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» ABSTRACT: Understanding the organization and dynamics of turbulence structures in the atmo-s
spheric surface layer (ASL) is important for fundamental and applied research in different fields,
including weather prediction, snow settling, particle and pollutant transport, and wind energy. The .
main challenges associated with probing and modeling turbulence in the ASL are: i) the broad
range of turbulent scales associated with the different eddies present in high Reynolds-number
boundary layers ranging from the viscous scale (O(mm)) up to large energy-containing structures
(O(km)); ii) the non-stationarity of the wind conditions and the variability associated with the daily »
cycle of the atmospheric stability; iii) the interactions among eddies of different sizes populating =
different layers of the ASL, which contribute to momentum, energy, and scalar turbulent fluxes. 2
Creative and innovative measurement techniques are required to probe near-surface turbulence by
generating spatio-temporally-resolved data in the proximity of the ground and, at the same time, =
covering the entire ASL height with large enough streamwise extent to characterize the dynamics . of
larger eddies evolving aloft. To this aim, the U.S. National Science Foundation sponsored the
development of the Grand-scale Atmospheric Imaging Apparatus (GAIA) enabling super-large 2
snow particle image velocimetry (SLPIV) in the near-surface region of the ASL. This inaugural »
version of GAIA provides a comprehensive measuring system by coupling SLPIV and two scanning s
Doppler LiDARSs to probe the ASL at an unprecedented resolution. A field campaign performed in =
2021-2022 and its preliminary results are presented herein elucidating new research opportunities .

enabled by the GAIA measuring system.



» CAPSULE: Coupling snow-particleimaging and wind LiDARs for velocity measurements in the :
atmospheric surface layer can unveil the organization of turbulence structures and offer guidance s for

improved wall models needed for accurate numerical simulations.

s 1. Introduction

37 Understanding the physical mechanisms underpinning the organization and dynamics of turbulent
. coherent structures in the atmospheric surface layer (ASL) is important for several scientific and s
engineering areas, such as weather prediction modeling (Mufioz-Esparza et al. 2014; Jiménez et al. .«
2012; Juliano et al. 2022), snow settling and drift (Brun et al. 1989; Bartelt and Lehning 2002; ..
Bristow et al. 2023), pollen and pollution transport (Sofiev et al. 2006; Chamecki et al. 2009), .
wind energy (Onder and Meyers 2018; Veers et al. 2022), urban flows (Lane et al. 2013; Lamer .. et
al. 2022), low-level wind shear, and urban meteorology (Liu et al. 2019b). The ASL is the.. region
at the bottom of the atmospheric boundary layer, with a typical thickness of O(10> m), =  where
turbulent fluxes and stresses vary by less than 10% of their magnitude (Stull 1988). The . classical
description of a turbulent boundary layer includes a background mean flow perturbed by . flow
fluctuations induced by coherent turbulent structures, or “eddies”, which are organized as a.. cascade
of momentum-exchanging structures draining kinetic energy from the mean flow (Stull .. 1988; Pope
2000; Jiménez 2012; Cardesa et al. 2017).
50 Eddies of different sizes populating a turbulent boundary layer are generated through different s.
physical processes and evolve over different regions leading to specific statistical and spectral s
footprints in the flow. In particular, the high-frequency range of a turbulent boundary layer is
= dominated by small-scale eddies, whose energetic characteristics reflect into the Kolmogorov s
5/3 inertial sub-range of the streamwise velocity energy spectrum (where is the streamwise
s wavenumber) (Perry et al. 1986; Mahrt 1989; Marusic et al. 1997).
s Moving toward lower frequencies, the logarithmic layer can be pictured as a forest of randomly-s,
distributed geometrically-similar eddies generated from the ground, whose streamwise dimension s is
proportional to their distance from the wall, and for this reason, they are dubbed “wall-attached s
eddies” (Perry and Marusi¢ 1995; Hwang and Sung 2018; Hu et al. 2020; Puccioni et al. 2023a). «

Different statistical and spectral properties of wall-attached eddies can be predicted through a



« linear super-position of their elementary contributions, which is the core assumption of Townsend'’s
« attached-eddy hypothesis (Townsend 1976).

=  The motion induced by turbulent eddies can be characterized by the turbulent kinetic energy
(TKE), which represents the kinetic energy per unit mass and is calculated as half of the sum of the &
variances of the velocity fluctuations (Pope 2000), and the Reynolds stresses, which are calculated «
from the cross-correlation between different turbulent velocity fluctuations. Inaturbulent boundary
layer, more than 50% of the TKE and Reynolds stresses is carried by eddies with streamwise
wavelength larger than the boundary layer height (Ganapathisubramani et al. 2005; Hutchins and «
Marusic 2007a; Puccioni et al. 2023a). These large eddies, which are denoted, e.g., as “very-large-»
scale motions” (VLSMs) or superstructures (Kim and Adrian 1999; Guala et al. 2006; Balakumar
and Adrian 2007; Hutchins and Marusic 2007a), have a morphology and energy content not directly -
affected by the ground, hence they are classified as wall-detached eddies (Hogstrom 1990, 1992; -
Hogstrom et al. 2002; Baars and Marusic 2020; Hu et al. 2020). The turbulence research community
has not achieved yet a consensus on the genesis of these large coherent structures, yet the most »
accredited theories associate their generation either with the streamwise concatenation of wall-»
attached eddies, top-down entrainment of turbulent bulges within the boundary layer, or specific »
instability mechanisms (Guala et al. 2006; Balakumar and Adrian 2007). The main signature of -
VLSMs and superstructures consists in the presence of a sharp energy peak in the low-frequency -
turbulence range of the streamwise velocity energy spectra (Kim and Adrian 1999; Guala et al. «
2006, 2011), while their size should scale with the boundary layer height, and, thus, it can also be -
affected by atmospheric thermal stability (Mouri et al. 2019; Krug et al. 2019).

& All the above-mentioned turbulent structures with their different genesis, morphology, and energy
» content interact through different processes throughout the boundary layer. For instance, several =
laboratory experiments and numerical simulations have shown how VLSMs can modulate near-s
surface turbulence both in terms of energy content and characteristic wavelengths (Mathis et al. =
2009; Talluru et al. 2014; Liu et al. 2019a; Lee and Moser 2019; Salesky and Anderson 2020). «
Further, the spatio-temporal organization of the various turbulent eddies determines the intensity . of
the local shear, which is typically associated with the presence of flow regions with roughly «

constant velocity, therefore termed “Uniform Momentum Zones” (UMZs) (Meinhart and Adrian



o 1995; de Silva et al. 2016; Laskari et al. 2018; Heisel et al. 2020), delimited by layers of intense
« shear layers typically populated by aligned vortices.

o2 One of the most suitable non-dimensional parameters to characterize the size range of turbulent -
eddies populating a boundary layer is the friction Reynolds number, = By B/@, which quantifies s
the ratio between the largest turbulent coherent motions (proportional to the outer-scale boundary
layer height, @), and the smallest eddies with scales proportional to B/Blz, where & is the kinematic
viscosity and Bl is the friction velocity. Therefore, increasing is equivalent to increasing . the
spectral range between the large energy-containing turbulent structures, e.g. VLSMs and e
superstructures, and small-scale eddies.

% Investigating boundary layers with a high Reynolds number is instrumental to achieving a deeper
w0 Understanding of the physical processes governing turbulence; to this aim, dedicated high Reynolds-

o humber laboratory-scale facilities (Marusic et al. 2010; Smits et al. 2011; Marusic and Monty 2018)
w2 and numerical tools (Jiménez 2004; Jiménez and Moser 2007; Lee and Moser 2015, 2019) have
w:  been developed. For the same reason, the ASL can provide unique opportunities to perform high

s Reynolds-number boundary-layer turbulence research being that the ASL is one of the turbulent
s boundary layers with the largest friction Reynolds number achieved terrestrially O (10°) (Kunkel

ws  2003; Kunkel and Marusic 2006; Metzger et al. 2007; Marusic and Hutchins 2008; Guala et al.
. 2011; Heisel et al. 2018; Huang et al. 2021; Puccioni et al. 2023a), where large energy-containing
we COherent structures can achieve wavelengths of the order of O(km), while dissipative turbulent
s Pprocesses occur at scales of the order of O(mm) (Pope 2000; Jiménez 2012; Cardesa et al. 2017).

110 Investigations of ASL turbulence require measurement techniques providing suficient spatio-
. temporal resolution near the ground to probe near-surface turbulence. At the same time, the
12 measurement domain should attain locations close to the ASL height to monitor the evolution of
12 larger turbulent structures and their interactions with the near-surface turbulence. To this aim, early
us particle image velocimetry (PI1V) experiments in the ASL were performed using smoke generators
us  or similar tracers over observational domains extending about 1-3 m above the ground (Hommema
1 2003; Morris et al. 2007). The challenges in seeding the flow roughly uniformly over larger regions
w inspired the adoption of natural tracers, such as highly-reflective snow particles, which then led

1 to the development of the Super-Large PIV (SLPIV) (Hong et al. 2014; Toloui et al. 2014). The

s ability of SLPIV to probe the wind velocity variability with high spatial resolution (O (1071&))



o over large domains attaining heights of about 20 m (Toloui et al. 2014) was leveraged to investigate .
ASL turbulent structures (Heisel et al. 2018), wakes generated from a utility-scale wind turbine ..
(Dasari et al. 2019), and the effects of wind turbine wakes on surface turbulent fluxes (Abraham ... and
Hong 2021).

= While SLPIV provides adequate spatio-temporal resolution to probe near-surface turbulence, s
the limited vertical extent in such a configuration (= 20 m) does not enable to directly monitor ..
interactions of near-surface turbulence with larger coherent structures evolving aloft (Hu et al. .
2020; Puccioni et al. 2023a). For the Grand-scale Atmospheric Imaging Apparatus (GAIA) field s
campaign, this has beenthe motivation to couple SLPIV measurements with velocity measurements 1
performed with wind light detection and ranging (LiDAR). Over the last few decades, LiDAR has
become a compelling remote sensing technique to investigate atmospheric turbulence and flows .
evolving in the atmospheric boundary layer. For instance, LiDAR scans can be optimally designed ... to
probe the atmospheric boundary layer and wakes generated by utility-scale wind turbines (lungo .= and
Porté-Agel 2013, 2014; Fuertes et al. 2014; lungo 2016; Letizia et al. 2021a; El-Asha et al. ... 2017,
Zhan et al. 2020; Letizia et al. 2021b; lungo et al. 2022, e.g). LiDAR measurements were us
performed to detect the inverse-power law spectral region (Calaf et al. 2013; Puccioni et al. 2023a) s
and the inertial sub-layer (lungo et al. 2013) from the streamwise velocity energy spectra measured 1,
within the ASL.

= The GAIA project aims to develop, deploy, and evaluate a pioneering experimental apparatus 1
capable of probing atmospheric turbulence and particle transport using an imaging-based approach. 1.
This system has the potential to capture highly dynamic phenomena in the atmosphere at an ..
unprecedented level of spatio-temporal resolution. The initial version of GAIA integrates SLPIV, ..
which utilizes snow-particle imaging, with scanning Doppler LiDARs to facilitate accurate spatio-us
temporal measurements of near-surface turbulence, larger turbulent eddies at higher altitudes, ..
and their interplay via different turbulent processes, including amplitude-frequency modulations s
(Mathis et al. 2009; Talluru et al. 2014; Liu et al. 2019a; Salesky and Anderson 2020).

146 In this manuscript, the experimental apparatus is described together with the results obtained ..,
from the first field campaign performed in winter 2021-2022. Technical details of the various .
instruments used for the GAIA field campaign and an overview of the measurement strategy are ws

provided in Sect. 2. Samples of the data sets collected with SLPIV are reported in Sect. 3, while



s the LIDAR measuring strategy and an overview of the data sets collected are detailed in Sect. 4. .
Results from the joint SLPIV-LiDAR statistical analysis are provided in Sect. 5, and concluding i
remarks are reported in Sect. 6. Finally, more details on the post-processing of the SLPIV data are s

provided in Appendix A.

s 2. The GAIA field campaign

s The SLPIV apparatus was deployed at the University of Minnesota Eolos Wind Energy Research s
Field Station in Rosemount (Hong et al. 2014; Nemes et al. 2017; Heisel et al. 2018; Dasari et al.
2019; Abraham and Hong 2021), concurrently with the mobile LiDAR station developed at the s
University of Texas at Dallas (UTD) (EI-Asha et al. 2017; Zhan et al. 2020; Letizia et al. 2021a,b; s
Puccioni et al. 2023a) over the period between December 5, 2021, and February 24, 2022, t0 wo
perform four deployments at various locations, which are indicated in Fig. 1 and reported in Table .«
ES1 of the supplemental material. Selected photos from the various deployments are reported ... in
Fig. 2, while a schematic view of the simultaneous deployments of SLPIV and the scanning i

Doppler LiDARs is reported in Fig. 3.
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164 Fig. 1. GAIA field campaign at the Eolos site. Circle markers indicate LiDAR positions, square markers
s indicate SLPIV light sheet positions and arrows indicate mean wind directions during the deployments. Credits:

s Google Earth.



167 Fig. 2. Photos of the GAIA field campaign: (a) SLPIV light sheet pointing vertically; (b) SLPIV light sheet

s pointing horizontally; (c) deployment of the scanning Doppler LiDARs.

Top view Range Height Indicator (RHI)
y Wind
J direction Fixed scan
Volumetric scan
SLPIV
North
LiDAR station

- Curved mirror
-~ - -

169 Fig. 3. Schematic of the simultaneous deployment of the UTD mobile LiDAR station and SLPIV (figure not

0 to scale). The inset on the top left corner reports the top view of the experimental setup.

w»m The SLPIV equipment consists of a trailer-mounted illumination system and cameras. A nearly .»
100 m tall light sheet is generated using a 5 kW searchlight focused on a @ 0.3 m thick beam, .
which is then spread with a curved mirror to generate a light sheet pointing either vertically or ..

horizontally (Fig. 2a and 2b, respectively). Images of the illuminated snow particles are captured



s With different cameras, such as a Nikon D610, Sony E7Rii, and B7Siii (camera specifications are
s outlined in Table ES2 of the supplemental material).

»»  The spatial resolution of the SLPIV is determined by the snow particle response time and, thus, 1
by their inertial properties, e.g. snow crystal size and density. In other words, the characteristics of .
the snow particles determine whether snow is a good inertial flow tracer for the SLPIV (Eaton and
Fessler 1994). Encouraging results were previously documented for similar SLPIV deployments ..
(Hong et al. 2014; Toloui et al. 2014; Heisel et al. 2018), for which the Stokes number (i.e. the i
ratio between the particle response time and the flow timescale) was estimated to be = 0.1 for .
flow spatial scales of the order O (107! @), which indicates a good inertial behavior of the SNOW s
particles.

185 Coupled with the SLP1V setup, the UTD mobile LiDAR station was deployed to probe a mea-is
surement volume including the SLPIV field of view. This setup encompasses two coordinated
scanning Doppler LiDARs (Fig. 2c), i.e. a Streamline XR manufactured by Halo Photonics and .« a
Windcube 200S manufactured by Leosphere, a surface-flux station, and an infrastructure for .
remote control, scan setup, and data transfer for the instruments deployed. Technical details of .«
each LiDAR are reported in Table ES3 of the supplemental material. The surface-flux station ..
encompasses one CSAT3 sonic anemometer manufactured by Campbell Scientific Inc. installed ..
within a few meters from the LiDARs at a 2 m height.

199 For each deployment, a Cartesian reference frame (B, [, R), is selected along streamwise, .
spanwise, and vertical directions, respectively. The corresponding mean velocity field is indicated .= as
(@, @, @), while the respective zero-mean fluctuating velocity components are (2, &, &), .« and@is

time.

3. SLPIV test case: Probing near-surface turbulence in the ASL

ws  Two-velocity-component vector fields can be retrieved from the continuously-recorded images s
captured by SLPIV over a vertical plane roughly aligned with the mean wind direction (see o
Appendix A for more details on the post-processing of SLPIV data). A misalignment of the
SLPIV light sheet with the wind direction can lead to underestimation of the streamwise velocity .
component because the cross-plane velocity component is not probed from the SLPIV system. 2

However, considering that the light sheet has a cross-width between 30 cm and 50 cm, then a



x.  Wind-direction misalignment with the orientation of the light-sheet plane up to 30° can be handled s
with negligible effects on the measured streamwise velocity considering a sampling rate of 30
frames per second and a wind speed smaller than 5 m s™1. The dimensions of the field of view .» and
spatio-temporal resolution of the SLPIV are adjusted depending on the specific objectives of .  the
experiments. For instance, to investigate near-surface turbulence, the SLPIV field of view has ..  a
larger dimension along the streamwise direction, while to investigate interactions of near-surface o
turbulence with larger turbulent structures evolving aloft, the SLPIV domain is extended mainly in ..
the vertical direction.

22 For this section, we selected data collected during the deployment performed on February 22, 2.
2022. Highly spatially-resolved images were acquired focusing ona@10 m x 10 m field of view, .. ata
120 Hz frame rate, and for a 15-minute recording time. These measurements enable probing .= wind-
velocity variability for scales ranging from the Taylor microscale, which is the largest eddy ..« size for
which viscous effects are still important (B3 @ 0.1 m, see Heisel et al. (2018) under similar .,  ASL
conditions), up to the size of large energy-containing coherent structures evolving within the u.
logarithmic region (Adrian et al. 2000b; Monty et al. 2009; Heisel et al. 2018). The key signature ... of
these turbulent coherent structures is the presence of vortices aligned along internal shear layers o
(Christensen and Adrian 2001; Heisel et al. 2021) delimiting zones with nearly uniform velocity .
(UMZs) (Meinhart and Adrian 1995; Laskari et al. 2018; Heisel et al. 2020).

= The following showcases a sample of the high-resolution spatio-temporal flow characterizations 2.
that can be attained using SLPIV. Fig. 4a shows the streamwise velocity averaged at each time
along the streamwise extent of the SLPIV field of view and reported as a function of time and o
height, B. If we analyze only a sub-period of this velocity map, as reported in Fig. 4b, we can .
identify an inclined pattern in the flow roughly demarcating the boundary between two regions with .z
significantly different velocities (UMZs), namely lower streamwise velocity below (predominantly .
red color) and higher streamwise velocity above (predominantly blue color). This flow feature is .
consistent with the signature of hairpin packets or ramp-like structures separating two adjacent 2
UMZs, as conjectured through previous wind tunnel and field experiments (Adrian et al. 2000b, .
e.g.), and may be considered as an archetypal realization of turbulent structures generated at the .»

surface.

10
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2 Fig. 4. SLPIV measurements collected on February 22, 2022: (a) colormap of the streamwise velocity
223 averaged along the streamwise extent of the SLPIV field of view and reported as a function of time. In the
22 lower panel, the corresponding vertically-averaged velocity is reported; (b) magnified region from (a) over a
25 sub-period; (c) vortex identification through the Bl pcriterion for a SLP1V snapshot corresponding to @ =32 s

26 (flow direction is left-to-right).

28 Upon analyzing the SLP IV snapshot for a generic time from the velocity fields illustrated in Fig. 2
4a or Fig. 4b, groups of vortices can be observed. The vortex cores are identified through the ..
swirling strength parameter, Bz g(see Fig. 4c), which allows marking local swirling motion based ..
on the complex eigenvalues of the velocity-gradient tensor (Jeong and Hussain 1995). In turbulent ...
boundary layers, these vortices are observed to be statistically arranged near shear layers evolving
from the ground, inclined at a forward 10° - 15° angle (Adrian et al. 2000b; Ganapathisubramani.. et

al. 2005; Heisel et al. 2018).
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s The characterization of the morphology, location, and dynamics of these eddies is instrumental 2
in providing a physical interpretation of the turbulent statistics, such as Reynolds stresses, TKE, .
and dissipation rate (Albertson et al. 1997; Christensen and Adrian 2001). While these turbulent 2
quantities can be quantified from measurements collected through classical anemometers installed 2
on meteorological towers (Bodini et al. 2020), and more recently also through Doppler LiDARS 2
(Sanchez Gomez et al. 2021), interpreting the dynamic role of vortex organization on the spatio-.
temporal evolution of turbulence can be very challenging.

= The analysis of the SLPIV snapshots and velocity time series can also provide information 2
on the effects induced by larger structures that may evolve aloft, yet leave a profound signature .. on
the turbulence statistics closer to the ground (Hutchins and Marusic 2007b; Mathis et al. .= 2009;
Guala et al. 2010). Fig. 4a displays low-frequency velocity fluctuations that are easily
= discernible even through visual inspection, as evidenced by the vertically-averaged velocity signal 2,
depicted in the lower panel of the figure (with typical periods around 150 s). These low-frequency s
velocity fluctuations can be induced by structures having streamwise wavelengths comparable, .« or
even larger, than the ASL height (Hutchins and Marusic 2007b; Mathis et al. 2009). These .. large
structures cannot be directly probed through SLPIV in the current near-surface configuration,
because typically evolve over heights larger than that attained with the SLPIV field of view (Puccioni ..
etal. 2023a). Therefore, itis crucial to couple SLP1V and scanning Doppler LiDAR measurements .. to

accurately resolve the flow over larger volumes reaching the ASL top.

4. LIDAR scanning strategy

s As detailed in Sect. 2, two pulsed scanning Doppler LiDARs were deployed during the GAIA .
field campaign at locations selected to have the direction connecting the LiDAR position with the .
center of the SLPIV field of view roughly aligned with the mean wind direction (Fig. 1). This 2
setup would ensure that the LiDAR radial velocity is practically insensitive to the mean transverse 2
velocity component. Geometric details of the LIDAR scans for each deployment are reported in o
Table ES4 of the supplemental material.

o The Halo Streamline XR LiDAR was devoted to performing fixed-point measurements by locating
= agateroughly atthe middle point of the horizontal extent of the SLP1V field of view and a height of .-
about 30 m above the ground. The horizontal distance between the LiDARs and the SLPIV field of

12



- View was selected to ensure a low elevation angle of the LiDAR laser beam (between 1.7° and 6.8° s
for this experiment) to maximize LiDAR sensitivity to the streamwise velocity component. The
LiDAR fixed-point measurements were performed using a range gate of 18 m, sampling frequency .» of
2 Hz, and sampling duration between 20 and 60 minutes.

=  The radial wind speed, Bz, measured by a Doppler LiDAR represents the projection of the wind
2 velocity vector along the line-of-sight of the LiDAR laser beam (Cheynet et al. 2017; Zhan et al. xo
2020; Puccioni and lungo 2021):

B (@, 2) =B(3,R) cos(B -Bg) cos& + (B, ) sin(& - Bz) cosB +R(R,3) sin, (1)

. Where B and B are the azimuth and elevation angles of the LiDAR laser beam, respectively, Bl is the 2.
wind direction estimated from the LiDAR or the sonic-anemometer data, & is time, and (2,2, B) are 2
the streamwise, spanwise, and vertical velocity components, respectively. Therefore, considering 2.
the low elevation angle used for the LiDAR fixed-point measurements (2 < 6.8°) and the LiDAR s

azimuth angle set equal to the mean wind direction, then the wind streamwise velocity can be

s estimated as:
Be(3, B

&@-F )cosl

20 For more details on the post-processing of the LiDAR data, the reader is referred to Puccioni et al. .

(2)

B(E,B,B,B) =
C

(2023a). As typically performed with the UTD mobile LiDAR station (Puccioni et al. 2023b), Si-z:
multaneously to the high-sampling-frequency fixed-point measurements, which are mainly devoted ..
to probe wind turbulence at different heights, the other scanning LiDAR, i.e. a Windcube 200S, :.
performed a composite of scans with a lower temporal resolution, namely vertical azimuth display s
(VAD) scans to characterize the vertical profile of mean wind velocity and direction over the site, s
range height indicator (RHI) scans over the SLPIV plane with the aim at probing large-scale flow .
variability, and volumetric scans roughly centered at the SLPIV position to characterize the spatial .
heterogeneity of the wind field over the site. It is worth noting that the scanning parameters of ... the
RHI and volumetric scans, i.e. angular resolutions, azimuth and elevation limits, and scanning s
speed, are optimally selected through the LiDAR Statistical Barnes Objective Analysis (LiSBOA) o
procedure (Letizia et al. 2021a) as a trade-off among the size of the scanning area/volume, spatio-.

temporal resolution, and accuracy of the retrieved statistics.

13



203 LiDAR data collected through fixed-point measurements and VAD scans will be analyzed in s
detail in the next section. Here, as an example, we show in Fig. 5a and Fig. 5b mean and variance, s
respectively, of the streamwise velocity retrieved from the RHI scans collected on February 22, s
2022. The SLPIV measurement area is approximately 240 m away from the LiDAR location, s
measuring about 20 m in width and 10 m in height. Therefore, it is evident that the velocity field s
surrounding the SLPIV field of view experiences significant large-scale variability in both vertical s
and streamwise directions. This spatial heterogeneity is even more evident for the streamwise-a.
velocity variance (Fig. 5b), which suggests that significant large-scale turbulent dynamics might.. be
observed, as will be discussed in the following section.

sz Finally, the mean and variance of the streamwise velocity obtained from the volumetric scans a.
performed on the same day of February 22, 2022, are retrieved over a 3D structured Cartesian .
grid through the LiSBOA procedure (Letizia et al. 2021a,b) (Fig. 5c and Fig. 5d, respectively. It.s is
noteworthy that a certain level of heterogeneity in the flow is observed in all three Cartesian s

directions from the volumetric scans. This spatial information gathered through the LiDAR data
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287 Fig. 5. Overview of the LIDAR measurements performed on February 22, 2022: Mean streamwise velocity
=2 retrieved from the RHI scans (a) and volumetric scans (c); Streamwise velocity variance retrieved from the RHI

s scans (b) and the volumetric scans (d). In (a) and (b), the SLPIV field of view is reported with a grey triangle.
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2, Will be instrumental to analyze and interpret the SLPIV measurements and identify interactions

s between VLSMs, wall-attached eddies, and near-surface turbulence.

xs 5. Integration of SLPIV and wind LiDAR measurements

=0 0. Vertical profiles of the velocity statistics and single-point simultaneous measurements

In this section, we provide an overview of the multiscale flow characterization that can be :
performed throughout the ASL with the composite vertical profiles of the mean velocity and :
Reynolds stresses obtained through simultaneous measurements performed with the SLPIV, scan-:.
ning Doppler LiDARs, and a sonic anemometer. For this analysis, we consider data collected on s
December 11, 2021, at 2:00 AM UTC for a duration of 22 minutes. The local atmospheric stability = is
characterized through the Obukhov length (Monin and Obukhov 1954), which is calculated from ., the
sonic-anemometer data as @ = - By/(2 E'®), where @ = 0.41 is the von K&rman constant, B is the
gravity acceleration, B’ is the vertical heat flux and B is the mean temperature, which is :»  equal to
271.5 K for the selected data set. The resulting Obukhov length is @ = 839 m, which corre-=. spondstoa
stability parameter of @/@ = 0.002 suggesting that for the selected data set turbulence is .. essentially
driven by mechanical shear with minimal effects associated with thermal stratification ..  (Stull 1988;
Wyngaard et al. 1998; Metzger et al. 2007).
536 In Fig. 6a, the vertical profile of the time-averaged streamwise velocity is fitted with the log-.»
arithmic law of the wall for a neutrally-stratified boundary layer (Clauser 1954; Stull 1988):... [ =
B/B - log(@/Eg) and reported with a black line. The fitting procedure provides a friction ... velocity
of @3 =0.328+0.015 m s~%, and an aerodynamic roughness length of Blp = 1.18 +0.49 mm, .. which are
estimated with an B-square value of 0.971 with a 95% confidence level. The value:. obtained for By
is in good agreement with previous estimates obtained for boundary layers evolving ... on fresh snow
over flat terrains (Gromke et al. 2011).
= The availability of the sonic-anemometer data collected at 2-m height enables a further estimate
. Of the friction velocity through the eddy-covariance method (Stull 1988): Bl = TE +TE o
«s This alternative approach provides a friction velocity of 0.32 ms™!, which agrees well with the
1 Value obtained from the composite velocity profile of Fig. 6a.
2 The composite vertical profile of the time-averaged streamwise velocity shows a generally good

= agreement among the statistics obtained from different instruments, in particular between the sonic
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333 Fig. 6. Vertical profiles of the statistics obtained from simultaneous measurements performed with SLP1V,
s Sonic anemometer, and LiDAR fixed-point measurements on December 11, 2021, 2:00 AM - 2:22 AM UTC: (a)

as  Mean streamwise velocity; (b) Reynolds stresses.

1 anemometer at 2-m height and the SLP1V (Fig. 6a). A slight deviation is observed for the LiDAR s
data for which larger velocities than those measured by the SLPIV are observed for overlapping s
heights. Besides accuracy in the velocity measurements performed with SLPIV and the LiDAR :
fixed-point measurements, this discrepancy (< 0.3 ms™1) can also be ascribed to the averaging of - the
SLPIV data along the streamwise direction, the different physical locations sampled from the ..« two
instruments, and to the site-specific flow heterogeneity already singled-out through the RHI s and
volumetric LiDAR scans (Fig. 5).

356 For the same data set under investigation, the composite vertical profiles of the Reynolds stresses s,
are reported in Fig. 6b. A very good agreement is observed for the Reynolds stress, the stream-:s
wise and vertical velocity variance measured through the SLPIV and the sonic anemometer. As s
expected, the streamwise velocity variance calculated from the LiDAR fixed-point measurements : is

underestimated compared to SLPIV statistics calculated over their overlapping vertical range.: This

feature is due to the spatial averaging associated with the LiDAR measuring process over each . probe
volume (see, e.g., Frehlich et al. 1998; Brugger et al. 2016). A better agreement betweenthe .. SLPIV
and LIDAR streamwise variance is achieved by applying the correction method proposed :e by

Puccioni and lungo (2021) (green-filled symbols in Fig. 6b). The Reynolds-stress B'A" values
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. Obtained with SLPIV near the surface are reasonably close to the respective sonic-anemometer s
velocity statistics. With increasing heights, SLPIV tends to underestimate the Reynolds shear s
stress B'E’, while overestimating the vertical velocity variance. This may be an effect due to the s
combination of relatively low spatial resolution of the SLPIV measurements with a background :e
large-scale unsteadiness of the flow.
=  The inter-comparison of the streamwise velocity measured with the different instruments is now :»
performed in the temporal domain. For this analysis, we consider data collected through the sonic s
anemometer at 2-m height and SLP 1V at 3.5-m height. Further, we perform the inter-comparison . of
the data collected simultaneously through the LiDAR fixed-point measurements and SLPIV at.. four
overlapping heights (12 m, 14 m, 16 m, and 18 m).
= To compare in time the streamwise velocity signals collected with the different instruments, we
should take into account a time lag, [, associated with the advection of turbulent structures over., the
streamwise distance, AR, separating instruments deployed at different locations. For each set of
velocity measurements collected with two different instruments, the time lag [ is estimated through s
the cross-correlation function calculated between the corresponding time series (Han et al. 2019). s
The cross-correlation analysis is first performed for the streamwise velocity measured by the :.
sonic anemometer at 2 m height and the SLPIV at 3.5 m height, then averaged over the streamwise s
extent of the SLPIV field of view. The time lag between these two time series is estimated . as
~ 355, corresponding to an advection velocity of about 7ms™. This estimated advection = velocity
is slightly larger than the mean velocity measured through the vertical profile reported in .= Fig. 6a.
Similar discrepancies between estimated advection velocity and measured local mean =« velocity
were already observed from previous experiments (Erm and Joubert 1991; Dennis and .=  Nickels
2008; LeHew et al. 2011).
w0 A similaranalysis performed for the LiDAR fixed-point measurements and SLP |V data collected s
for the overlapping heights produces estimates of @ between 11.5s and 18s, corresponding to s
advection velocities between 8.3 ms™! and 9.1 ms™%, again slightly larger than the time-averaged s
streamwise velocity at the same heights. After being re-aligned in time, the velocity signals s
demonstrate a high degree of agreement, as evidenced by the qualitative comparison presented s in

Fig. 7a between the sonic anemometer and SLPIV data. Similar results are obtained when
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a8 Fig. 7. Single-point analysis of streamwise velocity collected with the sonic anemometer and the SLPIV on

;s December 11, 2021: (a) Portion of the time series; (b) Linear regression.

»s comparing the re-aligned velocity signals from SLPIV and the LiDAR fixed-point measurements
=, for the overlapping heights of 12m, 14 m, 16 m, and 18 m, (Figs. 83, ¢, €, g, respectively).

2« These results are further corroborated by carrying out a linear regression analysis between the
re-aligned streamwise velocity signals collected by the various instruments at the same height. The o
linear regression between the sonic anemometer and SLPIV data leads to a correlation value that is «:
not very high (@% = 0.56, see Fig. 7b). This feature is likely associated with the 248-m separation .
distance between the two instruments, slightly different heights (2 m for the sonic anemometer and .
3.5m for SLPIV) and, more importantly, the relatively high spatio-temporal resolutions of both ..
instruments capturing flow distortions of small-scale turbulent structures advected over a relatively s
large distance.

206 The linear regression analysis between SLP1V and LiDAR data is shown in Figs. 8b, 8d, 8f, 8h .
for the different heights. The correlations are generally good and improved with respect to the e
linear regression between SLPIV and sonic anemometer (slope larger than 0.71, intercept lower s
than 2.4ms™, and B2 value larger than 0.81). Such a better correlation, as compared to the o
SLPIV/sonic anemometer inter-comparison, is achieved thanks to the shorter streamwise distance ..
between the LiDAR gates and the SLPIV domain (< 150 m), and the spatial averaging within the ...
SLPIV field and LiDAR gate, all limiting the space-time deformation of the velocity field.
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Fig. 8. Single-point analysis of streamwise velocity calculated from the LiDAR fixed-point measurements and

SLPIV on December 11, 2021, at heights of 12 m, 14 m, 16 m, and 18 m: (a), (c), (e), (g) Time series; (b), (d),

In this section, we provide an initial, quantitative characterization of how large-scale turbulent

motions, which the wind LiDARs probed during the GAIA experiment, modulate near-surface
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s turbulence captured by the SLPIV. Specifically, we describe how the occurrence of high- and .
low-streamwise-velocity events, which might be induced by VLSMs or superstructures evolving at...  a
certain distance from the ground (Puccioni et al. 2023a), can affect the organization of turbulent ...
eddies populating the near-surface region, and, thus, Reynolds stresses, TKE, and dissipation rate. .
From the deployment performed on February 22, 2022, we first identify high- and low-.:
streamwise-velocity events from the velocity time series, m,z0btained from the LiDAR fixed-u.
point measurements at a height of 19 m, i.e. slightly above the SLPIV field of view. The selected .
high- and low-streamwise-velocity events (red and blue markers in Fig. 9a, respectively) are iden-.:
tified from velocity samples with values laying outside of the 25"—75™ percentile range estimated .,
for the entire duration of the time series.
==  The SLPIV snapshots corresponding to the selected high- and low-streamwise-velocity events are
s then analyzed to characterize the organization of the turbulent eddies in the near-surface region by o
leveraging the high spatial resolution of SLPIV in probing simultaneously streamwise and vertical ..
velocity components over a plane roughly aligned with the mean wind direction.
.2 As afirst step, we classify the streamwise velocity field into Uniform Momentum Zones, UMZs, ..
for the selected low- and high-streamwise-velocity events, as reported in Fig. 9b and 9c, respectively. ..
UMZs are flow regions bounded by internal shear layers, which are deemed to be important flow s
features for the resulting Reynolds shear stresses and turbulence intensity (Meinhart and Adrian ..
1995; Laskari et al. 2018; Heisel et al. 2020). UMZs are identified from SLP1V snapshots by local ..
peaks in the histograms of the instantaneous velocity, which are then associated with the respective ws
modal velocities characterizing adjacent UMZs (Heisel et al. 2020). For the low-streamwise-.s
velocity event, the internal shear layers (ISLs) delimiting adjacent UMZs have similar inclinations, s
namely with increasing heights moving downstream (Fig. 9b). Delving more in-depth to investigate .
the organization of turbulent eddies in the near-surface region, it is observed that the majority of .. the
vortices with negative swirling strength Bl gi.e. indicating prograde vortices rotating with the .. mean
shear, in Fig. 9d, are located in the proximity of the ground and confined within a region .. with an
inclination similar to those of the ISLs shown in Fig. 9b. This organization of eddies in the .ss proximity
of the ground resembles the signature of hairpin-vortex clusters into a ramp-like coherent.ss structure, or

packet, as already shown from previous wind tunnel experiments, direct numerical
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Fig. 9. Conditional sampling of the SLPIV data based on wind LiDAR data: (a) Time-series of the streamwise
24 velocity measured by the wind LiDAR at height of 19 m (horizontal dashed lines indicate the 25th-75th percentile
range of the entire time series). The selected high-/low-streamwise-velocity events are indicated with red and blue
markers, respectively; (b, c) Contours of the uniform momentum zones extracted from the SLPIV streamwise
a7 Vvelocity for the low- and high-streamwise-velocity events, respectively; (d, e) swirling strength, By 5 overlapped s
with the quiver plot of the fluctuating velocity field for the low- and high-streamwise-velocity events, respectively. s
Local convection velocities of 7.1 m s7! (d) and 6.7 m s71 (e) were subtracted following Adrian et al. (2000a) (for 4o

clarity vectors were skipped). The thick arrows indicate the prevalent direction of sweeps, (E4), and ejection,

(&), turbulent events.
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s simulations, and near-ground smoke visualizations of the ASL (Wallace et al. 1972; Adrian et al.
2 2000b; Christensen and Adrian 2001; Hommema 2003; Morris et al. 2007).

s The presence of negative vorticity along a shear layer is typically associated with the occurrence o
of turbulent ejections, which are denoted as B, events, inducing local reduction of the streamwise
velocity and upward vertical velocity fluctuations (8" < 0,@ > 0) (Wallace et al. 1972; Christensen
and Adrian 2001; Adrian et al. 2000b; Morris et al. 2007).

s A completely different scenario is observed for the selected large-scale high-streamwise-velocity
« event. The ISLs compress UMZs toward the ground while moving downstream (Fig. 9c), thus s
displaying an opposite inclination as compared to those observed for the low-streamwise-velocity s
event, and a different distribution of streamwise velocity fluctuation (E; with @ > 0,2 < 0).

«  To further characterize interactions among turbulent structures with different scales, we analyze s
two variables describing the intensity of small-scale turbulence, namely swirling strength, @ 460
marking vortex cores, and TKE dissipation rate, B (Albertson et al. 1997; Pope 2000; Christensen .o
and Adrian 2001; Bodini et al. 2020; Sanchez Gomez et al. 2021). We calculate statistics of Bz gand & .
from the SLP 1V data conditionally sampled through the value of the streamwise velocity calculated .
from the LiDAR fixed-point measurements at @ = 19 m, g,2which can significantly be affected .
by the energy carried by VLSMs and superstructures (Baars and Marusic 2020; Hu et al. 2020; ..
Puccioni et al. 2023a). Specifically, the LiDAR streamwise velocity collected at a 19-m height, s
@,ei% binned as for the histogram reported in Fig. 10a with grey bars. Subsequently, statistics s
computed on the SLPIV and sonic-anemometer data are calculated within each bin identified .,
through the simultaneous LiDAR velocity measurements. Assuming small-scale isotropy and .

using temporal derivatives of the velocity field, the TKE dissipation rate can be calculated as:
Bz (2, 8,0) = 158/@ (2R (B AF,B,2)/2 17, (3)

= Where (@(R))g is the horizontally averaged streamwise velocity along the streamwise extent of the .

SLPIV field of view (Saddoughi and Veeravalli 1994). Furthermore, by leveraging 2D instanta-..
neous spatial derivatives calculated from the highly spatially-resolved SLPIV snapshots, dissipation .

can also be computed following Doron et al. (2001); Wang et al. (2021), which is indicated through
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aga Fig. 10. Turbulence parameters calculated from data collected on February 22, 2022, through SLP 1V at heights
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superscripts, indicate positive and negative vorticity, respectively).

. the parameter:

Ba=30[(2 B R+ (2 @B R+(2 P2 [P+(2 @0 (R+20 F@ @ FERE2/30 PR @ FERE (4)

s  TheSLPIV data are then conditionally sampled for the various bins used in the histogram reported

=0 inFig.10a. The conditional statistic for the dissipation, calculated either through temporal or spatial
= derivative (Bg and By, respectively) are reported in Fig. 10a for the SLPIV data collected at heights of
22 2m, 8m, and from the sonic anemometer as well. Both methods used to estimate TKE dissipation .
rate generally show increased dissipation for larger values of .2 his trend is amplified at.. the
lower height of B = 2 m, for both spatial and temporal estimates, and for both SLPIV and.s sonic
anemometer data. This analysis suggests that with increasing streamwise velocity aloft, thus .  with

increasing wind shear, the spatio-temporal organization of the turbulent eddies located in the
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«» near-surface region leads to sharper velocity fluctuations, thus to enhanced dissipative processes z:
draining energy from larger coherent structures toward smaller structures dominating viscous s
processes. While dissipative processes are known to be inherently related to the velocity derivative s
tensor and small-scale structures of turbulence (see, e.g., Chacin and Cantwell (2000)), probing s the
spatio-temporal variability of these processes in a high Reynolds-number boundary layer, such . asthe
ASL, is a novel capability enabled by SLPIV.

s:  Asimilar conditional statistical analysis is then performed for the vorticity field measured through
s« the SLPIV, thus by analyzing the parameter The results reported in Fig. 10b show that the
«s intensity of prograde (negative Bz § vortices increases with larger outer-scale velocity @ B

which is a direct consequence of the increased mean shear. This effect is remarkably evident close s» to

s« C. Spatio-temporal coupling of SLPIV and LiDAR data

505 Leveraging the simultaneous availability of LiDAR fixed-point measurements covering the entire
so ASL height and high-resolution SLP IV measurements in the near-surface region, it is possible to s.
retrieve compelling flow reconstructions over a streamwise—vertical plane as a function of time. sx
The area covered for this analysis spans the vertical range from 1 m up to O (102 @) height and .. fora
streamwise extent of about 500 m. This analysis provides the opportunity to tackle important s
scientific questions on turbulence processes triggered by large-scale turbulent motions, which ss
achieve their maximum energy typically at a height of about 20% of the ASL height (Hu et al. s
2020; Puccioni et al. 2023a).

sz Acrucial point for this analysis is the conversion of the time stamp of the LiDAR measurements in
s« streamwise coordinate through Taylor’s hypothesis of frozen turbulence (Taylor 1938). Specifically,
so @ velocity time series is converted into a spatial record by leveraging the advection velocity of the s
flow, @agy (Taylor 1938; Del Alamo and Jiménez 2009; Moin 2009; Higgins et al. 2012; Han et al. s
2019). If we assume all turbulent scales move with a constant speed at each given height, it is s

possible to apply the following time-to-space transformation (Zaman and Hussain 1981):
& (B, 8,0) = B (B(B) ~Faav (B)E, 0), (5)
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=2 Where Bg (@) is the position of each LiDAR gate. It is typically a reasonable assumption to set Blyqy
=2 equal to the local mean velocity B (&) (Taylor 1938).

=2 An example of the coupling between the LIDAR and SLP1V datais provided for the February 22, s.
2022 datasetin Fig. 11, whichis extracted from video 2 provided in the Supplemental Material. The s
snapshots in Figs. 11a and 11c are extracted at the time 07:41:12 and 07:38:23 UTC, respectively. s
Notably, the advection velocity used to reconstruct the LiDAR streamwise coordinate is calculated s, at
each time frame as a moving average over 53 s for each height.

538 In Figs. 11a and c, the streamwise velocity calculated from the LiDAR fixed-point measurements s
and reconstructed in space is coupled with the respective SLPIV snapshot. Furthermore, the s.

instantaneous velocity data recorded with the LiDAR fixed-point measurements are reported in
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s2s Fig. 11. Coupling SLPIV data and spatially-reconstructed LiDAR fixed-point measurements: (a; b) high
s Streamwise-velocity event; (c; d) low streamwise-velocity event; (a; c) streamwise velocity calculated from the
s LiDAR fixed-point measurements and spatially transformed through Taylor’s hypothesis of frozen turbulence
s2s  coupled with the respective SLPIV snapshot (rectangle at the bottom center). Location and data of the LIiDAR
so  fixed-point measurements are reported with a line with square markers; (b; d) color map of SLPIV fluctuating
s vertical velocity overlapped with the quiver plot of the in-plane fluctuating velocity components. The arrow at
ss1 the top-right corner corresponds to the fluctuating streamwise velocity measured by the LiDAR at 19-m height.

ss2 The positive B-coordinate is consistent with the wind direction.
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s Space with a line with square markers reporting the LiDAR data at their corresponding actual s.
physical locations. Remarkably, both instruments capture similar values of the streamwise velocity, s
with the SLPIV exhibiting higher spatial resolution.
s« Thesnapshots reportedin Fig. 11aand 11c correspond to high and low, respectively, streamwise-s.s
velocity events, i.e. with positive and negative fluctuating velocity measured through the LiDAR s
fixed-point measurements at a height of 19 m. The respective SLPIV frames are reported ins. Fig.
11b and 11d as quiver plots of the fluctuating in-plane velocity overlapped with the colors.. map of
the fluctuating vertical velocity. It is noticed that the high streamwise momentum detected

ss by the LiDAR ( 2 0 in Fig. 11b) is concurrent with a general negative fluctuating vertical

= velocity (B < 0) probed by the SLPI1V, which corresponds to sweeping turbulent motions (24
s events) (Wallace et al. 1972). In contrast, a low streamwise momentum event detected by the
= (B > 0), which are associated with turbulent ejection motions (&,).
sss  This preliminary analysis carried out by coupling SLPIV with fixed-point measurements per-ss
formed with scanning Doppler LiDARs corroborates the research potential obtainable by merging ss
the near-ground high spatio-temporal resolution of the SLP1V measurements with the long range s>, of
the LiDAR measurements covering the entire ASL to investigate interactions between large-== scale
turbulent eddies and near-wall turbulence. This innovative measurement approach will be s
instrumental in unveiling physical processes underpinning boundary layer dynamics, scalar trans-se
port, particle (snow) deposition, wind energy harvesting, and many other physical phenomena and s«

engineering applications occurring in high Reynolds-number turbulent boundary layers.

2 6. Summary

s63 In this paper, the setup and first deployments of the Grand-scale Atmospheric Imaging Apparatus se
(GAIA) have been described. The imaging system of snow particles provided by GAIA has been s
operated to perform super large particle image velocimetry (SLPIV) over a O(20m x 20m) s
field-of-view near the ground, while the UT Dallas mobile LiDAR station probed the streamwise e
velocity field with a composite of scans throughout the entire height of the atmospheric surface s
layer (ASL) and over a volume encompassing the SLPIV field-of-view. The overarching goal of

this experimental apparatus is to probe the ASL velocity field with adequate and variable spatio-
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so temporal resolution throughout the AS L height, namely with increasing resolution by approaching s»
the ground where turbulent structures have wavelengths comparable to their distance from the s»
ground, yet achieving heights in the proximity of the ASL top to probe the evolution of large s»
energy-containing turbulent structures.

s« Several case studies have been presented to demonstrate the experimental capabilities provided by
ss operating synergistically SLPIV and scanning Doppler LIDARs. An analysis has been performed s
in the time domain emphasizing how SLPIV and wind LiDARs can provide good resolution to s»
probe effects of high- and low-streamwise-velocity events induced by very-large coherent turbulent s
structures on the near-ground turbulence. Our analysis has demonstrated how the availability <» of
wind LiDAR data covering the ASL facilitates enhanced and integrated analyses of SLPIV « data
close to the ground. This is achieved by retrieving conditional statistics based on LiDAR .  data
collected at higher altitudes that cannot be attained by the SLPIV, but where large turbulent s.
structures are more energetic.

se3 In this work, we have documented how SLPIV is a versatile measurement technique designed s
to probe flow fields by imaging tracer particles within the flow. Forthcoming improvements of .= the
experimental setup along with innovative techniques for image post-processing (Liu and Shen s 2008;
Zhang et al. 2023) might enable SLPIV applications in other environments, such as urbans. flows and
pollutant dispersion.

s«  The data sets collected during the GAIA field campaign are publicly shareable to promote s
cutting-edge research on the organization and dynamics of multi-scale turbulent structures in the s
ASL. Advancements in these topics will enable the development of improved numerical models . for

simulating and predicting turbulent boundary layers.

592 APPENDIX A

s03 SLPIV data processing

s« Wind velocity data from SLPIV are obtained by processing video files recorded for imaging sss
the snow particles. Before PIV correlation, these videos are first down-sampled in time, mapped s
from pixels into physical dimensions, and then pre-processed to enhance signal intensity. Image s
down-sampling is needed as the cameras can only record at a few fixed rates (e.g., 30, 60, or s

120 Hz), thus an optimal delay between frames could not be set during the image acquisition.
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s Instead, the maximum frame rate available is chosen, and then specific frames are extracted in s
post-processing to achieve the optimal particle image displacement. Too small displacements e
result in poor resolution of the vertical velocity component (much smaller than the streamwise .
velocity), while displacements too large result in loss of correlation.

603 Mapping the image into object space, needed to obtain velocity measurements in physical units, co
involves dewarping the image based on the variation of magnification throughout the field of view s
(Hong et al. 2014). Knowing the ground distance of the camera from the base of the light sheet, cs
which is measured with a GPS, and the inclination angle of the camera, the physical distance «
between each pixel and the associated point on the planar light sheet can be determined. Combined s
with the focal length of the camera lens, this provides the magnification of each pixel used to «s
dewarp the image and map it into physical dimensions.

a0 The rectified images are further pre-processed to enhance the signal using time-averaged back-e.
ground subtraction, followed by two additional spatial filters (see Fig. A1). PIV cross-correlation . is
implemented to retrieve 2D velocity vectors using LaVision DaVis software with a multi-pass e
interrogation scheme. This scheme finishes with a correlation spot size of 32x32 pixels? or 64x64 .
pixels? for the vertical or horizontal, respectively, light-sheet cases. Final correlation passes use«: a
normalized correlation function with zero padding. Initial post-processing removes spurious es

vectors with an iterative normalized median filter, after which 95% vector yield remains.
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617 Fig. Al. Imaging of snow particles for SLPIV: (a) Raw image after rectification; (b) Enhanced image; (c) Raw

aie image with fluctuating velocity vectors superimposed.
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