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VARIANTS OF LEHMER’S SPECULATION FOR NEWFORMS
JENNIFER S. BALAKRISHNAN, WILLIAM CRAIG, KEN ONO, AND WEI-LUN TSAI

ABSTRACT. In the spirit of Lehmer’s unresolved speculation on the nonvanishing of Ramanu-
jan’s tau-function, it is natural to ask whether a fixed integer « is a value of 7(n) or is a Fourier
coefficient ay(n) of any given newform f(z). We offer a method, which applies to newforms with
integer coefficients and trivial residual mod 2 Galois representation, that answers this question
for odd a. We determine infinitely many spaces for which the ordinary primes 3 < ¢ < 37 are
not absolute values of coefficients of newforms with integer coefficients, and we obtain many
explicit examples for 7(n). We also obtain sharp lower bounds for the number of prime factors
of such newform coefficients. In the weight aspect, for powers of odd ordinary primes ¢, we
prove that +¢™ is not a coefficient of any such newform f with weight 2k > M* (¢, m) and even
level coprime to ¢, where M (¢, m) are effectively computable constants that are Oy(m).

1. INTRODUCTION AND STATEMENT OF RESULTS

In a paper innocently entitled “On certain arithmetical functions,” Ramanujan introduced his
tau-function, whose values are the coefficients of the weight 12 modular form (note: ¢ := 2™
where Im(z) > 0)

(1.1) A(z) = ZT(n)q” =q H(l — ¢")* = q — 24¢° + 252¢° — 1472¢* + 4830¢° — - - - .
n=1 n=1

These coefficients have served as a prototype and testing ground for important phenomena in
the theory of modular forms. Their multiplicative properties offered hints of the theory of Hecke
operators. Ramanujan’s conjectured bounds on their size are famous corollaries of Deligne’s
proof of the Weil Conjectures. Furthermore, Ramanujan offered congruences [11, 33, 35|, such
as

(1.2) 7(n)= Y d" (mod 691),

1<d|n

that Serre [35] later viewed as glimpses of the theory of modular ¢-adic Galois representations.

Despite these important roles, some of the function’s most basic properties remain unknown.
For example, Lehmer’s speculation' that 7(n) never vanishes remains open. Lehmer proved [24]
that if 7(n) ever vanishes, then there is a prime p for which 7(p) = 0. Using the Chebotarev
Density Theorem, Serre [36] established a quantitative result that implies that the set of such
primes p (if any) has density zero within the primes. Serre’s estimate, which holds for weight
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L« ehmer’s Conjecture” is the assertion that 7(n) never vanishes. To our knowledge, he never formulated
such a conjecture, and so we refer to his question as his speculation.
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> 2 newforms without complex multiplication, has been improved several times, and thanks to
work by Thorner and Zaman [37] it is now known that

(loglog X)?
logX

where 7(X) is the usual prime counting function. Recent work by Calegari and Sardari [17]
considers a different aspect; they establish that at most finitely many non-CM newforms with
fixed tame p level N have vanishing pth Fourier coefficient.

We consider a variation of Lehmer’s original speculation that has also been the focus of study.
For an odd integer o, Murty, Murty, and Shorey [29] proved (see [30] for a generalization) that
7(n) = « for at most finitely many n. Due to the enormous bounds that arise in the theory of
linear forms in logarithms (the crux of their method), the classification of such n has not been
carried out for any a # +1. For a = 4/, where ¢ is almost any odd prime, it is widely believed
that there are no solutions. However, there are counterexamples, such as Lehmer’s prime value
example [25]

(1.3) 7(251%) = —80561663527802406257321747.

Lygeros and Rozier [26] have subsequently discovered further prime values.

We investigate these questions for even weight newforms with integer coefficients and trivial
mod 2 residual Galois representation (i.e. even Hecke eigenvalues for T'(p) for primes p t 2N,
where N is the level). We obtain a general theorem (see Theorem 3.2) that theoretically locates
those coefficients that are odd prime powers in absolute value for such newforms. For 7(n), this
theorem gives the following criterion, which restricts arguments to explicit finite sets.

#{p < X prime : 7(p) =0} < 7(X) -

Theorem 1.1. Suppose that € is an odd prime for which €4 7(£). If 7(n) = 0™, with m € Z*,
then n = p®=t, where p and d | £(£? — 1) are odd primes. Furthermore, 7(n) = 0™ for at most
finitely many n.

Theorem 1.1 offers a method for determining whether |7(n)| = ¢™ has any solutions, which
reduces the problem to the determination of certain integer points on finitely many algebraic
curves. For ¢ € {3,5, 7}, examples of these curves include
(1.4) Y2 = X" =43" V> -5X#=44-5" and Y®-5XY?+6X%Y — X°=47"

By classifying such points when m = 1, we obtain the following theorem.?

Theorem 1.2. For every n > 1, the following are true.
(1) We have that

T(n) & {£1,+£3,4+5,£7,+13, £17, —19, 423, £37, £691}.
(2) Assuming the Generalized Riemann Hypothesis, we have that

T(n) & {:t€ : 41 <0 <97 with (g) = —I}U{—ll, —29, —31, —41,—59, —61, =71, —79, -89} .

2The Journal of Number Theory published the proceedings of the conference “Modular forms and Drinfeld
Modules” held in 2018 in Pisa, Italy. Paper [6] is an exposition of the third author’s lecture at the conference,
and pertains to some of the cases of Theorem 1.2 (1). All of the other results in the present paper have not
appeared elsewhere. This article is the main reference for the authors’ work on variants of Lehmer’s speculation.
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Remark. This paper® has stimulated a number of recent works on variants of Lehmer’s spec-
ulation. Many authors have made use of its contents and strategy to obtain further results
extending and generalizing Theorem 1.2. To be precise, Amir and Hatziiliou [2], Amir and
Hong [3], Bennett, Gherga, Patel and Siksek [10], Dembner and Jain [22], Hanada and Mad-
hukara (23], and the authors [6, 8] have made use of Theorem 1.1 to obtain explicit extensions
and further generalizations of Theorem 1.2. Most notably, Bennett, Gherga, Patel and Siksek
(see Theorem 6 of [10]) proved the striking fact that |T(n)| # (™ for every prime 3 < £ < 100
and every positive integer m.

There are infinite families of newforms with even level for which these methods apply for
ordinary primes ¢ (i.e. £1as(¢)). The next theorem offers unconditional results for 3 < ¢ < 37,
when 2k € {4,6,8,10} or ged(3-5-7,2k — 1) # 1. It also gives further results conditional on
the Generalized Riemann Hypothesis (GRH).

Theorem 1.3. If f(z) = ¢+ > >, ar(n)q" € Sau(To(2N)) N Z[q]] is an even weight 2k >
4 newform with trivial mod 2 residual Galois representation, then the following are true for
ordinary primes {.

(1) For every n > 1 we have ag(n) & {£1}.
(2) If 2k = 4, then for every n we have

ap(n) ¢ {£l : 3 < <37 prime} \ {11, —13,17,+19, —23,37}.
Assuming GRH, for every n we have
ap(n) ¢ {£l : 41 < <97 prime} \ {—41, —53, —61, —67,+71, 73, —89}.
(8) If 2k = 6, then for every n we have
ap(n) & {£l : 3 <€ <37 prime} \ {11,13}.
Assuming GRH, for every n we have
ar(n) € {£0 : 41 < ¢ <97 prime} \ {—47}.
(4) If 2k = 8, then for every n we have
ap(n) ¢ {£l : 3 <{ <37 prime}.
Assuming GRH, for every n we have
ap(n) & {£0 : 41 < <97 prime} \ {-71}.
(5) If 2k = 10, then for every n we have
ap(n) ¢ {£l : 3 <{ <37 prime}.
Assuming GRH, for every n we have

ar(n) € {£0 : 41 < ¢ <97 prime} \ {—83}.

3This paper was first posted to the arXiv on May 20, 2020.
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(6) If ged(3-5-7-11-13,2k — 1) # 1 and 2k > 12, then for every n we have
ag(n) & {:t€ : 3 < ¢ < 37 prime with (é) = —1} U {-3T7}.

Moreover, if 2k # 16, then ag(n) # 37. Assuming GRH, for every n we have

ag(n) & {:I:ﬁ 0 41 < ¢ <97 prime with (é) = —1} .

(7) If ged(3- 5,2k — 1) # 1 and 2k > 12, then for every n we have

ar(n) ¢ {iﬁ : 11 < ¢ <31 prime with (é) = 1}.

Assuming GRH, the range of this set can be expanded to include £ < 89.
(8) If 7| (2k — 1) and 2k > 12, then for every n we have

ag(n) & {:l:€ ;11 < ¢ <31 prime with (é) = 1}.

Assuming GRH, for every n we have
as(n) & {&A41, £59, £61, —71, +79, £89}.
(9) If 11 | (2k — 1), then for every n we have ag(n) # —19, and assuming GRH we have
as(n) & {~11,—29, =31, —41, —59, —61, —71, —79, —89} .
(10) If 13 | (2k — 1), then for every n we have as(n) # —11, and assuming GRH we have
as(n) & {—19,—29, —31, —41, —59, —61, —71, —79} .

Five Remarks.
(i) Theorem 1.3 applies to all newforms [31] with integer coefficients with level 2* N, where a > 0
and N € {1,3,5,15,17}. Moreover, the result holds for all odd levels when as(2) is even.

(i) These results follow from Theorem 8.2, which constrains coefficients that are odd prime
powers in absolute value. This method extends to arbitrary odd integers by Hecke multiplicativity,
thereby giving an algorithm for determining whether a given odd integer is a newform coefficient.
(iii) The proof of Theorem 1.8 (2-6) locates values =€ that are possible coefficients. For example,
Theorem 1.3 (2) allows weight 4 coefficients to be in the set {£11, —13,17, £19, —23,37}. The
proof shows that these values can only occur as one of the following coefficients:

a;(3%) =37, ap(3*) =—11, a;(3%) =-23, a;(3") =19, a;(5*) =19,
a;(7°) = =19, ap(7") =11, a;(17%) = —13, a;(43%) =17.

Similarly, Theorem 1.3 (6) allows a coefficient of 37 for weight 16, which must be ay(3*) = 37.

(iv) The assumption that 2k > 4 guarantees that certain algebraic curves have positive genus,
and so have finitely many integer points by Siegel’s Theorem. Moreover, we do not believe that
conclusions analogous to those obtained in Theorem 1.3 hold for weight 2 newforms.

(v) Some of the results in Theorem 1.8 rely on the GRH. These cases pertain to situations
where GRH was required to reduce the running time of certain computational number theoretic
algorithms. The unconditional bounds lead to infeasible computer calculations.
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Example. By Theorem 1.5, the coefficients of the Hecke eigenform E4(z)A(z) never belong to
{=1}U{£l : 3 < <37 prime}.
Moreover, under GRH the range of the second set can be extended to the odd primes ¢ < 97.
Theorems 1.2 and 1.3 offer variants of Lehmer’s speculation for individual newforms. It is
natural to consider an aspect of these questions where the newforms f vary. Namely, can a
fixed odd a be a Fourier coefficient of newforms with arbitrarily large weight? We effectively
show that this is generically not the case. To ease notation, if £ is an odd prime, then let S,

denote the set of even weight newforms with integer coefficients, trivial residual mod 2 Galois
representation, and even level that is coprime to /.

Theorem 1.4. If m € Z*, then there are effectively computable constants M~({,m) = Oy(m)
for which =™ is not a coefficient of any f € S, with weight 2k > M*(¢,m) with { ordinary for
f. In particular,* for £ € {3,5}, we have

(2m + 10%\/m if e = +,m odd, and ¢ = 3,

2m + 1013y/m if ¢ = +,m even, and ¢ = 3,

2m + 10%%/m ife=—and (=3,

3m + 10**/m if e = 4+, m odd, and ¢ =5,

3m + 1013y/m if e =+, m even, and ¢ =5,

3m +10%/m if e = —,m even, and ¢ = 5.

M=(l,m) =

Three Remarks.

(i) The condition that the level of f is even is not crucial for the proof of Theorem 1.4. If
the level is odd, then the proof implies that ay(2n + 1) # £0™ for all n provided that f has
large weight. Furthermore, if ap(2) is even, then the stronger claim that £0™ is not a Fourier
coefficient holds.

(i) The condition that the level of f is coprime to { also is not crucial. If € exactly divides the
level, then there is at most one counterexample, and it will be a Fourier coefficient of the form
ap(0") (see Theorem 2.6 (4)). Otherwise, the stronger claim holds.

(iii) Using the methods in this paper, one can obtain a generalization of Theorem 1.4 for all
odd o, as well as analogous results for odd weights and forms with real Nebentypus.

These results are related to lower bounds for the number of prime divisors of coefficients of
newforms. We obtain a general theorem (see Theorem 2.5) which implies the following lower
bound for Q(7(n)), the number of prime divisors (counted with multiplicity) of 7(n). As usual,
we let w(n) denote the number of distinct prime divisors of n, and we let ord,(n) denote the
power of p dividing n.

Theorem 1.5. If n > 1 is divisible by only ordinary primes, then
Q(r(n)) > Y (oo(ordy(n) + 1) — 1) > w(n).

pn
prime

Remark. Theorem 1.5 is sharp, as the prime in (1.3) satisfies Q(7(251%)) = 00(3) — 1 = 1.

4We offer these values to indicate that one can easily work out explicit constants.
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The proofs of these results make use of a number of important tools. The deep work of Bilu,
Hanrot, and Voutier [13] on primitive prime divisors of Lucas sequences forms the primary
framework for these results. The theory for Lucas sequences applies to the recursion relations
given by Hecke operators in the theory of modular forms. Their work, combined with some com-
binatorial facts and properties of 2-adic modular Galois representations, leads to Theorems 1.5
and 2.5. Theorems 1.1 and 3.2 follow easily from these results, and they offer an algorithm for
locating £¢™, for odd primes /¢, in Fourier expansions in suitable newforms. Such occurrences
correspond to special integer points (if any) on elliptic curves, hyperelliptic curves, and certain
Thue equations. In Section 4 we classify the integer points on the six curves in (1.4) when
m = 1 (among others), using facts about the classical Lucas sequence, the Chabauty—Coleman
method, and results on Thue equations. We rely heavily on previous work of Barros [9], Cohn
[18], Bugeaud, Mignotte, and Siksek [16]. With some assistance from Ramanujan’s congruences
for 7(n), this classification gives Theorem 1.2. In general, this classification leads to the proof
of Theorem 1.3. Finally, in the last section we prove Theorem 1.4 on variants of Lehmer’s
speculation for large weight newforms.
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2. LUCAS SEQUENCES AND THE PROOF OF THEOREM 1.5

We recall work of Bilu, Hanrot, and Voutier [13] on Lucas sequences. Combining their results
with facts about newforms gives Theorem 2.5, which in turn implies Theorem 1.5.

2.1. Lucas sequences and their prime divisors. Suppose that o and j are algebraic inte-
gers for which o + 8 and af are relatively prime non-zero integers, where «//f is not a root of
unity. Their Lucas numbers {u,(a, )} = {u; = 1,us = o+ 3, ...} are the integers

a — Bn

(2.1) un (e, ) == P

A prime £ | u, (v, B) is a primitive prime divisor of u, (v, 8) if £1 (a— B)*ur(a, 8) - - - un_1(c, B).
Bilu, Hanrot, and Voutier [13] proved the following definitive theorem.

Theorem 2.1. Every Lucas number u,(c, 5), with n > 30, has a primitive prime divisor.

This theorem is sharp; there are sequences for which usg(c, 5) does not have a primitive
prime divisor. We call a Lucas number wu,(a, 3), with n > 2, defective’ if u, (o, 3) does not
have a primitive prime divisor. Bilu, Hanrot and Voutier essentially complete the theory;
they basically characterized all of the defective Lucas numbers. Their work, combined with a
subsequent paper® by Abouzaid [1], gives the complete classification of defective Lucas numbers.
Tables 1-4 in Section 1 of [13] and Theorem 4.1 of [1] offer this classification. Every defective

"We do not consider the absence of a primitive prime divisor for us (o, B) = a+ B to be a defect.
5This paper included a few cases which were omitted in [13].
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Lucas number either belongs to a finite list of sporadic examples or a finite list of parameterized
infinite families.
We consider Lucas sequences arising from those quadratic integral polynomials

(2.2) F(X)=X?-AX +B=(X—a)(X - B),

where B = a8 = p*~! is an odd power of a prime p, and |A| = |a + 8| < 2VB = 2p° 7.
A straightforward analysis of these tables of defective Lucas numbers reveals a list of sporadic
examples, and several potentially infinite families of examples. A straightforward case-by-case
analysis using elementary congruences, divisibilities, and the truth of Catalan’s conjecture [27],
that 23 and 3% are the only consecutive perfect powers, yields the following characterization.

Theorem 2.2. Tables 1 and 2 in the Appendix list the defective u,(c, 5) satisfying (2.2).
To identify the cases where |u,(a, f)| =1 and |u,(a, B)| = £ is prime, we require the curves
(2.3) By :Y?=X""143" and By :Y?=2X*"1-1.
Lemma 2.1. Suppose that u,(«, ) is a defective Lucas number from Table 1 or Table 2.
(1) We have that |u,(«, B)| = 1 if and only if
(A,B,n) € {(£1,2,5),(£1,2,13), (£1,3,5), (£1,5,7), (£2,3,3), (£3,2°,3) },

or (A, B,n) = (+m,p,3), where p = m? + 1 is prime with m > 1.

(2) If |un(c, B)| = € is prime, then (A, B,{,n) € {(11,2,7, 7),(j:1,2,3,8),(j:2,11,5,5)},
or (A, B,{,n) = (£m,p*~1,3,3), where (p,+m) € Bi,:f and 3 1 m, or (A, B,{,n) =
(£m, p*~1 m, 4), where (p, m) € Bay,.

Proof. The proof of both (1) and (2) follow by a simple (and tedious) case-by-case analysis. [

In addition to this classification, we recall several vital facts about Lucas numbers (see Section
2 of [13]). It is important to know about their relative divisibility properties.

Proposition 2.3 (Prop. 2.1 (ii) of [13]). If d | n, then uq(a, B)|un(c, B).

To keep track of the first occurrence of prime divisors, we let my(c, 5) be the smallest n > 2
for which ¢ | u,(«, 8). We note that my(a, f) = 2 if and only if « + =0 (mod /).

Proposition 2.4 (Cor. 2.27 of [13]). If £ { afB is an odd prime with ms(«, B) > 2, then the
following are true.

(1) If €| (o — B)?, then my(a, B) = £.
(2) If ¢ 1 (o — B)?, then my(c, B) | (€ — 1) or my(c, B) | (£+1).

Remark. If ¢ | a3, then either { | u,(a, B) for all n, or £t u,(c, ) for all n.

"This corollary is stated for Lehmer numbers. The conclusions hold for Lucas numbers because £ { (o + f3).
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2.2. Prime divisors of newform coefficients. Throughout this paper we suppose that
(2.4) =q+ Z ap(n)g" € Sa(L'o(N)) N Z[[q]]

is an even weight 2k newform. Let S ¥ be the finite (generally empty) set of primes p for which
(A, B) = (ay(p), p*~') appears in Tables 1 or 2. For primes p € Sy and m > 1, we let

(2.5) F(pim) = oo(m+1) — 1,

while for p € Sy we define o(p; m) in Table 3 in the Appendix. We have the following theorem.

Theorem 2.5. Assume the notation and hypotheses above. If n > 1 is only divisble by ordinary

primes, then
)) =Y (k—Dordy(n) + > F(p;ordy(n)).
p|N PN
ordy(n)>2

Remark. Theorem 2.5 does not take into account those primes p t N which exactly divide n
because it can happen that |as(p)| = 1. Howewver, if the mod 2 residual Galois representation is
trivial, then ay(p) is even for every prime p{2N. In such cases, we get

Qag(n)) =Y (k= 1)ord,(n) + > &(p; ord,(
pIN P2N
This applies to A(z), by the congruence A(z) = 3., ¢®D” (mod 2). Since (A, B) = (7(p), p'!)
does not appear in Lemma 2.1 (1), the proof of Theorem 2.5 gives Theorem 1.5.

2.3. Proof of Theorem 2.5. We recall some basic facts about Atkin-Lehner newforms (see
[4, 28]), along with the deep theorem of Deligne [20, 21] that bounds their Fourier coefficients.

Theorem 2.6. Suppose that f(z) =q+ > —,ar(n)g" € Sau(To(N)) is a newform with integer
coefficients. Then the following are true:

(1) If ged(ny, ng) = 1, then ar(ning) = ar(ni)ays(neg).

(2) If pt N is prime and m > 2, then

2k—1 m—2).

ar(p™) = ap(p)ag(p™ ") —p* ap(p
(3) If pt N is prime and o, and 3, are roots of F,(x) := x* — a;(p)x + p** 71, then
a;n-i-l _ ﬁ;n—i—l
ap — By
Moreover, we have |af(p)| < 2T, and a, and B, are complex conjugates.

(4) 17 | N  prime, then FlU(p) = 320, ag(ap)a” = ag(p)§(r). Morcoer, we have
ar(p™) = {(il)mp(k_l)m if Ol"dpEN) =

ar(p™) = tmi1 (0, By) =

0 if ord,(NN) > 2

Theorem 2.6 leads to lower bounds for the number of prime divisors (counted with multiplic-
ity) of the coefficients in the sequence {a;(p?),as(p®),...}, where p is prime.

Proposition 2.7. Assuming the notation in Theorem 2.6, the following are true for m > 2.
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(1) If p | N is prime, then ord,(as(p™)) > (k — 1)m.
(2) Suppose that p{ N is prime. If (A, B) = (as(p), p*~') does not appear in Tables 1 or
2, then
Qay(p™)) = oo(m +1) — 1.
(3) Suppose that p { N is prime. If (A, B) = (as(p),p**~') appears in Tables 1 or 2, then
Table 3 of the Appendiz contains a lower bound for Q(as(p™)).

Proof of Proposition 2.7. The first claim follows from Theorem 2.6 (4). The second claim follows
from Theorem 2.6 (3), Proposition 2.3 and Theorem 2.1 in a case-by-case analysis. The point
is that at least one new prime divisor is accumulated with each subsequent step in a Lucas
sequence. In other words, the relative divisibility of Lucas numbers and the presence of primitive
prime divisors guarantees the lower bound. The only divisor of m + 1 which does not contribute
is u; = 1. The third claim follows similarly by taking into account the defective Lucas numbers
that appear in Tables 1 and 2. (]

Proof of Theorem 2.5. The theorem follows from Theorem 2.6 (1) and Proposition 2.7. O

3. VARIATIONS OF LEHMER’S SPECULATION

Regarding coefficients of newforms satisfying (2.4), we classify those n for which |as(n)| = ¢
is an odd prime. For the remainder of the paper, we assume that all newforms have weight
2k > 4. We first determine when |as(n)| = 1. Define the set
" {{1,4} if a(2) = +3, 2k = 4,and N odd},

f pr—

3.1
(3-1) {1} otherwise.

Proposition 3.1. Suppose that the mod 2 residual Galois representation for f(z) is trivial.
Then we have |as(n)| =1 if and only if n € Us.

Proof. By multiplicativity (i.e. Theorem 2.6 (1)), it suffices to determine when |a;(p™)| = 1,
where p is prime. By Proposition 2.7 (1), we have p { N. By Theorem 2.6 (3), it suffices to
determine when the |w;,11(cy, 8,)| = 1, where m > 2. Indeed, as(p) = uz(ay,, B,) is even for p {
2N. By Theorem 2.1, this reduces to Lemma 2.1 (1). The defective cases (A4, B,n) = (+3,23,3)
correspond to potential weight 4 newforms, while the remaining possibilities are for weight 2.
In the weight 4 cases we have a;(2) = 3, which gives a;(4) = ap(2)? — 2% = 1. O

Theorem 3.2. Suppose that the mod 2 residual Galois representation for f(z) is trivial, and
that £t ap(0). If las(n)| = €™, with m € Z* and € is an odd prime, then n = mop®~t, where
mo € Uy, pt N is prime, and d | £(¢* — 1) is an odd prime. Moreover, |ag(n)| = (™ for finitely
many (if any) n.
Proof of Theorem 1.1 and 3.2. By Proposition 3.1 and Theorem 2.6 (1) and (4), it suffices to
determine when |a;(p?")| = |ua(ay, B,)| = ¢, where p N is prime. Since 2k > 4, ( is
odd, and A = as(p) is even, Lemma 2.1 (2) leaves the defective possibilities (A, B,{,n) =
(+£m,p?*1,3,3), which by Theorem 2.6 (2), implies that (p,a;(p)) is an integer point on Y2 =
X?=1 4 3. This means that uz(a,, 3,) = ay(p®) = £3, which is the claimed conclusion with
d=10=3.

Now we consider whether a prime power can be a nondefective Lucas number w4(ay,, 5,) =
as(p?1), for primes p { 2N. Since a;(p) is even, we may assume that ¢ { a3, and me(a,, 3,) > 2.
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Moreover, Theorem 2.6 (2) implies that a;(p®) is odd if and only if b is even, and so we may
assume that d is odd. Proposition 2.4 implies that my(ay, 5,) = € or my(a,, 5,)|(¢ — 1) or
me(ayp, Bp)|(€+ 1).

Due to the generic presence of primitive prime divisors, a Lucas number that is a prime power
™ in absolute value is the first multiple of ¢ in the sequence. By Theorem 2.1, Proposition 2.3,
and Lemma 2.1 (2), this holds for every sequence satisfying (2.2) for weights 2k > 4. In
particular, d is an odd prime. The finiteness of the number of p for which |a;(p?~1)| = ¢, follows
from Siegel’s Theorem, that positive genus curves have at most finitely many integer points.
These curves are easily assembled using Theorem 2.6 (2) (see Lemma 5.1). O

4. INTEGRAL POINTS ON SOME CURVES

To prove Theorems 1.2 and 1.3, we require knowledge of the integer points on certain curves.

4.1. Some Thue equations. An equation of the form F(X,Y) = D, where F(X,Y) € Z[X,Y]
is homogeneous and D is a non-zero integer, is known as a Thue equation. We require such
equations that arise from the generating function

1

4.1 =Y F.(X,Y) T"=1+VY -T+ (Y - X)T?*+---.
(4.1) 1—VYT + XT? (X,Y) ( )

(e}

m=0
The first few homogenous polynomials F5,,(X,Y') are as follows:
(X, Y)=Y - X,
Fiu(X,)Y)=Y?*-3XY + X?
Fe(X,Y)=Y3 - 5XY? +6X%Y — X3,
Fio(X,Y) =Y —9XVY* +28X2Y3 — 35X3Y?2 + 15X*Y — X°.

For every positive integer m, we consider the degree m Thue equations of the form

(4.2) Fo(X,Y) = ﬁ (Y — 4X cos? <2ﬂji 1)) ~D

k=1

The next lemma gives integer points on several Thue equations that we shall require.

Lemma 4.1. The following are true.
(1) Table 4 in the Appendiz lists all of the integer solutions to

Fd_l(X, Y) - :|:£

for every pair of odd primes (d,{) for which 7 < d | ((¢* — 1) and € {7 < ¢ < 3T}.
(2) Conditional on GRH, Table 5 in the Appendix lists all of the integer solutions to

Fy(X,Y) = +¢

for every pair of odd primes (d, ) for which 7 <d | £({* — 1) and 41 < ¢ < 97.
(3) There are no integer solutions to Fy(X,Y) = £691.
(4) The points (£1,£4) are the only integer solutions to Fgoo(X,Y) = +£691.
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Proof. Claims (1), (2) and (3) are easily obtained using the Thue solver in PARI/GP [32] (see
[7] for all of the code required for this paper).

The proof of (4) is more formidable, as Fyoo(X,Y') has degree 345. However, for odd primes
p, the Thue equations F,_1(X,Y) = £p are equivalent to the well-studied equations

p—1
~ N 2rk
(4.3) Ex,y)=T] (Y — 2X cos (i)) = +p
k=1 p
that were prominent in the work of Bilu, Hanrot, End Voutier on primitive prime divisors of
Lucas sequences. Indeed, we have F, 1(X,Y) = F,(X,Y — 2X). They prove the important

fact (see Cor. 6.6 of [13]) that there are no integer solutions to (4.3) with |X| > €® when 31 <
p < 787. By a well-known criterion (for example, see Lemma 1.1 of [38] and Proposition 2.2.1

of [12])), midsize solutions of Fgg;(X,Y) = £691 correspond to convergents of the continued
fraction expansion of some 2 cos(2wk/691). A short calculation rules this out, possibly leaving
some small solutions, those with |X| < 4. For these X, we find (1, £2), which implies that
(£1,£4) are the only integral solutions to Fgeo(X,Y) = +691. O]

4.2. The elliptic and hyperelliptic curves Y? = X?=1 4+ (. For d € {2,3,4,6,7} and odd
primes ¢ < 97, we list all of the integer points on

(4.4) Crp: Y2 =X 40,
Lemma 4.2. If3 < { <97 is prime and d € {2,3,4,6,7}, then the following are true:

(1) Table 6 in the Appendiz lists the integer points on C’;&.
(2) Table 7 in the Appendiz lists the integer points on Cy,.

Proof. Work by Barros [9], Cohn [18] and Bugeaud, Mignotte and Siksek [16] establish these
claims. Table 6 is assembled from the Appendix of [9], and Table 7 is assembled from the

Appendix of [16]. O
4.3. The hyperelliptic curves Y2 = 5X2¢4+4/¢. For d > 2, we define the hyperelliptic curves
(4.5) Hy, :Y?=5X>+4/.

The following satisfying lemma classifies the integer points on H di’5.

Lemma 4.3. If ¢ =5, then the following are true.
(1) If d =2 and € =5, then the only integer points on Hyy are (£1,45) and (+2,£10).
(2) If d > 2, then the only integer points on Hy are (£1,£5).
(3) If d > 2, then Hyy has no integer points.

Proof. We recall the classical Lucas sequence
{L,} ={2,1,3,4,7,11,18,29,47, 76,123,199, 322, 521,843, ... },

defined by Ly := 2 and L; := 1 and the recurrence L, 5 := L, 1 + L, for n > 0. A theorem of
Bugeaud, Mignotte, and Siksek [15] asserts that L; = 1 and L3 = 4 are the only perfect power
Lucas numbers. By the theory of Pell’s equations, the positive integer X-coordinate solutions
to Hff5 and H5, namely {L; = 1,L3 = 4,Ls = 11,...} and {Lo = 2,Ly = 3,Ly = 7,...}
respectively, split the Lucas numbers. The three claims follow immediately. O
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For primes ¢ € {691} U {11 < ¢ <89 : prime with (é) = 1}, we have the following lemma.

Lemma 4.4. The following are true.
(1) For most® d € {3,5,7,11,13} and primes { € {11 < (<89 : ({) =1}, Table 8 in the
Appendiz lists (some cases conditional on GRH) the integer points on HE&.
(2) There are no integer points on Cg g,
(3) There are no integer points on Hyy go -

Proof. Generalized Lebesgue—Ramanujan—Nagell equations are equations of the form
(4.6) >+ D = Cy",

where D and C' are non-zero integers. An integer point on (4.6) can be studied in the ring of
integers of Q(v/—D) using the factorization

(x 4+ +v=D)(x —vV=D) = Cy".

This observation is a standard tool in the study of Thue equations. In particular, Theorem 2.1
of [9] (also see Proposition 3.1 of [16]) gives a step-by-step algorithm that takes alleged solutions
of (4.6) and produces integer points on one of finitely many Thue equations constructed from
C, D and n via the algebraic number theory of Q(v/—D). These equations are assembled from
the knowledge of the group of units and the ideal class group.

To prove all three parts of the lemma (apart from H;f s9), We implemented this algorithm in
SageMath (see [7] for all SageMath code required for this paper). Some cases required GRH as
a simplifying assumption. As the curves in (2) and (3) are the most complicated, we offer brief
details in these two cases.

To prove (2), we consider the hyperelliptic curve Cggq;, Which corresponds to (4.6) for the

class number 5 imaginary quadratic field Q(v/—691), where x = Y,y = X, C = 1,D = 691,
and n = 11. In this case the algorithm gives exactly one Thue equation, which after clearing
denominators can be rewritten as

2 x 5% = (991077174272090396) ! + (119700018439220789119)x'%y — (8831599221002836172345)z" 12
— (337116345512786456280840) 251> 4 (8492967300375371034332430)z " *
+ (175189311986919278870504298) 257 — (1881807368163995585644810248) x5 1/°
— (22992541672786450593030038430)* 3" + (104772541553739359102253613965) 231/
+ (697875798749922445133117312720)2%y° — (1068801486169809452619368218519)zy°
— (2292300374810647823111384294421)y' .

The Thue equation solver in PARI/GP, which implements the Bilu-Hanrot algorithm, establishes
that there are no integer solutions, and so Cg 49, has no integer points.
Claim (3) is about the hyperelliptic curve Hy; 4. Its integer points (X,Y") satisfy

(Y +2¢/=691)(Y — 2¢/—691) = 5X*.

Therefore, we again employ the imaginary quadratic field Q(y/—691). In particular, we have
(4.6), where x =Y,y = X,C =5,D = 4-691 and n = 22. The algorithm again gives one Thue
equation, which after clearing denominators can be rewritten as

8We were unable to obtain results for H}fn, Hy; g9, and any H} ,and Hf; ,.
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22 x 5110 = _(20587212586465949627980680671826599752) 222
+ (1133274396835827658613802749227310922394) 21 y
— (79670423145107301772779399379735976309907264511718034789276856) 2!
+ (71809437208138431262783549625248617351731199323326115439324273) 2.

The Thue solver in PARI/GP establishes that there are no integer solutions, and so Hy; g9 has
no integer points. 0

We use the Chabauty-Coleman method?, which employs p-adic integration to determine the
rational points on suitable curves of genus g > 2, to determine the integer points on C’gf 691
H;,_897 and H1+1,691-

Lemma 4.5. The following are true.

(1) There are no integer points on Cg g,
(2) There are no integer points on Hy ;.
(8) Assuming GRH, the only integer points on Hi gy have (|X|,[Y]) = (1,19).

Proof. We employ the Chabauty—Coleman method [19] to determine the integral points on these
curves.

We first prove (1). The genus 5 curve Cgf 691 has Jacobian with Mordell-Weil rank 0. This can
be determined using the implementation of 2-descent in Magma [14]. Since the rank is less than
the genus, the Chabauty—Coleman method applies, which, in this case, gives a 5-dimensional
space of regular 1-forms vanishing on rational points. We take as our basis for the space of
annihilating differentials the set {w; := X "%}izo,l’__ﬂ. The prime p = 3 is a prime of good
reduction for C’gf 601, and taking the point at infinity co as our basepoint, we compute the set
of points

{zngf@l(Zg):/ w; = 0 for allizO,l,...,Zl},

where the integrals are Coleman integrals computed using SageMath [34]. By construction, this
set contains the integral points on the working affine model of Cggq, -

The computation gives three points: two points with X-coordinate 0 and a third point with
Y-coordinate 0 in the residue disk corresponding to (2,0) € Cgg;(F3). (Indeed, the power
series corresponding to the expansion of the integral of wy has each of these points occurring as
simple zeros.) Hence, there are no integral points on Cgg,;.

Turning to Hf’lﬁgl, we consider the integral points on the curve Y2 = 5X! +4.691 and then
pull back any points found using the map (X,Y) — (X?,Y). Using Magma, we find that the rank
of the Jacobian of this genus 5 curve is 0. We rescale variables to work with the monic model
Y2 = X" +4.5%.691 and we apply the Chabauty-Coleman method using p = 3. As before,
the computation gives three points with coordinates in Zj: two points with X-coordinate 0 and
a third point with Y-coordinate 0 in the residue disk corresponding to (2,0). The power series

9We could have (in theory) used the Thue method as in the proof of Lemma 4.4. We chose this method as
it did not require substantial computer resources.
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corresponding to the expansion of the integral of wy has each of these points occurring as simple
zeros. None of these points are rational. Therefore, H 1+1,691 has no integral points. This proves
(2).

Now we turn to (3). To compute integral points on H; gy, we work with the genus 3 curve
Y? = 5X7+4-89 and then pull back any integral points found using the map (X,Y) — (X2,Y).
Using Magma, we find that the rank of the Jacobian of this genus 3 curve is 2, under the
assumption of GRH!®. We work with the monic model

H, :Y*=X"+4.5%.89

and run the Chabauty-Coleman method using p = 3.
The points

P = [2° 4+ 142* — 800, 92% 4+ 200z — 4050]  and  Q = [z — 5,195

(given in Mumford representation) are independent in the Jacobian of H,,. To simplify the
Chabauty—Coleman computation—in particular, so that we carry out all of our computations
over Q3—we replace P with P’, a small Z-linear combination of P and @ that is linearly
independent from (), with the property that the first coordinate of the Mumford representation
of P’ splits over Qs.

We take P’ := 2P — 5@), with Mumford representation of P’ given by [f(x), g(z)] where

3 57819608106819190393450758001494220029312032281 , = 301022057022978383553067428985393708004188803800

@)= 243432625872206959773347921129373894485149809 * 81144208624068986591115973709791298161716603 B
4935244227803215636634926465657011220846146763100
243432625872206959773347921129373894485149809
(@) = 13467788979408324218581419111573847035681150845619031139253274307312471x2

3798115572194618764136691476777323149900556269646219373513689210377
73837091689655128840131596065726589815272462202819205672839132728899500

1266038524064872921378897158925774383300185423215406457837896403459
1249983247105360333943070938652709476597593148217064351317870016169354850

3798115572194618764136691476777323149900556269646219373513689210377

To compute an annihilating differential, we compute the 3 x 2 matrix of Coleman integrals
(fpr wi fQ w;)i=0,1,2, Where w; = X'%& | in Sage:

2Y
2.34+2-324+3%4+2-3643%42.3% +0(319) 3342.32 437 4+2.3% +3% 4+ 0(319)
2.-3+3%24+3%42.3°42.3642.37 4 0(310) 2.343%24+3%34+2.374+2.3% 4394 0(319)
34+324+2-334+2-344+2-354+304374+2.394+0(310) 2.34+324+32+2-324+3%+37+2-3%54+2.3%4+0(319)

We then compute a basis of the kernel of this matrix, which gives us our annihilating differ-
ential

w=wo+ (1+2-324+2-3"+3+3°4+2.3"+2.354+2-3° + 0(3"))wy
+(2+2-3+32+3+2-3"+3°+2-3°4+ 3+ 0(3'%))ws.
Finally, we have three residue disks to consider, corresponding to (1,0) and (2, +1) € H,,(F3).
We compute the set of points z € H,,(Z3) in these residue disks such that f;w = 0. This
produces three points, each occurring as simple zeros of the corresponding 3-adic power series:

a Weierstrass point and the points (5, £2375). The Weierstrass point is not rational, while the
points (5,+2375) correspond to the points (£1,419) on Hg. O

0T he Magma procedure that computes ranks requires GRH in this case to be computationally feasible.
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5. PROOFS OF THEOREMS 1.2 AND 1.3

We combine results from the previous section with Theorem 3.2 to prove Theorems 1.2 and
1.3. The following lemma, which relates Fourier coefficients to special integer points on algebraic
curves, is a straightforward consequence of Theorem 2.6 (2) and (3).

Lemma 5.1. Assuming the notation in Theorem 2.6, if p { N is prime, then we have the
following:

(1) If a;(p*) = a, then (p,as(p)) is an integer point on
V= X"t
(2) If a;(p*) = «, then (p,2a;(p)* — 3p**~1) is an integer point on
Y2 =5X2D 4 4a.
2m)

(3) For every positive integer m we have that Fa,(p**~1, as(p)?) = as(p

Proof of Theorem 1.2. 1t is well-known that 7(n) is odd if and only if n is an odd square. To
see this, we employ the Jacobi Triple Product identity to obtain the congruence

iT(n)q"::qﬁl—q = ﬁl—q i “(2k +1)¢®* " (mod 2).
n=1 n=1 n=1 k=0

We consider the possibility that +1 appear in sequences of the form

(5.1) {r(0), 7). 7). }.

By Theorem 2.6 (2), if p is prime and p | 7(p), then p™ | 7(p™) for every m > 1, and so
|T(p™)| # 1. Moreover, |7(p)| # p, where p is an odd prime, because 7(p) is even. Therefore,
such sequences may be completely ignored for the remainder of the proof.

For primes p t 7(p), Theorem 2.6 (3) gives a Lucas sequence with A = 7(p) and B = p!!
Lemma 2.1 shows that there are no defective terms with w,,1(cy, 8,) = 7(p™) # £1 or £/,
where ¢ is an odd prime. To see this, we note that A = 7(p) is even. Lemma 2.1 (2) does not
allow for A to be even with one exception, the possibility that (A, B,¢,n) = (£m,p",3,3),
where (p, £m) € B%:Gi . However, these curves are the same as C’ijg, and Lemma 4.2 shows that
there are no such points. Therefore, we may assume that all of the values in (5.1) have a
primitive prime divisor, and never have absolute value 1.

We now turn to the primality of absolute values of 7(n). Thanks to Hecke multiplicativity
(i.e. Theorem 2.6 (1)) and the discussion above, if ¢ is an odd prime and |7(n)| = ¢, then
n = p?, where p is an odd prime for which p { 7(p). The fact that 7(p?) = ugs1(,, 8,) leads
to a further constraint on d (i.e. refining the fact that d is even). By Proposition 2.3, which
guarantees relative divisibility between Lucas numbers, and Lemma 2.2, which guarantees the
absence of defective terms in (5.1), it follows that d + 1 must be an odd prime, and 7(p?) is the
very first term that is divisble by /.

To make use of this observation, for odd primes p and ¢ we define

(5.2) my(p) :==min{n >1 : 7(p") =0 (mod ¢)}.
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For |7(p?)| = ¢, we have my(p) = d, where d + 1 is also an odd prime. The Ramanujan
congruences [11, 33, 35]

n?cy(n) (mod 9),
noy(n) (mod 5),
nos(n) (mod 7),
o11(n)  (mod 691),

where o,(n) := Z1gd|n d”, make it simple to compute my(p) for the primes ¢ € {3,5,7,691}.
Thanks to the mod 9 congruence, we find that

ma(p) = 1 if p=0,2 (mod 3),
W= 9 if p=1 (mod 3).

T(n) =

Therefore, d = 2 is the only possibility. If 7(p?) = %3, then Lemma 5.1 (1) implies that (p, 7(p))
is a point on C’6i73, which were considered immediately above. Again, Lemma 4.2 (1) implies
that there are no such integer points.

Thanks to the mod 5 congruence, we find that

1 if p=0,4 (mod 5),
ms(p) =< 3 if p=2,3 (mod 5),
4 if p=1 (mod 5).

Therefore, d = 4 is the only possibility. If 7(p?) = £5, then Lemma 5.1 (2) implies that
(p,27(p)* — 3p*') is an integer point on Hij ;. Lemma 4.3 shows that no such points exist on
these hyperelliptic curves.

Thanks to the mod 7 congruence, we find that

mi(p) = 1 if p=20,3,5,6 (mod 7),
"WEY6 itp=1,2,4 (mod 7).

Hence, d = 6 is the only possibility, and so we must rule out the possibility that 7(p®) = +7. If
there are such primes p, then Lemma 5.1 (3) implies that Fg(p'*, 7(p)?) = £7. Lemma 4.1 (1)
shows that there are no such solutions to Fg(X,Y) = £7.

Thanks to the mod 691 congruence, we find that the only cases where mgoi(p) = d where
d+ 1 is an odd prime are d = 2,4,22, and 690. For the cases where d = 2 and 4 respectively,
Lemma 5.1 (1-2) implies that (p, 7(p)) would be an integral point on Cg g, and that (p, 27(p)*—
3p'") would be an integral point on Hij g;. Lemma 4.4 (2-3) and Lemma 4.5 show that no such
points exist. By Lemma 5.1 (3), the remaining cases (i.e. d = 22 and 690) correspond to the
Thue equations Fa(p', 7(p)?) = +691 and Fgeo(p'!, 7(p)?) = +691. Lemma 4.1 (3) and (4)
show that there are no such integer solutions.

The arguments above show that 7(n) ¢ {£1,£3,£5,£7,4£691}. The remaining cases are
special cases of Theorem 1.3 (6) and (9) and are proved below. O

Proof of Theorem 1.3. By hypothesis, for primes p { 2N we have that a¢(p) is even. For such
primes, Theorem 2.6 (2) implies that as(p™) is odd if and only if m is even. Suppose that p is a
prime for which p | af(p), which includes those primes p | 2N by Theorem 2.6 (4). Theorem 2.6
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(2) and (4) imply that p™ | ay(p™). Therefore, we do not need to consider these coefficients in
the remainder of the proof.

It suffices to consider the Lucas sequences corresponding to A = as(p) and B = p?*~1 when
p1as(p). By applying Lemma 2.1 (2) (as above in the proof of Theorem 1.2), we may assume
that {1,as(p),ar(p?),...} is a Lucas sequence without any defective terms. To establish this,
we must show that Bll”;t, which are the same as C’;g, have no suitable integer points. Since we
only consider weights for which ged(3-5-7-11-13,2k —1) # 1, it suffices to show that C’;t’?) has
no such points for d € {2,3,4,6,7}. Lemma 4.2 confirms this requirement for these ten curves.

The first claim of the theorem now follows from Proposition 3.1. To prove the remaining
claims we apply Theorem 3.2. Namely, if |a;(n)| = ¢, then n = p?~!, where d | {({* — 1)
is an odd prime. The existence of such coefficients can be ruled out with Lemma 5.1, which
reduces the proof to a case-by-case search for suitable integral points on hyperelliptic curves
and solutions to Thue equations which were considered in the previous section. If a;(p?) = £/,
then (p, as(p)) € Cpp. If ay(p*) = £, then (p,24(p)* — 3p** ') € Hy,_, ,. Obviously, it suffices
to study curves Cg& (resp. Hzid—u) with d | (2k — 1). Finally, if a;(p?~!) = £¢ with d > 7,
then (p*~1 a(p)?) is a solution to F,_;(X,Y) = +/. By Lemmas 4.1, 4.2, 4.3, and 4.4 (i.e.
inspecting the tables in the Appendix), there are no such integral points (sometimes under
GRH) in the cases claimed by the theorem. 0J

6. LEHMER’S SPECULATION FOR LARGE WEIGHT NEWFORMS

We conclude this paper with the proof of Theorem 1.4. To prove this result, we make use of
Theorem 3.2, which in turn reduces the problem to a search for integer points on suitable curves
by Lemma 5.1. Namely, we show, for each ¢, that the finitely many Diophantine conditions
have no integer solutions when the newform weights are (effectively) sufficiently large. To derive
these conclusions, we employ a deep theorem of Baker and Wiistholz [5] in the theory of linear
forms in logarithms, and work of Tzanakis and de Weger [38] on Thue equations.

6.1. Some Diophantine equations. Here we prove some Diophantine results concerning fam-
ilies of Lebesgue-Ramanujan—Nagell type equations which are of independent interest. To make
them precise, for £ € {3,5},e € {£}, and m € ZT, we define

(2m +10%2/m  ife=+ and { = 3,
2m + 10%3y/m if e = —,m odd, and ¢ = 3,
2m + 1013y/m if e = — m even, and ¢ = 3,
3m + 10*4/m if ¢ = 4+, m odd, and ¢ = 5,
3m +10%°/m if e =+,m even, and £ =5,
[ 3m + 1013y/m if e = —,m even, and £ = 5.

(6.1) T2, m) ==

Furthermore, we define U¢(m) by

3m + 10*4/m if e = + and m odd,
(6.2) Us(m) := < 3m + 103°y/m if e = + and m even,
3m +10"y/m if ¢ = — and m even.
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Theorem 6.1. If( € {3,5}, ¢ € {£}, and m € Z*, then the following are true.
(1) If n > T=(¢,m) = Og(m), then there are no integer points' (X,Y), with Y ¢ {0, %1}, on

(6.3) X2 4elm=y"

(2) If n > U¢(m) = Oy(m), then there are no integer points (X,Y), with Y # 0, on
(6.4) X2 4ed-5"m=Y"

6.2. A theorem of Baker and Wiistholz. To prove Theorem 6.1, we make use of the fol-
lowing classical result of Baker and Wiistholz [5] on linear forms in logarithms.

Theorem 6.2 (p. 20 of [5]). Let ay,...,q, be algebraic numbers and by, ..., b, be rational
integers. If A := bylogay + -+ + b.loga,. (note. where the logarithms have their principal
values such that —m < Im(log o) < ) is nonzero, then we have

log |A] > —C(r,d) log(max {e, B}) [ [ 1 (),

i=1
where d = [Q(avy, ..., o) : Q], B :=max{|bi|,..., b},

C(r,d) := 18(r + 1)! 7" ™(32d) " log(2rd),
and b/ (o) := max {h(a)/d, |loga|/d,1/d}, where h(c) is the logarithmic Weil height of a.

This deep theorem can be applied to the Diophantine equations in (6.3) and (6.4). We shall
now assume that n is fixed for the remainder of this discussion. Namely, we view potential
integer points as factorizations, in the ring of integers of the quadratic fields K = Q(v/—ef™),
given by

(X +vV—elm)(X —vV—elm)=Y" and (X 42V —clm)(X — 2V —elm)=Y".
Namely, if [K : Q] = 2 and hg = 1, then we have 8 € Ok such that Ng/g(3) =Y and
(X 4+ V—elm) =" (mod OF) and (X +2v—elm) =" (mod OF).

If K does not have class number one, then we may pick 3 € Ok such that Ngg(3) = Y hx
and consider 3"/"¥ instead. This only applies when ¢ = 1,¢ = 5 and m is odd, in which case
hg(y=5) = 2. In these cases we let B denote the Galois conjugate of 3. Finally, if K = Q, then
we may pick 3,3 € Z (abusing notation) such that 33 =Y and |3| < \/m In each case, the
algebraic integer [ is uniquely determined up to unit.

Given such a /3, we construct a corresponding linear form in logarithms arising from /3/3. For
convenience, we denote the relevant fundamental units by ws := 2+ V3 and wy =1 /2+ V5 /2,
and we denote the 6th root of unity by w_sz := 1/2++/=3/2. By taking logarithms, we obtain a
triple of integers 0 < j; < 3,0 < jg < 5, and 0 < j,, < n— 1, for which one of the corresponding

HWe switch X and Y here to be consistent with the literature on Lebesgue Ramanujan-Nagell equations.
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forms (depending on ¢, £ and the parity of m), say Ape(my and Aye(y,, is given by

(jolog(w_3/w_3) — nlog(B/B) + ki if e =+, m odd, and ¢ = 3,
jalog(i/i) — nlog(B/B) + kir if ¢ = +,m even, and £ = 3,
—(n/2)1og(B/B) + kin if e =+, m odd, and ¢ = 5,
65)  Agem = Jalog(i/i) — nlog(B/ﬁl—l— kim if e =+, m even, and ¢ = 5,
’ Jn log(ws /ws) — nlog(5/5) if ¢ = —,m odd, and ¢ = 3,
—nlog(B/8) if e = —,m even, and ¢ = 3,
G log(ws /ws) — nlog(B/B) if e = —,m odd, and ¢ = 5,
| —nlog(B/B) if e = —, m even, and { = 5,
and
—(n/2)log(B/B) + kir if e = + and m odd,
(6.6) P jalog(i/i) — nlog(ﬁ/ﬁl%— ki if ¢ = + and m even,
Jn log(ws/ws) — nlog(5/5) if e = — and m odd,
—nlog(5/5) if e = — and m even,

where k € Z with [Art )]s [Av+@m| < 7. The next lemma bounds these quantities.

Lemma 6.1. Assuming the notation and hypotheses above, the following are true.
(1) If n > 2log(4v¢m)/log |Y| and (X,Y") is an integer point on (6.3), with Y & {0,+1}, then

1/gm
|Azemy| < %

-
2

(2) If n > 2log(8v/5™)/log |Y|, and (X,Y) is an integer point on (6.4), with Y # 0, then

/5"
A e(m < 556 N n .
|Avem)| < v
Proof. By the definition of Ag: (), we directly find that

X + VElm 2Vm
STV <

X — Em Y
For |z| < 1/2, we note that |log(1 + z)| < 1.39 - |z|. Also, we note that the hypothesis on n
gives |eArem) — 1] < 1/2. Hence, we obtain (1), the claimed inequality

(6.7) lefAreem — 1| =

n
2

A /gm

Ageomy] < 1.39 - |ebreem — 1| =278 - —.

[Are(em)| < e | E
The same method gives (2), after noting that ¥ = £1 has no integer point on (6.4). O
6.3. Proof of Theorem 6.1. For brevity, we only consider when ¢ = 3 and ¢ = —, as the

same method applies to all of the cases. Suppose that there is an integer point (X,Y) on
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X2+ 3™ =Y™". Therefore, there is an integer 0 < jg < 5 and an algebraic integer 5 € Q(v/—3)
for which Ng/q(8) =Y and

(X +v—=3m) = 5; .
w_s

In particular, if m is odd, then we have

A7 (o,m) = Jolog(W_3/w_3) — nlog(B/B) + kit = jelog(W_3/w_3) — nlog(8/B) + klog(—1).
Since Age(gmy # 0, Theorem 6.2 implies that

10g [Are(sm| > —C(3, 201 (_s/w_s)H' (B D) (~1) log(max {e ji, m, K]} .
Furthermore, by a short calculation, we get
W (@3 fws) < 3
1(B/B) < max {log |V, 7}
W(=1) < Z, max{e, jon, [k[}) <n+5.

Therefore, Theorem 6.2 implies that

2
log | Az (p.m)| > —%0(3, 2)max {log |Y|, 7} log(n + 5).

However, Lemma 6.1 (1) gives

3
log(2.78 - V/3m) — g og Y] > log [Areqm| > —%0(3, 2)log(n +5) - log Y],

which in turn implies that

3
log(2.78 - V/3™) — glogQ > —%0(3,2)\/71 1.
Since we have C(3,2) = 18(4)! 3%(64)°log(12), a direct calculation shows that we must have
n < 1.6m + (60v/m +5.9) - 10%,

which gives a constant that is smaller than the claimed M~ (3, m). Taking into account even m,
a similar calculation gives n < 1.6m+(9.4y/m+1.4)-103". The claimed M~ (3, m) is a “rounded
up” version of the maximum of these two constants.

6.4. Proof of Theorem 1.4. Suppose that ™ is a power of an odd prime. Thanks to The-
orem 3.2, if ay(n) = +4™, then n = p?~!, where p and d | £(¢* — 1) are odd primes. For each
d, Lemma 5.1 gives an integer point on an elliptic or hyperelliptic curve, or gives an integer
solution to a Thue equation.

If ¢ =3 (resp. ¢ = 5), then we find that the only possibility is d = 3 (resp. d = 3,5).
This leads to the equations in Theorem 6.1, which in turn gives the claimed bounds in these
cases. Turning to ¢ > 7, we note for d = 3 (resp. 5) that one can argue again as in the proof
of Theorem 6.1 to conclude that ay(p?) # +0™ (vesp. as(p*) # +£0™) for f with (effectively)
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sufficiently large weight 2k. For any d > 7, Lemma 5.1 (3) gives the integer solution (X,Y") =
(p*1,as(p?)) to the Thue equation

Fi1(X,)Y)=+0m
As an implementation of Baker’s theory of linear forms in logarithms, a well-known paper of
Tzanakis and de Weger (see p. 103 of [38]) on Thue equations gives a method for effectively
determining an upper bound'? for | X| of any integer point satisfying F,;_1(X,Y) = £¢™, which
in turn leads to an upper bound for the weight 2k. The linearity of these constants in m aspect
follows from the formal taking of a logarithm in these Diophantine equations.

12The reader should switch the roles of X and Y when applying the discussion in [38].
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7. APPENDIX

(A, B) Defective u,(a, 5)
(+1.9) us = —1, uy =7, ug = F3, ujp = +45,
w13 = —1, uyg = 85, ugg = F24475
(£1,31) us = 1, ugs = £160
(£1,5%) ur = 1, ujp = F3024
(£2,34) ug = 1, uyg = F22
(j:2 ) ug = FA40
(£2,111) us =5
(4,51 = +44
(£5,7) Uio = F3725
(£3,23%) us =1
(£5,29) ug = £85

TABLE 1. Sporadic examples of defective u,(«, ) satisfying (2.2)

The families of defective Lucas numbers satisfying (2.2) are given by the following curves.
(7.1)
By YP=X"143" By Y?P=2X"'-1 B YP=2X"12
By, :YV?=3X""14 (=2)"? BE :V?=3X""143 By :Y?=3X""143.2"
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(A, B) Defective uy,(a, ) Constraints on parameters
(£m,p) uz = —1 m>1landp=m?+1
(4m, p?1) S (p,£m) € By, with 3 {m,
’ ’ (e,7,m) # (1,1,2), and m? > 4e3"*
(£m,p*~1) us = Fm (p,£m) € By, with m > 1 odd
2%—1 B (p, £m) € B3, with (e,m) # (1,2)
(£m, p™7) ug = +£2em and m > 2 even
(p, £ m) € By, with ged(m,6) =1,
+ 2k—1 — 4+ (—2)" 2m?2 —92)7)/3 )
(Em.p=) Juo = £=2m@mT+ C2D/3) 5 401), and m? > (—2) 2
(£m,p*—1) ug = £em(2m? + 3¢) (p,£m) € Bt ;. with 3 | m and m > 3
p,+m) € B with m = 3 mod 6
(£m, p*=1) | ug = £2"Hem(m? + 3¢ - 271 ( ) 6.k

and m? > 3¢ - 272

TABLE 2. Parameterized families of defective u,(a, 3) satisfying (2.2)
Notation: m,k,r € Z*, e = £1, p is a prime number.

(as(p),p**") a(p,m)
Ly oo(m+1) —2 when 3|(m + 1),
(£3,2°) oo(m+1) — 1 otherwise.
(5,27 | Polm 1) =2 Eel(m 1),
’ oo(m+1) — 1 otherwise.
(dem, p?1) oo(m+1) =4 if (p,£m) € S,
P oo(m+1) — 1 otherwise.

TABLE 3. Lower bounds on Q(as(p™)) in defective cases for weights 2k > 4.
Notation: S is the collection of all points on any of BI::, Bs ki, By iy Buk, By .-

23
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(d, D) Integer Solutions to Fy 1(X,Y) =D
(7,£7) (£1, £4), (£2, £1), (F3, F5)
. (£3,£10), (£2, £7), (£3, £4), (£4, £1),
(£3, £1), (FL, £1), (F2,F5), (F5, F8), (F¥7, F11)
(7. 420) (76, F1), (5, F 16), (F4,F7), (£1, £5),

(£3,42), (£11, +17)

(11,+11), (19, £19),

(23, 423), (31, +31)

(1, £4)

(11,+23) (£3,42), (£2, +1), (F2, F3)
(13,13), (17,17), (29, 29), (37, 37) (—1,—4), (1,4)
(13,—13), (17, —17),
1]
(29, —29), (37, —37)
(19,£37) (T2, F5)

TABLE 4. Solutions for the Thue equations where D = +0 and 7 < £ < 37
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(d, D) Integer Solutions to Fy_1(X,Y) =D
(7,+41) (F3, F7), (F1, £2), (4, £5)
(41,41), (53,53), (61, 61), L) (14
(73,73), (89, 89), (97,97) (=1,-4),(1,4)
(41, —41), (23, 447), (13,53), (53, —53), (29, £59),
%)

(31, +61), (61, —61), (17, —67), (37, £73), (73, —73),

(13, —79), (41, £83), (89, —89), (97, —97)

(7, +43) (F3,F8), (F2, £1), (£5, £7)
(11, +43) (F3,F5), (+2, +5)
(43, +43), (47, £47), (59, £59), (67, £67), 1)
(71, £71), (79, £79), (83, +:83)
(13, —53), (17,67) (—2,-3),(2,3)

(11, £67) (F7,F712), (73, F11), (F2, F7)
(7, +71) (F16,F25), (F5, F9), (1, %6),
(£4, +£3), (£7, £23), (+9, £2)

(13,79) (—=2,-5),(2,5)

(7, +83) (78, F13), (F7, F1), (F6, F19),
(£3, £11), (£5, £2), (£13, £20)

(11, £89) (F1, +1)

(7, +£97) (F4, F11), (3, £1), (£7, £10)

TABLE 5. Solutions (with GRH) to the Thue equations where D = ££ and 41 <

¢ <97
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l C3y Cy, Cly Co Oy
3 (1,+2) (1,+2) (1,+£2) | (1,£2) | (1,+2)
5 (—1,42) (—1,42) (—1,£2) [(—=1,£2) | (1. £ 2)
7,23,29,47,53,
59,61,67,83 9 @ @ @ o
11 %) (5,£56) %) 1) %)
13 %) (3,£16) %) 1) %)
(—2,4£3), (-1, +4), (2, £5),
17 (4,49), (8, £23)(43, +-282), (—1,44) (—1,44)|(=1,44) | (—1,%4)
(52, 4£375), (5234, £378661)
19 (5,£12) @ @ %) %)
31 (—3,%2) @ @ %) %)
37 (1, £6),(3, £8) 1,46), (27, £3788) [ (=1, £6) | (—1,£6) | (—1, %6
(2437 Zl:3788) <_ ? )7( ? ) <_ ? ) <_ ? ) (_ ? )
41 (2,+7) (—2,43) (2,+13) %) %)
43 (—3,+4) %) %) %) %)
71 (5,£14) @ @ %) %)
(—4,+£3),(2,19),
73 (3,£10), (6, £17), %) %) %) %)
(72, £611), (356, £6717)
79 (45, £302) %) %) %) %)
89 (=4, £5), (72, 29), 2, +11 2 2 2
(10, £33), (55, £408) (2, £11)
97 @ @ (2,+£15) @ %)

TABLE 6. Integer points on C,
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l Coy C3y Ci Cer |Cry

3,5,17,29,37,

41,43,59, 73,97 @ 9 9 S
7 (2,%1), (32,4181) (2,%£5), (8,£181)[(2,£11)| @ @
11 (3,£4), (15,£58) %) %) 1) 1)
13 (17,£70) %) %) 1) %)
19 (7,£18) (55, +22434) %) %) %)
23 (3,£2) (2, £3) g |(2,%45)| @
31 1) (2,£1) %) %) %)
47 (6, £13), (12, £41), (63, +500) (3, £14) (2, £9) %) %)
53 (9, £26), (29, £156) %) %) %) %)
61 (5,£8) %) %) %) 1%
67 (23, £110) %) %) %) %)
71 (8, £21) %] (3,+£46)| o @
79 (20, +89) %) (2,£7) %) %)
83 (27, £140) %) %) %) %)
89 (5, £6) %) %) %) %)

TABLE 7. Integer points on Cy,

27
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¢ Hg—,e Hz;fe HE:Z H;e H7_,4 H;fe H1_1,e H1_3,e
11 @ (1,7),(7,767) | @ (1,7) @ (L,7) | 9. @
19 1) (1,9),(3,61) | @ (1,9) %) (1,9) 1) .
29 @ (1,11) @ (1,11) %) (1,11) | @, | 2.
31 (2,14) @ @ @ (2,286) @ . | D
41 (3,59) (1,13),(2,22) | @ (1,13) %) (1,13). | 9. | 2.
59 %) %) %) . %) ., . | 9.
61 o) o) o) o) %) , . | 9.
711 (2,6),(5,279) (1,17) %) (1,17) %) ? T, | D
79 1(2,2),(4,142) @ @ @ %) . . | 9.
89 o) (1,19),(2,26) | @ | (1,19)., (2,74). %) (1,19). | 2. ?

TABLE 8. (|X]|,|Y]) for integer points on Héfe with (£) = 1.
(note. GRH assumption indicated by ..)
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