CORRIGENDUM TO "VARIANTS OF LEHMER'S SPECULATION FOR NEWFORMS"

JENNIFER S. BALAKRISHNAN, WILLIAM CRAIG, KEN ONO, AND WEI-LUN TSAI

ABSTRACT. The results in [1] were proved for ordinary primes ℓ for Hecke newforms. This hypothesis was accidentally omitted from some theorem statements in [1]. For the record, here we identify the results that require this hypothesis.

1. Corrected Statements

The results in [1] rely on the hypothesis that the relevant primes ℓ are ordinary, which means that $\ell \nmid \tau(\ell)$ (resp. $\ell \nmid a_f(\ell)$). Although this hypothesis is explicitly used in proofs throughout the paper, it was accidentally omitted¹ from the statements of Theorem 1.1, Theorems 1.3-1.5 and Theorem 3.2 in [1]. For example, Theorems 1.1 and 1.5 should read as follows.

Theorem 1.1. Suppose that ℓ is an odd prime for which $\ell \nmid \tau(\ell)$. If $\tau(n) = \pm \ell^m$, with $m \in \mathbb{Z}^+$, then $n = p^{d-1}$, where p and $d \mid \ell(\ell^2 - 1)$ are odd primes. Furthermore, $\tau(n) = \pm \ell^m$ for at most finitely many n.

Theorem 1.5. If n > 1 is divisible by only ordinary primes, then

$$\Omega(\tau(n)) \ge \sum_{\substack{p|n\\ wrime}} (\sigma_0(\operatorname{ord}_p(n) + 1) - 1) \ge \omega(n).$$

References

[1] J. Balakrishnan, W. Craig, K. Ono, and W.-L. Tsai, Variants of Lehmer's speculation for newforms, Adv. Math. 428 (2023), Art. 109141.

DEPARTMENT OF MATHEMATICS AND STATISTICS, BOSTON UNIVERSITY, BOSTON, MA 02215 *Email address*: jbala@bu.edu

MATHEMATICAL INSTITUTE, UNIVERSITY OF COLOGNE, GYRHOFSTR. 8B, COLOGNE 50931, GERMANY *Email address*: wcraig@uni-koeln.de

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF VIRGINIA, CHARLOTTESVILLE, VA 22904 *Email address*: ken.ono6910virginia.edu

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF SOUTH CAROLINA, COLUMBIA, SC 29208 $Email\ address$: tsaiwlun@gmail.com

Key words and phrases. Modular forms, Lehmer's Conjecture.

The first author acknowledges the support of NSF grant (DMS-1702196), the Clare Boothe Luce Professorship (Henry Luce Foundation), a Simons Foundation grant (Grant #550023), and a Sloan Research Fellowship. The third author thanks the support of the Thomas Jefferson Fund and the NSF (DMS-1601306 and DMS-2055118).

¹Theorem 1.2 does not require this hypothesis.