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Abstract—Stencil computations are ubiquitous in modern
grid-based physical simulations. In this paper, we present
FoursT - a compiler to generate programs computing time
iterated linear periodic and aperiodic stencil computations
with fast Fourier transform methods. This paper outlines
the design and implementation of the code generation ap-
proach in FOURST, to automatically generate FFT-based stencil
solvers. We present experimental results on the state-of-
the-art Ookami supercomputer housing Fujitsu A64FX and
Intel Skylake processors, to study the performance of FOURsT
and a state-of-the-art tiling-based optimized code generator
PLuTo on various stencil shapes and varying the number
of time iterations. We discuss the performance profiles,
and limitations, of both approaches on high-end modern
hardware.

Index Terms—Fast-Fourier Transform, FFT, Stencil, Stencil
Computations, Fast Stencil Computation, Grid Simulation,
Simulation, FOURsT

I. INTRODUCTION

A stencil is a small cellular automaton-like pattern used to
update the values of cells in a spatial grid; it is used once per
cell per timestep. The entire process of evolving cell values
in the entire spatial grid according to some stencil for a large
number of timesteps is called a stencil computation [1]-[3].

A stencil computation is formally defined as follows. The
initial grid data is ag. The grid data after < 4+ 1 timesteps is
computed by applying the stencil S on the grid data obtained
after ¢ timesteps, i.e., a;+1 = Sa;. We want to compute the
time evolution of the grid after T timesteps, that is, compute
ar from ag and S.

Any of the two types of boundary conditions can be
used for computing the cells at the boundary of the spatial
grid: periodic and aperiodic. Periodic boundary conditions
are used when the spatial grid is a hypertorus, ie., every
dimension wraps around itself to form a closed object. We
use modular or clock arithmetic to perform calculations on
a periodic grid. In contrast, aperiodic boundary conditions
are used when the spatial grid is an orthotope/hyperrectangle,
i.e., every dimension does not wrap around itself to form a

978-1-6654-5954-9/22/$31.00 ©2022 IEEE
DOI 10.1109/ISPASS55109.2022.00010

99

closed object. Several types of aperiodic boundary conditions
can be used such as Dirichlet [4] and von Neumann [5].

Stencils computations appear in a wide variety of scientific
computing and engineering applications, most often for the
simulation of physical systems [6]-[8] such as dynamics
of smoke, fire, liquids, hair, clothing, skin, sand, and snow.
They are also used for less obvious applications such as
image processing [9]-[11]. These computations generally
operate on a principle of “bigger is better (or more realistic)”
and in some cases computation depends on varying large
timesteps [12], so it is of considerable scientific interest to
improve the efficiency with which these computations can
be implemented and evaluated for huge grids and a large
number of timesteps.

There exist several techniques to implement stencil com-
putations. Stencils can be implemented using simple looping
codes but such iterative codes do not exploit temporal data
locality. Cache-aware tiled-looping programs [13]-[24] ex-
ploit temporal locality and/or parallelism however they can
be less portable across machines. Cache-oblivious recursive
divide-and-conquer trapezoidal algorithms [2], [3], [25]-[31]
make the programs cache-efficient and portable. All these
algorithms have a computational complexity of © (NT),
where N is the grid size and 7" is the number of timesteps,
and they work with explicit stencils'.

Recently, Ahmad et al. [1] designed stencil algorithms
based on fast Fourier transforms (FFT) that work with linear
homogeneous stencils and arbitrary boundary conditions.
These are the first stencil algorithms that have a computa-
tional complexity of o (NT). Ahmad et al. [1] show that the
implementations of these algorithms run orders of magnitude
faster than that of state-of-the-art for periodic grids, and 1.3x
to 8.5x faster for large aperiodic grids.

The FFT-based stencil algorithms presented in Ahmad et al.
[1] are examples of solvers with optimal preprocessing, which

Lexplicit stencils — stencils that depend on prior timesteps.



have made them converge to the exact solution in a single
step, thus rendering them also direct. By converting to the
Fourier domain, they are able to take computations which
would normally look like dense matrix multiplications and
transform them into computations which look like vector-
vector multiplications. This then allows for greatly improved
computational complexity and parallelism.

These recent FFT-based solvers are by no means the first
occurrence of Fourier transforms in the field of stencil com-
putation. On the contrary, it is common for discrete Fourier
transforms (DFTs) to be used either in the analysis [32] or
implementations [33]-[35] of Krylov subspace methods, as
Fourier analysis is useful for proving scheme stability [36],
[37] and convergence rates [38], and DFT matrices are good
preconditioners [39] for a large class of matrix equations
[40]. In some instances choosing the DFT matrix as a Krylov
preconditioner can even convert an approximate solver into
a direct one [41], [42], as was the case for Ahmad et al.
[1]. However, even though DFTs were commonly applied and
well known as a tool for numerical analysis, they were not
applied to evolve grid data for many timesteps at a time
before Ahmad et al’s work [1].

Implementing stencil algorithms to achieve high perfor-
mance is hard. This process might require sophisticated tech-
niques such as dependence analysis, recursive divide-and-
conquer, parallel programming, and problem-specific math-
ematical analysis. Due to the complicated nature of these
codes, significant effort is spent coding and debugging them.

Several automatic stencil code generators exist. For ex-
ample, PLuTo [43] is an automatic parallelizing and locality
optimizing code generator for affine loop nests based on the
polyhedral model [44]. Other code generators based on the
polyhedral model are [45]-[48]. The Pochoir stencil compiler
[3] is a domain specific language stencil code compiler that
takes a simple specification of a stencil code and automati-
cally generates a parallel cache-oblivious implementation of
the divide-and-conquer trapezoidal algorithm. There are also
stencil code generators for GPUs [49]-[53] and distributed-
memory machines [54]. For FPGAs direct efficient source
code generator for stencil computation in not widely used
but efficient tuning has been analyzed [55].

In this paper, we present FOURST — the first stencil code
generator that automatically generates the implementa-
tions of Ahmad et al’s [1] FFT-based stencil algorithms
for linear homogenoues stencils. As has already been
shown in [1], the implementations of these FFT-based stencil
algorithms are now the state-of-the-art for linear stencils on
periodic and aperiodic grids with significant speedups over
existing best stencil algorithms. Even though libraries such
as FFTW [56] and Intel MKL [57] can be used to imple-
ment FFT, using FFT to implement the stencil algorithms is
hard. Programming gets even harder if practitioners want
to implement the aperiodic algorithms as these algorithms
are full of recursive divide-and-conquer calls along with
calls to periodic counterparts. Programming gets worse when
the number of dimensions increases as the complexity of

coding is proportional to the number of dimensions due
to the necessity of covering all corner cases. The FOURST
code generator shields researchers and practitioners from
all these details by automatically generating the FFT-based
stencil code for a given problem in a single click in both a
web-based online and an offline mode.

For several stencil benchmarks, we compare the perfor-
mance of FOURST generated programs with PLuTo generated
programs on the Ookami HPE Apollo 80 system [58], [59],
which is the first installation of A64FX architecture outside of
Japan with state-of-the-art computing technology. Compar-
ing periodic and aperiodic stencils, we show that as the num-
ber of timesteps increases, programs generated with FOURsT
eventually outperform the PLuTo generated programs, which
is mostly due to the difference in their running time com-
plexity. Additionally, we show that FoursT-generated pro-
grams may be more energy-efficient than PLuTo-generated
programs, which makes them best candidates for large-scale
stencil computations at data centers.

Section II summarizes the FFT-based stencil algorithms for
both periodic and aperiodic boundary conditions. Section III
explains different applications of the FOURST code generator
and then illustrates how to generate an efficient FFT-based
stencil program using FOURsT from an inefficient loop-based
input program. In section IV, we provide detailed experimen-
tal results illustrating the performance, scalability, and power
consumption of several stencil benchmarks on two different
architectures of Ookami. Finally, Section V concludes the

paper.
II. FFT-BASED STENCIL ALGORITHMS

In this section, we summarize Ahmad et al’s FFT-based
stencil algorithms [1] for both periodic and aperiodic bound-
ary conditions. We first describe the applicability of the
algorithms. We then describe the periodic and aperiodic
versions of the algorithms.

A. Applicability

The FFT-based stencil algorithms are applicable to homo-
geneous linear stencils across vector-valued fields. A ho-
mogeneous stencil remains the same throughout the grid.
A vector-valued field assumes that each cell is treated as
a vector. The algorithms are not applicable to nonlinear
stencils, that includes stencils with conditionals (e.g. max,
min, if-else ladder) and quadratic and cubic dependence.
The algorithms cannot also be applied to inhomogeneous
stencils where different regions of the spatial grid might have
different stencils.

B. Periodic FFT-based Stencil Algorithm

Let ag and ar be the initial and final data, respectively,
of the d-dimensional spatial grid of total volume N. We are
given ag and we want to compute ar using stencil S and
periodic boundary conditions. We want to compute

ar = 8(8(. . ~S(a0) R ))7
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Algorithm Class Work (T1) Span (T') Code Generators
Nested Loop Explicit O (NT) O (T'log N)
Tiled Loop [14] | Explicit O (NT) e (T log M + —L - log %) PLuTo [14]
D&C [60] Explicit ©(NT) O (T(N1/d)log (d+2)-1) Pochoir [60]
FFT-P [1] Linear homogeneous | © (N log(NT)) O (log N loglog N) ol FOURST
1-1/d 1-1/d if d =
FFT-A [1] Linear homogeneous | © (TN log (TN ) log T) o(T) ifd=1 ul FOURST
+Nlog N O (TlogN) ifd>2
TABLE I

COMPLEXITY ANALYSIS AND CODE GENERATORS TO IMPLEMENT EXISTING STENCIL ALGORITHMS. HERE, CLASS REPRESENTS THE CLASS OF
STENCILS, N = HYPERRECTANGULAR GRID SIZE, T' = #TIMESTEPS, M = CACHE SIZE, AND a# REPRESENTS THIS PAPER. WE ASSUME THAT
STENCIL SIZE AND d ARE © (1). ALGORITHMS NOT BASED ON FFT WORK ON BOTH LINEAR AND NONLINEAR STENCILS. FFT-BASED ALGORITHMS
WORK ON BOTH EXPLICIT AND IMPLICIT LINEAR STENCILS. FFT-A ALGORITHM SPAN IS SIMPLIFIED AsSUMING 1" = € (log N log log N). THE
SPAN FOR THE TILED LOOP ALGORITHM 15 (2 (T log log V).

where S is applied for 7' times. If we represent § as a
circulant matrix then ar can be written as

ar = Sl agp.

That is, applying S repeatedly on ag for 1" times is same as
applying the big stencil ST on ag once.

As the direct computation of ST aq is inefficient, we per-
form this computation efficiently by moving both ag and S to
the Fourier domain. Let the discrete Fourier transform (DFT)
matrix be F[i, j] = wy" /V/N, where wy = ™~/ and
let 7~ (or IFFT) be the inverse DFT matrix. We have

ar = ST ay (1)
= (F'RAST(F 'Fay  (F'F =identity) (2

= F YFSTF 1) (Fay) (reorder) (3)

=F Y FSF YW (Fap) (FSTF'=(FSFH

)

=F 1 ((FSF HT(Fao)) (regroup) (5)

= InverseFFT( BigStencil ® InitialData ) (6)

Here, BigStencil refers to (FSF~1)T, which is in fact the
big stencil generated at time step 7' in the preprocessing
stage being in the Fourier domain; InitialData refers to the
initial data in the Fourier domain Fag; and ® represents the
elementwise product. The block diagram for computing arp
from ag and S using FFT (through Equation 6) is shown in
Figure 1. The algorithm is shown in Figure 2. The complexity
of the periodic algorithm is given in Table I.

C. Aperiodic FFT-based Stencil Algorithm

In this section, we describe the aperiodic algorithm
first presented in [1]. This algorithm uses a divide-and-
conquer strategy to improve the asymptotic complexity of
evolving grid data in the presence of aperiodic boundary
conditions. These boundary conditions are a very large
class, consisting of everything which cannot be repre-
sented periodically. The algorithm can evolve data across
a grid of N cells for T timesteps in serial time complex-
ity © (IN'~Y/log (TN'~/4)1ogT + Nlog N) and span
© (T) for 1-D grids and © (T'log N) for higher dimensions.
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Fig. 1. Block diagram of FFT-based stencil algorithm for periodic grids.

p

FFTStENCIL-PERIODIC(000, S, T)

Input: Initial grid data ao, stencil S, and evolution time 7.
Output: Final grid data ar.

[Preprocessing Stage]
FSF~! < Use FFT on stencil S

FSTF! « Apply repeated squaring using binary repre-
sentation of T’
[Execution Stage]
Fao < Apply FFT on initial grid data ao

Far < Take elementwise product of FSTF~! and Fao
ar < Apply IFFT on Far

return ar

1)
2)

3)
4)
5)
6)

Fig. 2. FFT-based stencil algorithm for periodic grids.

The core idea of the aperiodic algorithm is to recursively
break up the spacetime grid by performing time cuts, and
to solve blocks of the grid by applying the periodic solver
locally. This works because the cells A whose values are used
to compute new values in some region B can be found by
tracing back in time (expanding in all directions) from the
new cells B, and if no boundary cells are contained in A
then the value of cells in B is completely independent of
boundary conditions. We can therefore use a periodic solver
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Fig. 3. Block diagram of the recursive divide-and-conquer FFT-based stencil
algorithm for aperiodic grids.

FFTSTENCIL-APERIODIC(a0, S, T')

Input: Initial grid data ao, stencil S, and total evolution time
T. Consider agp = A1 U Az (see Figure 3).
Output: Final grid data ar. Consider ar = C7 U Cs.

If T is small, then execute the base case and return
[Solving for time range [0,7/2]]
(B2 U Bs) < FFTStENCIL-PERIODIC(A; U A2, S,T/2)
By + FFTStENCIL-APERIODIC(A1, S, T/2)

[Solving for time range [1/2,T]]
) Cs + FFTSTENCIL-PERIODIC(B1 U B2 U B3, S,T/2)
) C1 < FFTSTENCIL-APERIODIC(B1 U B3, S,T/2)

) ar 6—(CHLJC&)
)

return ar

Fig. 4. A divide-and-conquer FFT-based stencil algorithm for aperiodic grids.

to compute B from A. As more time cuts are performed, the
cells which can be computed via a periodic solver will make
up a greater and greater fraction of the entire spatial grid.
The scheme based on this idea is shown diagrammatically in
Figure 3 and detailed in the pseudocode given in Figure 4.

III. THE FOURST STENCIL CODE GENERATOR

In this section, we first explain how to use FOursT. We
then explain how FoursT generates FFT-based stencil com-
putation programs from specific loop-based input programs.

A. Using FOURsT

The FOURST tool can be used either the web-based online
interface, or offline as a stand-alone compiler built from
sources.

The online tool provides a user interface to obtain stencil
coefficients in both dense and sparse representation in any
number of dimensions. A demo of the FoursT web tool
can be accessed via the following link: HTTPS://TEALAB-
ORG.GITHUB.IO/FOURST-WEB/.

The second way to use FOURST is to enclose the loop-
based stencil code within #pragma BEGIN FOURST and
#pragma END FOURST as shown in Listing 1.

1
2
3
4

5
6
7
8
9

The command-line tool is run simply as ./fourst
input.c output.c. The FoursT-CLI repository is ac-
cessible at HTTPs://GITHUB.COM/TEALAB-ORG/FOURST-CLI

void function (...) {
#pragma FOURST boundary 0

#pragma FOURST begin aperiodic
for (int t = 0; t < 30; t++)
for (int i = 0; i < 30; i++)

mat[t][i] = -3 » mat[t-1][i-1] + mat[t-1][i] +
13 « mat[t-1][i+1];
#pragma FOURST end

// The rest of the computation

10}

Listing 1. Using #pragma directives in the input program.

Though customized boundary conditions can be specified
for specifying aperiodic stencil computation, the current
version of FOURST supports only the Dirichlet boundary
conditions. We will support more boundary condition types
in future versions.

B. Design of FOURST

Both Fourst-Web and Fourst-CLI utilize a code genera-
tion mechanism implemented in C++. This generation mech-
anism takes designated environment options and a stencil
matrix, and returns the FFT-optimized stencil computation
code for any arbitrary grid dimension. The web component
uses a WebAsm version of the generation script created
using the emscripten compiler. WebAsm can run natively
on many modern browsers and can be interpreted through
JavaScript for unsupported platforms. The CLI component’s
build process involves the compilation of the generation
script using the native C++ Compiler.

C. Code generation

Our code generator emits efficient parallel source code
for both periodic and Dirichlet aperiodic boundary condition
stencil computations. The code generator module gets the
high level problem description from the web tool or the
CLI module. The high level problem description contains the
class of the computation (periodic or aperiodic), radius of the
stencil (0), coefficient matrix (sparse format or dense format),
and the preferred FFT Library information. If the provided
coeflicient matrix is in dense format, the code generator picks
the non-zero data points to reduce computation and emits
respective optimized code for the base case looping-based
computation. Our technique emits dynamic memory allo-
cated source code with FFT library descriptors for efficient
memory usage.

Aperiodic boundary condition stencil computation requires
a manual looping-based implementation in the time iteration
for boundary adjustments. Efficient implementation of the
aperiodic algorithm requires a trade-off between recursion
depth and base case computation size described in the aperi-
odic algorithm in Figure 4. Our code generation technique
allows users to find the best combination using the pro-
vided input arguments in the emitted source code. At the
base case computation, careful loop iteration is required for
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Fig. 5. Recursive exploration of aperiodic boundary condition base cases.
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efficient implementation of the stencil computation. We use
a recursive algorithm in our code generator to emit base
case computation for multi-dimensional stencil computations.
Figure 5 shows how our code generator recursively explores
each dimension of the base case. To avoid the redundant
computation in the emitted code, our code generator excludes
the cells that are already computed while exploring multiple
dimensions. In Figure 5, the second dimension (D2) excludes
the computed cells at the boundaries in first explored di-
mension (D1). For the third explored dimension (D3), our
recursive algorithm excludes the computed cells in both D1
and D2.

IV. EvALuATION

In this section, we present and analyze experimental re-
sults for benchmarking 1D, 2D, and 3D heat computations,
using both periodic and aperiodic Dirichlet boundary condi-
tions, on two significantly different architectures: x86-64 and
ARMvS.2.

Cores 12 cores per CMG, 4 CMG (total: 48 cores)
Cache sizes L1 64 KB, L2 8 MB (shared), Per CMG 8 GB
E Memory 512 GB SSD
3 | Compiler fujitsu (FCC) v4.5
< | SIMD Instruction | SVE (512 wide)
Compiler Flags -Kfast -KSVE -Koptmsg=2
Cores Dual socket 36 physical cores
y; Cache sizes L1 32 KB, L2 1 MB, L3 33 MB
% | Compiler Intel C++ Compiler (ICC) v19.1.2.254
SIMD Instruction | AVX512
Compiler Flags -xhost -ansi-alias -ipo -AVX512
Parallelization OpenMP 4.1.0
TABLE II

EXPERIMENTAL SETUP ON THE OOKAMI SUPERCOMPUTER USING INTEL
SKYLAKE (SKX) AND A64FX NODES.

heat1d
3pts
1
TABLE III
BENCHMARK PROBLEMS WITH THE NUMBER OF POINTS IN THE CORRESPONDING
STENCILS.

heat2d
5pts
1

heat3d
7pts
1

Benchmark
Stencil points ()
Stencil radius (o)

A. Experimental Setup

The Ookami System: The Ookami HPE Apollo 80 system
[58], [59] is the first system outside of Japan, which hosts
A64FX machines with state-of-the-art computing technology.
It includes 176 A64FX compute nodes running at 1.8GHz,
each with 32GB high-bandwidth memory, 48 cores, and a
512GB SSD. The A64FX-700 series processor used in Ookami
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has 48 cores arranged in four core memory groups (CMG) of
12. Each CMG forms a NUMA region with 8 Gbyte of high-
bandwidth memory (256 Gbyte/s). Other nodes available on
Ookami are a dual socket AMD Milan (64 cores) with 512GB
memory, an Intel Skylake (32 cores) with 192 GB memory
including two Nvidia V100 GPUs. This allows users to directly
compare portability and performance across all current major
architectures. We focused our experiments on Intel Skylake
nodes, but we also present early results using the Fujitsu
A64FX and its associated compilation toolchain.
Benchmarks.: For benchmarking, we use a 1D 3-point,
2D 5-point, 3D 7-point heat stencil for both periodic and
aperiodic boundary condition stencil computation. The heat
stencil computation computes the heat equation which is a
partial differential equation that models the physical transfer
of heat in a region over time. The following partial differential
equation (PDE) describes heat diffusion in two-dimensional
8ht(xay) 82ht(xay) + azht(xvy)

space:
at ( dz? 0y? ) ’

where, hi(z,y) is the heat at a point (z,y) at time ¢ and «
is the thermal diffusivity.

By discretizing space and time, we obtain the following
stencil equation for approximating the heat diffusion PDE
given above.

ht-‘rl(ma Z/) = ht(ma Z/)

alAt

+ m (ht(x - 1ay) + h’t(x + 17y) - th(xvy))
aAt

+ Ayg (ht(xvy - 1) + ht(xay + 1) - th(xvy» :

We use the benchmarks directly from [61].

PLuTo-Generated tiled Programs.: The tiled loop imple-
mentations were generated using PLuTo [43]. We used the
latest version (v0.11.4-963-ge5a0390) from Github, but for
some cases, it generated tiled codes with poor performance
and sometimes errors. Hence, we also used a prior released
version (v0.11.4). We compared our FFT-based auto-generated
algorithm implementation results with the PLuTo version
that provided a better runtime. For the outer and the inner-
most dimensions we explored the tile sizes {8, 16} and {32,
64, 128} respectively [43]. For other dimensions we kept the
tile size 16 in our tile exploration step.

Fourst-generated FFI-based programs.: FOURST can gen-
erate both FFTW [56] and Intel MKL [57]-based implementa-
tions. The Intel MKL Library is not available on A64FX nodes.
Therefore, the Fujitsu (FCC) compiler with opensource FFTW
[56] (v3.3.10) was used to benchmark FoursT-generated
programs. For the Skylake node, we used the Intel MKL [57]-
based FoursT-generated programs with the Intel compiler.

Stencil Grid Sizes.: The stencil grid sizes for our bench-
marks were 1.6m, 8K x 8K, and 300 x 300 x 300 for 1D,
2D, and 3D respectively.

One key aspect we explore in our experiments is the
relationship between the number of time iterations to be
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performed, and the relative performance of two fundamen-
tally different approaches: one based on state-of-the-art time-
tiling using diamond shapes [61], and one based on a high
preprocessing cost but with near constant computational cost
afterwards [1]. We therefore used 1000 time iterations for the
2D and 3D computations, and 105 iterations for 1D, to show
longer trends.

B. Experimental Results on Intel Skylake

In this section we summarize the experimental results on
Intel Skylake. Our experimental results has been evaluated

104

in both the Intel Skylake (SKX) machine and the A64FX
processors on the Ookami machine.

Figures 6 - 9 show the throughput compared against
PLuTo and scalability plots of FoursT-generated programs
for both periodic and aperiodic stencil boundary conditions.
We define throughput as the number of output cells com-
puted per second. Precisely, this metric contrasts the two
approaches from an end-user point of view, as it reflects
exactly execution time.

The number of operations performed by the processor is
linear with the number of time iterations with the time-tiling
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approach of PLuTo, contrary to FoursT-generated codes.
Consequently, with the increase of the number of time it-
erations, FOURsT-generated programs eventually outperform
PLuTo-generated tiled implementations. Figures 6, 7 and 10
allow to study the break-even point, that is the number
of consecutive time steps to be executed before FOURsT-
generated programs start outperforming PLuTo-generated
ones, for the experimental setup we considered.

For the cases of both periodic and aperiodic boundaries
displayed in Figure 6 and 7, we observe that PLuTo codes sys-
tematically outperform FoursTones for very small number of
timesteps. This is expected, and explained in large part due
to the heavy preprocessing step required with the FFT-based
approach, which requires at least several timesteps to be
amortized overall. The highly regular loop-based stencil com-
putation which has been parallelized and SIMD-vectorized
executes at a reasonably constant fraction of the machine
peak, but its workload is linear with the number of time
iterations, thereby making the throughput per cell diminish
regularly with the number of time iterations.

In contrast, the FoursT-generated codes achieve near-
linear throughput in terms of output cells per second for
periodic stencils as shown in Figure 6, as expected for such
workload. In our experiments, the break-even points were
around 400 time iterations in 1D, 120 in 2D and 50 in
3D, computing more time iterations tend to reinforce the
performance advantage of FFT-based codes versus tiled ones.

For aperiodic stencils, the throughput of FOURST codes
slows with the number of time iterations due to the number
of computations required by the FFT approach, but remain
very significantly faster with a gap tending to increase with
the number of time iterations. The break-even points are
around 8 time iterations in 1D, 100 in 2D and 30 in 3D.
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We remark that for all experiments above, the break-even
point, in terms of number of time iterations, may fluctuate
across different machines, benchmarks, but also as a function
of the tuning of the generated codes (e.g. tile size selection,
SIMD code generation), for each approach. However the
fundamental trends, originating from the time complexity
differences between these approaches, is exemplified unam-
biguously in Figures 6 and 7.

C. Experimental Results on A64FX

Figures 10 and 11 show the throughput and scalabil-
ity plots for FoursT-generated programs. FOURST-generated
programs also outperform PLuTo-generated tiled codes in
A64FX nodes. However, the throughput values are lower
when compared to the Skylake machine due to the fact that
the A64FX machine and its compilers are still not matured
to generate fully optimized executables. The compilation flag
-Koptmsg in Fujitsu compiler show that the compiler fails to
SIMD conversion if any of the statement inside the loop has
any conditional statement.

For stencil computations, boundary conditions typically
require conditional statements, hence even with the -KSVE
flag, the Fujitsu compiler fails to apply SIMD conversion
and software pipelining. However, there have been studies
[62], [63] to improve data-level parallelism for scalable vector
extentions. FOURsT-generated programs uses the MKL or
the FFTW library for FFT implementation. Since the Intel
MKL library is not available on A64FX nodes, we generated
FFTW-based implementation using Fourst. Burford et al.
[58] benchmarked a different standard library as part of an
early study of the Ookami nodes. The benchmarks show the
parallel FFTW installation fails to achieve 1% of the peak
performance on the A64FX nodes. This bottleneck shows



Timesteps | Running Per-core Per-CMG Per-CMG |Running Per-core Per-CMG Per-CMG
time power L2 power HBM power time power L2 power HBM power
200 8.45 1.993 1.856 2.155 3.257 2.031 1.912 2.163
400 16.90 1.992 1.856 2.155 3.262 2.035 1.917 2.174
600 25.33 1.993 1.857 2.151 3.278 2.028 1.936 2.201
800 33.79 1.993 1.858 2.150 3.282 2.030 1.925 2.183
1000 42.21 1.992 1.860 2.154 3.300 2.025 1.954 2.221
TABLE IV

POWER CONSUMPTION REPORT (IN WATTS) OF HEAT 3D PERIODIC STENCIL COMPUTATION OF PLUTO (LEFT) VERSUS FOURST (RIGHT).

up in our scaling plots. Initially, the overall running times
of FoursT-generated programs don’t seem to scale with
the number of cores, but this is due to our benchmarking
of the overhead of the FFTW API calls. The scalability
plots confirm that the main scaling bottleneck is the FFTW
API calls in FoursT-generated programs. FOURsT-generated
aperiodic boundary condition stencil computations heavily
use FFTW API calls at each level of recursion. Since our
periodic results show the current FFTW installation is not
optimized enough to use FFTW APIs heavily, we did not
benchmark our aperiodic algorithms on A64FX nodes.

D. Initial Results on Power Consumption

FoursT-generated programs shows the energy efficiency
over the PLuTo-generated tiled algorithms. Table IV summa-
rizes the energy consumption in watts per cycle of core, for
the L2 cache, and CMG local HBM memory from counters
available on the nodes.

The results show energy consumption per cycle is similar
for both Fourst-generated programs and PLuTo-generated
tiled loop programs. However, the execution time of
PLuTo-generated programs are higher compared to FOURsT-
generated programs. Consequently, the total consumed en-
ergy for FOURsT-generated programs are lower. Further anal-
ysis is required to determine the opportunities to further
increase energy efficiency of both types of computations on
A64FX. Solutions ranging from careful dynamic voltage and
frequency scaling [64] to generation of more energy efficient
SIMD code may be investigated.

E. Discussions and Future Work

Performance bottlenecks are vastly different for Pluto-style
codes vs. FOURST-style codes. Improving the performance of
loop-based stencil computations has been extensively studied,
with techniques to increase data locality without limiting
parallelism [43], [65] as well as for efficient SIMD code
generation [66], [67]. For high performance one may resort to
data layout transformations to ensure ideal alignment of data
with SIMD vector slots [66], [68], as well as further improve
the register usage and instruction level parallelism available
for scuh stencils [51], [67]. For time-iterated stencils, one
may unroll the time loop and/or the stencil itself to produce
a high-order operator (typically with a stencil of a larger
size and radius), however as demonstrated by Stock et al.
high-order stencils quickly suffer from register spilling and
see their performance in FLOP/s even decrease with respect
to lower order stencils [67]. A stencil-specific optimization
based on exploiting associativity of reductions may then be

used to reduce register pressure and increase performance
[67]. In this work, we did not search for the utmost perfor-
mance achievable for loop-based iterative stencils: we limited
to using the same benchmarks and experimental setup as
presented in [43], for fair comparison. We did however do a
stage of tile size tuning as described above.

Performance limitations of FFT implementations have been
vastly studied, and high-performance customized code gen-
erators have been proposed, e.g. [69] and high-performance
libraries are available such as FFTW [56]. Ayala et al. studied
the parallel scalability of FFTW on A64FX [70], and Brier
et al. provided careful initial characterization of the per-
formance of Ookami, including FFTW’s current deployment
[71]. Tts performance appear currently limited for lack of
quality support of SVE SIMD extensions of the A64FX in the
deployed version of FFTW. Progresses on the performance
of FFT for A64FX processors are expected [72] and we hope
to achieve significantly higher performance with Fourst-
generated codes simply with more optimized FFT libraries
for the target machines.

Overall the experimental study presented exposes the
limits of Fourstfor small number of time steps, where
the preprocessing time of FoursTcurrently far exceeds the
time to execute a few time iterations with an efficient
tiled implementation. We expect to significantly improve the
performance of Fourstcodes on Ookami, by improving the
performance of the underlying FFT library first, ensuring
SIMD vectorization is well exploited. However, the funda-
mental nature of each method suggests loop-based methods
are likely to remain more efficient versus FoursTfor small
number of time steps, whichever the actual break-even point
on one’s setup.

V. CONCLUSION

In this paper, we introduced Fourst, the first stencil
code generator that automatically generates the implemen-
tations of Ahmad et al’s [1] FFT-based stencil algorithms
for linear homogeneous stencils. We summarized the FFT-
based stencil algorithms and theoretically and experimentally
compared FOURST generated programs with PLuTo generated
programs. Our experiments showed when the FOURST gener-
ated programs are more throughput efficient than the PLuTo
generated tiled programs. The FOURST code generator is a
work in progress which opens several research opportunities,
including extending it to non-linear stencil computations,
supporting more complex boundary conditions, and auto-
generating programs for GPUs and distributed-memory sys-
tems.
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