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Abstract: Given the increasing prevalence of droughts, unpredictable rainfall patterns, and limited
access to dependable water sources in the United States and worldwide, it has become crucial to im-
plement effective irrigation scheduling strategies. Irrigation is triggered when some variables, such as
soil moisture or accumulated water deficit, exceed a given threshold in the most common approaches
applied in irrigation scheduling. A High-Resolution Land Data Assimilation System (HRLDAS) was
used in this study to generate timely and accurate soil moisture and evapotranspiration (ET) data for
irrigation management. By integrating HRLDAS products and the crop growth model (AquaCrop),
an automated data-driven irrigation scheduling approach was developed and evaluated. For HRL-
DAS ET and soil moisture, the ET-water balance (ET-WB)-based method and soil-moisture-based
method were applied accordingly. The ET-WB-based method showed a 10.6~33.5% water-saving
result in dry and set seasons, whereas the soil moisture-based method saved 7.2~37.4% of irrigation
water in different weather conditions. Both of these methods demonstrated good results in saving
water (with a varying range of 10~40%) without harming crop yield. The optimized thresholds in
the two approaches were partially consistent with the default values from the Food and Agriculture
Organization and showed a similar trend in the growing season. Furthermore, the forecasted rainfall
was integrated into this model to see its water-saving effect. The results showed that an additional
10% of irrigation water, which is 20~50%, can be saved without harming the crop yield. This study
automated the data-driven approach for irrigation scheduling by taking advantage of HRLDAS
products, which can be generated in a near-real-time manner. The results indicated the great potential
of this automated approach for saving water and irrigation decision making.

Keywords: irrigation management; HRLDAS; water conservation; threshold optimization; yield

estimation

1. Introduction

Crop cultivation is the primary source of food, fiber, and biofuel supplies in the U.S.
and the world. Crop cultivation consumes a significant amount of freshwater and energy,
mainly through irrigation. According to a World Bank report [1], irrigated agriculture
accounts for 17% of all the arable lands, which is about 277 million ha. However, this
relatively small fraction of cropped land produces approximately 40% of the world’s gross
agricultural output [2]. Although irrigation plays a crucial role in significantly boosting
crop yields, leading to increased farmer income and improved food security, it accounts
for up to 80% of water consumption in the United States and over 90% in various Western
states [3]. Fueled by increasing competition from the urban and industrial sectors for scarce
water resources, high agricultural water consumption, and water wastage, freshwater has
become a scarce resource in many parts of the U.S. and around the world. Moreover, with
a steady population growth worldwide and limited land area, it will become more difficult
in the future to meet food production requirements with limited water resources despite

Sustainability 2023, 15, 12908. https:/ /doi.org/10.3390/su151712908

https:/ /www.mdpi.com/journal/sustainability


https://doi.org/10.3390/su151712908
https://doi.org/10.3390/su151712908
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com
https://orcid.org/0000-0002-6612-3957
https://orcid.org/0000-0002-3953-9965
https://orcid.org/0000-0001-9684-0204
https://orcid.org/0000-0002-8990-2267
https://orcid.org/0000-0002-7753-2270
https://doi.org/10.3390/su151712908
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com/article/10.3390/su151712908?type=check_update&version=1

Sustainability 2023, 15, 12908

20f 17

all the efforts towards sustainable agriculture [4]. On the other hand, excessive irrigation
frequently occurs at the field scale, leading to the wastage of valuable water and energy
resources, agricultural run-off, and pollution of the surface and groundwater. Additionally,
this practice results in the depletion of water sources and soil nutrients, and it can also
cause soil salinization, thus harming agricultural sustainability. Given these challenges, the
need for effective irrigation management becomes even more critical to enhance water use
efficiency (WUE) and overall productivity, and to save water for future use [5].

Irrigation scheduling is the process of determining and optimizing the amount and
timing of irrigation activities. The primary objective of irrigation scheduling is to achieve
specific management goals, such as improving crop yield, reducing water wastage, and
preventing environmental issues. Over the past few decades, several methods have been
proposed to schedule and quantify the necessary depth of individual irrigation applica-
tions [6-8]. According to what the scheduling rests upon, four types can be distinguished:
(1) Evapotranspiration, water balance (ET-WB)-based, (2) soil moisture-based, (3) plant-
water-index-based, and (4) simulated model-based. These scientific irrigation management
approaches are based on timely and accurate data on crop conditions, soil properties, and
weather patterns to make well-informed irrigation decisions. Such data-driven approaches
have proven to be highly effective in determining the suitable timing and depth of irrigation
for crop growth [6]. Among these methods, ET-WB-based methods are the optimal choice
due to their economical, straightforward implementation, and reasonably accurate charac-
teristics. Other types of methods demand specific preparations before their implementation:
the installation of sensors and monitoring systems in the field, the research and validation
of thresholds to trigger irrigation, and /or model calibration via previous field experiments.

Despite all the data-driven methods that are proposed and researched, farmers and
water managers mostly adopt traditional methods in their irrigation operations. For exam-
ple, only 30% of farms in Nebraska utilized scientific approaches or subscribed scheduling
services in a 2018 survey [9]. One of the reasons that hinders the wide application of data-
driven scientific methods is that most of these methods involve a chain of data-processing
steps. To make an irrigation decision using these methods, farmers must collect soil mois-
ture or ET data from models, install field sensors or satellite sensors, determine a threshold
to trigger irrigation, and keep track of the weather conditions to adjust the amount of irri-
gation during the crop growth season. Moreover, farmers without the required knowledge
and specialized analysis skills may encounter difficulties in processing soil moisture and
ET data in this manner. Our goal in this study was to automate the data-driven irrigation
scheduling process based on model simulation data, thus providing stakeholders with
irrigation decision-making information in a timely and easy manner.

In order to automate the data-driven approach and thus promote its utilization in
applications, it is important to obtain dynamic data in near-real time with regional, state, or
even national coverage using either modeling or remote sensing. Root-zone soil moisture
(RZSM) (~top 1 m) and ET are key parameters for irrigation scheduling. Crop growth
depends on RZSM, which is depleted mainly by ET and replenished mainly by precipitation
and irrigation. Even though the significance of soil moisture in crop growth and irrigation
management has been acknowledged [10], obtaining accurate soil moisture data remains
challenging due to the lack of routine high spatial resolution (<1 km) observation of soil
moisture at the continental scale. The model-simulated soil moisture and ET are important
data sources for quick decision-making support in irrigation management as they can be
generated in a near-real-time manner. A High-Resolution Land Data Assimilation System
(HRLDAS) [11] from the National Center for Atmospheric Research (NCAR) has been
developed to fill this gap by simulating the evolution of land surface states at field scales.
HRLDAS was utilized in a NASA-funded agricultural pest management decision support
system to generate real-time soil moisture and temperature data [12]. These forecast
products were made available to farmers in the Central and Great Plains regions through
the NCAR partner Meteorlogix, assisting them in making informed decisions regarding
their agricultural activities.
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In this study, HRLDAS soil moisture and ET during the dry season (2020) and wet
season (2019) were utilized to schedule irrigation activities, demonstrating its application
possibility in irrigation scheduling for saving water and improving crop yields. By inte-
grating HRLDAS products and a crop growth model (AquaCrop), it is possible to find the
best threshold to trigger irrigation activity for maximum crop output. Based on the typical
four crop growth stages, four thresholds were determined to represent the dynamic nature
of crop water demand during the growing season. For HRLDAS ET and soil moisture,
the ET-WB-based method and soil-moisture-based method were applied accordingly to
examine the water-saving effect. Furthermore, short-term rainfall forecasts were integrated
to prevent unnecessary irrigation from the incoming rainfall.

2. Study Area and Materials

This study uses data from a variety of sources, as documented below. In addition to the
hourly updated model simulation products, annual data on crops and soil are also necessary
for irrigation scheduling. The automation of irrigation scheduling in 6 agricultural sites
has been performed for the growing seasons of 2019-2020. Most of the data are currently
visualized and made available to the public on the WaterSmart Data Information Portal
(WaterSmart DIP) [13] (https:/ /geobrain.csiss.gmu.edu/watersmartport/web/ (accessed
on 13 July 2023)) covering Nebraska, as this study is mainly focused on Nebraska (Figure 1).
Nebraska is selected as the study area because it is the largest irrigation state in the U.S. and
one of the leading states in terms of its agricultural output. According to the 2017 Census of
Agriculture [14], Nebraska had the highest amount of irrigated land among all states in the
U.S., encompassing 8.6 million acres of irrigated croplands, which accounted for 14.8% of
all irrigated cropland in the country. Because of its semiarid climate condition, crop yields
in Nebraska farms are quite sensitive to subtle differences in irrigation scheduling, which,
therefore, makes Nebraska an ideal area to test our irrigation scheduling approaches.
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Figure 1. The location of Nebraska.

2.1. Soil Moisture and ET Map

Soil moisture and ET are the key parameters in most irrigation decision-making
methods. The HRLDAS generates hourly maps of soil moisture and ET at a spatial reso-
lution of 500 m covering Nebraska from 2019 to the present in a near-real-time manner.
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Figure 2a,b show sample maps of the hourly updated HRLDAS soil moisture and the daily
ET accumulated from hourly HRLDAS ET, which are visualized on the WaterSmart DIP.
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Figure 2. Visualized example maps of used data in Nebraska (from https://geobrain.csiss.gmu.
edu/watersmartport/web/ accessed on 13 July 2023). (a) Soil moisture; (b) ET; (c) temperature;
(d) precipitation; (e) CDL.

HRLDAS is the merging of a data assimilation system and a land surface process model.
The underlying land model within HRLDAS is the community Noah-Multiparameterization
Land Surface Model (Noah-MP LSM) [15]. It uses multiple options for many key land-
atmosphere interaction processes affecting hydrology and vegetation to achieve accurate
surface energy and water transfer processes. Noah-MP considers the surface water in-
filtration, runoff, and groundwater transfer and storage. It predicts vegetation growth
by combining a photosynthesis model and a carbon allocation model that distinguishes
between C3 (e.g., soybean) and C4 (e.g., corn) plants.

The HRLDAS obtained the surface forcing from the National Water Model standard
analysis configuration [16]. This configuration used meteorological forcing data sourced
from the Multi-Radar/Multi-Sensor System (MRMS) Gauge-adjusted and Radar-only
observed precipitation products, along with short-range Rapid Refresh (RAP) and High-
Resolution Rapid Refresh (HRRR) data. Additionally, stream-gauge observations from the
United States Geological Survey (USGS) were assimilated into the model. The initial values
were derived from the North American Land Data Assimilation System (NLDAS) analysis.
The HRLDAS has been running from 2019 to the present at 500 m spatial resolution for the
Nebraska region, and the output is saved in hourly intervals. The HRLDAS was configured
for NLDAS to have 4 soil moisture layers with thicknesses (from top) of 10 cm, 30 cm,
60 cm, and 100 cm, for a total soil column depth of 2 m. For assessing the data quality, the
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model soil moisture products were compared with site-based soil moisture measurements
and gridded soil moisture maps from our previous study [17].

2.2. Meteorological Forcing Data

The weather data used to drive the HRLDAS were obtained from the National Water
Model (NWM, https:/ /water.noaa.gov/about/nwm (accessed on 13 July 2023)) [16] and
Global Forecast System (GFS, https:/ /www.ncei.noaa.gov/products/weather-climate-
models/global-forecast (accessed on 13 July 2023) [18]. Both models provide 8 forcing
variables: precipitation rate, surface pressure, shortwave radiation, longwave radiation,
u-wind, v-wind, temperature, and specific humidity. These variables were clipped to
Nebraska and regridded to a spatial resolution of 500 m. NWM provides near-real-time
data while GFS variables are forecasted 4 times a day for the following 120 h. Among
the 8 variables, we focused most on the precipitation rate when making an irrigation
decision. All these data are visualized and made available to the public on WaterSmart
DIP. Figure 2¢,d display sample maps of the hourly temperature from NWM and the daily
rainfall accumulated from the hourly NWM precipitation variable, respectively.

2.3. Crop Types and Soil Properties

Different crop has a different crop evapotranspiration (ET.), which requires different
amounts of irrigation during the growth process. In this research, crop type is identified
using the annually released Cropland Data Layer (CDL) [19,20], which contains crop and
other specific land cover classifications obtained using remote sensing for the conterminous
United States. A rapid in-season mapping of corn and soybean fields, which are the two
major crops in Nebraska, is currently available using historical CDL data [21]. This greatly
promotes our irrigation scheduling for an entire state. Figure 2e illustrates the annual CDL
layer for the year 2022.

Soil properties are considered to be relatively static conditions for a region and are
usually updated annually based on soil surveys. The physical and chemical soil proper-
ties considered here include soil texture, electrical conductivity, available water-holding
capacity, and permanent wilting point. The UC Davis team has aggregated the current U.S.
Department of Agriculture (USDA) National Cooperative Soil Survey (NCSS) soil survey
data within 800 m grid cells to generate nationwide soil property maps, and the gridded
data products are all available on the web application programming interface (API) of
soil properties [22].

3. Automation of the Irrigation Scheduling: The Methodology

When initially introducing a scientific (versus experience-based) irrigation scheduling
method to a certain crop field, the ET-WB method proves to be straightforward to imple-
ment and demonstrates its effectiveness when field weather data and Food and K. curves
a specific crop recommended by the Agriculture Organization (FAO) for are accessible.
The ET-WB method remains feasible even in cases where soil properties are not known,
as long as the accumulated daily soil water deficit calculated by ET estimates is promptly
replenished. For example, irrigations can be scheduled at regular intervals (e.g., every
3 days or twice a week) to satisfy the soil water deficit calculated by ET estimates [23]. In
the ET-WB-based method, the daily soil water deficit is calculated using the basic soil water
balance equation. On a daily basis, D, the soil water deficit in the root zone on the current
day, can be estimated using the following simplified accounting equation:

D¢ = Dy + ET. — P — Irr, 1)

where Dy, is the soil water deficit on the previous day, ET, is the crop ET for the current
data, P is the gross precipitation for the current day, and Irr is the net irrigation amount
infiltrated into the soil for the current day.

Irrigation events are scheduled when accumulated D, exceeds the set threshold, which
is the Management Allowed Depletion (MAD) in default. While we can calculate D, using
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the water balance equation, it should be noted that D, represents the discrepancy between
the field capacity and current soil water content. Thus, D, is an estimation of the true deficit
in the field, which can be calculated more directly by subtracting the current soil water
content from the field capacity of the root zone when the measurement of current soil water
content is available.

The ET-WB-based method is more popular than the soil-moisture-based method
because determining D, based on the current soil water content is limited by its dependency
on the accuracy and reliability of the soil moisture content readings from soil moisture
sensors, which are required to be installed before application in the field. This laborious
requirement for farmers hampers the wide application of soil-moisture-based methods.
However, if there are accurate measurements of field-scale soil moisture, the soil-moisture-
based method is more straightforward. Soil-moisture-based approaches use an Available
Water Content threshold (AWCy,), whereas the triggering threshold in the ET-WB-based
method is defined using MAD. AWCy, =1 — MAD holds for the same field in the same
growing season, as both methods describe a single real value, whether it is determined by
site-specific field experiments [24] or a default value drawn from FAO-56 [25].

HRLDAS provides ETj based on the NWM parameters during the growing season.
Thus, daily ET, and water deficit can be estimated during the growing season. Irrigation
is scheduled when the accumulated water depletion exceeds the thresholds we set. The
amount of irrigation water is set to refill the soil water content slightly below the field
capacity to avoid percolation and increase the WUE. Furthermore, HRLDAS-derived
soil moisture at a spatial resolution of 500 m can be directly used in soil-moisture-based
irrigation decision making, as it effectively captures the seasonal evolution of soil moisture.
Irrigation and yield information of eight corn farms during the 2019 and 2020 growing
seasons with its crop growing states is provided by the University of Nebraska-Lincoln.
These farm sites are located closely in Nebraska, with a similar size of 800 m x 800 m; thus,
they are influenced by the same climate conditions at most times. The soil texture of these
experimental sites is sandy loam, which indicates that they have a similar field capacity
and wilting points. As shown in Table 1, corn was planted around the end of April and the
beginning of May, and we can observe that more water was irrigated in 2020, whereas their
yields in 2019 and 2020 are similar.

Table 1. Total irrigation amount (mm) and yield (ton/ha) in the 8 study sites.

Site Name Planting Date Total Irrigation Amount (mm) Yield (ton/ha)

East 2 May 2019 181.6 13.5
Home 4 May2019 1915 13.9
Kelly 25 April 2019 206.8 13.4
Links 24 April 2019 198.1 12.8
North 8 May 2020 251.0 13.3
Home 1 May 2020 278.4 13.6
Kelly 1 May 2020 278.4 13.7
Johnson 25 April 2020 276.4 139

To simulate the dynamic nature of crop water demands, an analysis of the crop growth
stage and identification of patterns in them are necessary. GDD, or Growing Degree
Days, is a measure of heat accumulation used in agriculture to determine the crop growth
stages [26,27]. It is based on the principle that plants grow and develop in response to
temperature, with warmer temperatures generally accelerating their growth. By tracking
the accumulation of GDD over time, farmers and researchers can determine when a crop
reaches key growth stages, such as emergence, flowering, and maturity. This information
can be used to plan irrigation, fertilizer application, and other management practices,
and to predict yield and harvest timing. Four typical crop growth stages are identified
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in this paper based on GDD: initial stage, development stage, mid-season stage, and
late-season stage.

Based on the growing state dates and temperature record during the growing season,
the accumulated GDD in different stages of corn in the test fields are calculated. These
accumulated GDD values are further used to determine the start point and duration of the
four stages in other fields without information on crop state dates [28].

The main focus of this study is to schedule irrigation based on model-simulated ET
and soil moisture and evaluate its water-saving effect without harming crop yield. The
FAO developed a crop growth model, AquaCrop [29,30], which can estimate crop yield in
response to available water. Compared to other crop growth models, only a few parameters
are required for yield estimation in AquaCrop. It simulates plant water stress (soil moisture)
based on the input weather and ET data. Integrating AquaCrop as a yield estimator, it is
possible to determine four thresholds in four crop stages instead of a single fixed threshold
as in traditional methods. Although several studies have demonstrated that AquaCrop
is a reliable tool capable of reasonably accurately predicting both total biomass and final
yield under various irrigation strategies, ranging from no water stress to mild or severe
water stress [7,31-33], it is important to note that the accuracy of the yield estimates and
irrigation recommendations depend on the accuracy and representativeness of the model
inputs, including weather data, soil characteristics, crop parameters, and management
practices [34]. Therefore, it is important to carefully validate the inputs and outputs of the
model before relying on them to make irrigation decisions. One approach to validation is
to compare the simulated soil moisture (SM) data from AquaCrop with independent data
from other models to assess the accuracy and reliability of the AquaCrop output. AquaCrop
is first calibrated for these farms in Table 1 to acquire good-quality yield estimations and
then used to simulate the yields of these farms when different irrigation schedules are
derived. To validate the accuracy and reliability of the AquaCrop model, we use the same
inputs as that of HRLDAS to compare their soil moisture outputs, assuming there is no
irrigation during the season.

Forecasted rainfall is also considered to determine whether and how much irrigation
water should be applied. Irrigation is unnecessary if there is unexpected rainfall in the near
future. This risk of wasting water due to the uncertainties in future weather conditions
could be mitigated by integrating short-term rainfall forecasts into the model. The incor-
poration of rainfall forecasts into water management can provide farmers with valuable
information on upcoming weather patterns, allowing them to adjust their irrigation sched-
ules accordingly and avoid overwatering. This approach not only saves water but also
reduces the risk of crop damage due to waterlogging, improves soil health, and reduces the
energy consumption associated with pumping and distribution. In this study, the rainfall
events over consecutive 5 days within the crop growth period are considered in calculating
the total rainfall. The daily rainfall contributes differently to the total rainfall, with a decay
factor of 0.9. Based on this, the irrigation amount is rescheduled by reducing the possible
total rainfall in the weather forecast. If the total rainfall amount is larger than the originally
scheduled irrigation amount, the irrigation event is postponed to a later date.

In this research, we determined the thresholds of irrigation scheduling for four stages
in response to fluctuations in crop water demands. To accomplish this, we followed three
main steps. First, we randomly selected 100 sets of thresholds for each stage. Second, we
used these sets of thresholds to obtain a starting point with the maximum yield. Finally, we
optimized the thresholds using the downhill simplex algorithm for the minimum irrigation
water for each stage. The downhill simplex algorithm [35] was chosen because it is a simple
and efficient optimization technique that does not require knowledge of the gradient of the
function being optimized. This method can account for complex relationships between soil
moisture and crop yield, which may be difficult to capture when using traditional single
fixed thresholds. The resulting thresholds were then used to inform irrigation decisions and
optimize water use efficiency. By following these steps, we were able to identify optimal
thresholds for each stage of irrigation scheduling, which can help improve crop yield
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and reduce water waste. Rainfall forecasts from the GFS were further integrated into the
irrigation scheduling to improve the efficiency of water usage in irrigation. The overall
flowchart is shown in Figure 3.

| Day 0 : : Crop '
i : Parameters :
‘ J7 : Irrigation Weathgr :
| Day +1 unitl S H Schedule Information :
I —=> Soil Moisture/ET ' 1
' season ends H H
; $ ' Soil Properties :
i Threshold-based) ! :
! | Soil Moisture/ET Method : 5
| | Update :
| Irrigation Action -<}_ Threshold Best Thresholds ;

Figure 3. The flow chart of threshold optimization in irrigation scheduling.

4. Results and Discussion
4.1. Validation of AquaCrop

Validating AquaCrop is crucial for reliable yield estimations and irrigation recom-
mendations. Figure 4 illustrates the comparison result of eight corn farms between the
model simulations and AquaCrop-simulated soil moisture. At the same site, AquaCrop
generated very similar soil moisture to HRLDAS soil moisture, with an average Root Mean
Square Error (RMSE) of around 0.013 and an average R2 of around 0.77 (Table 2). This
demonstrates the ability of AquaCrop to simulate soil moisture accurately and ensure the
reliability of yield estimation. With farmers reporting integrated irrigation information, the
yields for the eight study sites were estimated by AquaCrop and compared with actual
yields, as shown in Table 3.
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Figure 4. Simulated soil moisture from AquaCrop (orange) and HRLDAS soil moisture (blue) for the
8 study sites in 2019 (left) and 2020 (right) growing season.
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Table 2. Accuracy of soil moisture retrieved from AquaCrop compared to HRLDAS products. RMSE
(root mean square error) is in m3/m3. R2 is the correlation coefficient.

Year and Site RMSE R2
2019 East 0.0140 0.67
2019 Home 0.0114 0.76
2019 Kelly 0.0110 0.77
2019 Links 0.0137 0.66
2020 North 0.0146 0.87
2020 Home 0.0184 0.75
2020 Kelly 0.0181 0.75
2020 Johnson 0.0136 0.92

Table 3. Yield estimations from AquaCrop and actual yields, both in ton/ha.

Year and Site Actual Yield Estimated Yield
2019 East 13.5 13.6
2019 Home 13.9 14.0
2019 Kelly 134 13.3
2019 Links 12.8 12.9
2020 North 13.3 134
2020 Home 13.6 13.6
2020 Kelly 13.7 13.8
2020 Johnson 13.9 135

Soil moisture in 2019 was generally higher than that in 2020 during the growing
season, as shown in Figure 4. This indicates that the weather was drier in 2020 than in 2019,
possibly because there was more rainfall in 2019. The RMSE in Table 2 was smaller in 2019
than in 2020, but R2 was slightly lower in 2019, which indicates that AquaCrop simulates
the time variation of the soil moisture fluctuations better in a drier year, but may be inferior
in capturing the absolute magnitude of soil moisture. High accuracy of yield estimation is
observed in Table 2, while in most cases AquaCrop overestimates yield slightly, which may
be associated with its feature in modeling crop growth and yield under different levels
of plant water stress, assuming that other conditions are all perfect (for example, nutrient
management and pest control).

Overall, the validation of the simulated soil moisture and estimated yield demon-
strates that AquaCrop can provide an accurate yield estimation when reliable inputs are
available. Thus, we can assess our irrigation methods based on yield estimation and
optimize thresholds for triggering irrigation to maximize the yield.

4.2. Threshold-Based Irrigation Scheduling

Four crop stages are first determined by the accumulated GDD, and four different
thresholds are set to represent the dynamic nature of crop water demands. The ET-WB-
based method is first applied based on the HRLDAS-derived daily ET. Figure 5a shows
the optimized thresholds in different crop stages for the eight study sites. Overall, the
thresholds fluctuate around the FAO recommended value of 50% in the wet season. In the
drier season (2020), thresholds are generally lower (float around 40%) than those in the
wetter season, and the water demand is highest in the development stage, whereas in the
wet season, crops demand more water in the mid- and late-season stages. This is reasonable
because, in a dry weather pattern, a lower threshold guarantees timely and more frequent
irrigation, which can efficiently prevent crops from experiencing water stress.
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Figure 5. Optimized thresholds in (a) ETWB and (b) soil moisture irrigation scheduling.

With the thresholds determined, irrigation is scheduled based on the water deficit.
Compared to the actual yield and total irrigation amount, our irrigation schedule can save
roughly 10% of the total irrigation water amount while maintaining a similar yield in the
dry season when water demands are high during crop growth, whereas in the wet season
with less water demands, roughly 20% of irrigation water can be saved, as shown in Table 4
and Figure 6a. The highest conservation percentage of irrigation water was observed in the
Kelly site in 2019, with a slightly reduced yield. The decreased yield may be related to the
lowest scheduled amount of irrigation.
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Table 4. Yield estimations and total irrigation amount estimated from ET-WB-based and soil
moisture (SM)-based irrigation schedule, as well as the water saved compared with the actual
irrigation situation.

Year 2019 2020
Site East Home Kelly Links North Home Kelly  Johnson
Yield 13.5 13.9 134 12.8 13.3 13.6 13.7 13.9
Actual Irrigation Amount 181.6 191.5 206.8 198.1 251.0 278.4 278.4 276.4
Yield 13.85 14.2 13.3 12.9 13.3 13.8 13.9 13.7
ET-WB Irrigation Amount 149.3 146.1 137.6 157.6 219.1 245.6 249.0 2448
Water Saved (%) 17.8 23.7 33.5 204 12.7 11.8 10.6 11.4
Yield 13.8 14.1 13.3 12.8 13.3 13.7 13.9 13.8
SM Irrigation Amount 137.6 133.3 129.5 147.6 215.0 245.1 254.9 256.4
Water Saved (%) 242 30.4 37.4 255 14.3 12.0 8.4 7.2

= 1A_ET RO

B (rrigation Amount (IA)
250
200
150
100
50
0

EAST_2019 HOME_2019 KELLY_2019 LINKS_2019 NORTH_2020 HOME_2020 KELLY_2020 JOHNSON_2020

(a)

= A_SM_RO

B rrigation Amount (1A)
250
200
150
100
50

EAST_2019 HOME_2019 KELLY_2019 LINKS_2019 NORTH_2020 HOME_2020 KELLY_2020 JOHNSON_2020

Figure 6. Irrigation amount (mm) saved compared with actual irrigation amount (‘IA’) using
(a) ET-WB ('IA_ET_R0’) and (b) soil moisture (‘'IA_SM_R0’) irrigation schedule methods. The per-
centage number in the figure denotes the water saved compared with the actual irrigation amount.

o
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The same optimization of the thresholds is implemented using the HRLDAS soil
moisture, and the results are presented in Figure 5b. The threshold ranges and their
tendencies are very similar to those of the ET-WB-based method. The only difference is
that in the wet season (2019), the soil-moisture-based method indicates high thresholds in
the late season stage, which may be associated with a low water demand from the crop in
this stage. This is reasonable because, with adequate rainfall in the wet season, the crop
might not require much water during the late season stage, whereas, in the dry season, not
enough water supply during the late season may cause yield loss. The low thresholds in
the wet season that we obtain from the ET-based method might be caused by accumulative
errors in daily soil water deficit calculation.

Similar to the ET-based method, the yield and total irrigation amount are then es-
timated using the AquaCrop model based on the optimized thresholds (Table 4, and
Figure 6b). The result is quite consistent with the previous one in the ET-based method,
where more water is conserved in the wet season compared to that in the dry season.
The slight difference is that in the wet season, although less irrigation water is applied,
the estimated yield also decreases a little, whereas, in the dry season, the soil-moisture-
based method schedules more irrigation to be applied, and the yield remains at a similar
level. Overall, both the ET-WB-based method and the soil-moisture-based method utilizing
model simulations of ET and soil moisture exhibit good performance, generating acceptable
results for saving water and preventing yield loss.

4.3. Irrigation Scheduling Integrating Short-Term Rainfall Forecasts

Compared to conventional irrigation scheduling, integrating rainfall forecasts can
further save irrigation water without significant yield loss. Figure 7 shows the extra
amount of water saved when rainfall forecasts are integrated into irrigation scheduling. An
additional 10% of irrigation water is saved during the dry season, and much more of that
could be saved in the wet season, totaling around 40%. The final yield from both the ET-WB-
based method and the soil-moisture-based method is not significantly reduced (Table 5),
although a slight yield reduction of around 0.1~0.2 ton/ha is observed. A higher amount
of irrigation water in the wet season can be conserved when short-term rainfall forecasts
are considered higher, and more frequent rainfall is the basic feature of wet weather
patterns. Even so, integrating the rainfall forecasts still saves a considerable amount of
irrigation water in the dry season, which demonstrates its necessity and reliability in
irrigation scheduling.

4.4. Future Work

Although the thresholds are optimized for achieving the highest yield and the irriga-
tion scheduling based on these thresholds is proved again in this study to be efficient in
water saving, no significant yield improvement is observed. This may be associated with
the inherent feature of threshold-based methods that basically determine irrigation time
and amount based on the current status; the long-term return of yield is not in their scope.
Irrigation scheduling methods based on artificial intelligent algorithms, such as reinforce-
ment learning and deep neural networks, are a good choice for maximum seasonal yield or
economic return. Meanwhile, although the irrigation scheduling is automated due to the
availability improvement of high-resolution soil moisture and ET data in this study, crop
information such as crop planting or emergence date still relies heavily on farmers’ reports
or inputs. This hampers the promotion of popularizing scientific irrigation scheduling to a
larger region and a wider range of users. We used GDD to roughly estimate the crop stages,
but this may be unavailable or inaccurate when the local crop stage date and temperature
records are missing. Thus, integrating technologies, such as within-season crop emergence
date generation [36,37] into the automation process of irrigation scheduling, is a direction
for future research.
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Figure 7. Irrigation amount (mm) saved using (a) ET-WB-based irrigation schedule method, where
‘TA_ET_R1’ is the irrigation amount when rainfall forecasts are integrated, and ‘IA_ET_R0’ is the

irrigation amount when rainfall forecasts are not integrated; (b) soil-moisture-based irrigation sched-

ule method, where ‘IA_SM_R1’ is the irrigation amount when rainfall forecasts are integrated, and

TA_SM_RU0’ is the irrigation amount when rainfall forecasts are not integrated. The percentage
number in the figure denotes the water saved using the different methods.

Table 5. Yield estimations and total irrigation amount estimated from ET-WB-based and soil moisture
(SM)-based irrigation schedule, as well as the water saved compared with the actual irrigation

situation using the short-term rainfall forecasts.

Year 2019 2020
Site East Home Kelly Links North Home Kelly  Johnson
Yield 13.5 13.9 13.4 12.8 13.3 13.6 13.7 13.9
Actual Irrigation Amount 181.6 191.5 206.8 198.1 251.0 278.4 278.4 276.4
Yield 13.6 14.1 13.3 12.8 13.3 13.7 13.6 13.7
ET-WB Irrigation Amount 119.2 95.9 130.3 134.4 199.2 225.0 226.7 216.1
Water Saved (%) 344 50.0 37.0 32.2 20.6 19.2 18.6 21.8
Yield 13.6 14.0 13.3 12.8 13.3 13.6 13.6 13.7
SM Irrigation Amount 114.6 90.3 121.8 129.4 195.2 220.4 222.5 208.9
Water Saved (%) 36.9 52.8 411 347 22.2 20.8 20.1 244




Sustainability 2023, 15, 12908 15 0f 17

5. Conclusions

Irrigation is an integral part of agriculture. This study proposed an automated data-
driven irrigation scheduling approach that utilized HRLDAS soil moisture and ET products,
which are generated in a near-real-time manner. Simulations and validations were per-
formed at eight experiment sites in Nebraska. The findings of this study demonstrate
the potential of using model simulations in conjunction with threshold-based irrigation
scheduling approaches to guide irrigation management and achieve water savings without
yield loss. Four dynamic thresholds were determined using a downhill simplex algorithm
to represent the varying water demands of crops at different growth stages. AquaCrop was
validated to ensure reliable yield estimations before the optimization of the thresholds. The
results indicate that all the approaches were effective in reducing water consumption while
maintaining crop productivity. Interestingly, the analysis suggests that the potential for
water saving may vary depending on the season, with a greater potential for savings in
wet seasons compared to dry seasons, with an approximate saving of up to 10%.

To further optimize the water-saving potential of the approach, rainfall forecasts were
integrated into the irrigation scheduling. The results indicated that the integration of
rainfall forecasts led to even higher water savings, with an additional 20% reduction in
water consumption during wet seasons and a 10% more reduction during dry seasons
compared to traditional irrigation practices. This approach not only saves water but
also helps to avoid invalid irrigation just before subsequent rainfall, which can improve
crop health and reduce waterlogging risks. The findings of this study have significant
implications for the sustainable management of water resources in agriculture and high-
light the importance of incorporating model simulations and weather forecasting into
irrigation scheduling.

Author Contributions: Conceptualization, L.D.; Data curation, H.Z. and C.Z.; Formal analysis,
H.Z. and L.G.; Funding acquisition, L.D.; Investigation, L.G. and L.L.; Methodology, H.Z.; Project
administration, L.D.; Supervision, L.D.; Validation, H.Z. and L.L.; Writing—original draft, H.Z.;
Writing—review and editing, H.Z., L.D. and C.Z. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was supported by a grant from NSF (Grant #1739705, PI: L.D.).
Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.

Data Availability Statement: Publicly available datasets were analyzed in this study. These data can
be found here: https://geobrain.csiss.gmu.edu/watersmartport/, accessed on 10 May 2023.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results.

References

1. World Bank. World Bank Open Data; The World Bank Group: Washington, DC, USA, 2022.

2. Walker, WR. Guidelines for Designing and Evaluating Surface Irrigation Systems; FAO Irrigation and Drainage Paper 45; FAO: Rome,
Italy, 1989.

3. Dieter, C.A. Water Availability and Use Science Program: Estimated USE OF WAter in the United States in 2015; Geological Survey:
Asheville, NC, USA, 2018.

4. Rashad, M.; Hafez, M.; Popov, A.L; Gaber, H. Toward sustainable agriculture using extracts of natural materials for transferring
organic wastes to environmental-friendly ameliorants in Egypt. Int. ]. Environ. Sci. Technol. 2023, 20, 7417-7432. [CrossRef]

5. Rashad, M.; Kenawy, E.-R.; Hosny, A.; Hafez, M.; Elbana, M. An environmental friendly superabsorbent composite based on rice
husk as soil amendment to improve plant growth and water productivity under deficit irrigation conditions. J. Plant Nutr. 2021,
44,1010-1022. [CrossRef]

6.  Vellidis, G.; Liakos, V.; Perry, C.; Porter, W.; Tucker, M.; Boyd, S.; Huffman, M.; Robertson, B. Irrigation scheduling for cotton
using soil moisture sensors, smartphone apps, and traditional methods. In Proceedings of the 2016 Beltwide Cotton Conference,
New Orleans, LA, USA, 5-7 January 2016.


https://geobrain.csiss.gmu.edu/watersmartport/
https://doi.org/10.1007/s13762-022-04438-8
https://doi.org/10.1080/01904167.2020.1849293

Sustainability 2023, 15, 12908 16 of 17

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

Li, E; Yu, D.; Zhao, Y. Irrigation scheduling optimization for cotton based on the AquaCrop model. Water Resour. Manag. 2019, 33,
39-55. [CrossRef]

Viani, F. Experimental validation of a wireless system for the irrigation management in smart farming applications. Microw. Opt.
Technol. Lett. 2016, 58, 2186-2189. [CrossRef]

USDA. 2018 Irrigation and Water Management Survey; USDA-NASS: Washington, DC, USA, 2019.

Zhao, H.; Dj, L,; Sun, Z.; Hao, P; Yu, E.; Zhang, C.; Lin, L. Impacts of Soil Moisture on Crop Health: A Remote Sensing Perspective.
In Proceedings of the 2021 9th International Conference on Agro-Geoinformatics (Agro-Geoinformatics), Shenzhen, China, 26-29
July 2021; pp. 1-4.

Chen, E; Manning, KW.; LeMone, M.A.; Trier, S.B.; Alfieri, ].G.; Roberts, R.; Tewari, M.; Niyogi, D.; Horst, T.W.; Oncley, S.P.
Description and evaluation of the characteristics of the NCAR high-resolution land data assimilation system. J. Appl. Meteorol.
Climatol. 2007, 46, 694-713.

Myers, W.; Chen, E,; Block, ].; Meteorlogix, D.; Burnsville, M. Application of atmospheric and land data assimilation systems to an
agricultural decision support system. In Proceedings of the 2007 AMS Conference on Agriculture and Forestry, Orlando, FL, USA,
27-29 July 2008.

Zhao, H.; Di, L.; Sun, Z. WaterSmart-GIS: A Web Application of a Data Assimilation Model to Support Irrigation Research and
Decision Making. ISPRS Int. ]. Geo-Inf. 2022, 11, 271. [CrossRef]

USDA National Agricultural Statistics Service. 2017 Census of Agriculture; USDA-NASS: Washington, DC, USA, 2017.

Niu, G.Y;; Yang, Z.L.; Mitchell, K.E.; Chen, F; Ek, M.B.; Barlage, M.; Kumar, A.; Manning, K.; Niyogi, D.; Rosero, E. The community
Noah land surface model with multiparameterization options (Noah-MP): 1. Model description and evaluation with local-scale
measurements. |. Geophys. Res. Atmos. 2011, 116, D12. [CrossRef]

Cosgrove, B.; Gochis, D.; Clark, E.P; Cui, Z.; Dugger, A.L.; Feng, X.; Karsten, L.R.; Khan, S.; Kitzmiller, D.; Lee, H.S.; et al.
An Overview of the National Weather Service National Water Model. In Proceedings of the AGU Fall Meeting Abstracts, San
Francisco, CA, USA, 12-16 December 2016; 2016; p. H42B-05.

Zhao, H.; Di, L.; Sun, Z; Yu, E.; Zhang, C.; Lin, L. Validation and Calibration of HRLDAS Soil Moisture Products in Nebraska. In
Proceedings of the 2022 10th International Conference on Agro-geoinformatics (Agro-Geoinformatics), Quebec City, QC, Canada,
11-14 July 2022; pp. 1-4.

NCEP Global Forecast System (GFS) Analyses and Forecasts; National Center for Atmospheric Research, Computational and
Information Systems Laboratory: Boulder, CO, USA, 2007. [CrossRef]

Boryan, C.; Yang, Z.; Mueller, R.; Craig, M. Monitoring US agriculture: The US department of agriculture, national agricultural
statistics service, cropland data layer program. Geocarto Int. 2011, 26, 341-358. [CrossRef]

Lark, T.].; Schelly, I.H.; Gibbs, H.K. Accuracy, bias, and improvements in mapping crops and cropland across the United States
using the USDA Cropland Data Layer. Remote Sens. 2021, 13, 968. [CrossRef]

Lin, C,; Zhong, L.; Song, X.-P.; Dong, J.; Lobell, D.B.; Jin, Z. Early-and in-season crop type mapping without current-year ground
truth: Generating labels from historical information via a topology-based approach. Remote Sens. Environ. 2022, 274, 112994.
[CrossRef]

Walkinshaw, M.; O’Geen, A.T.; Beaudette, D.E. Soil Properties; California Soil Resource Lab: Davis, CA, USA, 2022; Available
online: https://casoilresource.lawr.ucdavis.edu/soil-properties/ (accessed on 13 July 2023).

Grabow, G.; Ghali, I.; Huffman, R.; Miller, G.; Bowman, D.; Vasanth, A. Water application efficiency and adequacy of ET-based
and soil moisture-based irrigation controllers for turfgrass irrigation. J. Irrig. Drain. Eng. 2013, 139, 113-123. [CrossRef]

Qin, A; Ning, D,; Liu, Z,; Li, S.; Zhao, B.; Duan, A. Determining threshold values for a crop water stress index-based center pivot
irrigation with optimum grain yield. Agriculture 2021, 11, 958. [CrossRef]

Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop evapotranspiration-Guidelines for computing crop water requirements-FAO
Irrigation and drainage paper 56. Fao Rome 1998, 300, D05109.

McMaster, G.S.; Wilhelm, W. Growing degree-days: One equation, two interpretations. Agric. For. Meteorol. 1997, 87, 291-300.
[CrossRef]

Miller, P.; Lanier, W.; Brandt, S. Using growing degree days to predict plant stages. Ag/Ext. Commun. Coord. Commun. Serv. Mont.
State Univ.-Bozeman Bozeman MO 2001, 59717, 994-2721.

Ahmad, L.; Habib Kanth, R.; Parvaze, S.; Sheraz Mahdi, S.; Ahmad, L.; Habib Kanth, R.; Parvaze, S.; Sheraz Mahdi, S. Growing
Degree Days to Forecast Crop Stages; Springer: Berlin/Heidelberg, Germany, 2017.

Steduto, P; Hsiao, T.C.; Raes, D.; Fereres, E. AquaCrop—The FAO crop model to simulate yield response to water: I. Concepts
and underlying principles. Agron. J. 2009, 101, 426—437. [CrossRef]

Raes, D.; Steduto, P; Hsiao, T.C.; Fereres, E. AquaCrop—The FAO crop model to simulate yield response to water: II. Main
algorithms and software description. Agron. J. 2009, 101, 438—447. [CrossRef]

Sandhu, R.; Irmak, S. Performance of AquaCrop model in simulating maize growth, yield, and evapotranspiration under rainfed,
limited and full irrigation. Agric. Water Manag. 2019, 223, 105687. [CrossRef]

Aziz, M.; Rizvi, S.A.; Sultan, M.; Bazmi, M.S.A.; Shamshiri, R.R.; Ibrahim, S.M.; Imran, M.A. Simulating Cotton Growth and
Productivity Using AquaCrop Model under Deficit Irrigation in a Semi-Arid Climate. Agriculture 2022, 12, 242. [CrossRef]

Lu, Y,; Chibarabada, T.P.; McCabe, M.E; De Lannoy, G.J.; Sheffield, J. Global sensitivity analysis of crop yield and transpiration
from the FAO-AquaCrop model for dryland environments. Field Crops Res. 2021, 269, 108182. [CrossRef]


https://doi.org/10.1007/s11269-018-2087-1
https://doi.org/10.1002/mop.30000
https://doi.org/10.3390/ijgi11050271
https://doi.org/10.1029/2010JD015139
https://doi.org/10.5065/D65Q4TSG
https://doi.org/10.1080/10106049.2011.562309
https://doi.org/10.3390/rs13050968
https://doi.org/10.1016/j.rse.2022.112994
https://casoilresource.lawr.ucdavis.edu/soil-properties/
https://doi.org/10.1061/(ASCE)IR.1943-4774.0000528
https://doi.org/10.3390/agriculture11100958
https://doi.org/10.1016/S0168-1923(97)00027-0
https://doi.org/10.2134/agronj2008.0139s
https://doi.org/10.2134/agronj2008.0140s
https://doi.org/10.1016/j.agwat.2019.105687
https://doi.org/10.3390/agriculture12020242
https://doi.org/10.1016/j.fcr.2021.108182

Sustainability 2023, 15, 12908 17 of 17

34.

35.
36.

37.

Guo, D.; Zhao, R.; Xing, X.; Ma, X. Global sensitivity and uncertainty analysis of the AquaCrop model for maize under different
irrigation and fertilizer management conditions. Arch. Agron. Soil Sci. 2020, 66, 1115-1133. [CrossRef]

Nelder, J.A.; Mead, R. A simplex method for function minimization. Comput. J. 1965, 7, 308-313. [CrossRef]

Gao, F.; Anderson, M.; Daughtry, C.; Karnieli, A.; Hively, D.; Kustas, W. A within-season approach for detecting early growth
stages in corn and soybean using high temporal and spatial resolution imagery. Remote Sens. Environ. 2020, 242, 111752. [CrossRef]
Gao, F; Anderson, M.C.; Johnson, D.M; Seffrin, R.; Wardlow, B.; Suyker, A.; Diao, C.; Browning, D.M. Towards routine mapping
of crop emergence within the season using the Harmonized Landsat and Sentinel-2 dataset. Remote Sens. 2021, 13, 5074. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.


https://doi.org/10.1080/03650340.2019.1657845
https://doi.org/10.1093/comjnl/7.4.308
https://doi.org/10.1016/j.rse.2020.111752
https://doi.org/10.3390/rs13245074

	Introduction 
	Study Area and Materials 
	Soil Moisture and ET Map 
	Meteorological Forcing Data 
	Crop Types and Soil Properties 

	Automation of the Irrigation Scheduling: The Methodology 
	Results and Discussion 
	Validation of AquaCrop 
	Threshold-Based Irrigation Scheduling 
	Irrigation Scheduling Integrating Short-Term Rainfall Forecasts 
	Future Work 

	Conclusions 
	References

