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Abstract—task of irrigation scheduling involves 
sequentially establishing both the timing and quantity of 
irrigation to be administered to the field throughout the 
course of the growing season. This task can be conceptualized 
as a Markov decision process. Reinforcement learning (RL), 
a machine learning approach that leverages rewards acquired 
through interactions with the environment to steer behavior 
and progressively develops a strategy to maximize cumulative 
rewards, is well-suited for managing sequential decision-
making processes such as irrigation scheduling. Deep RL, a 
combination of RL with deep learning techniques, has the 
potential to offer novel solutions to intricate cognitive 
decision-making challenges in intricate states. In this 
research, a deep RL-based irrigation scheduling approach 
will be presented to enhance the optimization of economic 
return in irrigation applications. This method involves 
computing the irrigation quantity for each step while taking 
evapotranspiration (ET), soil moisture, future precipitation 
probability, and the current crop growth stage into 
consideration. The simulation results showed a significant 
improvement in economic return, 5.7% and 17.3% for a wet 
season and a dry season, respectively, while water-saving 
effect is similar to conventional threshold-based methods. 
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I. INTRODUCTION 
Agricultural irrigation accounts for approximately two-

thirds of worldwide freshwater usage[1], thereby escalating 
the strain on water resources due to population expansion 
and climate fluctuations [2-4]. Therefore, a pressing 
requirement exists to enhance the efficiency of irrigation 
systems through optimization aiming to conserve water 
resources, despite water in soil being curial for crop growth 
and high yield [5, 6]. Historically, farmers have commonly 
relied on traditional irrigation scheduling. This approach 
entails applying a consistent volume of irrigation water 
within specific time intervals. While straightforward, this 
method frequently leads to water wastage and diminished 
crop productivity. However, recent times have witnessed 
substantial exploration of more accurate irrigation strategies 
rooted in sensor data.[7]. Nonetheless, the majority of these 
approaches rely on thresholds or rudimentary models for 
decision-making, leading to numerous instances of 
imprecise or suboptimal irrigation occurrences. In the case 
of threshold-centered irrigation scheduling, an expert's 
involvement is required to translate sensor data into suitable 
threshold values for utilization within a scheduling model. 
This undertaking can become intricate due to the multitude 
of zones, swiftly shifting weather conditions, variances in 
soil composition, diverse crop varieties, and the varying 
water requirements across different growth stages [8]. It’s 
also hard for these methods to find the optimized action in 
the term of long run return. In addition, the abundance of 

sensor data further compounds the complexity of real-time 
scheduling, potentially leading to conflicting information 
from various sensor types and other data origins [9]. An 
evident limitation of employing manually calculated 
thresholds or models is their inherent time-consuming 
nature and restricted scalability. To address these issues, 
researchers have delved into the realm of machine learning 
techniques to automate the process [10, 11]. Techniques 
such as linear regression or neural networks are harnessed 
to distill valuable insights from sensor data and construct the 
scheduling model. Nevertheless, even with the integration 
of these techniques, human supervision remains imperative 
for meticulous result analysis and the manual regulation of 
irrigation applications.  

Irrigation decisions entail determining when and how 
much irrigation is needed, akin to a Markov decision 
process where the future state relies solely on the present 
state [12]. Reinforcement learning (RL) is well-suited for 
such processes due to their Markov property.[13]. Inspired 
by behavioral psychology[14], RL proposes a formal 
framework to the sequential decision-making problem. The 
core concept involves an artificial agent learning through 
interactions with its environment, much like a living 
organism. Leveraging accumulated experience, the artificial 
agent aims to optimize specified objectives, depicted in 
Figure 1, through cumulative rewards. This approach can be 
applied to a wide range of sequential decision-making 
problems that depend on past encounters.. 

This paper presents a Deep Q-Network (DQN) based RL 
approach[15] for irrigation scheduling using High-
Resolution Land Data Assimilation System (HRLDAS)[16, 
17] simulated soil moisture and ET. Nebraska, a typical crop 
state with large demand of irrigation, was selected as study 
area for simulation.  

 
Figure 1. Interaction between agent and environment in reinforcement 
learning. 

20
23
 1
1t
h 
In
te
rn
at
io
na
l C
on
fe
re
nc
e 
on
 A
gr
o-
G
eo
in
fo
rm
at
ic
s (
A
gr
o-
G
eo
in
fo
rm
at
ic
s)
 | 
97
9-
8-
35
03
-0
35
1-
3/
23
/$
31
.0
0 
©
20
23
 IE
EE
 | 
D
O
I: 
10
.1
10
9/
A
gr
o-
G
eo
in
fo
rm
at
ic
s5
92
24
.2
02
3.
10
23
36
73

Authorized licensed use limited to: George Mason University. Downloaded on December 31,2023 at 08:02:49 UTC from IEEE Xplore.  Restrictions apply. 



II. DEEP REINFORCEMENT LEARNING FOR IRRIGATION 
SCHEDULING 

The decision-making process for irrigation exhibits the 
Markov property, where the determination of whether to 
irrigate is influenced by both the soil moisture and the crop 
growth condition during growing season. The current state 
of the soil  and crop  only depends on previous state of the 
soil, weather, crop, and previous irrigation action. As a 
result, the application of RL was employed to address 
irrigation scheduling that incorporates the Markov property. 

Conventional reinforcement learning, such as Q 
learning, involves maintaining a Q table with dimensions 
!", $%, where " is the number of states and $ is the number 
of actions, while learning from data. Fundamentally, a Q-
table maps state and action pairs to a Q-value. However, in 
the irrigation decision scenario, the soil moisture and 
precipitation are not distributed discretely, meaning the 
number of states could be infinite, making it 
computationally intractable to build a table. A deep Q-
learning network algorithm was developed by integrating 
deep neural network (DNN) into RL to tackle the 
continuous state space and expedite learning. 

Rather than a Q-table for mapping state and action pairs 
to a Q value, a Q function is approximated by learning 
parameters (weights) of a DNN which we call a Q-network 
such that it can generate the optimal Q values. The 
fundamental concept behind a Deep Q Network is closely 
akin to the Q Learning algorithm. It initializes with arbitrary 
Q-value estimates, exploring the environment through an ε-
greedy policy. Its core employs a similar notion of dual 
actions—current action with current Q-value and target 
action with target Q-value—within its update logic to 
enhance Q-value estimates. The integration of DNN enables 
handling vast amounts of observational data, rendering the 
proposed irrigation approach scalable.  

For neural network training to achieve convergence and 
stability, DQN introduced a technique known as 
"experience replay." This method disentangles data 
connections and optimally utilizes historical data samples. 
The experience at each time-step, &' ( !"', $', )', "'*+% is 
stored in a limited-size replay memory. When the maximum 
capacity is reached, the freshest experience replaces the 
oldest one. The aim of experience replay is to employ mini-
batch training for the Q-network, approximating the Q 
function through samples from the replay memory. 
Enhancing training performance, a method known as 
combined experience replay (CER) is also employed. CER 
ensures the incorporation of the most recent experience 
within the samples.  

For an irrigation agent, in every time step, the agent 
selects an action ($' ) from the set of legal actions, , (
 .$/, $+, $0, … , $23 , with each action corresponding to a 
specific irrigation volume. This action is then 
communicated to an environment connected with both 
AquaCrop[18] and HRLDAS model to compute the 
subsequent state and the reward. In the framework of DQN, 
the ongoing observation of the environment using HRLDAS 
simulations (4') is used to indicate the current state ("'). The 
goal of the irrigation agent is to interact with the actual 
environment and the AquaCrop model, making action 
choices in a way that maximizes long-term gains. Utilizing 
the prevailing state and selected action, the environment 

emulator calculates the upcoming state and the ensuing 
reward, as depicted in Figure 2.  

The algorithm is shown in Table 1. Initially, the replay 
memory and Q network are initialized. Each training 
episode corresponds to a complete crop season. During each 
time step within an episode, there's a probability of selecting 
a random irrigation action; otherwise, the action that can 
maximize the Q value function is chosen. Subsequently, the  

 
Figure 2. Architecture of DQN-based irrigation scheduling. 

chosen action and its interaction with the environment 
emulator are employed to compute the current reward and 
ascertain the subsequent state. The transition 
!"', $', )', "'*+%  is preserved within replay memory. 
Ultimately, experience replay is executed by extracting a 
random mini-batch of transitions from the replay memory 
and carrying out a gradient descent step. The environment 
emulator, illustrated in Figure 2, is the module that interacts 
with AquaCrop and HRLDAS. HRLDAS is run first to 
generate simulated soil moisture and ET after irrigation is 
implemented. Subsequently, it forwards this data to 
AquaCrop and initiates a single cycle of crop simulation. 
Upon completion of the simulation, it retrieves the 
simulation outcomes and employs pertinent data to compute 
the reward and subsequent state values. The precise 
architecture of the neural network is as follows: the input 
layer is a matrix comprising feature vectors of stowage 
samples, while the output layer represents the approximated 
Q value for each action. Consequently, the input layer 
encompasses 9 nodes, and the output layer contains 42 
nodes. In this configuration, there are two hidden layers, 
both fully-connected, each comprising 24 units.. 

TABLE I.  PROCEDURES OF THE DQN-BASED IRRIGATION 
SCHEDULING ALGORITHM. 

1: Initialize replay memory M to capacity N; 
2: Initialize Q network with random weights 5; 
3: Initialize target network with random weights 5′ ( 5; 
4: for episode = 1 to E do 
5: Initialize batch size; 
6: Collect the environmental condition and initialize state s; 
7: while Crop growing season is not end do 
8: With probability ε select a random action $'; 
9: Otherwise select $' ( 7$489∗!"', $'; 5′%; 
10: Execute irrigation action in the Environment Emulator; 
11: Observe reward )' and next state "'*+; 
12: Store transition !"', $', )', "'*+% into M; 
13: if size of M > size of minibatch 
14: Sample random minibatch of !"<, $<, )<, "<*+% from M; 
15: set =< (

>
                           )<                             ?  "<*+ ?" !&)7?"$# "!$!&
)< $ %max

8)*+
9!"<*+, $<*+; 5′%                                  ,!ℎ&).?"&  

16: Perform a gradient descent step on /=< 0 9!"<, $<; 5%1
0 according 

to 5; 

Authorized licensed use limited to: George Mason University. Downloaded on December 31,2023 at 08:02:49 UTC from IEEE Xplore.  Restrictions apply. 



17: Every C steps clone 52 ( 5; 
18: if 3 4 35<6: 3 ←  3 ∗ 389:8; 
19: End for 
20: End for 
 

III.  RESULTS AND DISCUSSION 
The loss signifies the value of the objective function 

during neural network training, indicating how closely the 
neural network approximates the discrete action value. As 
illustrated in Figure 3, the initial loss is substantial due to 
insufficient information for satisfactory approximation, and 
it subsequently diminishes rapidly within 50 iterations. 
Then the loss increased and floated around in a high value 
before 200 iterations as the exploration strategy is more 
adopted in the beginning episodes although the network 
already learned some good policy. After approximately 300 
-500 iterations, as the parameters of each iteration exhibited 
minor differences, the loss value demonstrated a tendency 
to stabilize and fluctuate. This trend indicated that the neural 
network was progressively aligning itself with the action 
value across diverse states. 

Slightly different from what was anticipated, the mean 
reward started from a large negative value and then 
increased dramatically to a positive normal value. This 
phenomenon stems from the fact that initially, the 
exploration strategy was more prominently employed (ε 
was close to 1 at beginning), leading to the acquisition of a 
sufficient range of reward values for every state. This 
increased exploration was prone to result in actions that 
yielded lower rewards, often a negative value as in this case 
costs on the irrigation action have a strong chance to exceed 
the gain in yield. Subsequently, a shift towards the 
exploitation strategy occurred, favoring actions with the 
highest rewards (ε decayed to the minimum ε). After 
approximately 200-300 iterations, a noticeable and enduring 
rise in mean rewards was observed, settling above 0.  

(a) 

 
(b) 

Figure 3. Training curve tracking the loss and mean reward for (a): Kelly 
2019, and (b): Kelly 2020. 

The results of the DQN irrigation scheduling are 
contrasted with those of the conventional threshold-based 

strategy and Q learning method. Results of real irrigation 
and no irrigation cases are also included for reference. The 
Table 2 shows the amount of irrigation water, yield, and the 
economic returns of different approaches in different 
seasons. 

Table 2 shows that the DQN irrigation scheduling could 
further improve the economic return by saving irrigation 
water and increasing yield compared with threshold-based 
methods and real irrigation scheduling. The economic return 
improved 5.7% and 17.3% in wet season and dry season, 
respectively, indicating a significant difference among 
different weather conditions. During a wet season with 
abundant rainfall, corn only needed minimal irrigation to 
grow properly and reached full potential of yield; thus, both 
threshold-based and reinforcement learning based irrigation 
scheduling methods could only take effect on water-saving 
as the yield in real case was close to its full potential. 
However, during a dry season, although Q-learning and 
DQN irrigation scheduling showed an inferior ability in 
water-saving comparing to threshold-base methods, a 
significant increase in yield greatly improves the total 
economic return. This is because the reward function was 
mainly designed for maximizing the economic return, 
resulting more water irrigated if it’s necessary for improving 
the economic return. 

TABLE II.  COMPARISON OF IRRIGATION METHODS FOR CORN FIELD 
KELLY IN DIFFERENT SEASON. 

 

Although the DQN irrigation scheduling is not always 
the one that saves most water in irrigation comparing to Q 
learning and the conventional approaches, but it 
successfully achieves the highest economic return which we 
set as the goal of irrigation scheduling. Generally, the 
conventional approaches performs well in water-saving as 
they are designed to eliminate most unnecessary water. 
However, with deep reinforcement learning, the similar 
amount water can be better allocated on proper dates during 
the whole growing season to reach a higher yield or higher 
economic return. 

IV. CONCLISION AND FUTURE WORK 
In summary, our research has explored the application 

of deep reinforcement learning for optimizing irrigation 

Season and 
methods 

Yield 
(ton/ha) 

Irrigation 
Water 
(mm) 

Irrigation 
Times 

Net 
Return 
(USD) 

2019 (Wet 
Season) 

    

Deep Q 
networks 

13.525 131 10 3477.4 

Q learning 13.45 122.5 10 3470.0 
ET-WB based 13.3 130.3 11 3405.52 
SM based 13.3 121.8 11 3419.12 
Ground Truth 13.4 206.8 13 3291.12 
No irrigation 11.1 0 0 3108.0 
2020 (Dry 
Season) 

    

Deep Q 
networks 

14.865 243 11 3663.4 

Q learning 14.725 237.5 11 3633.0 
ET-WB based 13.6 226.7 10 3345.28 
SM based 13.6 222.5 10 3352.0 
Ground Truth 13.7 278.4 17 3220.56 
No irrigation 9.4 0 0 2632.0 
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scheduling in agriculture. The combination of 
reinforcement learning and deep neural networks in deep 
reinforcement learning allows for the effective 
approximation of the state-action pair value (Q value) and 
the solution of the sequential decision-making problem for 
maximizing final rewards based on the Markov property. 

To further investigate the potential of deep 
reinforcement learning in irrigation scheduling, we 
analyzed threshold-based approaches and rainfall forecast 
integration. Building on our findings, we developed a DQN 
algorithm-based irrigation scheduling model that optimizes 
irrigation actions for a best seasonal reward. The rapid 
convergence of the training process of the DQN algorithm 
showcases the efficacy of our model. 

Our simulated results indicate that our DQN strategy can 
conserve irrigation water by 20-40% compared to real 
irrigation decisions, which is comparable to conventional 
threshold-based approaches. However, our DQN strategy 
offers a much higher yield increase, resulting in the goal of 
maximizing economic return being achieved, which was 
increased by 5.7% and 17.3% for wet season and dry season, 
respectively. 

Our approach provides a promising avenue for 
optimizing irrigation scheduling and reducing water waste 
in agriculture. Further research can explore the potential of 
deep reinforcement learning in addressing other challenges 
in agriculture and beyond, taking advantages of recent 
progress in in-season crop mapping[19-23] and agricultural 
data availability[24-27]. 
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