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Abstract—task  of irrigation scheduling involves
sequentially establishing both the timing and quantity of
irrigation to be administered to the field throughout the
course of the growing season. This task can be conceptualized
as a Markov decision process. Reinforcement learning (RL),
a machine learning approach that leverages rewards acquired
through interactions with the environment to steer behavior
and progressively develops a strategy to maximize cumulative
rewards, is well-suited for managing sequential decision-
making processes such as irrigation scheduling. Deep RL, a
combination of RL with deep learning techniques, has the
potential to offer novel solutions to intricate cognitive
decision-making challenges in intricate states. In this
research, a deep RL-based irrigation scheduling approach
will be presented to enhance the optimization of economic
return in irrigation applications. This method involves
computing the irrigation quantity for each step while taking
evapotranspiration (ET), soil moisture, future precipitation
probability, and the current crop growth stage into
consideration. The simulation results showed a significant
improvement in economic return, 5.7% and 17.3% for a wet
season and a dry season, respectively, while water-saving
effect is similar to conventional threshold-based methods.
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I. INTRODUCTION

Agricultural irrigation accounts for approximately two-
thirds of worldwide freshwater usage[1], thereby escalating
the strain on water resources due to population expansion
and climate fluctuations [2-4]. Therefore, a pressing
requirement exists to enhance the efficiency of irrigation
systems through optimization aiming to conserve water
resources, despite water in soil being curial for crop growth
and high yield [5, 6]. Historically, farmers have commonly
relied on traditional irrigation scheduling. This approach
entails applying a consistent volume of irrigation water
within specific time intervals. While straightforward, this
method frequently leads to water wastage and diminished
crop productivity. However, recent times have witnessed
substantial exploration of more accurate irrigation strategies
rooted in sensor data.[7]. Nonetheless, the majority of these
approaches rely on thresholds or rudimentary models for
decision-making, leading to numerous instances of
imprecise or suboptimal irrigation occurrences. In the case
of threshold-centered irrigation scheduling, an expert's
involvement is required to translate sensor data into suitable
threshold values for utilization within a scheduling model.
This undertaking can become intricate due to the multitude
of zones, swiftly shifting weather conditions, variances in
soil composition, diverse crop varieties, and the varying
water requirements across different growth stages [8]. It’s
also hard for these methods to find the optimized action in
the term of long run return. In addition, the abundance of

sensor data further compounds the complexity of real-time
scheduling, potentially leading to conflicting information
from various sensor types and other data origins [9]. An
evident limitation of employing manually calculated
thresholds or models is their inherent time-consuming
nature and restricted scalability. To address these issues,
researchers have delved into the realm of machine learning
techniques to automate the process [10, 11]. Techniques
such as linear regression or neural networks are harnessed
to distill valuable insights from sensor data and construct the
scheduling model. Nevertheless, even with the integration
of these techniques, human supervision remains imperative
for meticulous result analysis and the manual regulation of
irrigation applications.

Irrigation decisions entail determining when and how
much irrigation is needed, akin to a Markov decision
process where the future state relies solely on the present
state [12]. Reinforcement learning (RL) is well-suited for
such processes due to their Markov property.[13]. Inspired
by behavioral psychology[14], RL proposes a formal
framework to the sequential decision-making problem. The
core concept involves an artificial agent learning through
interactions with its environment, much like a living
organism. Leveraging accumulated experience, the artificial
agent aims to optimize specified objectives, depicted in
Figure 1, through cumulative rewards. This approach can be
applied to a wide range of sequential decision-making
problems that depend on past encounters..

This paper presents a Deep Q-Network (DQN) based RL
approach[15] for irrigation scheduling using High-
Resolution Land Data Assimilation System (HRLDAS)[16,
17] simulated soil moisture and ET. Nebraska, a typical crop
state with large demand of irrigation, was selected as study
area for simulation.
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Figure 1. Interaction between agent and environment in reinforcement
learning.



II. DEEP REINFORCEMENT LEARNING FOR IRRIGATION
SCHEDULING

The decision-making process for irrigation exhibits the
Markov property, where the determination of whether to
irrigate is influenced by both the soil moisture and the crop
growth condition during growing season. The current state
of the soil and crop only depends on previous state of the
soil, weather, crop, and previous irrigation action. As a
result, the application of RL was employed to address
irrigation scheduling that incorporates the Markov property.

Conventional reinforcement learning, such as Q
learning, involves maintaining a Q table with dimensions
(s, a), where s is the number of states and a is the number
of actions, while learning from data. Fundamentally, a Q-
table maps state and action pairs to a Q-value. However, in
the irrigation decision scenario, the soil moisture and
precipitation are not distributed discretely, meaning the
number of states could be infinite, making it
computationally intractable to build a table. A deep Q-
learning network algorithm was developed by integrating
deep neural network (DNN) into RL to tackle the
continuous state space and expedite learning.

Rather than a Q-table for mapping state and action pairs
to a Q value, a Q function is approximated by learning
parameters (weights) of a DNN which we call a Q-network
such that it can generate the optimal Q values. The
fundamental concept behind a Deep Q Network is closely
akin to the Q Learning algorithm. It initializes with arbitrary
Q-value estimates, exploring the environment through an -
greedy policy. Its core employs a similar notion of dual
actions—current action with current Q-value and target
action with target Q-value—within its update logic to
enhance Q-value estimates. The integration of DNN enables
handling vast amounts of observational data, rendering the
proposed irrigation approach scalable.

For neural network training to achieve convergence and
stability, DQN introduced a technique known as
"experience replay." This method disentangles data
connections and optimally utilizes historical data samples.
The experience at each time-step, e, = (S, a;, 13, Spq1) 18
stored in a limited-size replay memory. When the maximum
capacity is reached, the freshest experience replaces the
oldest one. The aim of experience replay is to employ mini-
batch training for the Q-network, approximating the Q
function through samples from the replay memory.
Enhancing training performance, a method known as
combined experience replay (CER) is also employed. CER
ensures the incorporation of the most recent experience
within the samples.

For an irrigation agent, in every time step, the agent
selects an action (a;) from the set of legal actions, A =
{ay, a4,ay, ..., a;}, with each action corresponding to a
specific irrigation volume. This action is then
communicated to an environment connected with both
AquaCrop[18] and HRLDAS model to compute the
subsequent state and the reward. In the framework of DQN,
the ongoing observation of the environment using HRLDAS
simulations (x;) is used to indicate the current state (s;). The
goal of the irrigation agent is to interact with the actual
environment and the AquaCrop model, making action
choices in a way that maximizes long-term gains. Utilizing
the prevailing state and selected action, the environment

emulator calculates the upcoming state and the ensuing
reward, as depicted in Figure 2.

The algorithm is shown in Table 1. Initially, the replay
memory and Q network are initialized. Each training
episode corresponds to a complete crop season. During each
time step within an episode, there's a probability of selecting
a random irrigation action; otherwise, the action that can
maximize the Q value function is chosen. Subsequently, the
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Figure 2. Architecture of DQN-based irrigation scheduling.

chosen action and its interaction with the environment
emulator are employed to compute the current reward and
ascertain  the subsequent state. The transition
(S¢, a4, 1, Spq1) is preserved within  replay memory.
Ultimately, experience replay is executed by extracting a
random mini-batch of transitions from the replay memory
and carrying out a gradient descent step. The environment
emulator, illustrated in Figure 2, is the module that interacts
with AquaCrop and HRLDAS. HRLDAS is run first to
generate simulated soil moisture and ET after irrigation is
implemented. Subsequently, it forwards this data to
AquaCrop and initiates a single cycle of crop simulation.
Upon completion of the simulation, it retrieves the
simulation outcomes and employs pertinent data to compute
the reward and subsequent state values. The precise
architecture of the neural network is as follows: the input
layer is a matrix comprising feature vectors of stowage
samples, while the output layer represents the approximated
Q value for each action. Consequently, the input layer
encompasses 9 nodes, and the output layer contains 42
nodes. In this configuration, there are two hidden layers,
both fully-connected, each comprising 24 units..

TABLE L. PROCEDURES OF THE DQN-BASED IRRIGATION
SCHEDULING ALGORITHM.

: Initialize replay memory M to capacity N;

: Initialize Q network with random weights 6;

: Initialize target network with random weights 68’ = 6;

: for episode =1 to E do

: Initialize batch size;

: Collect the environmental condition and initialize state s;
: while Crop growing season is not end do

: With probability ¢ select a random action a,;

9: Otherwise select a; = max,Q*(sy, as; 0");

10: Execute irrigation action in the Environment Emulator;
11: Observe reward 7, and next state Sy, 1;

12: Store transition (s, a;, 1y, Sg41) into M;

13: if size of M > size of minibatch

14: Sample random minibatch of (s;, a;, 1y, S;41) from M;
15:sety; =

00 1O W AW —

T if siyq1 IS terminal state
7+ vy max Q(Siyq, Aiy1; 0") otherwise
Ait+1

16: Perform a gradient descent step on (yi —Q(s;,a; 9))2 according
to 6,



17: Every C steps clone 8" = 0,
18:ife > epin: € <« €% Egecay
19: End for
20: End for

III. RESULTS AND DISCUSSION

The loss signifies the value of the objective function
during neural network training, indicating how closely the
neural network approximates the discrete action value. As
illustrated in Figure 3, the initial loss is substantial due to
insufficient information for satisfactory approximation, and
it subsequently diminishes rapidly within 50 iterations.
Then the loss increased and floated around in a high value
before 200 iterations as the exploration strategy is more
adopted in the beginning episodes although the network
already learned some good policy. After approximately 300
-500 iterations, as the parameters of each iteration exhibited
minor differences, the loss value demonstrated a tendency
to stabilize and fluctuate. This trend indicated that the neural
network was progressively aligning itself with the action
value across diverse states.

Slightly different from what was anticipated, the mean
reward started from a large negative value and then
increased dramatically to a positive normal value. This
phenomenon stems from the fact that initially, the
exploration strategy was more prominently employed (e
was close to 1 at beginning), leading to the acquisition of a
sufficient range of reward values for every state. This
increased exploration was prone to result in actions that
yielded lower rewards, often a negative value as in this case
costs on the irrigation action have a strong chance to exceed
the gain in yield. Subsequently, a shift towards the
exploitation strategy occurred, favoring actions with the
highest rewards (¢ decayed to the minimum g). After
approximately 200-300 iterations, a noticeable and enduring
rise in mean rewards was observed, settling above 0.
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The results of the DQN irrigation scheduling are
contrasted with those of the conventional threshold-based

strategy and Q learning method. Results of real irrigation
and no irrigation cases are also included for reference. The
Table 2 shows the amount of irrigation water, yield, and the
economic returns of different approaches in different
seasons.

Table 2 shows that the DQN irrigation scheduling could
further improve the economic return by saving irrigation
water and increasing yield compared with threshold-based
methods and real irrigation scheduling. The economic return
improved 5.7% and 17.3% in wet season and dry season,
respectively, indicating a significant difference among
different weather conditions. During a wet season with
abundant rainfall, corn only needed minimal irrigation to
grow properly and reached full potential of yield; thus, both
threshold-based and reinforcement learning based irrigation
scheduling methods could only take effect on water-saving
as the yield in real case was close to its full potential.
However, during a dry season, although Q-learning and
DQN irrigation scheduling showed an inferior ability in
water-saving comparing to threshold-base methods, a
significant increase in yield greatly improves the total
economic return. This is because the reward function was
mainly designed for maximizing the economic return,
resulting more water irrigated if it’s necessary for improving
the economic return.

TABLE IL COMPARISON OF IRRIGATION METHODS FOR CORN FIELD
KELLY IN DIFFERENT SEASON.

Season and Yield Irrigation | Irrigation Net
methods (ton/ha) Water Times Return
(mm) (USD)
2019 (Wet
Season)
Deep Q 13.525 131 10 3477.4
networks
Q learning 13.45 122.5 10 3470.0
ET-WB based 133 130.3 11 3405.52
SM based 133 121.8 11 3419.12
Ground Truth 134 206.8 13 3291.12
No irrigation 11.1 0 0 3108.0
2020 (Dry
Season)
Deep Q 14.865 243 11 3663.4
networks
Q learning 14.725 237.5 11 3633.0
ET-WB based 13.6 226.7 10 334528
SM based 13.6 222.5 10 3352.0
Ground Truth 13.7 278.4 17 3220.56
No irrigation 9.4 0 0 2632.0

Although the DQN irrigation scheduling is not always
the one that saves most water in irrigation comparing to Q
learning and the conventional approaches, but it
successfully achieves the highest economic return which we
set as the goal of irrigation scheduling. Generally, the
conventional approaches performs well in water-saving as
they are designed to eliminate most unnecessary water.
However, with deep reinforcement learning, the similar
amount water can be better allocated on proper dates during
the whole growing season to reach a higher yield or higher
economic return.

IV. CONCLISION AND FUTURE WORK

In summary, our research has explored the application
of deep reinforcement learning for optimizing irrigation



scheduling in agriculture. The combination of
reinforcement learning and deep neural networks in deep
reinforcement learning allows for the effective
approximation of the state-action pair value (Q value) and
the solution of the sequential decision-making problem for
maximizing final rewards based on the Markov property.

To further investigate the potential of deep
reinforcement learning in irrigation scheduling, we
analyzed threshold-based approaches and rainfall forecast
integration. Building on our findings, we developed a DQN
algorithm-based irrigation scheduling model that optimizes
irrigation actions for a best seasonal reward. The rapid
convergence of the training process of the DQN algorithm
showcases the efficacy of our model.

Our simulated results indicate that our DQN strategy can
conserve irrigation water by 20-40% compared to real
irrigation decisions, which is comparable to conventional
threshold-based approaches. However, our DQN strategy
offers a much higher yield increase, resulting in the goal of
maximizing economic return being achieved, which was
increased by 5.7% and 17.3% for wet season and dry season,
respectively.

Our approach provides a promising avenue for
optimizing irrigation scheduling and reducing water waste
in agriculture. Further research can explore the potential of
deep reinforcement learning in addressing other challenges
in agriculture and beyond, taking advantages of recent
progress in in-season crop mapping[19-23] and agricultural
data availability[24-27].
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