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Abstract

DNA-based aquatic biomonitoring methods show promise to provide rapid, standard-
ized, and efficient biodiversity assessment to supplement and in some cases replace
current morphology-based approaches that are often less efficient and can produce
inconsistent results. Despite this potential, broad-scale adoption of DNA-based ap-
proaches by end-users remains limited, and studies on how these two approaches
differ in detecting aquatic biodiversity across large spatial scales are lacking. Here, we
present a comparison of DNA metabarcoding and morphological identification, lev-
eraging national-scale, open-source, ecological datasets from the National Ecological
Observatory Network (NEON). Across 24 wadeable streams in North America
with 179 paired sample comparisons, we found that DNA metabarcoding detected
twice as many unique taxa than morphological identification overall. The two ap-
proaches showed poor congruence in detecting the same taxa, averaging 59%, 35%,
and 23% of shared taxa detected at the order, family, and genus levels, respectively.
Importantly, the two approaches detected different proportions of indicator taxa like
%EPT and %Chironomidae. DNA metabarcoding detected far fewer Chironomid and
Trichopteran taxa than morphological identification, but more Ephemeropteran and
Plecopteran taxa, a result likely due to primer choice. Overall, our results showed
that DNA metabarcoding and morphological identification detected different benthic
macroinvertebrate communities. Despite these differences, we found that the same
environmental variables were correlated with invertebrate community structure,
suggesting that both approaches can accurately detect biodiversity patterns across
environmental gradients. Further refinement of DNA metabarcoding protocols, prim-
ers, and reference libraries-as well as more standardized, large-scale comparative
studies-may improve our understanding of the taxonomic agreement and data link-

ages between DNA metabarcoding and morphological approaches.
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1 | INTRODUCTION

The unprecedented decline of global freshwater biodiversity has
prompted an urgent need to predict the extent of its declines, driv-
ers of change, and modifications to ecosystem functioning (Jackson
et al., 2016; Tickner et al., 2020). Benthic macroinvertebrates are
routinely used in aquatic biomonitoring to track environmental
health due to their sensitivity to changes in water quality, includ-
ing those brought on by anthropogenic causes (Barbour et al., 1999;
Kenney et al., 2009). Governments worldwide use standardized
aquatic biomonitoring approaches to guide regulations on accept-
able pollutant levels, freshwater management, and conservation at
large spatial and temporal scales (e.g., U.S. Environmental Protection
Agency National Aquatic Resource Survey [EPA NARS, 2022],
Canadian Aquatic Biomonitoring Network [CABIN, 2022], Europe's
Water Framework Directive [WFD, 2022]). Despite the global need
for rapid bioassessment, these routine biomonitoring programs typ-
ically employ traditional morphology-based taxonomic identifica-
tion, a costly and time-consuming approach that requires substantial
taxonomic expertise and can produce subjective taxonomic identi-
fications (Yu et al., 2012). Because biomonitoring is a foundational
tool for environmental decision-making, it is critical that the current
methods used for obtaining biodiversity data are both efficient and
robust.

Recentadvancesin DNA-based technologies can overcome many
of the challenges associated with traditional, morphological-based
biomonitoring techniques (Baird & Hajibabaei, 2012; Blackman
et al.,, 2019; Bush et al., 2019). DNA metabarcoding requires the
isolation, amplification, and sequencing of organismal DNA from
environmental samples, which include environmental DNA (eDNA)
samples that include trace DNA of organisms in the water; or bulk
benthic samples that include community DNA of whole organisms
(Deiner et al., 2017). Advantages of DNA metabarcoding over tra-
ditional approaches for biomonitoring include standardized and
scalable procedures via high-throughput sequencing, enabling more
samples to be processed and automated, and reproducible identifi-
cation of taxa from reference databases (Porter & Hajibabaei, 2018).
These advantages create the potential for spatially and temporally
expanded, time-efficient, and streamlined biomonitoring that is
more consistent across research groups. Yet, the taxonomic assign-
ment that metabarcoding relies upon is still subject to inaccuracies
because of reference database incompleteness and primer bias
(Keck, Couton, & Altermatt, 2022). However, DNA metabarcoding
methods can be tuned to optimize taxon detection in ways that
morphological methods cannot by (1) using multiple primer sets to
overcome primer bias (Elbrecht et al., 2017; Hajibabaei et al., 2019),
and (2) using taxonomy-free approaches to overcome reference da-
tabase gaps (Apothéloz-Perret-Gentil et al., 2021).

Traditional morphology-based taxonomic assignment cur-
rently sets the baseline for biomonitoring programs, but is subject
to individual taxonomic expertise, availability of identification ref-
erence material, and condition of the sample, which can lead to
large discrepancies in taxonomic assignments (Haase et al., 2010).
Additionally, morphology-based methods have several other draw-
backs: (1) they focus only on morphologically identifiable biodiver-
sity, ignoring meiofauna, and cryptic taxa; (2) they often identify
individuals from a sub-sample, so not every individual is identified;
and (3) they routinely discard juvenile or damaged individuals that
cannot be identified because they lack characteristic morphologi-
cal features (Cordier et al., 2021; Elbrecht et al., 2017). While there
are clear advantages and disadvantages of both morphological and
metabarcoding methods, it is both timely and critically important to
clarify how DNA metabarcoding and morphological identification
differ in detecting aquatic biodiversity and to identify their sources
of bias and error (Bush et al., 2019).

There is growing interest from researchers and practitioners
in using DNA metabarcoding as a supplement to, or a replacement
for, traditional morphological identification approaches (Pawlowski
et al., 2020). However, standardized comparisons of morphological
and DNA metabarcoding approaches across large spatial scales are
lacking for aquatic benthic macroinvertebrates (Duarte et al., 2021;
but see Gibson et al., 2015; Keck et al., 2022). Further, most studies
are not standardized to scalable sampling protocols with comparable
measurements or are not open-sourced. These shortcomings could
stem from the general challenge of completing comparative aquatic
research across large spatiotemporal scales (Goodman et al., 2015).
Despite the known advantages, biases, and limitations of both
DNA metabarcoding and traditional morphological approaches
(Duarte et al., 2021), widespread adoption of DNA metabarcoding
for biomonitoring hinges on its ability to match existing identifica-
tion methodologies. Resource managers are often bound by legis-
lative mandates to use morphological identification approaches in
benthic macroinvertebrate assessments and are hesitant to adopt
DNA metabarcoding because of its lack of comparability to current
methodologies and existing long-term biomonitoring data sets (Bush
et al., 2019; Poikane et al., 2016). Thus, it is critically important to
better understand how both approaches perform across large spa-
tial scales using standardized, scalable methods.

Here, we compare the biodiversity and community structure
of stream benthic macroinvertebrates detected by traditional mor-
phological identification and DNA metabarcoding using data from
the National Ecological Observatory Network (NEON). NEON is a
continental-scale ecological monitoring program designed to collect
and provide open ecological data from sites across the United States
(Keller et al., 2008). The NEON platform enables a paired compar-
ison of aquatic macroinvertebrate biodiversity using both DNA
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metabarcoding and traditional morphological identification across
broad spatial and temporal scales. Our approach was fourfold: first,
we compared macroinvertebrate taxonomic richness detected by
both methods; second, we compared macroinvertebrate taxonomic
composition and indicator taxa identified by both methods; third, we
compared macroinvertebrate assemblages detected by both meth-
ods; fourth, we investigated if environmental variables are associ-
ated with differences in site-level variation in communities identified
by both methods. By investigating how these two approaches differ
in detecting aquatic macroinvertebrate taxonomic richness, diver-
sity, and assemblages, we hope to illuminate how to interpret the
information provided by these two approaches, their sources of bias
and error, and whether they complement each other, such that they
better capture total aquatic macroinvertebrate biodiversity when

paired.

2 | METHODS
2.1 | Datasources and processing

We used NEON's data portal (https://www.neonscience.org/
data) to download both the “Macroinvertebrate Collection”
(DP1.20120.001), and “Macroinvertebrate  Metabarcoding”
(DP1.20126.001) datasets (2022 release version, timespan of 2018-
06-01 - 2020-09-01, downloaded on 22 July 2022). Briefly, the
“Macroinvertebrate Collection” (hereafter, morphological) dataset
comprises benthic macroinvertebrate samples collected three times
per year (spring, summer, and fall) at wadeable stream sites (1km
long stream reach) using habitat-appropriate sampling devices (e.g.,
Surber sampler for riffles and runs, D-frame sweep net for pools).
Eight samples were collected for morphological identification, five
in the dominant habitat type (e.g., riffle, run, pool, step pools), and
three in the sub-dominant habitat type which are determined by
prior habitat mapping efforts. Three samples were collected for
DNA metabarcoding in the dominant habitat type. Morphological
samples were preserved in ethanol in the field and then shipped to a
taxonomy lab (Rithron Associates Inc. or EcoAnalysts Inc.) for iden-
tification using morphological characteristics. Samples were subject
to taxonomic precision by comparing whole-sample identifications
with a second taxonomist.

The “Macroinvertebrate Metabarcoding” (hereafter, DNA me-
tabarcoding) dataset comprises benthic macroinvertebrate sam-
ples collected using the same methods and dominant habitat as
the morphological dataset. Samples were shipped to a commercial
lab (Jonah Ventures, 2020) for DNA extraction, PCR amplifica-
tion, sequencing, and bioinformatics. Briefly, community samples
were homogenized with a hand immersion blender and extracted
using the Qiagen DNeasy Powersoil Kit. All samples were am-
plified using two primers from the CO1 gene (CO1 F230 frag-
ment, Gibson et al., 2015; Folmer et al., 1994; CO1 BE fragment
Hajibabaei et al., 2012). PCRs were conducted as follows: initial
denaturation at 95°C for 5min, followed by 40cycles of 40s at
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94°C, 1min at 46°C, 30s at 72°C, and a final elongation at 72°C
for 10 min. Samples were purified using Exol/SAP, and pooled,
normalized, and indexed. The average fragment length for the li-
brary was determined on a TapeStation, and then sequenced on
an lllumina MiSeq using the v2 500-cycle kit (Product Ref: MS-
1022002). The sequencing run included 10pM of library with a
15% PhiX spike-in as a control. Sequencing success and read qual-
ity was verified using FastQC v0.11.8, and reads were demulti-
plexed using lllumina-utils v2.6 (iu-demultiplex; https://github.
com/merenlab/illuminautils) with default settings. A custom ref-
erence database was generated using NCBI GenBank, and tax-
onomy was assigned to Exact Sequence Variants (ESV) compiled
from Usearch. For full methodological details, see Appendix S1 or
NEON's documentation for each method (Morphological: https://
data.neonscience.org/data-products/DP1.20120.001#documen-
tation; Metabarcoding: https://data.neonscience.org/data-produ
cts/DP1.20126.001#documentation).

We considered samples taken by both sampling approaches at
the same time, in the same location within the dominant habitat
type, and at the same site as “paired,” such that they should capture
similar benthic macroinvertebrate biodiversity (n=179 sample-level
comparisons across 24 sites). However, because the two samples
collected were in different locations with a sub-habitat type, and
because macroinvertebrate taxa are heterogeneously distributed
(even within the same habitat), we expected to observe some vari-
ation in macroinvertebrate taxa between the two samples (Barnes
et al., 2013; Bush et al., 2019).

To fit environmental covariates to community data, we down-
loaded field site metadata that included average annual temperature
(°C) and precipitation (mm/year), elevation (m), and watershed size
(km?). We downloaded water quality data from NEON's data por-
tal (DP1.20288.001) that included conductivity (uS/cm) turbidity
(FNU), dissolved oxygen (%), pH, chlorophyll a (pg/L), and fluores-
cent dissolved organic matter (fDOM, QSE).

We used NEON's 24 wadeable stream sites with at least 1year
of paired data between the morphological and metabarcoding data
sets. These sites range from 18° latitude in the Tundra domain of
Alaska to 65° latitude in the Atlantic Neotropical domain of Puerto
Rico (Figure 1a, see Table S1 for site metadata). Data were filtered to
taxonomy tables that indicate the specific taxa identified from each
method and further filtered to include only taxa from the Phylum
Arthropoda. Arthropoda are the most used in biomonitoring pro-
grams because of their sensitivity to environmental changes (Chang
et al., 2014). Samples were paired by matching the “samplelD” col-
umn from the morphological dataset to the “dnasamplelD” column
in the metabarcoding data set. Comparisons between each method
were made at three different taxonomic resolutions (i.e., order, fam-
ily, genus), to represent different levels of biomonitoring programs
and macroinvertebrate studies used to detect changes in communi-
ties and their responses to environmental conditions (Jones, 2008;
Martin et al., 2016). We did not compare methods at the species
level because 80% of taxa in the morphological dataset and 68% of
taxa in the metabarcoding dataset were not identified to species.

d ‘0 “€P6rLEIT

b//:sdny woy papeoy

ASURDIT SUOWWO)) dANEAI)) d[qear[dde ayy £q pauIoA0S a1e S[OIIE Y OSN JO SI[NI 10§ AIRIQIT AUI[UQ AJ[IA) UO (SUOHIPUOD-PUB-SULIA} WO AIM AIeIqI[auT[uo//:sd)Y) SUONIPUO)) PUE SULd ], 3y} 39S “[£707/21/1€] uo A1eiqry aurjuQ A[ip ‘KNSIOATUN elS BIuBA[Asuudd Aq €S CUPA/Z001 0 1/10P/WOd K[


https://www.neonscience.org/data
https://www.neonscience.org/data
https://github.com/merenlab/illuminautils
https://github.com/merenlab/illuminautils
https://data.neonscience.org/data-products/DP1.20120.001#documentation
https://data.neonscience.org/data-products/DP1.20120.001#documentation
https://data.neonscience.org/data-products/DP1.20120.001#documentation
https://data.neonscience.org/data-products/DP1.20126.001#documentation
https://data.neonscience.org/data-products/DP1.20126.001#documentation

4 Wl LEY Environmental DNA o EMMONS ET AL.
Dedicated to the study and use of environmental DNA for basic and applle SCInCES
(b) oksr cari Morphological
MCRA MART BLDE HOPB

00C o

REDB WLOU ARIK KING MCDI LEWI POSE

C000GGOO0

BIGC TECR COMO BLUE WALK LECO
h SYCA PRIN MAYF
CUPE GUIL

" Precipitation (c) OKSR CARI Metabarcoding
W Temperature

High

MCRA MART BLDE HCOPB

000 C

REDB WLOU ARIK KING MCDI LEWI POSE

0C0006G0O0C

Low

. Coleoptera
- Diptera
. Decapoda

Low  High

BIGC TECR COMO BLUE WALK LECO
Ephemeroptera
Lepidoptera C ( ( ( c c
Plecoptera SYCA PRIN MAYF

. Podocopida
. Trichoptera

. Trombidiformes

o o C CUPE GUIL
' (o) o

FIGURE 1 Map of NEON sites used in this study (a) color of the site indicates local climate. Relative proportion of taxa at the Order
resolution across all sites (Gamma diversity, large donut), and at each site (Alpha diversity, small donuts) for the morphologically identified
dataset (b), and DNA metabarcoding dataset (c). Sites are arranged in approximate geographic positions in B and C, with four letter
abbreviations (Table S1). Orders with <1% relative proportion were grouped into the “other” category.

2.2 | Taxonomic richness

To compare the macroinvertebrate taxonomic richness detected
by both approaches, we examined both alpha (i.e., total species
detected at an individual site) and gamma (i.e., total number of taxa
detected across sites) diversity of paired samples (n=179 compari-
sons). First, to test whether one identification approach detected
higher alpha diversity than the other, we used the log-ratio (Hedges
et al., 1999). Briefly, we calculated the log-ratio In(A/B), where A is
the total alpha diversity detected by DNA metabarcoding and B is
the total alpha diversity detected by the morphological identifica-
tion. The log-ratio is an effect size index, and the value here is
positive when A is greater than B, negative when B is greater than
A, and zero when A and B are equal. We used a linear mixed model
with the site as a random effect in an intercept-only model to test
whether the mean log-ratio was significantly different from zero
across the three different focal taxonomic resolutions. Second,
we used Pearson correlations to evaluate the similarity between
alpha diversities detected by DNA metabarcoding and morpho-
logical identification across the three different focal taxonomic
resolutions. Lastly, we calculated genera accumulation curves to
evaluate the rate at which each identification method accumu-
lates new genera. We used the R packages “ImerTest” (Kuznetsova
et al., 2017) to conduct linear mixed models, “stats” (R Core Team
2022) to conduct Pearson's correlations, and “vegan” (Oksanen
et al., 2022) to create genera accumulation curves.

2.3 | Taxonomic composition and indicator taxa

To compare macroinvertebrate taxonomic composition (i.e., the
taxonomic identities of detected individuals) detected by each ap-
proach, we first calculated the relative proportion of each unique
taxa detected across all sites at the three focal taxonomic resolu-
tions as the frequency of occurrence of each unique taxa/total
frequency of all unique taxax 100. Second, we calculated three
relative fractions: diversity detected by morphological identifi-
cation only, diversity detected by DNA metabarcoding only, and
the shared diversity detected by both approaches. Fractions were
calculated following the approach outlined in Keck, Blackman,
et al. (2022). Briefly, each fraction of diversity was divided by the
total diversity detected by both approaches (see Figure 7 for a
graphical description). Next, we used a beta regression to test
for differences in the diversity detected between each fractional
group (morphological only, metabarcoding only, and shared), in-
cluding each fractional group as an independent variable. In cases
where relative proportion values contained zeros and ones (genus
and order taxonomic resolution), we transformed data following
(y - (n=1)+0.5)/n where y is the fraction of diversity and n is the
sample size (Smithson & Verkuilen, 2006). We performed post hoc
pairwise comparisons across groups using least-squared means
to test for significant differences among the fractional groups,
using the “betareg” (Cribari-Neto & Zeileis, 2010) and “emmeans”
(Lenth, 2022) packages in R.
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Second, to compare indicator taxa detected by each approach,
we examined two biotic integrity metrics commonly used in bio-
monitoring: percent of total taxa in the community from the orders
Ephemeroptera, Plecoptera, and Trichoptera (%EPT), and percent
of total taxa in the community from the family Chironomidae
(%Chironomidae). These taxa are often used for detecting changes
in stream conditions associated with pollution and other distur-
bances because of their sensitivity to disturbances (Herman &
Nejadhashemi, 2015). Generally, a high proportion of %EPT indi-
cates good stream health, and a high proportion of Chironomids
indicates poor stream health (Compin & Céréghino, 2003; Serra
et al.,, 2017). We calculated the proportion of both %EPT and
%Chironomidae for each unique samplelD (n=179) across both
identification approaches. We divided the number of unique
genera detected within each group by the total number of dis-
tinct genera detected in the sample and used Pearson correla-
tions to compare how DNA metabarcoding and morphological
identification perform at detecting these indicator taxa (Emilson
et al., 2017).

2.4 | Benthic macroinvertebrate assemblages

To compare macroinvertebrate assemblages detected by each ap-
proach, we used a multivariate ordination analysis. Benthic mac-
roinvertebrate assemblages were grouped by the unique paired
sample ID's (n=179), and Jaccard dissimilarity distances were cal-
culated between communities detected by DNA metabarcoding
and morphological identification. We used nonmetric multidimen-
sional scaling (NMDS) to ordinate communities using k=3 dimen-
sions and 1000 maximum iterations using the “vegan” package in R
(Oksanen et al., 2022). To test whether there was a difference in the
centroids and dispersion of assemblages detected by the two ap-
proaches, we used a Permutational Multivariate Analysis of Variance
(PERMANOVA, Anderson & Walsh, 2013; Oksanen et al., 2022).
To test the correlations between environmental variables and
NMDS configurations, we used two separate ordinations for each
approach and discarded assemblage data from Oksrukuyik Creek,
Alaska (OKSR) because no water quality data existed for it. We used
the env.fit function in the “vegan” package in R to fit environmen-
tal covariates to each method-specific ordination and estimate the
strengths and directions of their correlation with the NMDS con-
figuration. We performed all statistical analyses in R version 4.1.3 (R
Core Team 2022).

3 | RESULTS
3.1 | Taxonomic richness
Across all 24 NEON wadeable streams, gamma diversity was

higher from the DNA metabarcoding identifications when com-
pared with morphological identifications. DNA metabarcoding

Dedicated to the study and use of environmental DNA for basic and applied sciences

detected more than twice as many taxa compared with morphol-
ogy across the focal order, family, and genus taxonomic levels
(Figure 2). For the morphological approach, over half of the diver-
sity detected was also detected by DNA metabarcoding across all
taxonomic levels (blue bars, Figure 2). In other words, DNA me-
tabarcoding detected more unique taxa that were not detected
by morphological identification. The mean log-ratio values did not
significantly differ from zero at the genus (linear mixed model,
intercept=-0.041, Z-value=-0.613, p=0.546) or family (linear
mixed model, intercept=0.111, Z-value=1.827, p=0.081) taxo-
nomic resolutions (Figure 3). However, the mean log-ratio value of
0.114 was significantly different from zero at the order level (linear
mixed model, intercept=0.1464, Z-value=3.793, p<0.001), indi-
cating that DNA metabarcoding detected more Arthropod orders
at the alpha diversity scale. Pearson correlations between alpha
diversity detected by each approach showed that DNA metabar-
coding alpha diversity was significantly positively correlated with
morphological alpha diversity at all three taxonomic resolutions
(Figure 4). With increasing taxonomic resolution, the strength
of the association between DNA metabarcoding alpha diversity
and morphological alpha diversity increased (e.g., R=0.24 at the
order resolution and R=0.44 at the genus resolution, Figure 4).
Visual inspection of the number of points above the 1:1 line indi-
cates that DNA metabarcoding detected more unique orders and

families than morphological identification. Genera accumulation

800+ 794

. Morphological = .
. Shared . 697

. Metabarcoding .
coo| [l ™ - @D

Gamma Diversity
5
o

200+
35
0.
Order Far'nily Genus
Resolution

FIGURE 2 Total richness (Gamma diversity—the total number

of taxa identified by each approach) across all sites at the Order,
Family, and Genus taxonomic resolution. Venn diagram indicates
how the data are conceptualized into different fractions of diversity
detected by each approach. Legend further indicates how each bar
represents different portions of the Venn diagram. Morphological
and Metabarcoding bars are represented with a striped pattern to
indicate the estimates of diversity including taxa detected by both
approaches.
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FIGURE 4 Pearson correlations between taxonomic richness detected by the two identification approaches (DNA metabarcoding, y-axis,
and traditional morphological identification, x-axis). Solid line indicates the line of best fit, and the dotted line indicates 1:1 fit for visual
comparison between approaches. Shaded areas surrounding solid line represent 95% confidence interval. Note differences in the x-and-y-

axis scales between taxonomic resolutions.

curves suggest that DNA metabarcoding detects taxa at a faster
accumulation rate than morphological data (Figure 5). The curve
for morphological sampling indicates that this approach detected
a high proportion of common genera, indicated by the steep initial
slope and early plateau, suggesting that the overall genera diver-
sity that can be captured by this method can be saturated with
relatively few samples (Figure 5). On the other hand, the genera
accumulation curve for DNA metabarcoding indicates that this
approach detected a higher proportion of rare genera, indicated
by the long slope and absent plateau, suggesting that the overall
genera diversity that can be captured by this method has not yet
reached saturation (Figure 5).

3.2 | Taxonomic composition and indicator taxa

Comparisons of proportions of major taxonomic groups across
three focal taxonomic resolutions showed that DNA metabar-
coding detected a lower proportion of Diptera, Trichoptera, and
Trombidiformes taxa compared with morphological identification.
However, DNA metabarcoding detected a greater proportion of
Coleoptera, Decapoda, Ephemeroptera, and Plecoptera (Figures 1
and 6, and Figure S5).

The proportion of diversity detected varied across different frac-
tional groups (morphological only, shared, and DNA metabarcoding
only) and taxonomic resolutions (order, family, genus; Figure 7). For
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FIGURE 5 Generaaccumulation curves for DNA metabarcoding
and morphological identification methods for benthic
macroinvertebrates across 179 unique sampling occasions at 24
sites across the U.S. Curves are estimated based on the richness of
unique genera detected by each method. Shaded areas represent
+2 standard deviations.

example, the proportion of diversity detected by each individual
approach increased with more specific taxonomic resolutions: a
greater proportion of diversity was detected by only DNA metabar-
coding and only morphological identification at the genus taxonomic
level than order (Figure 7). The proportion of diversity detected
by both approaches decreased with more taxonomic resolution: a
greater proportion of diversity was detected by both approaches
at the order level than genus (Figure 7). Specifically, across all 179
unique paired samples at the 24 NEON sites, the mean percent of
taxa shared between both approaches was 59.7%, 35.2%, and 23.0%
at the order, family, and genus taxonomic resolution, respectively
(Figure 7, Figure S1). At the order level, the fraction of shared diver-
sity detected by both approaches was significantly higher than both
the fraction of diversity detected by morphological identification
only (beta regression interaction p <0.001) and DNA metabarcoding
only (beta regression interaction p<0.001; Figure 7). Additionally,
the fraction of diversity detected by DNA metabarcoding only was
significantly higher than the fraction of diversity detected by mor-
phological identification only at the order taxonomic level (beta re-
gression interaction p<0.001). At the family taxonomic resolution,
the fraction of taxa detected by only morphological identification
was significantly lower than both the shared taxa detected by both
approaches (beta regression interaction p <0.001), and the taxa de-
tected by DNA metabarcoding (beta regression interaction p <0.01).
At the genus level, the fractions of diversity detected by only mor-
phological identification and only DNA metabarcoding were both
significantly higher than the shared diversity detected by both ap-
proaches (beta regression interactions p <0.001). Fractions of diver-
sity did not greatly vary spatially across sites at either of the three
taxonomic resolutions (Figures S2-54).
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Pearson correlations indicated that both the %EPT and
%Chironomidae detected with DNA metabarcoding were signifi-
cantly positively correlated with the %EPT and %Chironomids de-
tected with morphological identification (Figure 8). %EPT was more
highly correlated than %Chironomidae, and more points were above
the 1:1 line, suggesting that DNA metabarcoding was better at de-
tecting EPT taxa (Figure 8). However, more points were below the
1:1 line with %Chironomids, indicating that morphological identifi-
cation was better at detecting Chironomidae (Figure 8). %EPT and %
Chironomidae varied spatially across sites, with some sites detecting
higher proportions of these indicator taxa with morphological sam-
pling and vice-versa (Figures Sé and S7).

3.3 | Benthic macroinvertebrate assemblages

The NMDS ordination reached successful convergence after 36 it-
erations (stress=0.172, k=3). At k=2, no convergence was reached
after 1000 iterations and stress values were above 0.2; thus, we re-
tained the results from the NMDS ordination at k=3 (Clarke, 1993).
PERMANOVA analysis indicated that the assemblages detected by
each approach were significantly different (R*=0.0306, F=11.225,
p=0.001; Figure 9). Assemblages detected by morphological iden-
tification tended to be more tightly clustered than assemblages de-
tected by DNA metabarcoding (Figure 9).

3.4 | Environmental covariates

Separate method-specific ordinations fit with environmental covari-
ates indicated that all variables were significant in explaining the
variation in our NMDS ordination (Figure S8, Table S2). Temperature
(R?=0.65 Metabarcoding, R?=0.72 Morphological), conductiv-
ity (R?=0.52 Metabarcoding, R>=0.44 Morphological), and eleva-
tion (R?=0.35 Metabarcoding, R>=0.29 Morphological) were the
strongest predictors for both approaches (Table S2). Chlorophyll a
(R?=0.16 Metabarcoding, R?=0.13 Morphological) and turbidity
(R?=0.08 Metabarcoding, R>=0.09 Morphological) were the weak-
est predictors for both approaches. Vectors for each environmental
covariate point toward the same sites between methods, indicating
that the same environmental variables drive site-level variation in
the communities as represented in the NMDS ordination (Figure S8).

4 | DISCUSSION

Freshwater biodiversity loss is accelerating rapidly across the globe
(Lynch et al., 2023), making reliable and scalable biodiversity assess-
ment frameworks a requirement for monitoring, decision-making,
and conservation efforts (IPBES, 2019; Tickner et al., 2020). DNA
metabarcoding shows potential for streamlined, cost-effective, and
highly accurate biodiversity assessments that are scalable across
ecosystems (Buchner et al., 2021; Stein et al., 2014). However,
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FIGURE 6 Relative proportions of taxa detected across all sites by morphological and DNA metabarcoding identification approaches.
Stacked bars indicate proportions of taxonomic groups detected by each approach (frequency of occurrence of each unique taxa/total
frequency of all unique taxax 100). Flows between the stacked bars connect the same families. The outer brackets and percentages indicate
proportions of taxa aggregated at the order taxonomic resolution. Families with proportions smaller than 1% were grouped into the “Other”

category.

large-scale comparative studies between DNA metabarcoding and
morphological approaches are lacking, but important in linking these
two approaches to ensure the continuity of long-term biomonitoring
datasets and further refine DNA metabarcoding approaches (but see
Brantschen et al., 2021; Elbrecht et al., 2017; Emilson et al., 2017).
Here, we compared benthic macroinvertebrate biodiversity detected
by DNA metabarcoding and traditional morphological approaches
to illuminate whether they provide similar taxonomic identifica-
tion across a broad spatial scale using scalable, open-source data.
We found that DNA metabarcoding detected twice as many unique
taxa than morphological identification, but that the two approaches
detected different macroinvertebrate taxonomic composition and
assemblages. We also found detection biases for important indica-
tor taxa like %EPT and %Chironomidae between the two methods.
Our work highlights key tradeoffs between DNA metabarcoding and
morphological identifications, suggesting a data fusion approach
could leverage the strengths of each approach to better capture
macroinvertebrate biodiversity (Pawlowski et al., 2018).

DNA metabarcoding and morphological identification detected
similar numbers of taxa but from different taxonomic groups. While
DNA metabarcoding detected twice as many taxa as traditional
approaches across all sites (gamma diversity), both approaches de-
tected similar taxonomic richness at the local or site scale (alpha di-
versity). Additionally, genera accumulation curves provided further
support that DNA metabarcoding detected rare and unique taxa. The
morphological genera accumulation curve plateaued at ~300 gen-
era, while the curve for DNA metabarcoding peaked at ~700 genera
and never plateaued. This could indicate some taxonomic familiarity
bias by individuals identifying the taxa (i.e., they were more likely to
detect shared taxa and miss rare taxa across the NEON network). On
the other hand, richness could be inflated with DNA metabarcoding
due to false or inaccurate taxonomic assignments because of the
limited availability and quality of reference databases (Keck, Couton,
& Altermatt, 2022). Regardless, detecting similar numbers of taxa
between approaches at the local scale is not informative if the taxa
identified are different, as indicated by our results.
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FIGURE 7 Relative fraction of diversity detected by morphological identification only, shared diversity detected by both approaches, and
DNA metabarcoding only across different taxonomic resolutions. Boxplots and violin plots indicate full ranges and + symbols indicate means.
Connecting lines with significance (*p <0.05, **p <0.01, ***p <0.001) indicate significant differences in means from beta regression. Venn
diagram and the derivation of the different fractions of diversity are depicted below.
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FIGURE 8 Pearson correlations between % Ephemeroptera, Plecoptera, and Trichoptera orders (%EPT, a) and %Chironomids (b) detected
between both identification approaches (DNA metabarcoding, y-axis, and traditional morphological identification, x-axis). Solid line indicates
the line of best fit, and the dotted line indicates 1:1 fit for visual comparison between approaches. Shaded areas surrounding the solid line
represent 95% confidence interval. Note differences in the x-and-y-axis scales between panels a and b.

Macroinvertebrate taxonomic composition is essential to mak-
ing inferences about stream health and ecosystem function because
specific taxonomic identities indicate healthy or poor-quality stream
ecosystems (Pander & Geist, 2013). We found that DNA metabar-
coding and morphological identification detected different taxo-
nomic composition and communities across different taxonomic
resolutions at the local scale. Only an average of 35% and 23% of taxa
matched across sites at the family and genus taxonomic resolution,

respectively (Figure S1). The low agreement between these two ap-
proaches could be explained by a combination of incomplete refer-
ence libraries used to assign taxonomic identities (Bush et al., 2020;
Weigand et al., 2019), primer and amplification biases where
some taxonomic groups are unequally or poorly amplified (Duarte
et al., 2021; Elbrecht & Leese, 2015; Hajibabaei et al., 2019; Leese
et al., 2020), differences in the number of samples taken for each
approach (NEON, 2022), or DNA metabarcoding's ability to detect
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FIGURE 9 Nonmetric multidimensional scaling (NMDS) ordination of macroinvertebrate communities based on Jaccard dissimilarities
for each of the taxonomic identification approaches (DNA metabarcoding and traditional morphological identification). The left plot shows
NMDS axes 1 vs. 3, and right plot shows NMDS axes 2 vs. 3. The triangle symbols represent the centroid of each identification approach.

small arthropods (e.g., copepods and ostracods) that are not typically
targeted by morphological approaches. This low agreement compli-
cates resource managers' ability to compare aquatic biodiversity de-
tected between approaches across broad spatial scales. Indeed, this
underscores why many prospective users of DNA metabarcoding
remain hesitant to adopt this approach: existing long-term datasets
collected with traditional approaches capture a different subset of
taxa than DNA metabarcoding. To boost the adoption of DNA me-
tabarcoding in biomonitoring, co-developing monitoring tools with
stakeholders that address the errors and biases in both genomic and
traditional methods is critically important to linking existing data-
sets with DNA metabarcoding data and making them comparable
(Aylagas et al., 2020). In some applications, it might be appropriate
for DNA metabarcoding to act as a complementary approach with
morphological identification, instead of a replacement, to detect
rare taxa that are missed by morphological identification (Keck,
Blackman, et al., 2022). Further, as reference databases become
more comprehensive or taxonomy-free approaches gain traction
(Apothéloz-Perret-Gentil et al., 2017), and as sequencing technol-
ogies advance to the point that metabarcoding can be replaced by
shotgun sequencing for detection of organisms, DNA metabarcod-
ing will be able to deliver on the promise of providing a near-census
picture of all the biodiversity in a sample or system (Compson et al.,
2020; Ficetola & Taberlet, 2023). This will usher in new possibilities
for merging morphological and genomic approaches.

We also found that the two approaches exhibited detection bias
for some taxonomic groups, including important indicator taxa. In

this study, morphological identification detected a higher relative
abundance of Diptera, Trichoptera, and Trombidiformes taxa com-
pared with DNA metabarcoding, whereas DNA metabarcoding
detected a higher relative abundance of Coleoptera, Decapoda,
Ephemeroptera, and Plecoptera taxa. This finding is significant
because these taxa are included in two widely used bioassess-
ment indices, %EPT and %Chironomidae, where %EPT is typically
used to assess stream health and %Chironomidae is used to assess
how impaired a system is. These taxonomic groups are commonly
used as indicator taxa in biomonitoring and assessment efforts to
make inferences about water quality and stream health (Bonada
et al., 2006; Buss et al., 2002). Because DNA metabarcoding de-
tected far fewer pollution-tolerant Chironomidae and more EPT
taxa than morphological identifications, conflicting inferences could
be drawn about stream condition when using one approach over
another. For example, %EPT and %Chironomid derived from DNA
metabarcoding would indicate an overall healthier stream condition
for most sites compared with morphological sampling because of the
higher percentage of EPT taxa and lower percentage of Chironomids
(Figures S6 and S7). These detection biases in benthic macroinver-
tebrate indicator taxa could be explained by primer choice, as some
primers-including F230 and BE, primers that are specifically used
in the NEON DNA metabarcoding pipeline-are known to under-
perform at detecting Dipteran taxa (Leese et al., 2020), while other
primers are known to recover more EPT and Chironomidae taxa
(Hajibabaei et al., 2019). Indeed, strong congruence between eDNA
and morphological identification approaches was achieved using
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different primers than NEON's, but still struggled to detect import-
ant indicator taxa (Brantschen et al., 2021). Consequently, using mul-
tiple primer sets to minimize amplification bias is recommended to
improve DNA metabarcoding's performance at detecting indicator
taxa (Elbrecht et al., 2019).

Our study also provides important insights into environmental
variables that drive variation in macroinvertebrate community com-
position observed from the two approaches. We found that the av-
erage annual temperature and precipitation, elevation, watershed
size, conductivity, turbidity, dissolved oxygen, pH, chlorophyll a, and
fDOM were all significant in explaining the variation in our NMDS
ordinations, with temperature, elevation, and water conductivity
explaining most of the variation for both approaches. Indeed, clima-
tological factors such as temperature and precipitation drive benthic
macroinvertebrate community production and composition (Patrick
et al., 2019). Additionally, aquatic communities are structured by
fluvial processes that shape local habitat characteristics, which
vary with elevation (Rezende et al., 2014). Further, macroinverte-
brates have varying tolerances to salinity in freshwater systems.
Therefore, salinity plays a significant role in structuring communities
(Shackleton et al., 2019) and is becoming a greater threat as fresh-
water ecosystems are becoming more saline due to road salt use and
urbanization, particularly in higher latitudes (Kaushal et al., 2021).
Our results suggest that both approaches can accurately detect en-
vironmental factors that structure macroinvertebrate community
composition across the continental scale gradient of our study de-
spite the major differences in the taxonomic identities detected by
each approach. Future work should seek to better understand what
drives macroinvertebrate community changes across broad spatial
scales using DNA metabarcoding, given that macroinvertebrate
communities are vulnerable to numerous stressors like pollution,
habitat alteration, and climate change.

In conclusion, DNA metabarcoding and morphological identifica-
tion captured different subsets of macroinvertebrate biodiversity in
our study. Our results suggest that DNA metabarcoding for benthic
macroinvertebrates should be considered as a different approach
to traditional morphological identification rather than a replace-
ment, corroborating the findings of a recent meta-analysis (Keck,
Blackman, et al., 2022). While both approaches capture similar levels
of alpha diversity, each method has different taxonomic biases, in-
cluding important indicator taxa like %EPT and %Chironomidae. The
two approaches could be used in tandem to better capture benthic
macroinvertebrate biodiversity or to explore novel bioassessment
tools that can utilize data from both approaches (e.g., food web
modeling; Compson et al., 2018; Makiola et al., 2020). While DNA
metabarcoding offers improved detection of macroinvertebrate tax-
onomic richness and diversity, widespread adoption among biomon-
itoring programs remains low because of its lack of comparability
to existing morphological-based databases, and lack of method co-
development and clear communication of project objectives among
stakeholders and researchers (Aylagas et al., 2020; Bush et al., 2019;
Hering et al., 2018; Sepulveda et al., 2020). Indeed, clearly defining
program goals can help end-users identify “the right tool for the right
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job”, or which approach or combination of approaches can be used
to ensure the success of the program. Here, we presented a large
comparison of standardized DNA metabarcoding and morphological
identification approaches and found large differences in gamma di-
versity and the biodiversity detected between the two approaches.
However, both approaches detected the same environmental driv-
ers of community composition. Therefore, considering the funda-
mental errors and biases between the two approaches is critically
important for future comparative studies. Ultimately, to improve
freshwater biomonitoring, we suggest biomonitoring programs em-
ploy a data fusion approach that retains the strengths and corrects
for the weaknesses of both approaches to obtain more accurate in-

formation on freshwater biodiversity.
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