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Abstract—Stencil computations are ubiquitous in modern
grid-based physical simulations. In this paper, we present
Fourst – a compiler to generate programs computing time
iterated linear periodic and aperiodic stencil computations
with fast Fourier transform methods. !is paper outlines
the design and implementation of the code generation ap-
proach in Fourst, to automatically generate FFT-based stencil
solvers. We present experimental results on the state-of-
the-art Ookami supercomputer housing Fujitsu A64FX and
Intel Skylake processors, to study the performance of Fourst
and a state-of-the-art tiling-based optimized code generator
PLuTo on various stencil shapes and varying the number
of time iterations. We discuss the performance profiles,
and limitations, of both approaches on high-end modern
hardware.

Index Terms—Fast-Fourier Transform, FFT, Stencil, Stencil
Computations, Fast Stencil Computation, Grid Simulation,
Simulation, Fourst

I. Introduction

A stencil is a small cellular automaton-like pa"ern used to
update the values of cells in a spatial grid; it is used once per
cell per timestep. #e entire process of evolving cell values
in the entire spatial grid according to some stencil for a large
number of timesteps is called a stencil computation [1]–[3].
A stencil computation is formally defined as follows. #e

initial grid data is a0. #e grid data a%er i + 1 timesteps is
computed by applying the stencil S on the grid data obtained
a%er i timesteps, i.e., ai+1 = Sai. We want to compute the
time evolution of the grid a%er T timesteps, that is, compute
aT from a0 and S .
Any of the two types of boundary conditions can be

used for computing the cells at the boundary of the spatial
grid: periodic and aperiodic. Periodic boundary conditions
are used when the spatial grid is a hypertorus, i.e., every
dimension wraps around itself to form a closed object. We
use modular or clock arithmetic to perform calculations on
a periodic grid. In contrast, aperiodic boundary conditions
are used when the spatial grid is an orthotope/hyperrectangle,
i.e., every dimension does not wrap around itself to form a

closed object. Several types of aperiodic boundary conditions
can be used such as Dirichlet [4] and von Neumann [5].

Stencils computations appear in a wide variety of scientific
computing and engineering applications, most o%en for the
simulation of physical systems [6]–[8] such as dynamics
of smoke, fire, liquids, hair, clothing, skin, sand, and snow.
#ey are also used for less obvious applications such as
image processing [9]–[11]. #ese computations generally
operate on a principle of “bigger is be"er (or more realistic)”

and in some cases computation depends on varying large

timesteps [12], so it is of considerable scientific interest to

improve the efficiency with which these computations can

be implemented and evaluated for huge grids and a large

number of timesteps.

#ere exist several techniques to implement stencil com-

putations. Stencils can be implemented using simple looping

codes but such iterative codes do not exploit temporal data

locality. Cache-aware tiled-looping programs [13]–[24] ex-

ploit temporal locality and/or parallelism however they can

be less portable across machines. Cache-oblivious recursive

divide-and-conquer trapezoidal algorithms [2], [3], [25]–[31]

make the programs cache-efficient and portable. All these

algorithms have a computational complexity of Θ(NT ),
where N is the grid size and T is the number of timesteps,

and they work with explicit stencils1.

Recently, Ahmad et al. [1] designed stencil algorithms

based on fast Fourier transforms (FFT) that work with linear

homogeneous stencils and arbitrary boundary conditions.

#ese are the first stencil algorithms that have a computa-

tional complexity of o (NT ). Ahmad et al. [1] show that the

implementations of these algorithms run orders of magnitude

faster than that of state-of-the-art for periodic grids, and 1.3×
to 8.5× faster for large aperiodic grids.

#e FFT-based stencil algorithms presented in Ahmad et al.

[1] are examples of solvers with optimal preprocessing, which

1explicit stencils – stencils that depend on prior timesteps.
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have made them converge to the exact solution in a single
step, thus rendering them also direct. By converting to the
Fourier domain, they are able to take computations which
would normally look like dense matrix multiplications and
transform them into computations which look like vector-
vector multiplications. #is then allows for greatly improved

computational complexity and parallelism.

#ese recent FFT-based solvers are by no means the first

occurrence of Fourier transforms in the field of stencil com-

putation. On the contrary, it is common for discrete Fourier

transforms (DFTs) to be used either in the analysis [32] or

implementations [33]–[35] of Krylov subspace methods, as

Fourier analysis is useful for proving scheme stability [36],

[37] and convergence rates [38], and DFT matrices are good

preconditioners [39] for a large class of matrix equations

[40]. In some instances choosing the DFT matrix as a Krylov

preconditioner can even convert an approximate solver into

a direct one [41], [42], as was the case for Ahmad et al.

[1]. However, even though DFTs were commonly applied and

well known as a tool for numerical analysis, they were not

applied to evolve grid data for many timesteps at a time

before Ahmad et al.’s work [1].

Implementing stencil algorithms to achieve high perfor-

mance is hard. #is process might require sophisticated tech-

niques such as dependence analysis, recursive divide-and-

conquer, parallel programming, and problem-specific math-

ematical analysis. Due to the complicated nature of these

codes, significant effort is spent coding and debugging them.

Several automatic stencil code generators exist. For ex-

ample, PLuTo [43] is an automatic parallelizing and locality

optimizing code generator for affine loop nests based on the

polyhedral model [44]. Other code generators based on the

polyhedral model are [45]–[48]. #e Pochoir stencil compiler

[3] is a domain specific language stencil code compiler that

takes a simple specification of a stencil code and automati-

cally generates a parallel cache-oblivious implementation of

the divide-and-conquer trapezoidal algorithm. #ere are also

stencil code generators for GPUs [49]–[53] and distributed-

memory machines [54]. For FPGAs direct efficient source

code generator for stencil computation in not widely used

but efficient tuning has been analyzed [55].

In this paper, we present Fourst — the first stencil code
generator that automatically generates the implementa-
tions of Ahmad et al.’s [1] FFT-based stencil algorithms
for linear homogenoues stencils. As has already been

shown in [1], the implementations of these FFT-based stencil

algorithms are now the state-of-the-art for linear stencils on

periodic and aperiodic grids with significant speedups over

existing best stencil algorithms. Even though libraries such

as FFTW [56] and Intel MKL [57] can be used to imple-

ment FFT, using FFT to implement the stencil algorithms is

hard. Programming gets even harder if practitioners want

to implement the aperiodic algorithms as these algorithms

are full of recursive divide-and-conquer calls along with

calls to periodic counterparts. Programming gets worse when

the number of dimensions increases as the complexity of

coding is proportional to the number of dimensions due

to the necessity of covering all corner cases. #e Fourst
code generator shields researchers and practitioners from

all these details by automatically generating the FFT-based

stencil code for a given problem in a single click in both a

web-based online and an offline mode.

For several stencil benchmarks, we compare the perfor-

mance of Fourst generated programs with PLuTo generated

programs on the Ookami HPE Apollo 80 system [58], [59],

which is the first installation of A64FX architecture outside of

Japan with state-of-the-art computing technology. Compar-

ing periodic and aperiodic stencils, we show that as the num-

ber of timesteps increases, programs generated with Fourst
eventually outperform the PLuTo generated programs, which

is mostly due to the difference in their running time com-

plexity. Additionally, we show that Fourst-generated pro-

grams may be more energy-efficient than PLuTo-generated

programs, which makes them best candidates for large-scale

stencil computations at data centers.

Section II summarizes the FFT-based stencil algorithms for

both periodic and aperiodic boundary conditions. Section III

explains different applications of the Fourst code generator

and then illustrates how to generate an efficient FFT-based

stencil program using Fourst from an inefficient loop-based

input program. In section IV, we provide detailed experimen-

tal results illustrating the performance, scalability, and power

consumption of several stencil benchmarks on two different

architectures of Ookami. Finally, Section V concludes the

paper.

II. FFT-based Stencil Algorithms

In this section, we summarize Ahmad et al.’s FFT-based

stencil algorithms [1] for both periodic and aperiodic bound-

ary conditions. We first describe the applicability of the

algorithms. We then describe the periodic and aperiodic

versions of the algorithms.

A. Applicability

#e FFT-based stencil algorithms are applicable to homo-

geneous linear stencils across vector-valued fields. A ho-

mogeneous stencil remains the same throughout the grid.

A vector-valued field assumes that each cell is treated as

a vector. #e algorithms are not applicable to nonlinear

stencils, that includes stencils with conditionals (e.g. max,

min, if-else ladder) and quadratic and cubic dependence.

#e algorithms cannot also be applied to inhomogeneous

stencils where different regions of the spatial grid might have

different stencils.

B. Periodic FFT-based Stencil Algorithm

Let a0 and aT be the initial and final data, respectively,

of the d-dimensional spatial grid of total volume N . We are

given a0 and we want to compute aT using stencil S and

periodic boundary conditions. We want to compute

aT = S(S(· · · S(a0) · · · )),
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Fig. 3. Block diagram of the recursive divide-and-conquer FFT-based stencil
algorithm for aperiodic grids.

FFTStencil-Aperiodic(a0,S, T )

Input: Initial grid data a0, stencil S , and total evolution time
T . Consider a0 = A1 ∪A2 (see Figure 3).
Output: Final grid data aT . Consider aT = C1 ∪ C2.

1) If T is small, then execute the base case and return
[Solving for time range [0, T/2]]

2) (B2 ∪B3) ← FFTStencil-Periodic(A1 ∪A2,S, T/2)
3) B1 ← FFTStencil-Aperiodic(A1,S, T/2)

[Solving for time range [T/2, T ]]
4) C2 ← FFTStencil-Periodic(B1 ∪B2 ∪B3,S, T/2)
5) C1 ← FFTStencil-Aperiodic(B1 ∪B2,S, T/2)
6) aT ← (C1 ∪ C2)
7) return aT

Fig. 4. A divide-and-conquer FFT-based stencil algorithm for aperiodic grids.

to compute B from A. As more time cuts are performed, the

cells which can be computed via a periodic solver will make

up a greater and greater fraction of the entire spatial grid.

#e scheme based on this idea is shown diagrammatically in

Figure 3 and detailed in the pseudocode given in Figure 4.

III. The Fourst Stencil Code Generator

In this section, we first explain how to use Fourst. We

then explain how Fourst generates FFT-based stencil com-

putation programs from specific loop-based input programs.

A. Using Fourst

#e Fourst tool can be used either the web-based online

interface, or offline as a stand-alone compiler built from

sources.

#e online tool provides a user interface to obtain stencil

coefficients in both dense and sparse representation in any

number of dimensions. A demo of the Fourst web tool

can be accessed via the following link: https://tealab-
org.github.io/fourst-web/.

#e second way to use Fourst is to enclose the loop-

based stencil code within #pragma BEGIN FOURST and

#pragma END FOURST as shown in Listing 1.

#e command-line tool is run simply as ./fourst
input.c output.c. #e Fourst-CLI repository is ac-

cessible at https://github.com/TEALab-org/fourst-cli

1 vo id f u n c t i o n ( . . . ) {
2 #pragma FOURST boundary 0
3 #pragma FOURST beg in a p e r i o d i c
4 f o r ( i n t t = 0 ; t < 3 0 ; t ++)
5 f o r ( i n t i = 0 ; i < 3 0 ; i ++)
6 mat [ t ] [ i ] = −3 ∗ mat [ t −1 ] [ i −1] + mat [ t −1 ] [ i ] +
7 13 ∗ mat [ t −1 ] [ i + 1 ] ;
8 #pragma FOURST end
9 / / The r e s t o f the computa t ion . . .
10 }

Listing 1. Using #pragma directives in the input program.

#ough customized boundary conditions can be specified
for specifying aperiodic stencil computation, the current
version of Fourst supports only the Dirichlet boundary

conditions. We will support more boundary condition types
in future versions.

B. Design of Fourst

Both Fourst-Web and Fourst-CLI utilize a code genera-
tion mechanism implemented in C++. #is generation mech-
anism takes designated environment options and a stencil
matrix, and returns the FFT-optimized stencil computation
code for any arbitrary grid dimension. #e web component
uses a WebAsm version of the generation script created
using the emscripten compiler. WebAsm can run natively
on many modern browsers and can be interpreted through
JavaScript for unsupported platforms. #e CLI component’s
build process involves the compilation of the generation
script using the native C++ Compiler.

C. Code generation

Our code generator emits efficient parallel source code
for both periodic and Dirichlet aperiodic boundary condition
stencil computations. #e code generator module gets the
high level problem description from the web tool or the
CLI module. #e high level problem description contains the
class of the computation (periodic or aperiodic), radius of the
stencil (σ), coefficient matrix (sparse format or dense format),
and the preferred FFT Library information. If the provided
coefficient matrix is in dense format, the code generator picks
the non-zero data points to reduce computation and emits
respective optimized code for the base case looping-based
computation. Our technique emits dynamic memory allo-
cated source code with FFT library descriptors for efficient
memory usage.

Aperiodic boundary condition stencil computation requires
a manual looping-based implementation in the time iteration
for boundary adjustments. Efficient implementation of the
aperiodic algorithm requires a trade-off between recursion
depth and base case computation size described in the aperi-
odic algorithm in Figure 4. Our code generation technique
allows users to find the best combination using the pro-
vided input arguments in the emi"ed source code. At the
base case computation, careful loop iteration is required for
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Timesteps Running Per-core Per-CMG Per-CMG Running Per-core Per-CMG Per-CMG

time power L2 power HBM power time power L2 power HBM power

200 8.45 1.993 1.856 2.155 3.257 2.031 1.912 2.163

400 16.90 1.992 1.856 2.155 3.262 2.035 1.917 2.174

600 25.33 1.993 1.857 2.151 3.278 2.028 1.936 2.201

800 33.79 1.993 1.858 2.150 3.282 2.030 1.925 2.183

1000 42.21 1.992 1.860 2.154 3.300 2.025 1.954 2.221

TABLE IV
Power consumption report (in watts) of Heat 3D Periodic Stencil Computation of PLuTo (left) versus Fourst (right).

up in our scaling plots. Initially, the overall running times
of Fourst-generated programs don’t seem to scale with
the number of cores, but this is due to our benchmarking
of the overhead of the FFTW API calls. #e scalability
plots confirm that the main scaling bo"leneck is the FFTW
API calls in Fourst-generated programs. Fourst-generated
aperiodic boundary condition stencil computations heavily
use FFTW API calls at each level of recursion. Since our
periodic results show the current FFTW installation is not
optimized enough to use FFTW APIs heavily, we did not
benchmark our aperiodic algorithms on A64FX nodes.

D. Initial Results on Power Consumption

Fourst-generated programs shows the energy efficiency
over the PLuTo-generated tiled algorithms. Table IV summa-
rizes the energy consumption in wa"s per cycle of core, for
the L2 cache, and CMG local HBM memory from counters
available on the nodes.
#e results show energy consumption per cycle is similar

for both Fourst-generated programs and PLuTo-generated
tiled loop programs. However, the execution time of
PLuTo-generated programs are higher compared to Fourst-
generated programs. Consequently, the total consumed en-
ergy for Fourst-generated programs are lower. Further anal-
ysis is required to determine the opportunities to further
increase energy efficiency of both types of computations on
A64FX. Solutions ranging from careful dynamic voltage and
frequency scaling [64] to generation of more energy efficient
SIMD code may be investigated.

E. Discussions and Future Work

Performance bo"lenecks are vastly different for Pluto-style
codes vs. FOURST-style codes. Improving the performance of
loop-based stencil computations has been extensively studied,
with techniques to increase data locality without limiting
parallelism [43], [65] as well as for efficient SIMD code
generation [66], [67]. For high performance one may resort to
data layout transformations to ensure ideal alignment of data
with SIMD vector slots [66], [68], as well as further improve
the register usage and instruction level parallelism available
for scuh stencils [51], [67]. For time-iterated stencils, one
may unroll the time loop and/or the stencil itself to produce
a high-order operator (typically with a stencil of a larger
size and radius), however as demonstrated by Stock et al.
high-order stencils quickly suffer from register spilling and
see their performance in FLOP/s even decrease with respect
to lower order stencils [67]. A stencil-specific optimization
based on exploiting associativity of reductions may then be

used to reduce register pressure and increase performance
[67]. In this work, we did not search for the utmost perfor-
mance achievable for loop-based iterative stencils: we limited
to using the same benchmarks and experimental setup as
presented in [43], for fair comparison. We did however do a
stage of tile size tuning as described above.
Performance limitations of FFT implementations have been

vastly studied, and high-performance customized code gen-
erators have been proposed, e.g. [69] and high-performance
libraries are available such as FFTW [56]. Ayala et al. studied
the parallel scalability of FFTW on A64FX [70], and Brier
et al. provided careful initial characterization of the per-
formance of Ookami, including FFTW’s current deployment
[71]. Its performance appear currently limited for lack of
quality support of SVE SIMD extensions of the A64FX in the
deployed version of FFTW. Progresses on the performance
of FFT for A64FX processors are expected [72] and we hope
to achieve significantly higher performance with Fourst-
generated codes simply with more optimized FFT libraries
for the target machines.
Overall the experimental study presented exposes the

limits of Fourstfor small number of time steps, where
the preprocessing time of Fourstcurrently far exceeds the
time to execute a few time iterations with an efficient
tiled implementation. We expect to significantly improve the
performance of Fourstcodes on Ookami, by improving the
performance of the underlying FFT library first, ensuring
SIMD vectorization is well exploited. However, the funda-
mental nature of each method suggests loop-based methods
are likely to remain more efficient versus Fourstfor small
number of time steps, whichever the actual break-even point
on one’s setup.

V. Conclusion

In this paper, we introduced Fourst, the first stencil
code generator that automatically generates the implemen-
tations of Ahmad et al.’s [1] FFT-based stencil algorithms
for linear homogeneous stencils. We summarized the FFT-
based stencil algorithms and theoretically and experimentally
compared Fourst generated programs with PLuTo generated
programs. Our experiments showed when the Fourst gener-
ated programs are more throughput efficient than the PLuTo
generated tiled programs. #e Fourst code generator is a
work in progress which opens several research opportunities,
including extending it to non-linear stencil computations,
supporting more complex boundary conditions, and auto-
generating programs for GPUs and distributed-memory sys-
tems.
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