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Highlights

e Machine learning models of wind turbine wakes are typically used to generate surrogates
of CFD-simulated data rather than enabling new physics insights from real-world data.

¢ Use of real-world data is essential to gain new insights into turbine-wake processes, yet
implies challenges related to data filtering, statistical stationarity, and accuracy, as well as
spatio-temporal resolution.

e Three strategies are identified to incorporate real-world data into machine-learning models
of wind turbine wakes for enhanced data-driven modeling.
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Abstract

With the increased availability of experimental measurements aiming at probing wind re-
sources and wind turbine operations, machine learning (ML) models are poised to advance our
understanding of the physics underpinning the interaction between the atmospheric boundary
layer and wind turbine arrays, the generated wakes and their interactions, and wind energy har-
vesting. However, the majority of the existing ML models for predicting wind turbine wakes
merely recreate CFD-simulated data with analogous accuracy but reduced computational costs,
thus providing surrogate models rather than enhanced data-enabled physics insights. Although
ML-based surrogate models are useful to overcome current limitations associated with the high
computational costs of CFD models, using ML to unveil processes from experimental data or en-
hance modeling capabilities is deemed a potential research direction to pursue. In this letter, we
discuss recent achievements in the realm of ML modeling of wind turbine wakes and operations,
along with new promising research strategies.
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Wind energy is a promising avenue for big-data analytics with applications including power
forecasting, energy management, wind turbine condition monitoring and diagnostics, and main-
tenance of wind power plants [1]. Supervisory control and data acquisition (SCADA) enables
monitoring of wind turbine operations by recording statistics of power capture, turbine settings,
wind conditions, and fault parameters streamed continuously to the control room of a power sta-
tion, then typically recorded as statistics over ten-minute periods [2, 3, 4, 5, 6]. Considering that in
2021 the global installed wind capacity was 906 GW [7] and average onshore wind turbines are
rated about 3 MW, it is easy to picture the large scale of existing data collection. Further, wind
turbine operations are often assisted by monitoring wind resources at different spatio-temporal
scales, not only through anemometers installed on the turbine nacelle, but also from nearby mete-
orological towers [8] and various remote sensing techniques, such as light detection and ranging
(LiDAR) [9, 10, 11], and, for research projects, even radars [12], unmanned aerial vehicles [13],
aircraft [14], and satellites [15].

In wind energy, machine learning (ML) methods have been widely applied for data filtering
[16, 17] and modeling power curves [18, 19, 20, 21], wakes [22, 23, 24, 25], and wind farms
[26, 27, 28, 29, 30], as well as forecasting power and wind speed over various time horizons [31,
32, 33, 34]. ML provides analysis of observations without bias of preconceived notions (a threat
for classical statistical approaches using user-selected parameters and thresholds), identification
of unknown features and processes (a potential limitation for existing first-principle models), and
enhancement of data quality through noise removal [35, 36] and super-resolution models [37,
31, 38]. Generalizability, interpretability, and explainability are key properties to maximize the
scientific impact of ML models [26, 39, 40]. ML models should provide predictive capabilities
even for new parameter values within the training ranges, avoiding overfitting the training data
(generalizability) [41]. Further, the user should be able to interpret the predictions generated
and the variability of the “weights” of the various ML nodes based on the analysis of the input
variability [27], or interpret input parameter impact via other methods [42], as well as explain
what (physical) processes might have led to the predictions obtained as a result of the input
variability [43]. In this letter, we stress that the majority of the current applications of ML for
wind turbine wake modeling fail to accomplish all these goals simultaneously, which sets this
work apart from previous reviews on data-driven wind farm modeling [26], while underlying the
research potential in working with real-world data.

The flow region past an operating wind turbine, i.e., the wind turbine wake, is characterized
by lower wind speed than the freestream condition, which is the result of extracting kinetic
energy to generate electricity [9, 10, 44, 45], and by enhanced turbulence intensity (77) due to the
vorticity structures generated from the turbine blade rotation, their instabilities [46, 47, 48], and
the mechanically-generated turbulence associated with the wake velocity shear [5, 49, 50, 51].
Since wind turbine power is related to the cube of the incoming wind speed, reductions in speed
entail power losses for downwind wind turbines. However, it is noteworthy that uncertainty or
error in wind speed predictions is magnified when predicting power capture, thus they can affect
estimates of power losses [52]. The design of the farm layout should be optimized to minimize
wake interactions among neighboring turbines and maximize farm power capture. This task
requires simulating wakes generated by multiple wind turbines for many inflow wind conditions,
which quickly add to a large number of simulations to be performed and, thus, the need to use
models with very low computational costs and, if possible, adequate resolution [53, 54].

Current wake models typically fall into one of two categories: analytical and computational.
Analytical (engineering) wake models are based on reduced-order physics formulations and are
computationally cheap at the cost of accuracy [55]. Computational fluid dynamics (CFD) meth-
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ods, such as large eddy simulation (LES) or Reynolds-averaged Navier Stokes (RANS), are com-
putationally expensive but provide much higher accuracy [56, 57, 58, 59, 60]. The ML wake
models described below attempt to combine the high accuracy of the computational methods
with the low computational cost of the analytical methods by functioning as surrogate models
for computational simulations. While successful, they may fail to be generalizable, interpretable,
explainable, or built on real-world data.

Computational Surrogate Wake Models - This letter provides a concise overview of the main
existing strategies for ML wind farm modeling; however, it is not meant to be a comprehensive
review of the state-of-the-art on this research topic. The work by Ti et al. [22] demonstrates the
standard approach for works seeking to generate surrogate wake models from simulation data
using ML. The authors used a RANS solver coupled with an actuator disk model with rotation to
simulate the three-dimensional velocity deficit and 77 on a structured grid in the wake of a single
turbine. This grid was then separated into 2000 partitions and a unique ML model was trained to
predict the velocity deficit or turbulence intensity of a partition as a function of the hub height
inflow velocity and 77. By using linear or sum-of-squares wake overlapping approaches [61],
they simulated an offshore wind farm using the proposed ML method and compared it against
SCADA and LES data, finding a good agreement. Purohit and coworkers [62] used high-
fidelity CFD data to benchmark XGBoost, Support Vector Regression, and artificial neural
network (ANN) algorithms. Each model predicted the velocity at a given point in the wake of a
single turbine as a function of the incoming wind speed, the turbines thrust force, and the
downstream position relative to the turbine.

Two works used a convolution neural network (CNN) in interesting ways. First, Zhang and
Zhao [24] combined a CNN with a generative adversarial network (GAN), which was com-
prised of a generator network and a discriminator network. In that work, the generator network
produced snapshots of a wake flow using the upstream wind profile and turbine yaw misalign-
ment as inputs. In contrast, the discriminator network determined whether a given snapshot was
real or generated. The two networks were trained adversarially, such that as the discriminator
improved in detecting generated snapshots, the generator improved at generating realistic snap-
shots. Second, Li and coworkers [63] split the wake field prediction into two CNN problems: the
foreground and background. The background problem attempts to predict the future wake ve-
locity field from past wake snapshots. The foreground problem tries to predict future snapshots as
a function of past impacting wind conditions and turbine yaw misalignment. Other works use
graph neural networks (GNN), which learn data on unstructured grids, to learn the wake profile
without the need for a uniform CFD grid [64].

When an ML model is trained from simulation data to predict wind or wind turbine pa-
rameters from some relevant information, usually the incoming wind conditions, the resulting
models are typically assessed against CFD data [24, 62, 63], while in other cases the models are
also compared against real-world measurements [22, 64]. Considering the main properties of a
desirable ML model, it is not specified to what extent these models may be generalizable to other
turbine models or site climatological conditions than those encompassed within the train-ing
datasets. Nonetheless, they are generally difficult to interpret. It is not immediately clear how
the input wind conditions affect the weights of the various nodes of the ML models and out-put
wake properties. More generally, it is unclear which inputs mainly govern variability in the
generated outputs or which input sets are optimal to enhance prediction accuracy. Finally, since
these models are not trained on real-world data, a systemic problem results wherein the models
can only be as accurate and informative as the data on which they were trained. The ML models
described above make CFD data quickly reproducible, which is a valuable feature, but they do
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not expand upon it. By using CFD data to train ML models, several challenges inherent to using
real-world data, such as instrument noise and bias, marginal statistical convergence, and limited
spatial resolution, among others, are removed. This allows the development of ML models to be
the focus. While the result is a better understanding of the modeling process and features, it may
fail to enable scientific insights, which can be encompassed in real-world data.

Potential Advancements for Machine Learning Modeling of Wind Turbine Wakes - Given
the above considerations, how can ML be used to generate accurate predictions of wind turbine
wakes and advance the scientific understanding of wake processes by leveraging the availability
of big data from wind turbines and the wind field? Returning to the main properties of improved
ML models (i.e., being built on real-world data, generalizable, interpretable, and explainable), we
propose three approaches. The first approach consists of combining ML models with historical
wind turbine and wind velocity data to generate diagnostic models. The second provides ML
wake models trained from real-world wake data and used for general wind turbine and wind
farm applications. The third approach encompasses the evolution and overlapping of multiple
wakes for generic wind farm layouts and site climatological conditions. In all cases, the key
to obtaining new insights is to train the models on real-world data rather than simulated data.
While this may yield scientific insights unavailable to CFD, specific drawbacks of real-world
data should be kept in mind. Importantly, any bias or large uncertainty in the training data will
impact model accuracy. It is often difficult to determine the uncertainty in ML predictions but
this becomes more critical when the training data carries inherent statistical uncertainty.

Approach 1: Diagnostic ML Wake Models - Taking a simple approach first, ML can pull
new insights from historical data through specific models. For example, the power produced by
a given wind turbine is a function of the incoming wind speed, which is a function of the
ambient wind condition and any upstream wind turbines that can affect turbine performance by
generating wakes. A model can be trained on historical data to predict wind speed at a given
turbine as a function of the ambient wind conditions. If wind direction is considered as an
input, then the resulting ML diagnostic model will implicitly contain information on the location
of neighboring wind turbines. Therefore, the resultant model is case-specific since it cannot be
applied to any other turbines because the relative positions of neighboring turbines would change
and the obtained predictions would be incorrect.

Although non-generalizable, this kind of model is still useful for diagnostic purposes or con-
trol applications. By carefully probing the model under specific ambient conditions, the wake
effect can be identified, as well as any other effects contained in the historical data. It should be
pointed out that a similar result could also be obtained using a statistical binning analysis. How-
ever, a statistical approach will suffer potential drawbacks associated with the definition of bin
centroids and width, which are determined by preconceived, and potentially inaccurate, notions.
In contrast, the ML approach lets any features contained in the data surface naturally, without
any arbitrarily imposed constraints. This modeling approach may hold advantages over model-
based approaches by predicting off-design conditions, such as strong yaw misaligned operations
or unconventional weather conditions, when those events occur with sufficient frequency in the
training data.

Recent work has already demonstrated how ML methods can extract wake information un-
available via typical statistical methods [65] while others have applied this approach to an on-
shore wind farm [66]. Considering the above-mentioned key properties of ML models, this
approach is not general but specific to individual turbines. Furthermore, this approach is not
very interpretable, simply treating the ML models as black boxes. Nonetheless, these models are
trained on real-world data and, thus, may expand our physical knowledge. Figure 1 summarizes
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Fig. 1: The training and testing of a diagnostic ML model. Using inflow data as input, wind condition models are trained
to predict wind conditions at a specific turbine location. These predictions are then used as inputs for models that predict
turbine power. Combined, the result is turbine power predicted as a function of inflow, including wake interactions and
other turbine-array effects. To use these models diagnostically, the user provides inflow data and compares the predicted
performance against SCADA data to detect off-design performance.

training and using diagnostic ML models.

Approach 2: Data-driven ML wake models trained on real-world measurements - Consider-
ing the second approach for training ML wake models on real-world data, the intrinsic challenges
associated with collecting and post-processing real-world data, such as data from SCADA, met-
towers, and other remote sensing instruments [67, 68], should be noted. The main idea to develop
ML wake models trained on real-world data is to replicate results obtained with ML wake models
trained on CFD data but using real-world data. A recent work by Renganathan et al. [25] demon-
strated how two-dimensional wake velocity fields can be predicted using scanning Doppler Li-
DAR data, providing as inputs the incoming atmospheric conditions. Indeed, that work could
provide much new insight into wake dynamics, though the authors focused mainly on validat-
ing the models rather than probing them. If the data is appropriately non-dimensionalized, this
approach should be generalizable to different turbine models than the training turbine. Since
it is also trained on real-world data, it meets two of the above-mentioned ideal properties for
ML models. Nonetheless, the ML model involved is still mostly a black box, so this approach
struggles to be interpretable, though it may be explainable.

Approach 3: Data-driven ML wind farm modeling - Finally, an ML wind farm model, which
we will argue meets all desirable ML model properties and can provide new insights, such as
wake overlapping leading to wind farm wakes, should be capable of predicting wind conditions
at constituent turbines for arbitrary inflow conditions and farm layouts while being trained on
SCADA data. By requiring the model to be trained on SCADA data while also being able to
handle arbitrary layouts, the model is forced to learn spatially dependent effects. This equates to
coordinating sparse velocity point measurements, treating individual turbines as point measure-
ments, into a full wake profile. Since this occurs at the farm level, wake overlapping effects are
also learned. Figure 2 illustrates an ML wind farm model that learns wake profiles and wake
overlapping.

Some researchers have developed such ML wind farm models achieving different levels of
performance. Howland and Dabiri modeled turbine power capture as a regression problem utiliz-
ing power data of upstream turbines [27]. While the result is easily interpretable since neighbor-
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ing turbines are given weights corresponding to their impact on the turbine of interest, it seems
that each turbine requires a different model. The model is therefore not generalizable. Sun ef al.
trained an ANN model to predict the total power of an array of five turbines [69]. Notably, they
avoided using wind direction as an input, which often results in non-generalizable models. In-
stead, they calculate the wake factor of each turbine for each wind direction using the 2D Jensen
model and provide that as an input instead of the wind direction. The other inputs include turbine
wind speeds and yaw misalignments. Given that no turbine positional information is provided,
all wake interactions must be implicit in the data, and the model is likely specific to the training
layout. Thus, the model would need to be retrained on any other layout, and the result is not
generalizable.

Recent works offer two solutions to the problem of training generalizable ML wind farm
models. Some utilize GNNs since GNNs learn spatial dependencies in non-uniform grids, which
is suitable for studying different wind farm layouts [28, 29]. In these works, one uses physical
guidance to assist the GNN [28], while the other uses attention mechanisms to enhance the
interpretability of the network [29]. Yet none of these works use real-world SCADA data, but
data generated from analytical wake models. Other works use SCADA data and graph structures
but abandon the GNN for a simpler graph network, and thus fail to learn spatial dependencies
[70].

The second approach to generalizing ML wind farm models is to encapsulate important lay-
out information in a few parameters. Ghaisas and Archer [71] defined several such parameters.
Of these parameters, additional works have used blockage ratio - the fraction of a wind turbine
rotor shadowed by upstream rotors - and blockage distance - the distance of a given turbine to
upstream turbines weighted by the amount of the rotor they shadow - for general wind farm mod-
els [30, 42]. For a given wind direction, these two parameters can be averaged across the entire
farm, producing farm-averaged blockage ratio and distance. By replacing wind direction with
these parameters and training an ANN to predict farm power from the wind speed and blockage
parameters, Yan et al. [30] built a generalizable wind farm model. Other researchers even ex-

“ e
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‘Wake Model: ‘Wake Overlapping Model:

For a single upstream turbine, learning the wind condition at the For multiple upstream turbines, learning the wind condition at
downstream turbine as a function of relative distances equates to the downstream turbine as a function of upstream turbine wind
learning the spatial variability within the wake, i.e., U = conditions and locations equates to learning a wake overlapping
u(é-, 6s,U,TI) model

Fig. 2: The wind farm model, when able to generalize to arbitrary layouts, must learn the spatial dependency of velocity
on upstream turbine locations, implying that the model learns the single turbine wake profile as well as wake overlapping.
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tended this work to individual turbines and also introduced physics-informed models guided by
basic analytic wake models [42]. Though it is not clear whether the resultant models are learning
wake phenomena or if the blockage parameters encapsulate all the important wake information,
this remains an interesting and promising research path. Additionally, encapsulating wake effects
only through pure geometric parameters might be a pragmatic yet too simplistic approach. For
instance, the defined parameters fail to encompass the modulation of wake velocity deficit and
wake interactions with the atmospheric stability regime. Nonetheless, the geometric parameters
can be considered an initial condition for ML wind-farm wake modeling, then further refined
through an ML model to include additional layout and atmospheric effects.

Whether an ML wind farm model is developed based on GNN or blockage parameters, it
should be generalizable, interpretable, explainable, and trained on real-world data. A promising
approach might consist of blending training from simulation data, with ad-hoc refinement by re-
training an ML model on real-world data, though such data fusion should be done carefully, lest
the simulated data dominate the model performance [42]. The potential ML wind-farm wake
model described should be capable of reproducing operations with arbitrary layouts and for
different inflow conditions, thus it is generalizable. The resultant models should be interpretable as
well. In the case of GNNSs, this means describing the learned weights for interacting turbines as
a function of turbine spacing or inflow conditions. For blockage parameter models, this can mean
understanding the effect of changing farm layout on the blockage parameters and, thus, on the
resultant predictions. In any case, the ML wind-farm wake model envisioned attempts to meet all
the properties of a desirable ML model.

Outlook - We have reviewed several existing approaches for developing machine learning
(ML) wake models for wind energy applications and scrutinized promising new research direc-
tions that can enhance the potential embedded in big data collected from wind power plants and
measuring systems monitoring wind resources. It has been emphasized that an improved ML
model of wind turbine wakes should be: 1) trained on real-world data to unveil physical pro-
cesses governing wake evolution, interaction, and power capture; 2) generalizable to new values
of the input parameters beyond those utilized to train ML models while still within the training
ranges, avoiding extrapolation; 3) interpretable by identifying the variability in the “weights” of
the ML models associated with the variability in the input parameters; 4) and explainable to
identify the physical processes responsible for the input-output inter-dependencies. By fulfill-
ing these properties, ML wake models will advance scientific understanding of the underlying
phenomena governing wake evolution, interaction, and power capture, rather than simply recre-
ate results achievable with current first-principle models, yet significantly reducing the required
computational costs. Though using real-world data might seem a straightforward approach, it is
by no means trivial. Real-world data are often noisy, statistically non-stationary, and collected
with a relatively low spatio-temporal resolution. All these challenges need to be overcome when
working with real-world data, and, even for these tasks, ML can be an invaluable resource.

We have discussed three main different research approaches to developing ML wake models
trained on real-world data. For the first approach, we have considered diagnostic ML models,
which can identify and predict different operative conditions of wind turbines based on the input
parameters characterizing the freestream wind conditions. While providing good accuracy for
practical applications, such as quantification of power wake losses, these models are not gener-
alizable to other turbines than those considered for the ML model training. The second approach
is to develop an ML wake model analogous to the surrogate wake models developed from nu-
merical data. The main limitation is represented by the need for models for wake overlapping to
reproduce wind farm flows. Finally, an ML wind-farm wake model might be generated using
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ad-hoc geometric parameters or graph neural networks (GNN). These models might encapsulate
both the effects associated with the variability of the incoming wind/atmospheric conditions and
the interactions with wakes generated by neighboring wind turbines. The latter seems to be the
most comprehensive and promising approach for modeling wind farm flows. However, there are
still important challenges to overcome, such as pre-processing of the available real-world data,
accuracy, and generalizability of the ML models, and refinement of the models based on specific
datasets.
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