global height pairing.

We include these examples to illustrate the practicality of our algorithms. However, we note that the rational points
on both curves can be computed by combining covering collections with elliptic curve Chabauty. For C'gg this was
pointed out to us by Nils Bruin, and for C}¢;, this computation is due to Bars, Gonzélez, and Xarles [BGX21].

Example 5.18. We first consider the genus 2 curve

Cisg: > =2 —a*+ 23+ 22— 22+ 1. (5.4)
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Over Zy7, it has a regular semistable model whose special fibre is a curve of genus 1 with a node, so h47 is trivial by
Theorem 3.2. However, as we shall see, there are nontrivial contributions to the local height at 2.

The integral points on Cigg over Q(+/—3) were computed in [BBBM21, Example 6.5]. In the present work, we show
that

ClSS(Q) = {(07 il)? (17 :l:l)v (_17 :l:l)a (27 :l:5)7 (4a :l:29)7 OO} (5-5)
For our computations, we use the good ordinary prime p = 3, the base point b = (1, 1), and a cycle Z constructed
from the Hecke operator T3 as in (5.3).

Recall from Example 3.3 that there is a regular semistable model over K = Q3(+/2) and that the corresponding
metric graph I',¢g is a line segment. The two genus one vertices wg and w; have pre-images

Uy == {P S Clgg(Qg) : Ol"dg(ZC(P)) > 0} , U = {P S Clgg(Qg) : Ol“dg(iL’(P)) = 0},
respectively. The set Us := {P € C133(Qz2) : orda(z(P)) < 0} maps to the midpoint wy of the line segment.

Since the function jr from Theorem 3.2 is affine linear and vanishes at wj, there is a constant s such that for all
x € C183(Q2) we have

ha(A(P)) = m(P) - k.
where

2, when z(P) is divisible by 2,

m(P) =140, when z(P)isa 2-adic unit,

1, when z(P) is non-integral.
One could determine « by further computing the trace of Z acting on the cohomology of the two genus one curves
in the special fibre of the regular model described in Example 3.3. In this example, we can determine x by computing
local heights at p, as there is a unique choice of x such that

hs(A(P)) +m(P) -k

satisfies the bilinearity properties of a global height. We can reduce the determination of x to linear algebra by
computing h3(A(P)) and the values of a basis of the space of Endg(.J)-equivariant bilinear pairings for 3 = g + 1
rational points P € X (Q). We find x = 4 log,(2).

To finish the computation of the rational points, we first solve for the zeroes of the quadratic Chabauty function p on
the affine patch (5.4). In order to deal with the Weierstrass disk at infinity, we move the point at infinity to (0, 0) and
repeat the computation for the resulting affine patch. We then apply the trick described in [BDM ™19, §5.5], changing
the base point and reducing the computation of the Frobenius structure to the computation of Coleman integrals.

We find that p vanishes on the known rational points and that it vanishes on 13 additional Q3-points to precision
3°. Upon noticing that .J(Fy3) ~ (Z/547Z)?, we show that the reductions of the corresponding cosets of 27.7(Q) do
not meet the image of C33(F43) in J(F43)/27J(F43). This suffices to prove (5.5).

Example 5.19. The curve C1g1 has an affine equation
y? =25 + 221 + 623 + 1727 + 182 + 5 = (23 — 222 + 3z + 5) (2 + 222 + 3z + 1).
As discussed in [BGX21], this is in fact a model for the modular curve X(161) = X¢(161)/(w7, w23). The curve

has ten small rational points
1 209 1 35
—+x— |, (—-1,£1),(1, £ =, +t— . 5.6
(3450 ) LD 0D, (5557 ) oo 6.9

Anticipating the need to use the Mordell-Weil sieve, we choose the prime p = 29 and the cycle Z corresponding to
the endomorphism 4759 — Tr(T29)14.

The bad primes are 7 and 23. At both of these primes, the stable model has special fibre a genus zero curve with
two double points. One can show this, for instance, using the program genus2reduction due to Qing Liu,
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now contained in Pari/GP or Sage. This (or Magma’s RegularModel package) also shows that the model
over Zos defined by the given equation is regular. Indeed, the 23-adic valuation of the discriminant is 2; therefore
both singular points (2,0) and (11, 0) on the reduction modulo 23 define regular points on this model. Hence the
given equation defines a regular semistable model over Zs3, and all of the Q23 points lie on a common irreducible
component of a minimal regular model over Zy3, so the height contribution at this prime is zero by Theorem 3.2.

At 7, the discriminant has valuation 4, so the model defined by the given equation is not regular. The singular
points on the special fibre are (1,0) and (4, 0). Blowing up once in both of these yields a semistable regular model
whose special fiber consists of two genus 0 curves w; and wg that do not intersect and another genus 0 curve wy
which reduces to the smooth locus of the stable model and which intersects w; and ws transversely in two points
each, e; and ez and e3 and ey respectively. This information can also be obtained from genus2reduction or
RegularModel.

€2 €4

€1 €3

Figure 1: Dual graph of the minimal regular model of C'j5; at £ = 7.

The corresponding dual graph is shown in Figure 1. We choose an orientation by designating wy as the source of e;
and e3 and as the target of e and e4. The points (i, :i:260—49) , (—1,+£1), 0o listed in (5.6) reduce to the component wy.
The points (1, £7) reduce to w; and the points (%, :l:%) reduce to wa. We may again use Theorem 3.2 to determine
the possible values of h7(P), without computing the action of our chosen correspondence on H*(T"). Note that in

this case, the homology H;(T") is generated by ;3 = e2 + €1 and 2 = e3 + e4 respectively. Since Z is trace zero

on H; (T"), with respect to this basis, the corresponding endomorphism must be of the form ( Z b ) . Then, by

Theorem 3.2, the measure /17 is simply given by §(y1 — 72), since both edges have length 2. The image of X(Q7) in

I" consists of the three vertices wq, wy, and wy and hence if we take the basepoint (i, 26%) reducing to wy, the values

of jr are simply a, 0, —a. We solve for a using a 29-adic computation similar to the previous example, and we find
that @ = —4. Finally, we apply the Mordell-Weil sieve with M = 4 - 292 and primes 199, 373, 463 to show that the
only 29-adic points in the zero set of p modulo 29° are the rational points listed in (5.6). This proves that these are
indeed the only rational points on C'¢;.

5.5 The nonsplit Cartan modular curve X, (17)

The modular curve

X =X, (17)
attached to the normaliser of the non-split Cartan subgroup of level 17 has genus 6. By [DF21, §5.3], the rank of
JE(17)(Q) is also 6. The set of rational points X (Q) can be determined without computing local heights at the bad
prime 17, even though these contribute nontrivially when determining X (Q,,)2, by choosing the correspondence Z
carefully.

The curve X has a semistable model X’ over W (F17)[w] with @ = (1 + (17)"/?, where W (F17) is the ring of Witt
vectors of F';7, described by Edixhoven—Parent [EP21]. Its special fibre has two irreducible components

Cr Y =x(2"+a), aeF,
Cy : 22 =w(w®+b), beF.,
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which have genus 4 and 1, respectively. They are smooth and intersect transversely in two points, so that the Jacobian
has toric rank 1. The inertia subgroup I C (GGq,, acts via automorphisms on the special fibre of this model, and the
stabiliser of the set of irreducible components is contained in z13(Fy72) = (¢), where the root of unity ¢!® = 1 acts
on the components by

¢ ¢ (my) (P, Cy),

¢ ¢ (z,w) — (¢'?2,¢5w).
The resulting operator [(] on the cohomology of these curves has characteristic polynomial
det (1 —¢[¢] : HY(C1,Qp)) = (P +t+1)(t°+3+1),
det (1 —¢[¢] : HY((2,Qp)) = (#2+t+1).

Since the Hecke action on the cohomology of X is defined over Q, it must commute with the action of inertia, and
therefore the irreducible Hecke modules of the Jacobian up to isogeny must be contained in the submodules coming
from the toric part (dimension 1) and the parts where the operator [(] is of order 3 (dimension 2) and of order 9
(dimension 3). By the work of Chen and Edixhoven—de Smit [Che00, EdS00] the Jacobian of X admits an isogeny
to the new part of the Jacobian of X (17%) equivariant for the anemic Hecke algebra. The new part of the Jacobian
of X (17%) decomposes up to isogeny into irreducible factors M; x My x M of dimensions 1,2, 3 respectively,
where My, Ma, M3 are killed by the Hecke operators

M, (T2+1):0,
My (T22 + T5 —3) =0,
My : (T3 -3Tx+1)=0.

If we set M = (T + 1)(T2 + Ty — 3), we find that Z = M and Z = 2M3 + 3M? are nontrivial trace zero
correspondences that induce the zero endomorphisms on H; (I", Q) and the cohomology of C5, so that Theorem 3.2
implies that yr = 0, and hence the 17-adic height vanishes:

hi7(Az(z)) =0, forall x € X(Qu7).

In fact, starting from any generator 71" of the Hecke algebra (like 7" = T3 above), one easily computes two linearly
independent trace zero correspondences Z € Z[T] that act trivially on the dual graph and the cohomology of Cy,
which therefore likewise ensures the triviality of the associated 17-adic height.

To put these observations into action, we choose p = 31 and use the model of X found by Mercuri and Schoof [MS20,
§6] as an intersection of six quadrics in P°. Our strategy for finding a suitable singular plane curve model largely fol-
lows [AAB™21]: To find a model with small coefficients, we use the Magma function Genus6PlaneCurveModel,
and then apply an automorphism of P2 to ensure that there are two rational points at infinity (this speeds up the
computation of the Hodge filtration (see [BDM ™19, Section 4]) where one passes to a number field over which the
divisor at infinity splits completely). We obtain a singular plane curve model Q(z,y) = 0, where
5-Q(z,y) = 5y° + (24w + 12) y® + (—4952% — 543z — 153) y*+

(—14722% — 28142% — 17192 — 337) y°+

(—16862* — 487523 — 47612 — 1902z — 263) y*+

(—5402° — 20822* — 29522% — 187527 — 535z — 56) y+

1882 + 5342° + 5672 + 284a® + 702° + Tz
The fact that T3; generates the Hecke algebra can be checked from the LMFDB page for newforms of weight two, level
289, trivial character and Atkin-Lehner eigenvalue one [LMFDB]. We compute two correspondences Z € Z[T53,] as

above, and obtain a pair of power series in each residue disk, whose common zeroes to precision O(312%) correspond
to the rational points

{<_;{ ;) , <_§ _;> , <_; ;) ,(0,0), (—1,0),ool,m2} C X(Q)
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where 001 and 0o are the points (1: —1:0) and (1 : —1 : 0). Therefore, this must be the full set of rational points
X (Q). These were already found by Mercuri-Schoof [MS20, §6]; they are all CM points and the corresponding
discriminants are —3, —7, —11, —12, —27, —28, —163. This proves Theorem 1.2.

Remark 5.20. It would be interesting to use the techniques of this paper to compute the rational points on X;(19).
Mercuri and Schoof [MS20, §7] found a model for this curve as well. Nevertheless, we were unable to find a plane
affine equation for this curve and a prime p, satisfying Assumption 3.10, such that it is feasible to carry out Algo-
rithm 3.12. Difficulties arose in computing a basis of Hlp (X. Q,) due to the large degrees of the field extensions we
encountered when applying the algorithms in [Tuil7, §3].
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